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Abstract: In wireless communication, to fully utilize the spectrum and energy efficiency of the system,
it is necessary to obtain the channel state information (CSI) of the link. However, in Frequency
Division Duplexing (FDD) systems, CSI feedback wastes part of the spectrum resources. In order to
save spectrum resources, the CSI needs to be compressed. However, many current deep-learning
algorithms have complex structures and a large number of model parameters. When the compu-
tational and storage resources are limited, the large number of model parameters will decrease
the accuracy of CSI feedback, which cannot meet the application requirements. In this paper, we
propose a neural network-based CSI feedback model, Mix_Multi_TransNet, which considers both
the spatial characteristics and temporal sequence of the channel, aiming to provide higher feedback
accuracy while reducing the number of model parameters. Through experiments, it is found that
Mix_Multi_TransNet achieves higher accuracy than the traditional CSI feedback network in both
indoor and outdoor scenes. In the indoor scene, the NMSE gains of Mix_Multi_TransNet are 4.06 dB,
4.92 dB, 4.82 dB, and 6.47 dB for compression ratio η = 1/8, 1/16, 1/32, 1/64, respectively. In the
outdoor scene, the NMSE gains of Mix_Multi_TransNet are 3.63 dB, 6.24 dB, 4.71 dB, 4.60 dB, and
2.93 dB for compression ratio η = 1/4, 1/8, 1/16, 1/32, 1/64, respectively.

Keywords: CSI feedback; neural network; FDD; deep learning; wireless communication

1. Introduction
1.1. Background and Motivations

With the development of mobile communication technology, the need for high-
precision channel feedback is becoming increasingly urgent. In a large-scale Multi-Input
Multi-Output (MIMO) system, the Base Station (BS) is configured with a large number of
antennas to fully utilize spatial diversity and spatial multiplexing to increase the channel
capacity [1]. As the amount of transmitted data increases, the channel becomes congested.
We can use reconfigurable intelligent surfaces (RISs) for safe and efficient effects. RISs
act as a relay to strengthen the signal strength and provide energy for the subsequent
signal transmission [2,3]. RISs mainly serve as a relay to enhance the transmission energy.
Beamforming is required to concentrate the signal energy on specific User Equipment
(UE) and achieve less interference and leakage at a high signal-noise ratio (SNR) while
ensuring the transmission [4]. One of the keys to achieving beamforming is to have accurate
downlink Channel State Information (CSI). Usually, in Time Division Duplexing (TDD)
systems where uplink data and downlink data can be transmitted at the same frequency
point, the uplink and downlink channels are reciprocal, i.e., the UE can back-propagate
the uplink channel through the downlink channel and, thus, does not have to spend many
resources to implement the CSI estimation [5].

In recent years, Frequency Division Duplexing (FDD) systems have gained more
popularity due to their higher spectrum utilization [6]. In FDD, on the other hand, the
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uplink and downlink channels use different frequency points. Therefore, channel reci-
procity cannot be utilized. In this case, the downlink channel state information can only be
estimated at the UE side and then fed back to the BS. However, this feedback step requires
additional resource overheads. As the number of antennas increases, this overhead grows
quadratically and even reduces the competitive advantage of MIMO systems [7].

Currently, the mainstream methods of CSI feedback are categorized into three types:
codebook-based CSI feedback, Compressed Sensing (CS)-based CSI feedback, and Deep
Learning (DL)-based CSI feedback.

A codebook-based CSI feedback study requires a codebook known at the BSand
UE sides. During feedback, the CSI is first converted into codebook information for
compression purposes and then the codebook information is fed back to the BS through the
feedback link. At the BS end, the CSI is recovered by comparing the codebook information.
Literature [8] proposes an adaptive codebook that adapts the codebook to any variable
by deriving the angular distribution between the channel vector and the Line of Sight
(LoS) path component to share an identical codebook at the transmitter and receiver.
However, as the amount of data increases, the codebook becomes more extensive and the
computational complexity grows exponentially concerning the codebook size. To overcome
the complexity problem, literature [9] proposes an environmental knowledge codebook
CSI-based feedback framework. The framework enhances the learning of environmental
knowledge by introducing a simple neural network, improving the output of the codebook-
based channel feedback. This scheme reduces the computational complexity to a certain
extent, but the codebook size does not change and the cost of searching the codebook is
still high.

In order to solve the problem of the high time cost of codebook-based algorithms,
researchers have applied CS methods in CSI feedback. The CSI feedback method based
on 1-Bit CS acquires CSI with a higher accuracy without occupying uplink bandwidth
resources alone [10]. However, this method can only be realized at smaller compression
ratios. Literature [11] utilizes the correlation between the received and transmitted signals
for iterative estimation. This method utilizes the signal’s sparsity to reduce the amount of
sampled data, thus achieving compression. However, the algorithm requires strict sparsity
of the channel and consumes a lot of computational resources and time as the number of
iterations of the CS algorithm increases.

