
Citation: Ma, Z.; Gao, D.; Yang, S.;

Wei, X.; Gong, Y. Dataset

Condensation via Expert Subspace

Projection. Sensors 2023, 23, 8148.

https://doi.org/10.3390/s23198148

Academic Editor: Huafeng Li

Received: 12 August 2023

Revised: 19 September 2023

Accepted: 26 September 2023

Published: 28 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Dataset Condensation via Expert Subspace Projection
Zhiheng Ma 1 , Dezheng Gao 2, Shaolei Yang 3, Xing Wei 3,* and Yihong Gong 2,3

1 Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China;
zh.ma@siat.ac.cn

2 Institute of Artificial Intelligence and Robotics, Xi’an Jiaotong University, Xi’an 710049, China;
gaodezheng@stu.xjtu.edu.cn (D.G.); ygong@mail.xjtu.edu.cn (Y.G.)

3 School of Software Engineering, Xi’an Jiaotong University, Xi’an 710049, China; yangshaolei@stu.xjtu.edu.cn
* Correspondence: weixing@mail.xjtu.edu.cn

Abstract: The rapid growth in dataset sizes in modern deep learning has significantly increased
data storage costs. Furthermore, the training and time costs for deep neural networks are generally
proportional to the dataset size. Therefore, reducing the dataset size while maintaining model
performance is an urgent research problem that needs to be addressed. Dataset condensation is
a technique that aims to distill the original dataset into a much smaller synthetic dataset while
maintaining downstream training performance on any agnostic neural network. Previous work has
demonstrated that matching the training trajectory between the synthetic dataset and the original
dataset is more effective than matching the instantaneous gradient, as it incorporates long-range
information. Despite the effectiveness of trajectory matching, it suffers from complex gradient
unrolling across iterations, which leads to significant memory and computation overhead. To address
this issue, this paper proposes a novel approach called Expert Subspace Projection (ESP), which
leverages long-range information while avoiding gradient unrolling. Instead of strictly enforcing
the synthetic dataset’s training trajectory to mimic that of the real dataset, ESP only constrains it to
lie within the subspace spanned by the training trajectory of the real dataset. The memory-saving
advantage offered by our method facilitates unbiased training on the complete set of synthetic images
and seamless integration with other dataset condensation techniques. Through extensive experiments,
we have demonstrated the effectiveness of our approach. Our method outperforms the trajectory
matching method on CIFAR10 by 16.7% in the setting of 1 Image/Class, surpassing the previous
state-of-the-art method by 3.2%.

Keywords: dataset condensation; synthetic data; subspace optimization; deep learning

1. Introduction

With the rapid development of the Internet, a growing number of large-scale datasets
are being collected for obtaining state-of-art machine learning models in multiple fields,
including computer vision, natural language processing, and speech recognition [1]. Such
rapid growth of dataset scale results in increasingly expensive model training, and at some
scales, even storing and preprocessing the data are burdensome. For instance, the training
of a recent language model, GPT-3 [2], consumes an astonishing 190 MWh of electricity,
generating approximately 85,000 kg of CO2, according to US carbon emission standards,
which is equivalent to the emissions of driving a car 700,000 km. An intuitive solution is to
select a representative subset from the original dataset, commonly referred to as coreset
selection. However, previous work shows that, when facing strict compression ratios,
coreset selection methods suffer from severe information loss [1] and cannot compete
with dataset condensation techniques [3,4], which distill the original dataset into a much
smaller synthetic dataset. Typically, this type of method adopts bi-level optimization,
which involves an inner optimization for model updates and an outer optimization for

Sensors 2023, 23, 8148. https://doi.org/10.3390/s23198148 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23198148
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-0034-2065
https://orcid.org/0000-0002-5025-3941
https://orcid.org/0000-0002-1793-5836
https://doi.org/10.3390/s23198148
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23198148?type=check_update&version=2

Sensors 2023, 23, 8148 2 of 18

synthetic image updates. To distill the essential information from the original dataset into
the synthetic dataset, a suitable matching objective must be defined.

The matching objective includes distribution matching [5], gradient matching [6,7],
and meta-model matching [8,9]. Notably, a trajectory matching objective [10] has recently
been introduced, demonstrating significant performance improvements over other match-
ing objectives. This objective aims to align the trajectory of the network trained with the
synthetic dataset images with the parameter trajectory of the network trained with the
original dataset. Unlike gradient matching methods, which only consider the instantaneous
training dynamics (i.e., gradients) between the synthetic and real datasets, trajectory match-
ing recognizes that the long-range training dynamics (i.e., training trajectory) provide more
informative constraints for dataset condensation.

However, the limitation of trajectory matching is the substantial cost of computation
and memory involved in executing multiple unrolled gradient computations for the re-
cursive computational graph when mimicking the training trajectory. This hampers the
feasibility of training on the complete set of synthetic images without resorting to slicing
and may introduce bias when conducting mini-batch training on the sliced data, ultimately
affecting the final performance.

This paper presents a novel matching objective called Expert Subspace Projection
(ESP), which effectively guides the dataset condensation process with long-range training
dynamics while significantly reducing computational and memory costs compared to
trajectory matching. Instead of strictly enforcing the synthetic dataset’s training trajectory
to mimic the real dataset, ESP only constrains it to lie within the subspace spanned by the
training trajectory of the real dataset. Our core technical concept is illustrated in Figure 1.
We extract an arbitrary segment from the parameter trajectory obtained through training on
the original dataset Dreal , whose starting point is~θ∗t and ending point is~θ∗t+T . For training
with the synthetic data, the neural network is initialized with~θ∗t , and the gradient of the
parameters at that point is ~G. In gradient matching [6], the objective is to align ~G with
~θ∗t+1−~θ∗t . Conversely, in trajectory matching [10], the objective is to align~θt+T with~θ∗t+T after
T iterations. Both methods have their advantages and disadvantages. Gradient matching,
although computationally simpler, cannot effectively utilize long-range information. On
the other hand, trajectory matching has the ability to incorporate long-range information
but requires the gradient to be unrolled through T iterations during computation.