With the development and broad application of deep learning in many fields, deep
learning has also been introduced into wireless communications [12–16]. Meanwhile,
since DL supports end-to-end communication systems, the sender and receiver can use
neural network representations in self-coding [17–19]. Therefore, in order to overcome the
problems of high computational resources and the high time cost of codebook-based and
CS-based CSI feedback, literature [20] draws on the idea of the self-coding form of neural
networks and applies DL to the CSI feedback model CsiNet, where the downlink CSI is
regarded as a special kind of “image” and the model is constructed as a self-coding neural
network. The model is constructed as a self-coding neural network. CsiNet compresses and
recovers the CSI through a simple self-encoder neural network structure using convolution,
proving the feasibility of a neural network for CSI feedback.

Moreover, CsiNet outperforms traditional codebook and CS methods at all compres-
sion ratios. After that, most DL-based feedback methods borrowed from CsiNet networks,
e.g., CsiNet+ [21], inherited most of the architecture of CsiNet. They learned more spatial
features by updating the convolutional kernel using a parallel multi-rate compression
method, improving network performance and feedback accuracy. However, the algorithm
only focuses and trains on the spatial features of the CSI, ignoring the temporal nature of
CSI. JC-ResNet [22] uses a residual network, resulting in a better channel feature transfer.
However, the residual connection may cause irrelevant features to be passed on, thus
interfering with the learning process of the model. CRNet [23] employs a multi-channel
convolutional path to learn the channel spatial features of different receptive fields, and the
different receptive fields compensate for each other to improve the network’s performance.
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CRNet increases the feedback accuracy to a certain extent, but it singularly focuses on the
spatial features of the CSI and similarly neglects the temporal nature of CSI. CLNet [24]
weights the complex signals by using the correlation between real and imaginary parts after
dividing the complex signals into real and imaginary parts. Compared to other algorithms,
CLNet is trained with a relatively simple network structure, which reduces the information
loss problem caused by complex splitting and complexity. However, the method also
singularly considers the spatial features of the CSI and ignores the temporal nature of
CSI. CsiNet-LSTM [25] and Attention-CSI [26] gather an increased temporal nature from
the training samples by introducing LSTM. Although both networks focus on the tem-
poral nature of CSI to ensure some feedback accuracy, they ignore the spatial features of
CSI. STNet [27] proposes a spatially divisible attention mechanism, which mainly refers
to the attention mechanism part of Transformer [28], using local grouping self-attention
and global sampling attention. The method improves the performance of the network
with some increase in complexity. The algorithm pays some attention to both the spatial
characteristics of CSI and the temporal order of the CSI but does not balance the feedback
accuracy of CSI.

1.2. Contributions

The above networks have paid attention to their spatial characteristics or temporal
properties by analyzing the downlink CSI features. However, the networks consider them
only from a single part, ignoring the influence between the two factors, or the feedback
accuracy is too low. When the network only thinks of the spatial characteristics, the
network breaks the connection between the elements in the downlink CSI, which affects
the final feedback accuracy. When the network only finds from the temporal nature, the
feedback matrix is not sufficiently compressed, which significantly increases the overhead
cost of the feedback. The CSI feedback accuracy is improved by paying attention to
and learning the spatial characteristics and timing of the downlink CSI. In this study,
the Mix_Multi_TransNet network is proposed to consider both the spatial factors and
temporality of the downlink CSI, and its main work is summarized as follows:

(1) Use dual-path neural networks. Path1 and Path2 learn the channel matrix’s spatial
features and temporal properties, respectively. Path1 adopts multiple sensory fields
to understand the channel matrix’s spatial characteristics comprehensively, and Path2
combines the Transformer Attention Mechanism with Convolutional Neural Networks
to thoroughly learn the temporal properties of the channel information.

(2) Path1 uses multiple sensory fields; Path2 uses the Transformer attention mechanism
combined with a convolutional neural network to ensure the learning of temporal rela-
tionships while reducing model parameters. The two path feature representations are
eventually fused to improve the model’s performance, robustness, and generalization
ability.

1.3. Paper Organization

The article consists of five parts in total. This chapter focuses on the background
of this study and the innovations and contributions of our entire study; the second part
mainly introduces our system model; the third part mainly introduces the design of the
Mix_Multi_TransNet network; the fourth part is our experimental results and comparisons;
and the fifth part is our conclusion.

2. System Model

In the FDD system, the BS have Nt-transmitting antennas and the UE have Nr antennas,
Nt ≥ Nr. For simplicity, this study lets Nr = 1. An Orthogonal Frequency Division
Multiplexing (OFDM) system with Nc subcarriers is used, and the system model is shown
in Figure 1.
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The received signal y ∈ CNc×1 can be expressed as:

y = Ax + z (1)

where x ∈ CNc×1 denotes the transmitted symbol vector in one OFDM cycle and z ∈ CNc×1

is the additive noise vector. The diagonal matrix A = diag
(
hH

1 p1, . . . , hH
n pn

)
, n = Nc,

where hi ∈ CNt×1 and pi ∈ CNt×1, denotes the downlink channel response vector and
beamforming precoding vector, i ∈ {1, . . . , Nc}, respectively.

In order to obtain the beamforming vectors, it is necessary to obtain the corresponding
hi at the base station. Define the downlink channel matrix HεCNc×Nt . The matrix contains
Nc × Nt elements, each of which includes information about the real and imaginary parts
of the CSI, proportional to the number of antennas. In the case of massive MIMO, Nc × Nt
will be a vast number, which is a huge challenge for data processing. Since the channel
matrix is sparse in the angular time-delay domain, H can be transformed from the spatial
frequency domain to the angular time-delay domain using the two-dimensional discrete
Fourier transform (DFT), as shown in Equation (2).

H
′
= FcHFH

t (2)

where Fc and Ft denote DFT matrices of size Nc × Nc and Nt × Nt, respectively. For each
element in the angular delay domain matrix, H

′
εCNc×Nt corresponds to a path delay with a

certain angle of arrival (AoA). Only the first Na rows of H
′

obtained after two-dimensional
discrete Fourier transform (DFT) contain helpful information, and the rest of the rows
indicate paths with considerable propagation delays, so the elements are almost zero.
Therefore, only the first Na is truncated to obtain the matrix HaεCNa×Nt representing the
downlink channel matrix.

By truncating H
′
, the channel matrix is downscaled. However, Ha is still a matrix

with extensive data elements. Therefore, further dimensionality reduction is needed. The
neural network can handle the problem of exaggerated dimensions and uneven feature
distribution of Ha very well. Therefore, Ha can be inputted into the encoder part of the UE
consisting of neural networks, and the encoder can obtain codeword υ according to the
compression ratio η:

υ = Fξ

(
Ha, Θξ

)
(3)

where Fξ(·) denotes the compression process and Θξ denotes a set of parameters of the
encoder.

After the feedback link is sent to the BS, υ is recovered in the decoder part of the BS.
Like the encoder, the decoder also consists of a neural network. The recovery process of Ha
can be represented as follows:

Ĥa = FR(υ, ΘR) (4)



Sensors 2023, 23, 8139 5 of 16

where FR(·) denotes the recovery process and ΘR denotes a set of parameters of the
decoder. The Ĥa obtained after recovery is padded for its zero values and then undergoes a
two-dimensional discrete Fourier inverse transform (IDFT) to obtain H̃.

Combining Equations (3) and (4) and using the mean square error as a metric, the
entire compression and recovery process can be expressed as:(

F̂ξ , Θ̂ξ

)
= argmin

Fξ ,FR

∥∥Ha − FR
(

Fξ

(
Ha, Θξ

)
, ΘR

)∥∥2
2 (5)

It is assumed that the uplink is in an ideal state, i.e., there is no loss in υ obtained from
the encoder processing and then passed through the uplink to the decoder and recovered at
the decoder. Therefore, the main objective of this study is to train and design the network
for Θξ and ΘR.

3. Mix_Multi_TransNet Design

This section describes the design and principles of the Mix_Multi_TransNet network
and its key components. The overall architecture of Mix_Multi_TransNet is shown in
Figure 2. Mix_Multi_TransNet is an encoder-decoder framework divided into two paths
with four embedded modules to solve the CSI feedback problem.
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3.1. Network Modeling Processes

As shown in Figure 2, the whole network is divided into two parts: the encoder and
the decoder. Before entering the encoder, firstly, the two-dimensional discrete Fourier
transform of H is utilized to obtain H

′
using Equation (2), and then truncation is performed

to obtain the complex matrix Ha. Then, the complex matrix HaεCNa×Nt is directly divided
into real and imaginary parts:

Re(Ha) = a ; Im(Ha) = b (6)

a denotes the real part of the complex number and b denotes the imaginary part of the
complex number; then, the resulting real and imaginary parts are turned into a 2Na × Nt
new matrix:

H[k][j] =

 Re
(

Ha [i][j]

)
, 0 ≤ k < Na

Im
(

Ha [i][j]

)
, Na ≤ k < 2Na

(7)

where 0 ≤ i < Na, 0 ≤ j < Nt, 0 ≤ k < 2Na, and i = k or i = k− Na. The new matrix
H is taken as input into both Path1 and Path2 of the encoder, and the whole processing
in the encoder is conducted as shown in Equation (6); finally, υ1&υ2 is obtained after
passing through Path1_E and Path2_E. In the decoder, υ1&υ2 is input into Path1 and
Path2, corresponding to the decoder, respectively. υ1&υ2 is obtained after passing through
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Path1_D and Path2_ D processing and υ1
′
&υ2

′
is obtained; then, the two matrices of

υ1
′
&υ2

′
are fused:

H′ = υ1
′⊕

υ2
′

(8)

The obtained H′ is recovered as a complex matrix Ĥa. The entire processing in the
decoder is shown in Equation (4).