Our method, however, circumvents the drawbacks of both approaches while inher-
iting their respective advantages. First, we construct a subspace Sτ∗ span by means of
the training trajectory {~θ∗t }t+T

t . This subspace effectively captures a substantial amount of
information relevant to the training trajectory using a real dataset. Consequently, by confin-
ing the optimization gradient ~G of each step within this subspace when training with the
synthetic dataset, we are able to distill a significant portion of the information inherent in
the real dataset into the synthetic one. Specifically, we define a new objective function LProj

to penalize the norm of the residual vector between ~G and its projection ~GSτ∗ within the
subspace Sτ∗ . This approach not only circumvents the requirement for gradient unrolling
across T iterations but also effectively utilizes the long-range information embedded within
the optimization process. The memory consumption of our method is not affected by the
number of steps in the neural network optimization (inner optimization) since the synthetic
images are updated at every step. This significantly reduces the spatial complexity of
training compared to previous trajectory methods. Consequently, our method facilitates
training on the entire set of synthetic images without the need for slicing and can be seam-
lessly integrated with other techniques such as distribution matching [5] and KFS [1]. Our
method has been extensively tested on four widely used data condensation benchmarks,
and the results demonstrate its remarkable effectiveness. In particular, our ESP method
outperforms trajectory matching by a significant margin, leading to the establishment of a
new state-of-the-art performance.

Sensors 2023, 23, 8148 3 of 18

Ԧ𝐺𝕊𝜏∗
Ԧ𝐺

Ԧ𝜃𝑡+1
∗

Ԧ𝜃𝑡= Ԧ𝜃𝑡
∗

Ԧ𝜃𝑡+2
∗

Ԧ𝜃𝑡+T
∗

Ԧ𝜃𝑡+1

ℒP𝑟𝑜𝑗

Expert Trajectory { Ԧ𝜃𝑡
∗} 𝑡

𝑡+T Expert Subspace 𝕊𝜏∗

Gradient Ԧ𝐺 of parameters Projected Gradient Ԧ𝐺𝕊𝜏∗

Projection Loss ℒP𝑟𝑜𝑗

Figure 1. Diagram illustrating the proposed Expert Subspace Projection (ESP) method. The expert
trajectory consists of weight snapshots obtained during training with the original dataset Dreal . Each
node ~θ∗t represents a saved weight snapshot at the end of step t. The subspace Sτ∗ is spanned by
the set of weight snapshots {~θ∗t }t+T

t . ~G represents the parameter gradient vector generated during
training with the synthetic dataset Dsyn. The subspace projection loss LProj penalizes the norm of the
residual vector between ~G and its projection ~GSτ∗ within the subspace Sτ∗ .

2. Related Work
2.1. Dataset Condensation

In order to reduce the resources required for deep neural networks, researchers usually
use knowledge distillation [11–14] to distill complex and large models into smaller ones,
while still ensuring comparable results to those before compression. As technology has
evolved, the concept of knowledge distillation began to be transferred to the datasets.
Wang et al. [4] first proposed dataset condensation, which uses meta-learning [8,9] methods
to compress the knowledge of the entire training dataset into a small amount of synthetic
data and achieves high accuracy through several steps of gradient descent on the synthetic
data. Subsequently, many works have utilized gradient matching [6,7,10] and distribution
matching [1,5] for optimization. Dataset Condensation (DC) [6] assumes that the opti-
mization process of the synthetic dataset is very close to the real dataset, so it optimizes
the synthetic dataset by matching the optimization trajectory of the model trained on
the synthetic dataset with the optimization trajectory of the real dataset. Differentiable
Siamese Augmentation (DSA) [7] is further work based on DC [6] and uses a set of data
enhancement strategies while learning the synthetic image, thereby enhancing the informa-
tion in the real training image and transferring this enhanced knowledge to the synthetic
image. Distribution matching (DM) [5] matches the features of the real samples and the
synthetic samples that are output at the last layer of the neural network. These neural
networks are randomly initialized to ensure computational efficiency and, at the same time,
very high accuracy. Knowledge Factorization and Sharing (KFS) [1] also uses distribution
matching [5], introducing a new latent code decoder architecture, which greatly increases
the number of modalities of synthetic images with the same number of parameters, thus
achieving a new state of the art.

Sensors 2023, 23, 8148 4 of 18

Trajectory matching [10] encourages the synthetic dataset to mimic the long-range
training dynamic of the real dataset by mimicking the expert trajectory generated by the real
dataset. Although long-range information helps it achieves satisfactory results, the method
requires accumulating multiple computational graphs, which greatly increases memory
consumption and even introduces a subsampling bias as a result of having to reduce
the batch size for saving memory. Our ESP method alleviates the memory consumption
issue by projecting the model gradient into expert subspace instead of matching model
parameters, allowing the model to be trained on the complete synthetic dataset while also
utilizing the long-range information of expert trajectories.

2.2. Subspace Training

Generally, deep neural networks come with a large number of parameters, which tend
to have strong correlations, thus resulting in great redundancy. Guy et al. [15] first proposed
the hypothesis that, in various large-scale deep learning scenarios, gradients dynamically
converge to a very small subspace after short-term training, so gradient descent in the
subspace will yield a similar loss reduction. Li et al. [16] try to optimize network parameters
in a small, random subspace instead of the original parameter space, then slowly increase
the dimension of this subspace. Eventually, the authors find that the intrinsic dimension
required for model training is smaller than one might think. While this training holds
promise for more efficient and scalable optimization schemes, its practical application is
limited by poor optimization performance. Gressmann et al. [17] made some optimizations
to the stochastic subspace approach, achieving further improvements by applying indepen-
dent projections to different parts of the network, making the approximation more efficient
as the network dimensionality grows. After that, Li et al. [18] extracted the landscape by
analyzing the optimization trajectories, while also verifying that many standard neural
network structures can be trained well with only 40 independent variables and that the per-
formance is almost the same as conventional training with all parameters. Inspired by [18],
we span the parameters from the expert trajectory into an expert subspace and encourage
the synthetic data to learn information about real data within the expert subspace, thereby
optimizing synthetic data in an efficient way.

2.3. Coreset Selection

Coreset selection [19–23] is an approximate replacement of the original large dataset
with a small dataset such that the small dataset still provides rich information, making
the accuracy on the test dataset very close to the original dataset. However, such methods
often come with a trade-off between performance and dataset size, as they produce a rough
approximation of the full dataset. Dataset condensation is very similar to coreset selection,
but dataset condensation [1,5,6,10] is more robust. It mainly uses the original dataset to
synthesize some learnable pictures and then captures the rich information encoded in the
original dataset to realize the compression of the original dataset. These learned images do
not appear in the original dataset.

3. Method

The primary objective of dataset condensation is to efficiently compress a real dataset
Dreal into a significantly smaller synthetic dataset Dsyn while minimizing the loss in perfor-
mance during downstream training. In line with previous studies [6,7,10], our methods also
embrace a bi-level optimization framework. This framework consists of an inner optimiza-
tion for the neural network’s parameters and an outer optimization for synthetic images.