3.2. Path1

A detailed description of the encoder part and decoder part of the network is given,
as shown in Figure 3. From Figure 3, it can be seen that the whole self-encoding network is
divided into two paths, Path1 and Path2. Path1 consists of Path1_E and Path1_D, denoted
as the encoder and decoder part, respectively.
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Figure 3. Encoder and Decoder. ‘*’ denotes the convolution dimension hyphen, e.g., 3* denotes a 2D
kernel of size 3× 3; ‘

⊕
’ indicates the addition of two matrices.

In order to thoroughly learn the spatial features of the channel matrix and to reduce
the network parameters, Path1_E and Path1_D use a multidimensional pure convolutional
structure. Due to the sparsity of the channel matrix in the angular delay domain, the distri-
bution of the channel state information is still unevenly distributed after the interception of
the former Na rows. The convolution structure in Path1_E adopts two two-dimensional
convolution operations with two different convolution sizes and a number of convolutions
to enhance the effect of learning the features of the channel matrix, reducing the network
parameters and enabling fast training. In Path1_E, the first path consists of ConvB3*,
ConvB1*9, and ConvB9*1, indicating three convolution sizes of 3*3, 1*9, and 9*1 structures,
respectively. Each 2D convolution is as in Equation (9):

Y2D = Conv2D(Yin, Win) (9)

Yin denotes the matrix of the input convolution and Win denotes the corresponding
convolution weights. In this path, Ha first passes through the ConvB3* module and the
convolution weight matrix has a size of 3*3. Then, the result is fed into ConvB1*9 and the
corresponding convolution weight matrix has a size of 1*9. Finally, after ConvB9*1, the
convolution weight matrix has a size of 9*1. After ConvB3*, ConvB1*9, and ConvB9*1,
we get the feature matrix Yp1_E1 of the first large convolution path. Large convolution
operation can increase the sensory field and obtain more null domain information of
the channel matrix. However, in order to compensate for the blurring effect of feature
information brought by the large convolution operation and to improve the local and
fine-grained feature-learning effect, the ConvB3* module of the other path in Path1_E uses
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the two-dimensional convolution with a convolution size of 3*3. It performs the same
operation as in Equation (9) for Ha to obtain Yp1_E2. Then, the two paths Yp1_E1 and
Yp1_E2, are subjected to the Concat operation:

Yp1_E = Concat
((

Yp1_E1, Yp1_E2
)
, dim = 1

)
(10)

The resulting two feature matrices are fused with features in the dimension dim = 1,
and then a 1*1 convolution operation, as in Equation (9), is performed to reduce the network
parameters. Note that a batch normalization is performed after each convolution operation:

Y_norm = ((Y_i−mean(Y_i))/sqrt(var(Y_i) + ep)) ∗ g + b (11)

Here, mean(Y_i) and var(Y_i) denote the mean and variance of the feature matrix Y_i
on each channel, ep is a tiny constant used to avoid division by zero, and g and b are the
learnable scaling factor and bias term, respectively. The feature matrix Y_i is the result
after each convolution. After batch normalization, the training speed of the network is
increased, the gradient propagation is improved, and the model’s generalization ability is
also improved. The activation function LeakyReLU is then used after batch normalization
to provide nonlinearity. Then, after a dimensional change:

Yview = Ya
′
.view(n,−1) (12)

Ya
′

denotes the matrix obtained after the activation function. Finally, the obtained
sequence data Yview is passed through the fully connected layer EnFc_1:

υ1 = Yview·Wview + Bview (13)

Here, Wview is a weight matrix of shape
(

totalsize,
totalsize

η

)
and Bview is a bias term of

shape
(

totalsize
η ,

)
. The final result obtained from Path1_E is compressed according to the

compression ratio η to υ1.
The same 2D convolution operation with different convolution kernel sizes and num-

ber of convolutions is used in Path1_D. Path1_D mainly follows the CRBlock module in
CRNet [21]. In this way, to recover the channel matrix accurately and efficiently, in Path1_D,
it first goes through the fully connected layer DeFc_1 to restore υ1 to the sequence size
before compression:

υ1D = υ1·WD + BD (14)

WD is a weight matrix of shape
(

totalsize
η , totalsize

)
and BD is a shape (totalsize ,). It is

restored to the original size, and then goes through the ConvB5* module, which represents
a two-dimensional convolution with a convolution size of 5*5, computed as in Equation (9),
and keeps the result:

υ1D = I(Conv2D(υ1D, W1D)) (15)