To begin with, we present the comprehensive framework of our Expert Subspace
Projection (ESP) method, as illustrated in Figure 2. In the inner optimization, we utilize
the binary cross-entropy (BCE) loss as the objective function. This loss penalizes the mis-
classification of synthetic images based on their pre-defined ground-truth labels. Notably,
rather than using the original gradient descent, we update the neural network’s parameters
using projected gradient descent within the expert subspace. This constraint ensures that

Sensors 2023, 23, 8148 5 of 18

the training trajectory (student trajectory) remains confined within the expert subspace. In
the outer optimization, we employ a combination of the projection loss and the distribution
matching loss [5] as the objective function. The first loss term penalizes any deviation of
gradients from the desired subspace, while the second term aligns the feature distribution
between real and synthetic images. During this process, the synthetic images are updated
using normal gradient descent.

Informative segment

Parameters

snapshot

റ𝜃𝑡
∗ റ𝜃𝑡+1

∗ റ𝜃𝑡+T
∗…

Construct Expert Subspace

𝜃𝑡 = 𝜃𝑡
∗ 𝜃𝑡+1

Expert subspace 𝕊𝜏∗ =

𝑠𝑝𝑎𝑛(റ𝜃𝑡
∗, … , റ𝜃𝑡+𝑇

∗)

𝜃𝑡+𝑁
…

…

Distribution

match loss

റ𝜃0
∗

Projection loss

…

Expert trajectory

Student trajectory

Initialize model with റ𝜃𝑡
∗

𝜃𝑡+2

റ𝜃𝑡+2
∗

Complete set of synthetic dataset

Complete set of real dataset

Figure 2. Overview of our ESP method for dataset condensation. We train the model with the
complete real dataset to obtain the expert trajectory. An informative segment of length T is extracted
and flattened into one-dimensional vectors, forming a subspace. The condensation process utilizes a
bi-level optimization framework. The inner stage refines the model’s parameters within the expert
subspace using projected gradient descent, while the outer stage updates the synthetic dataset.
Distribution matching loss penalizes feature distribution discrepancy, and projection loss penalizes
gradients outside the expert subspace.

In subsequent sections, we delve into the technical details of our method, provid-
ing a comprehensive explanation of its underlying mechanisms. Furthermore, we con-
duct a thorough analysis to demonstrate the memory consumption advantage offered by
our approach.

3.1. Preliminaries

The long-range training trajectory of the original dataset, referred to as the expert
trajectory, has been empirically demonstrated to be effective in guiding the condensation
of the synthetic dataset in trajectory matching [10]. As illustrated in Figure 2, an expert
trajectory τ∗ = {~θ∗t }t+T

t consists of a series of parameter snapshots during the training
process with Dreal . Each snapshot, denoted as~θ∗t , represents the parameters saved after the
t-th epoch and is flattened into a one-dimensional vector. In the context of trajectory match-
ing, the inner optimization process involves T steps of updates on the neural network’s
parameters, i.e., from~θt to~θt+T , supervised by the classification loss of the synthetic images
Dsyn. To ensure that the student trajectory begins from the same starting point as the expert
trajectory,~θt is initialized with~θ∗t . The outer optimization process involves a single update
step for the synthetic images, supervised by the trajectory matching loss:

LTM =
‖~θt+N −~θ∗t+T‖2

2

‖~θ∗t −~θ∗t+T‖2
2

, (1)

where N is the length of the student trajectory, and T is the length of the expert trajectory.
It is worth noting that the student trajectory’s length is not necessarily the same as that of

Sensors 2023, 23, 8148 6 of 18

the expert trajectory due to the much smaller size of the synthetic dataset compared to the
original dataset. In practice, N is intentionally set to be smaller than T.

In most cases, the student trajectory is indeed much shorter. However, for the sake
of simplicity and without loss of generality, we assume that both trajectories have the
same length in the equation provided above. LTM promotes Dsyn to mimic the long-
range training dynamic of Dreal . However, due to the inclusion of T steps of updates
in the inner optimization process, the calculation of gradients for the outer optimization
requires unrolling the gradients through T iterations. This unrolling process and the need
to save the computation graph from multiple updates result in significantly higher memory
consumption compared to other methods [5–7]. This high memory usage necessitates
the use of a slice of the synthetic dataset, which may introduce a biased optimization. In
Section 3.5, we discuss the impact of this issue in detail and analyze the memory usage.

3.2. Expert Subspace Projection

Our proposed ESP method leverages the benefits of long-range training dynamics
obtained from expert trajectories. Importantly, it addresses the issue of linear memory
growth that arises when unrolling the gradient through iterations, as the inner optimization
solely entails a single-step update. The crux of the challenge lies in emulating the long-range
training dynamics despite the constraint of having only one update.

Our solution is simple yet effective. In our approach, we confine each optimization
step to remain within the subspace spanned by the expert trajectory during the inner
optimization. Simultaneously, during the outer optimization, we penalize the residual
gradient that deviates from this subspace. The expert subspace Sτ∗ is spanned by the vector
set {~θ∗t }t+T

t :

Sτ∗ = span
(
~θ∗t , . . . ,~θ∗t+T

)
. (2)

By using Schmidt’s orthogonal standardization, we can obtain a set of standardized
bases for the subspace Sτ∗ :

E = [~ε0, ~ε1, . . . , ~εT]

= OS([~θ∗t , . . . ,~θ∗t+T]),
(3)

where the notation OS(·) represents the orthogonal standardization operator. It is worth
emphasizing that the length of the expert trajectory is considerably smaller than the di-
mension of the parameter vector. Our experimental findings provide evidence that this
expert subspace encapsulates the majority of long-range training dynamics exhibited by the
expert trajectories. Therefore, it can serve as a reliable proxy for capturing these dynamics.
Consistent with trajectory matching [10], the expert trajectory can be generated and stored
offline prior to commencing the data condensation process. This approach helps to conserve
memory and reduce computation costs.

3.3. Inner Optimization

At the onset of the dataset condensation process, we initialize the synthetic images
with random Gaussian distribution, along with pre-assigned category labels. The neural
network is initialized with the starting point of the expert trajectory, i.e.,~θt := ~θ∗t .

Following the bi-level optimization framework, we commence by updating the neural
network in the inner optimization phase, followed by updating the synthetic images in the
outer optimization phase. The gradient for the neural network in the inner optimization is
computed as follows:

~G = ∇~θt
LBCE(M(Dsyn;~θt)), (4)

whereM represents the neural network model, and LBCE represents binary cross-entropy
loss. Rather than directly utilizing this gradient to update the neural network, we project it

Sensors 2023, 23, 8148 7 of 18

onto the expert subspace to align with the long-range training dynamics of the original data:

~GSτ∗ = ProjSτ∗
(~G) = EET~G, (5)

where ET represent the transposition of E, and the neural network is updated by the
projected gradient in expert subspace:

~θt+1 = ~θt − α~GSτ∗ , (6)

where α represents the learning rate. In the equation, we have introduced the naive gradient
descent method. However, it is essential to emphasize that there are other gradient-based
optimization algorithms that can also be employed in this context.

3.4. Outer Optimization

In the outer optimization, we perceive the gradient deviation outside the expert
subspace as the disparity between the synthetic dataset and the original dataset. To
alleviate this dissimilarity, we introduce a penalization function that aims to minimize the
norm of the residual gradient:

LProj = ‖~G− ~GSτ∗ ‖1, (7)

LDM =
1
C

C

∑
c=1

∥∥∥M(Dreal ;~θt)−M(Dsyn;~θt)
∥∥∥2

2
, (8)

where ‖·‖ indicates the `2 norm. In subsequent experimental analyses, we observed that
the integration of this loss function resulted in improved accuracy in downstream training
and enhanced the level of detail in synthesized images. These findings provide compelling
evidence for the complementary nature of these two loss functions. The final objective
function is defined as follows, where β is the hyper-parameter to balance these two losses:

LOut = LDM + βLProj. (9)

Finally, we can update the synthetic dataset with gradient descent:

Dsyn = Dsyn − α∇DsynLOut. (10)

Our comprehensive data condensation process is summarized in Algorithm 1.

3.5. Memory Consumption

Trajectory matching [10] involves N update steps in the inner optimization and a single
update step in the outer optimization. Therefore, the calculation of the gradient for the outer
optimization needs to unroll the gradient through all N steps. As a result, all intermediate
computational graphs and variables must be stored in GPU memory. Accurately estimating
GPU memory consumption, also known as the memory footprint, is a complex task that
depends on various factors, such as the specific operators utilized in the neural network,
the connectivity of the computational graph, and the choice of deep learning framework.
However, in theory, the memory footprint scales approximately linearly with the number
of inner optimization steps N. Our method involves a single step of inner optimization
followed by a single step of outer optimization. Therefore, our memory consumption is
significantly smaller compared to trajectory matching, while still allowing us to benefit
from the valuable long-range expert trajectory.

Sensors 2023, 23, 8148 8 of 18

Algorithm 1: Expert Subspace Projection

Input: the set of expert trajectories {τ∗k }
K
k=1; the length of the selected expert

trajectory T; the length of the student trajectory N; the learning rate α;
Output: synthetic dataset Dsyn;
Initialize Dsyn with Gaussian distribution;
while not converged do

Randomly select a trajectory from the set {τ∗k }
K
k=1;

Randomly extract a segment of length T: τ∗ = {~θ∗t }t+T
t ;

Construct the expert subspace Sτ∗ ;
Initialize~θt with~θ∗t ;
for n = 1 to N do

Calculate ~G with Equation (4);
Project ~G onto Sτ∗ to obtain ~GSτ∗ with Equation (5);
Calculate LOut with Equation (9);
// Inner Optimization
~θt+n = ~θt+n−1 − α~GSτ∗ ;
// Outer Optimization
Dsyn = Dsyn − α∇DsynLOut;

end
end
return Dsyn

4. Experiments

We validate the effectiveness of our proposed method on various classification bench-
mark datasets, assessing its ability to generalize across different architectures. In addition,
we conduct ablation experiments and provide visualization results to further substantiate
the efficacy of our approach.

4.1. Datasets

CIFAR10/100 [24]. The CIFAR10 dataset is a collection of 60,000 color images, each
measuring 32× 32 pixels. These images are classified into 10 distinct categories representing
common objects and animals such as airplanes, automobiles, birds, cats, deer, dogs, frogs,
horses, ships, and trucks. Each category contains 6000 images, and the dataset is split into
a training set with 50,000 images and a test set with 10,000 images. CIFAR10 is widely
recognized as a benchmark for image classification tasks, playing a crucial role in the
development and evaluation of various machine learning and deep learning algorithms.

CIFAR100 consists of 100 classes, with each class containing 600 images. These
100 classes are grouped into 20 superclasses, with each superclass containing 5 classes. The
CIFAR100 dataset covers a diverse range of object categories, including animals, vehicles,
household items, and natural objects. Similar to CIFAR10, CIFAR100 is divided into a
training set (50,000 images) and a test set (10,000 images). It serves as a benchmark for
addressing more intricate and fine-grained classification tasks, enabling researchers to
delve into complex image recognition problems.

TinyImageNet [25]. TinyImageNet is extensively utilized in computer vision research
and benchmarking as a downsized variant of the renowned ImageNet dataset [26]. Its
purpose is to offer a more manageable alternative for training and evaluating deep learning
models, given the vast scale of the original ImageNet dataset. Comprising 200 distinctive
object classes, the TinyImageNet dataset encompasses an approximate quantity of 500 train-
ing images, 50 validation images, and 50 test images per class. It boasts a diverse array
of object categories, encompassing animals, commonplace objects, as well as a variety of
natural and human-created items. Notably, each image within the dataset maintains a
resolution of 64 × 64 pixels.

Sensors 2023, 23, 8148 9 of 18

SVHN [27], The SVHN (Street View House Number) Dataset is a valuable collection of
real-world images extracted from door numbers captured by Google Street View. It provides
a significant amount of data, with more than 70,000 numbers specifically designated
for training and an additional 20,000 numbers reserved for testing. Similar to the well-
known MNIST [28] dataset, each image in SVHN is 32 × 32 pixels in size and focuses
on a single character situated at the center. Notably, many images in SVHN also contain
distractors placed alongside the main character of interest. This dataset is highly useful
for tasks like digit recognition and character segmentation, allowing researchers to tackle
challenges posed by real-world scenarios and evaluate the performance of various machine
learning algorithms.

4.2. Implementation Details

For fairness and convenience of comparison, we use the same suite of differentiable
augmentations as in previous work, as well as the same number of latent code decoder
parameters as in [1], which matches the size of 1, 10, and 50 images per class. Prior to
the condensation step, we pre-compute 1000 expert trajectories on ConvNet-3 for each
dataset. These pre-computed trajectories are then utilized in all our experiments to expedite
the condensation process. This approach follows a similar technique used in trajectory
matching [10]. During the distillation process, we have the flexibility to randomly select
one expert trajectory as the teacher, which saves time in optimizing the expert network.

For the distillation process, we use β = 1× 10−5 to balance the loss of LDM and LProj.
The learning rate of the neural network (ConvNet-3 by default) is set as a constant value
of 0.1. The synthetic dataset, represented by the latent code and decoder, follows a linear
decay schedule for their learning rates. The initial learning rate for the latent code is set to
0.1, while the initial learning rate for the decoder is set to 0.01. To optimize the model, we
employ the SGD as the inner optimizer and Adam [29] as the outer optimizer. More details
can be found in Algorithm 1.