Here, I(·) makes the reservation of the calculation result. Then, the obtained result
υ1D is fed into two convolution paths, in which the first convolution path consists of three
parts, ConvB3*, ConvB1*9, ConvB9*1, and each convolution operation is calculated as in
Equation (10). After the first convolution path, we get Yp1_D1. The second convolution
path consists of ConvB1*5, ConvB5*1, and each convolution operation is calculated as in
Equation (9) after the first convolution path to get Yp1_D2, and then the two paths get
Yp1_D1 and Yp1_D2 for the Concat operation, as in Equation (16):

Yp1_D = Concat
((

Yp1_D1, Yp1_D2
)
, dim = 1

)
(16)

The two feature matrices obtained are fused with features in the dimension dim = 1,
and then a 1*1 convolution operation is performed as in Equation (9) to reduce the network
parameters. Note that after each convolution operation, batch normalization is performed,
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computed as in Equation (11), and then the activation function LeakyReLU is used to
provide the nonlinearity to obtain υ1D

′
. Here, a residual join is made between υ1D

′
and the

previously retained υ1D in order to better transfer the features:

υ1 = F1
(
υ1D

)
+ υ1D

′
(17)

F1(·) After denoting the ConvB5* module, a series of operations are obtained for υ1D.
We summarize operations as the ConvBlock module, as shown in Figure 3. Subsequently,
the obtained υ1 is fed into the next ConvBlock module to obtain υ2. Finally, using the
Sigmoid function, the output is mapped to [0, 1] to obtain the output υ1

′
of Path1.

3.3. Path2

Path2 also consists of two parts, Path2_E and Path2_D, which are denoted as the
encoder part and decoder part, respectively. Different from Path1, this path mainly focuses
on and learns the temporal nature of the CSI to compensate for the shortcoming of Pat1,
which only focuses on the spatial features. Path2_E consists of T_EN1, En_Multi_CNN,
T_EN2, and EnFc_2. Among them, T_EN1 and T_EN2 structures are shown on the left of
Figure 4, respectively, adopting Transformer’s encoder layer structure. Path2_D consists
of DeFc_2, T_De, De_Multi_CNN1, and De_Multi_CNN2, of which the T_De structure is
shown on the right of Figure 4, adopting Transformer’s decoder layer structure.
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First, we will explain how T_En1, T_En2, and T_De work. The input to Path2_En is a
complex split with dimensional changes to obtain a new matrix,H. H is first fed into the
T_En1 module, which employs the decoder layer of the Transformer. H passes through the
multiattendance module, through three separate linear layers. These three independent
linear layers will have three outputs, computed as follows:

Qn = HWQ
n , Kn = HWK

n , Vn = HWV
n (18)
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where Qn, Kn, and Vn represent the outputs of the three linear layers, respectively. WQ
n , WK

n ,
and WV

n represent the weights of the three linear layers on the nth head of the multi-head
attention module, respectively, and then the attention score matrix is calculated:

Attenscore = So f tmax
(

QnKT
n√

d

)
Vn (19)

where QnKT
n is calculated to derive the degree of correlation between each element of the

matrix. In order to eliminate the Qn multiplied by Kn, the gradient is prevented from
vanishing by eliminating the change in magnitude brought about by multiplying the matrix
by the K-transpose matrix. After transposing the matrix, divide by

√
d, where d denotes

the dimension of the matrix. Then, after the So f tmax(·) function is normalized, finally,
multiply by the matrix Vn to obtain the attention score matrix. Then, after residual joining
and layer normalization, the processing result is sent to the feed-forward layer and, finally,
after one more residual joining and layer normalization to obtain the result of the T_En1
part, the working principle of T_En2 is the same as that of T_En1, but the difference is that
the input of T_En2 becomes the processing result of the En_Multi_CNN part.

The corresponding T_De uses Transformer’s decoder layer structure, which works
similarly to the encoder layer with the difference that the decoder part uses a masked multi-
head attention mechanism. Unlike the multi-head attention mechanism, the masked multi-
head attention mechanism uses a whole new layer of weights to represent the criticality of
each part of the feature data. It uses a masking mechanism to prevent label leakage. The
T_De1 section first undergoes processing by the masked multi-head attention mechanism,
followed by feeding the results into residual concatenation and layer normalization. It
then undergoes processing by the multi-head attention mechanism, followed by another
residual join and layer normalization. Immediately after the input to the feed-forward
layer, it finally undergoes residual concatenation and layer normalization to obtain the
output of the T_De part.

In Path2, the input H first passes through the T_En1 section, yielding the result
Yp2_T_En1, and then the result is fed into the En_Multi_CNN part. En_Multi_CNN uses
different sizes of convolution kernels and connections to process the one-dimensional
sequences passing through T_En1. Unlike the convolution in the Path1 path, after the
T_En1 operation, the data dimensions are changed. To better learn the features of the data
in this one dimension, the one-dimensional convolution operation is used.