For the evaluation, we train the condensed data on ConvNet-3 for accuracy, while
using ResNet [30] and DenseNet [31] for cross-architecture ability. To evaluate the perfor-
mance of classification models trained with the condensed datasets, we report the mean
classification accuracy and its corresponding standard deviation across 5 runs with different
random seeds.

4.3. Comparison with State-of-the-Art Methods

We first compare our ESP method with coreset selection [19–23] methods, such as
randomizing [32,33] and herding [34,35] methods. Secondly, we also compare our method
with some recent condensation works, namely DC (dataset condensation) [6], DSA (dif-
ferentiable Siamese augmentation for DC) [7], DM (distribution matching) [5], KIP to NN
(infinitely wide convolutional networks) [36], CAFE (aligning features) [37], MTT (match-
ing training trajectories) [10], IDC [38], and KFS (latent space knowledge factorization and
sharing) [1]. Our ESP method achieves the state of the art on SVHN [27], CIFAR10 [24],
CIFAR100 [24], and TinyImageNet [25] datasets. Table 1 illustrates the performance of our
method and competitor methods on four datasets. Particularly when IPC = 1, our ESP
method achieves a significant improvement under the same parameters on all four datasets.
In particular, the improvements on SVHN, CIFAR10, CIFAR100, and TinyImageNet are
2.3%, 5.4%, 2.3%, and 9.7%, respectively, over other methods, indicating that the subspace
projection method improves the data efficiency of dataset condensation. In order to illus-
trate the effect of our condensed dataset, we visualized our synthetic image of SVHN in
Figure 3, CIFAR10 in Figure 4, CIFAR100 in Figure 5, and TinyImageNet in Figure 6.

Sensors 2023, 23, 8148 10 of 18

Figure 3. The synthetic images of SVHN [27].

Figure 4. The synthetic images of CIFAR10 [24].

Sensors 2023, 23, 8148 11 of 18

Figure 5. The synthetic images of CIFAR100 [24].

Figure 6. The synthetic images of TinyImageNet [25].

Sensors 2023, 23, 8148 12 of 18

Table 1. Classification accuracies (%) on ConvNet-3. The results of other methods are reported in
their respective papers [1,5–7,10,36–38]. For our method, we report mean accuracy and standard
deviation over five runs with different random seeds.

Dataset SVHN CIFAR10 CIFAR100 TinyImageNet
Metric Accuracy (%) Accuracy (%) Accuracy (%) Accuracy (%)

Images/Class 1 10 50 1 10 50 1 10 1 10
Param./Class 3072 30,720 153,600 3072 30,720 153,600 3072 30,720 12,288 122,880

Random 14.6±1.6 35.1±4.1 70.9±0.9 14.4±2.0 26.0±1.2 43.4±1.0 4.2±0.3 14.6±0.5 1.4±0.1 5.0±0.2

Herding 20.9±1.3 50.5±3.3 72.6±0.8 21.5±1.2 31.6±0.7 40.4±0.6 8.4±0.3 17.3±0.3 2.8±0.2 6.3±0.2

DC [6] 31.2±1.4 76.1±0.6 82.3±0.3 28.3±0.5 44.9±0.5 53.9±0.5 12.8±0.3 25.2±0.3 - -
DSA [7] 27.5±1.4 79.2±0.5 84.4±0.4 28.8±0.7 52.1±0.5 60.6±0.5 13.9±0.3 32.3±0.3 - -
DM [5] 20.3±2.1 73.5±1.0 84.2±0.0 26.0±0.8 48.9±0.6 63.0±0.4 11.4±0.3 29.7±0.3 3.9±0.2 12.9±0.4

KIP to NN [36] 57.3±0.1 75.0±0.1 80.5±0.1 49.9±0.2 62.7±0.3 68.6±0.2 15.7±0.2 28.3±0.1 - -
CAFE + DSA [37] 42.9±3.0 77.9±0.6 82.3±0.4 31.6±0.8 50.9±0.5 62.3±0.4 14.0±0.3 31.5±0.2 - -

Traj. Matching [10] - - - 46.3±0.8 65.3±0.7 71.6±0.2 24.3±0.3 40.1±0.4 8.8±0.3 23.2±0.2

IDC [38] 68.1±0.1 87.3±0.2 90.2±0.1 50.0±0.4 67.5±0.5 74.5±0.1 - 44.8±0.2 - -
KFS [1] 82.9±0.4 91.4±0.2 92.2±0.1 59.8±0.5 72.0±0.3 75.0±0.2 40.0±0.5 50.6±0.2 22.7±0.2 27.8±0.2

ESP (ours) 84.8±0.3 91.6±0.1 92.8±0.1 63.0±0.4 73.8±0.2 76.1±0.3 41.1±0.3 48.0±0.1 24.9±0.3 26.6±0.5

Full dataset 95.4±0.1 84.8±0.1 56.2±0.3 37.6±0.4

4.4. Cross-Architecture Generalization

In the context of dataset condensation, it is imperative that an ideal synthetic dataset
exhibit similar training effects as the original dataset on downstream models with arbitrary
structures. Consequently, the performance of cross-architecture generalization holds sig-
nificant importance as a key metric. We used our synthetic data generated on ConvNet-3
(0.32 M parameters) to train different models, including ResNet-10 [30] (4.90 M parameters),
DenseNet-121 [31] (6.96 M parameters), and EfficientNet-V2-s [39] (22 M parameters), and
the results are presented in Tables 2 and 3.

Table 2. Cross-architecture experiments. Conv3, RN10, and DN121 denote ConvNet-3, ResNet-10,
and DenseNet-121, respectively. We train on ConvNet-3 and evaluate on the three architectures. The
results of other methods are reported in their respective papers [1,5,7,38]. For our method, we report
mean accuracy and standard deviation over five runs with different random seeds.