The details of the En_Multi_CNN section are shown in Figure 5, where one-dimensional
convolution is used for all convolutions:

Y1D = Conv1D(Yin1d, Win1d) (20)
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Here, Yin1d denotes the sequence of inputs and Win1d denotes the weight matrix
of the inputs, with dimensions determined by the input and output channels. Path2
first goes through a convolution of one dimension, with convolution size 3. In order to
learn the features of different sizes more fully, it is divided into two paths; the first path
directly adopts a one-dimensional convolution of size 3, which reduces the parameters
while learning small-size features quickly and improving the efficiency of local and fine-
grained feature learning, and obtains Yp2_E1. The second path uses two one-dimensional
convolutions of size 5, and the two convolutions are concatenated together to learn features
with larger sensory fields to help edge feature learning, obtaining Yp2_E2. Here, all the
convolutions are computed as shown in Equation (20). After each convolution operation,
one-dimensional batch normalization is performed:

Y1Dnorm =

(
Y1Di −mean(Y1Di)

sqrt(var(Y1D_i) + ep)

)
∗ g1d + b1d (21)

Here, the Y1D_i denotes the input sequence and mean(Y1Di) denotes the mean of the
feature sequence, var(Y1D_i) denotes the variance of the feature sequence, ep is a tiny
constant used to avoid division by zero, and g1d and b1d denote the scaling factor and bias
term. Then, after batch normalization, the nonlinearity is obtained using the LeakyReLU
activation function. The outputs of the two trails are then Concat spliced:

Yp2_E = Concat
(
Yp2_E1 ‖ Yp2_E2

)
(22)

“‖” denotes sequence splicing. Subsequently, a one-dimensional convolution opera-
tion of size 1 is accessed as in Equation (20), followed by a one-shot batch normalization
and LeakyReLU activation function to reduce the network parameters. Finally, the input
to En_Multi_CNN concerning the output of En_Multi_CNN with reference to the idea of
residual connection:

Yp2_E
′
= F2

(
Yp2_E

)
+ Yp2_T_En1 (23)

F2(·) denotes the sequence of operations to obtain Yp2_E. Then, Yp2_E′ is fed to T_En2,
which is processed in the same way as T_En1 to obtain Yp2_E′′, and the nonlinearity is
introduced using the Relu activation function. Finally, Yp2_E′′ is passed into EnFc_2, which
is computed as in Equation (13), according to the compression ratio η, to obtain υ2.

υ2 is transmitted to the Path2_D path through the ideal feedback link. υ2 is first
restored to the pre-compression dimension calculation as in Equation (15) through DeFc_2
to obtain υ2D. Then, υ2D is used as an input to get Yp2_T_De after T_De processing,
and it is used as an input to De_Multi_CNN1. The structure of De_Multi_CNN1 and
De_Multi_CNN2 is shown in Figure 6. Two different paths are used, and the two paths
have different sizes and convolutions. The first path comprises a one-dimensional convo-
lution of size 3. The second path is composed of a one-dimensional convolution of size 3
and a one-dimensional convolution of size 9 in series. Each convolution is computed as
in Equation (20), followed by batch normalization as in Equation (21), and the activation
function LeakyReLU is used to provide nonlinearity. Then, the two path features are
subjected to Concat operation as in Equation (21), and, finally, the network parameters
are reduced by a one-dimensional convolution operation of size 1. The convolution is
formulated as in Equation (20). After convolution, the batch normalization is performed
as in Equation (21), and, finally, Yp2_De _M is obtained. At the end of De_Multi_CNN1,
Yp2_T_De and Yp2_De _M are summed up using residual join ideas. Calculated as in
Equation (22) and using the Relu activation function to provide nonlinearity, the calcu-
lation yields Yp2_D

′
. Then, it is processed by De_Multi_CNN2 with the same process as

De_Multi_CNN1 to obtain υ2
′
.
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3.4. Mix_Multi_TransNet Network Outputs

After the processing of the two paths Path1 and Path2, the output is obtained, υ1
′

and
υ2
′
. Finally, υ1

′
and υ2

′
are fused:

Ĥa = υ1
′⊕

υ2
′

(24)

“
⊕

” denotes the addition of the two matrices, which ultimately results in the recovery
of the channel matrix Ĥa

3.5. Mix_Multi_TransNet Steps

The flow of the Mix_Multi_TransNet algorithm is shown in Algorithm 1. The input is
H and the output is Ĥa. Initialize the transmit antenna Nt = 32, subcarrier Nc = 1024, and
then truncate the first Na = 32 rows. Firstly, we obtain H1 after a two-dimensional discrete
Fourier variation, and then, according to the initialized truncation row Na, we truncate H

′

to get Ha. Then, we split the complex matrix Ha into a real part, Re(Ha), and an imaginary
part, Im(Ha), and then the real and fictional elements are combined to form a new real
matrixH, and we feedH to our encoder and decoder. H is provided to Path1 and finally
gets υ1

′
; see Section 3.2 Path1 for detailed steps. At the same time of feedingH to Path1, it

is also fed to Path2 and finally gets υ2
′
, see Section 3.3 Path2 for exact steps. Finally, after

Equation (24), we obtain the recovered matrix Ĥa.

Algorithm 1: Mix_Multi_TransNet Steps

1 Input: HεCNc×Nt

2 Output: ĤaεCNc×Nt

3 Initialize: Nt = 32, Nc = 1024, Na = 32
4 H

′
= Fc HFH

t , H
′
εCNc×Nt , FcεCNc×Nc , FtεCNt×Nt

5 Truncate the first Na rows : HaεCNa×Nt

6 Re(Ha) = a ; Im(Ha) = b

7
H[k][j] =

 Re
(

Ha [i][j]

)
, 0 ≤ k < Na

Im
(

Ha [i][j]

)
, Na ≤ k < 2Na

, 0 ≤ i < Na, 0 ≤ j < Nt, 0 ≤ k < 2Na, i = k or i =

k− Na
8 Path1: Path1_E, Path1_D
9 Path1_E: υ1; Path1_D: υ1

′

10 Path2: Path2_E, Path2_D
11 Path1_E: υ2; Path1_D: υ2

′

12 Ĥa = υ1
′⊕

υ2
′

13 End
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4. Simulation Results and Analysis

This section describes the detailed setup of the experiment and the network perfor-
mance and compares the network accuracy with the state-of-the-art CSI feedback algorithm.

4.1. Data Sets, Training Programs, and Assessment Indicators

This study generates a dataset using COST2100 [29], and the proposed Mix_Multi_TransNet
is compared with the existing state-of-the-art algorithms CsiNet, CsiNet+, CLNet, CRNet, and
STNet. Two scenarios are considered in generating the dataset: an indoor scenario at 5.3 GHz
and an outdoor scenario at 300 MHz, with a uniform linear array (ULA) model with Nt = 32
at the BS. For FDD systems, Nc = 1024 subcarriers are taken in the frequency domain. After
two-dimensional Discrete Fourier Transform (DFT), Na = 32 is taken in the angular delay
domain. It is divided into two scenarios, each with 150,000 independently generated channels,
divided into training, validation, and test datasets containing 100,000, 30,000 and 20,000 channel
matrices, respectively. The experiments split the data into individual matrix data for data
loading convenience.

This experiment was conducted in Windows Server 2019 Standard environment using
NVIDIA Quadro RTX 5000 Graphics Processing Unit (GPU) with 16 GB of video memory,
128 GB of RAM, and a Central Processing Unit (CPU) of i9-10900K clocked at 3.7 GHz for
network training. The network is implemented based on Pytorch, and the Adam optimizer
is used to train the network with 100 epochs, and the batch is set to 16. The learning rate is
set to 0.001, and the learning rate is adjusted using the cosine annealing method, and the
formula is calculated as follows:

lr = ln +
1
2
(lstr − ln)

(
1 + cos

(
Tcur

Tmax
π

))
(25)

where lr denotes the current learning rate, ln denotes the final value after the learning
rate has decayed, lstr denotes the initial value of the learning rate, Tcur denotes the current
epoch value, and Tmax denotes the total epoch value.

In this thesis, the normalized mean square error (NMSE) between Ha and Ĥa is used
as a criterion for the network accuracy, which is calculated as given by Equation (26):

NMSE = E


∥∥∥Ha − Ĥa

∥∥∥2

2

‖Ha‖2
2

 (26)

4.2. Mix_Multi_TransNet Network Performance

Comparison details with existing CSI feedback algorithms are shown in Table 1.
After 100 training rounds, Mix_Multi_TransNet starts to outperform other deep learning
algorithms in both indoor and outdoor scenes. In the indoor scenario, the compression
ratio η values equal to 1/8, 1/16, 1/32, and 1/64 outperform the other algorithms. They
are compared with the best accuracy of the other algorithms, and Mix_Multi_TransNet
obtains NMSE gains of 4.06 dB, 4.92 dB, 4.82 dB, and 6.47 dB, respectively. This means that
in the indoor scenario, with compression ratio values of η = 1/8, 1/16, 1/32, 1/64, the
accuracy is improved by 49.59%, 64.70%, 65.60%, and 32.24%, respectively, compared with
the optimal accuracy of the existing algorithm.
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Table 1. NMSE Comparison between Mix_Multi_TransNet and Other Methods.