Dataset
Images/Class 1 10 50

Metric Accuracy (%) Accuracy (%) Accuracy (%)
Test Architecture Conv3 RN10 DN121 Conv3 RN10 DN121 Conv3 RN10 DN121

SVHN

DSA [7] 27.5±1.4 13.2±1.1 13.3±1.4 79.2±0.5 19.5±1.5 23.1±1.9 84.4±0.4 41.6±2.1 58.0±3.1

DM [5] 20.3±2.1 10.5±2.8 13.6±1.0 73.5±1.0 28.2±1.5 24.8±2.5 84.2±0.0 54.7±1.3 58.4±2.7

IDC [38] 68.1±0.1 39.6±1.5 39.9±2.9 87.3±0.2 83.3±0.2 82.8±0.2 90.2±0.1 89.1±0.2 91.0±0.3

KFS [1] 82.9±0.4 75.7±0.8 81.0±0.7 91.4±0.2 90.3±0.2 89.7±0.2 92.2±0.1 90.9±0.2 90.2±0.2

ESP (ours) 84.8±0.3 84.7±0.6 82.0±0.1 91.6±0.2 93.5±0.1 90.7±0.3 92.8±0.1 93.7±0.1 91.0±0.5

Full dataset 95.4±0.1 93.8±0.5 89.1±0.8 95.4±0.1 93.8±0.5 89.1±0.8 95.4±0.1 93.8±0.5 89.1±0.8

CIFAR10

DSA [7] 28.8±0.7 25.1±0.8 25.9±1.8 52.1±0.5 31.4±0.9 32.9±1.0 60.6±0.5 49.0±0.7 53.4±0.8

DM [5] 26.0±0.8 13.7±1.6 12.9±1.8 48.9±0.6 31.7±1.1 32.2±0.8 63.0±0.4 49.1±0.7 53.7±0.7

IDC [38] 50.0±0.4 41.9±0.6 39.8±1.2 67.5±0.5 63.5±0.1 61.6±0.6 74.5±0.1 72.4±0.5 71.8±0.6

KFS [1] 59.8±0.5 47.0±0.8 49.5±1.3 72.0±0.3 70.3±0.3 69.2±0.4 75.0±0.2 75.1±0.3 76.3±0.4

ESP (ours) 63.0±0.4 50.4±0.5 51.6±0.6 73.0±0.3 71.8±0.4 69.4±0.3 75.9±0.3 75.3±0.2 73.0±0.5

Full dataset 84.8±0.1 87.9±0.2 90.5±0.3 84.8±0.1 87.9±0.2 90.5±0.3 84.8±0.1 87.9±0.2 90.5±0.3

Sensors 2023, 23, 8148 13 of 18

Table 3. Cross-architecture experiments on EfficientNet. ENs denotes EfficientNetv2-s [39]. We
train on ConvNet-3 and evaluate on EfficientNetv2-s. The reported results are solely based on our
own experiments.

Dataset
Images/Class 1 10 50

Metric Accuracy (%) Accuracy (%) Accuracy (%)
Test Architecture ENs ENs ENs

CIFAR10

DSA [7] 16.5±0.3 25.6±0.4 33.7±0.2

DC [6] 16.1±1.7 22.3±1.4 25.7±0.9

Traj. Matching [10] 17.7±0.2 24.0±0.4 33.9±0.6

ESP (ours) 35.3±0.4 55.0±1.2 63.9±0.8

Full dataset 98.7±0.2 98.7±0.2 98.7±0.2

We can see that the performance of ESP is more robust to the change in network
architectures and achieves state-of-the-art performance on most of the network architec-
tures. For the SVHN [27] dataset, the accuracy on ResNet-10 is generally higher than
our baseline model (ConvNet-3), up to 2.1%. These experiments provide evidence that
the synthetic dataset generated by ESP exhibits better generalizability compared to other
datasets, showcasing the superior ability of our ESP method to capture representative
information from the original datasets. However, the experimental results also reveal that
when there is a significant architectural difference between the training and testing phases,
the cross-architecture performance is weakened. This suggests that a cross-architecture
generalization problem persists across all dataset condensation methods.

4.5. Memory Analysis

We perform an experimental comparison of the memory consumption between our
ESP method and trajectory matching [10] on the CIFAR10 [24] dataset. In line with our anal-
ysis in Section 3.5, trajectory matching exhibits a linear increase in memory consumption
with the length of the student trajectory due to its inner optimization steps being equal to
the student trajectory length. This theoretical analysis is confirmed by Figure 7a. Notably,
the memory consumption of trajectory matching increases approximately linearly with the
length of the student trajectory, while our ESP method remains unaffected.

We conducted an additional experiment to demonstrate that our ESP method has a
significantly lower growth rate in memory consumption compared to trajectory matching
when increasing the size of the synthetic dataset. Figure 7b illustrates this observation,
where our ESP method only exhibits a slight increase in memory usage as the IPC increases.
In contrast, the memory consumption of the trajectory matching [10] method experiences
a substantial surge, rendering it ineffective for training on the complete synthetic dataset
with higher IPC. Conversely, our method can directly handle the complete synthetic dataset,
enabling unbiased training, as we elaborate on in Section 4.6.

4.6. Synthetic Batch Size Analysis

Based on the analysis presented in [1], it is noteworthy that training the synthetic
dataset using batch optimization, where the complete synthetic dataset is divided into
several batches, introduces a bias in the gradient. This bias stems from disregarding the
interactions between different synthetic images, resulting in a reduction in diversity among
images within classes. The ablation experiments shown in Figure 8 quantify the impact of
this issue. In the figure, we trained synthetic images on the CIFAR10 dataset with various
batch sizes, ranging from small (batch size = 64) to large (batch size = 1024). It is evident
that the accuracy increases with batch size and stabilizes with larger batch sizes, reflecting
the property that the bias of the gradient of the synthetic dataset decreases as the batch size
increases. Thanks to the efficient use of memory in our ESP method, we are able to train on
the complete set of the synthetic dataset, which allows us to achieve better performance
than trajectory matching.

Sensors 2023, 23, 8148 14 of 18

10 20 30 40 50
0.2

0.4

0.6

0.8

1

1.2

Student Trajectory Length N

M
em

or
y

co
ns

um
pt

io
n

(a) Ablation of Student Trajectory Length

Trajectory Matching
ESP (ours)

0 10 20 30 40 50
0.2

0.4

0.6

0.8

1

1.2

Images Per Class (IPC)

M
em

or
y

co
ns

um
pt

io
n

(b) Ablation of IPC

Trajectory Matching
ESP (ours)

Figure 7. Memory consumption of trajectory matching [10] and our method. The right part shows the
memory consumption of different synthetic steps for IPC = 10, and the left part shows the memory
consumption of the two methods with different IPC for the CIFAR10 dataset. The results of trajectory
matching are obtained by executing their officially released code [10].

64 128 256 512 1,024

50

55

60

65

70

Batch size

A
cc

ur
ac

y

ipc-50
ipc-10
ipc-1

Figure 8. Accuracy on ConvNet-3 of synthetic images trained with different batch sizes.

4.7. Ablation Study

As discussed in Section 3.4, the projection loss and the distribution matching loss
exhibit a high level of complementarity. The projection loss focuses on aligning the long-
range training dynamics between the synthetic and original datasets, while the distribution
matching loss aims to match the static feature distribution between the two datasets. These
two loss components work together to ensure a comprehensive alignment of both the

Sensors 2023, 23, 8148 15 of 18

dynamic and static aspects of the datasets. This observation is further supported by the
results of our ablation experiments, as presented in Table 4. The individual losses alone
show suboptimal performance, whereas their combination yields excellent results. We
further visualize the synthetic images with and without the distribution loss. As can be
observed in Figure 9, the introduction of the distribution loss results in synthetic images
that exhibit more detailed textures and recognizable visual concepts. This phenomenon
may be attributed to the fact that the projection loss primarily constrains higher-order
information, such as gradients. On the other hand, low-level information like texture is
predominantly constrained by the distribution matching loss.

Truck

(a)Without distribution match (b)With distribution match

Plane

Car

Bird

Cat

Deer

Dog

Frog

Horse

Ship

Figure 9. The condensed synthetic images produced by our method exhibit a noticeable difference
when comparing the left and right parts. The left portion corresponds to images trained without the
distribution loss, resulting in a more abstract style. On the other hand, the right portion showcases
images with more pronounced and detailed texture information. Experiments are conducted on
CIFAR10 [24].

Table 4. Classification accuracies (%) on CIFAR10 [24]. We maintain the other hyper-parameters and
only change the loss.

Loss LProj LDM
Images/Class

1 10 50

Proj X 41.3±0.2 40.6±0.4 39.5±0.3

DM X 48.0±0.3 71.3±0.3 74.0±0.1

Proj + DM X X 62.6±0.1 73.0±0.3 75.9±0.2

5. Conclusions

In this paper, we have proposed a novel dataset condensation method called Expert
Subspace Projection (ESP) that effectively utilizes long-range training dynamics while
reducing computational overhead compared to prior trajectory matching techniques. Our

Sensors 2023, 23, 8148 16 of 18

key insight is to constrain model optimization to remain within the subspace spanned by
expert trajectories from the original dataset. This avoids expensive unrolling of gradients
across multiple steps, enabling memory-efficient training of the complete set of synthetic
data. We have validated ESP extensively on image classification tasks, demonstrating
state-of-the-art results on CIFAR, SVHN, and TinyImageNet datasets compared to existing
condensation methods. Importantly, we have shown ESP’s superior ability to transfer con-
densed datasets to unseen architectures, indicating it effectively distills dataset knowledge
in an architecture-agnostic manner. Overall, ESP provides an effective and scalable solution
for dataset condensation, resulting in the synthesis of highly informative compact datasets.
This technique enables the application of modern deep learning approaches in resource-
constrained settings, where memory or computational resources are limited. Moreover,
ESP contributes to minimizing the energy consumption needed for training models.

6. Limitations and Future Work

Despite the effectiveness of our Expert Subspace Projection (ESP) approach in reduc-
ing memory usage and computational requirements compared to the previous trajectory
matching [10] approach, it is crucial to acknowledge that ESP still operates within a bi-level
optimization framework. Consequently, extending ESP to large datasets that contain high-
resolution images presents a significant challenge, similar to previous bi-level optimization
methods [1,6,7,10,36,37]. This limitation hampers the application of dataset condensation to
tasks such as fine-grained classification, which heavily depends on high-resolution images
for capturing intricate details. Therefore, it is imperative to focus further efforts on explor-
ing strategies to minimize memory usage and computational requirements. Promising
directions include disentangling the outer optimization from the inner optimization and
approximating the inner optimization using a convex proxy model.

Author Contributions: Conceptualization, Z.M.; methodology, Z.M.; software, Z.M., D.G. and S.Y.;
validation, Z.M. and X.W.; formal analysis, Z.M., D.G. and X.W.; investigation, Z.M.; resources, Z.M.
and Y.G.; data curation, Z.M. and X.W.; writing—original draft preparation, Z.M., D.G. and S.Y.;
writing—review and editing, Z.M., X.W. and Y.G.; visualization, D.G. and S.Y.; supervision, X.W. and
Y.G.; project administration, Y.G.; funding acquisition, Z.M., X.W. and Y.G. All authors have read and
agreed to the published version of the manuscript.

Funding: This work is funded by Shenzhen Key Technical Projects (202208313000248, 202205173000112),
the Key Program of the Natural Science Foundation of Shenzhen (JCYJ20220818101406014), the
National Natural Science Foundation of China (62006183, 62206271), the National Key Research and
Development Project of China (2020AAA0105600), and the China Postdoctoral Science Foundation
(2020M683489).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are all openly available. CIFAR10/100
is found at https://www.cs.toronto.edu/kriz/cifar.html, accessed on 11 August 2023; SVHN is found
at http://ufldl.stanford.edu/housenumbers/, accessed on 11 August 2023; and TinyImageNet is
found at https://www.kaggle.com/c/tiny-imagenet or https://www.image-net.org/download,
accessed on 11 August 2023.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Lee, H.B.; Lee, D.B.; Hwang, S.J. Dataset Condensation with Latent Space Knowledge Factorization and Sharing. arXiv 2022,

arXiv:2208.10494.
2. Brown, T.; Mann, B.; Ryder, N.; Subbiah, M.; Kaplan, J.D.; Dhariwal, P.; Neelakantan, A.; Shyam, P.; Sastry, G.; Askell, A.; et al.

Language models are few-shot learners. Annu. Conf. Neural Inf. Process. Syst. (NeurIPS) 2020, 33, 1877–1901.
3. Cui, J.; Wang, R.; Si, S.; Hsieh, C.J. DC-BENCH: Dataset condensation benchmark. Adv. Neural Inf. Process. Syst. 2022, 35, 810–822.
4. Wang, T.; Zhu, J.Y.; Torralba, A.; Efros, A.A. Dataset distillation. arXiv 2018, arXiv:1811.10959.
5. Zhao, B.; Bilen, H. Dataset Condensation with Distribution Matching. arXiv 2021, arXiv:2110.04181.

https://www.cs.toronto.edu/kriz/cifar.html
http://ufldl.stanford.edu/housenumbers/
https://www.kaggle.com/c/tiny-imagenet
https://www.image-net.org/download

Sensors 2023, 23, 8148 17 of 18

6. Zhao, B.; Mopuri, K.R.; Bilen, H. Dataset Condensation with Gradient Matching. Int. Conf. Learn. Represent. (ICLR) 2021, 1, 3.
7. Zhao, B.; Bilen, H. Dataset condensation with differentiable siamese augmentation. In Proceedings of the International Conference

on Machine Learning (ICML), PMLR, Virtual Event, 18–24 July 2021; pp. 12674–12685.
8. Finn, C.; Abbeel, P.; Levine, S. Model-agnostic meta-learning for fast adaptation of deep networks. In Proceedings of the

International Conference on Machine Learning (ICML), PMLR, Sydney, Australia, 6–11 August 2017; pp. 1126–1135.
9. Nichol, A.; Achiam, J.; Schulman, J. On first-order meta-learning algorithms. arXiv 2018, arXiv:1803.02999.
10. Cazenavette, G.; Wang, T.; Torralba, A.; Efros, A.A.; Zhu, J.Y. Dataset distillation by matching training trajectories. In Proceedings

of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 18–24 June 2022;
pp. 4750–4759.

11. Hinton, G.; Vinyals, O.; Dean, J. Distilling the knowledge in a neural network. arXiv 2015, arXiv:1503.02531.
12. Turc, I.; Chang, M.W.; Lee, K.; Toutanova, K. Well-read students learn better: On the importance of pre-training compact models.

arXiv 2019, arXiv:1908.08962.
13. Sanh, V.; Debut, L.; Chaumond, J.; Wolf, T. DistilBERT, a distilled version of BERT: Smaller, faster, cheaper and lighter. arXiv 2019,

arXiv:1910.01108.
14. Jiao, X.; Yin, Y.; Shang, L.; Jiang, X.; Chen, X.; Li, L.; Wang, F.; Liu, Q. Tinybert: Distilling bert for natural language understanding.

arXiv 2019, arXiv:1909.10351.
15. Gur-Ari, G.; Roberts, D.A.; Dyer, E. Gradient descent happens in a tiny subspace. arXiv 2018, arXiv:1812.04754.
16. Li, C.; Farkhoor, H.; Liu, R.; Yosinski, J. Measuring the intrinsic dimension of objective landscapes. arXiv 2018, arXiv:1804.08838.
17. Gressmann, F.; Eaton-Rosen, Z.; Luschi, C. Improving neural network training in low dimensional random bases. Annu. Conf.

Neural Inf. Process. Syst. (NeurIPS) 2020, 33, 12140–12150.
18. Li, T.; Tan, L.; Tao, Q.; Liu, Y.; Huang, X. Low dimensional landscape hypothesis is true: DNNs can be trained in tiny subspaces.

arXiv 2021, arXiv:2103.11154.
19. Bachem, O.; Lucic, M.; Krause, A. Practical coreset constructions for machine learning. arXiv 2017, arXiv:1703.06476.
20. Borsos, Z.; Mutny, M.; Krause, A. Coresets via bilevel optimization for continual learning and streaming. Annu. Conf. Neural Inf.

Process. Syst. (NeurIPS) 2020, 33, 14879–14890.
21. Har-Peled, S.; Kushal, A. Smaller coresets for k-median and k-means clustering. In Proceedings of the Twenty-First Annual

Symposium on Computational Geometry, Pisa, Italy, 6–8 June 2005; pp. 126–134.
22. Sener, O.; Savarese, S. Active learning for convolutional neural networks: A core-set approach. arXiv 2017, arXiv:1708.00489.
23. Tsang, I.W.; Kwok, J.T.; Cheung, P.M.; Cristianini, N. Core vector machines: Fast SVM training on very large data sets. J. Mach.

Learn. Res. JMRL 2005, 6, 363–392.
24. Krizhevsky, A.; Vinod, N.; Hinton, G. Learning Multiple Layers of Features from Tiny Images. Technical Report. University of

Toronto. 2009. Available online: https://www.cs.toronto.edu/~kriz/cifar.html (accessed on 11 August 2023).
25. Le, Y.; Yang, X. Tiny imagenet visual recognition challenge. CS 231N 2015, 7, 3.
26. Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M.; et al.

ImageNet Large Scale Visual Recognition Challenge. Int. J. Comput. Vis. (IJCV) 2015, 115, 211–252. [CrossRef]
27. Netzer, Y.; Wang, T.; Coates, A.; Bissacco, A.; Wu, B.; Ng, A.Y. Reading Digits in Natural Images with Unsupervised Feature

Learning. In Proceedings of the NIPS Workshop on Deep Learning and Unsupervised Feature Learning, Granada, Spain, 16–17
December 2011.

28. LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998, 86,
2278–2324. [CrossRef]

29. Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. In Proceedings of the 3rd International Conference on
Learning Representations, ICLR, San Diego, CA, USA, 7–9 May 2015.

30. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

31. Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 4700–4708.

32. Chen, Y.; Welling, M.; Smola, A. Super-samples from kernel herding. arXiv 2012, arXiv:1203.3472.
33. Rebuffi, S.A.; Kolesnikov, A.; Sperl, G.; Lampert, C.H. icarl: Incremental classifier and representation learning. In Proceedings

of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017;
pp. 2001–2010.

34. Belouadah, E.; Popescu, A. Scail: Classifier weights scaling for class incremental learning. In Proceedings of the IEEE/CVF
Winter Conference on Applications of Computer Vision, Snowmass Village, CO, USA, 1–5 March 2020; pp. 1266–1275.

35. Castro, F.M.; Marín-Jiménez, M.J.; Guil, N.; Schmid, C.; Alahari, K. End-to-end incremental learning. In Proceedings of the
European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 233–248.

36. Nguyen, T.; Novak, R.; Xiao, L.; Lee, J. Dataset distillation with infinitely wide convolutional networks. Annu. Conf. Neural Inf.
Process. Syst. (NeurIPS) 2021, 34, 5186–5198.

37. Wang, K.; Zhao, B.; Peng, X.; Zhu, Z.; Yang, S.; Wang, S.; Huang, G.; Bilen, H.; Wang, X.; You, Y. Cafe: Learning to condense
dataset by aligning features. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
New Orleans, LA, USA, 18–24 June 2022; pp. 12196–12205.

https://www.cs.toronto.edu/~kriz/cifar.html
http://doi.org/10.1007/s11263-015-0816-y
http://dx.doi.org/10.1109/5.726791

Sensors 2023, 23, 8148 18 of 18

38. Kim, J.H.; Kim, J.; Oh, S.J.; Yun, S.; Song, H.; Jeong, J.; Ha, J.W.; Song, H.O. Dataset Condensation via Efficient Synthetic-Data
Parameterization. arXiv 2022, arXiv:2205.14959.

39. Tan, M.; Le, Q. Efficientnetv2: Smaller models and faster training. In Proceedings of the International Conference on Machine
Learning, PMLR, Virtual Event, 18–24 July 2021; pp. 10096–10106.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

	Introduction
	Related Work
	Dataset Condensation
	Subspace Training
	Coreset Selection

	Method
	Preliminaries
	Expert Subspace Projection
	Inner Optimization
	Outer Optimization
	Memory Consumption

	Experiments
	Datasets
	Implementation Details
	Comparison with State-of-the-Art Methods
	Cross-Architecture Generalization
	Memory Analysis
	Synthetic Batch Size Analysis
	Ablation Study

	Conclusions
	Limitations and Future Work
	References