η 1/4 1/8 1/16 1/32 1/64

Methods
NMSE

In Out In Out In Out In Out In Out

Mix_Multi_TransNet −20.48 −14.05 −18.49 −13.48 −15.29 −9.57 −13.30 −7.75 −12.23 −5.01
CsiNet −16.83 −10.28 −14.43 −7.08 −9.59 −2.37 −8.41 −1.84 −5.43 −1.93

CsiNet+ −16.22 −7.40 −9.45 −2.95 −7.34 −2.10 −7.08 −1.70 −5.04 −1.43
CRNet −18.51 −9.74 −14.12 −7.24 −10.37 −4.86 −8.48 −3.15 −5.71 −2.08
CLNet −21.88 −10.42 −13.54 −6.95 −10.03 −4.53 −8.08 −3.10 −5.76 −1.56
STNet −1.46 −0.25 −2.65 −0.57 −4.21 −1.18 −7.01 −2.08 −10.27 −0.30

Training Time(minutes)

Mix_Multi_TransNet

259.16 264.07 257.14 264.41 256.26 263.81 257.50 265.93 260.86 264.80

Batch’s Response Time (milliseconds)

12.27 12.24 12.23 12.21 12.24 12.23 12.24 12.25 12.19 12.18

η: Compression Ratio Value; In: indoor Scene; Out: outdoor Scene. Training Time (minutes) and Batch’s Response
Time (milliseconds). The table below corresponds to “In” and “Out” above.

In the outdoor scene, all the compression ratio η values outperform the other algo-
rithms, and Mix_Multi_TransNet obtains NMSE gains of 3.63 dB, 6.24 dB, 4.71 dB, 4.60 dB,
and 2.93 dB, respectively. This implies that in the indoor scene, the accuracy improves
compared to the optimal accuracy of the existing algorithms by 46.30%, 76.80%, 63.03%,
64.16%, and 50.04%, respectively.

In the bottom half of Table 1 is our network’s training time and each Batch’s response
time when tested. The units are minutes and milliseconds, respectively.

As shown in Figure 7, in the indoor scenario, all compression ratio cases outperform
the other accuracies, except for the compression ratio value η = 1/4 when the network
performance is slightly worse than CLNet. In the outdoor scenario, all compression ratio
values outperform the other algorithms. The overall network performance shows a decreas-
ing trend with increasing compression ratio values; the more significant the compression
ratio value, the more the loss of channel state information and, after feedback, the accuracy
of recovering the channel state information decreases. In outdoor scenarios, the advantage
of the Mix_Multi_TransNet algorithm is more significant than other algorithms, which can
maximize feedback accuracy and is more suitable for complex outdoor environments.

Sensors 2023, 23, x FOR PEER REVIEW 13 of 16 
 

 

Table 1. NMSE Comparison between Mix_Multi_TransNet and Other Methods. 𝜼 1/4 1/8 1/16 1/32 1/64 

Methods 
NMSE 

In Out In Out In Out In Out In Out 
Mix_Multi_TransNet −20.48 −14.05 −18.49 −13.48 −15.29 −9.57 −13.30 −7.75 −12.23 −5.01 

CsiNet −16.83 −10.28 −14.43 −7.08 −9.59 −2.37 −8.41 −1.84 −5.43 −1.93 
CsiNet+ −16.22 −7.40 −9.45 −2.95 −7.34 −2.10 −7.08 −1.70 −5.04 −1.43 
CRNet −18.51 −9.74 −14.12 −7.24 −10.37 −4.86 −8.48 −3.15 −5.71 −2.08 
CLNet −21.88 −10.42 −13.54 −6.95 −10.03 −4.53 −8.08 −3.10 −5.76 −1.56 
STNet −1.46 −0.25 −2.65 −0.57 −4.21 −1.18 −7.01 −2.08 −10.27 −0.30 

Training Time(minutes) 

Mix_Multi_TransNet 
259.16 264.07 257.14 264.41 256.26 263.81 257.50 265.93 260.86 264.80 

Batch’s Response Time (milliseconds) 
12.27 12.24 12.23 12.21 12.24 12.23 12.24 12.25 12.19 12.18 𝜂: Compression Ratio Value; In: indoor Scene; Out: outdoor Scene. Training Time (minutes) and 

Batch’s Response Time (milliseconds). The table below corresponds to “In” and “Out” above. 

As shown in Figure 7, in the indoor scenario, all compression ratio cases outperform 
the other accuracies, except for the compression ratio value 𝜂 = 1/4 when the network 
performance is slightly worse than CLNet. In the outdoor scenario, all compression ratio 
values outperform the other algorithms. The overall network performance shows a 
decreasing trend with increasing compression ratio values; the more significant the 
compression ratio value, the more the loss of channel state information and, after 
feedback, the accuracy of recovering the channel state information decreases. In outdoor 
scenarios, the advantage of the Mix_Multi_TransNet algorithm is more significant than 
other algorithms, which can maximize feedback accuracy and is more suitable for complex 
outdoor environments. 

 
Figure 7. Performance comparison with other algorithms in Indoor and Outdoor. 

4.3. Ablation Experiment 
As shown in Table 2, this study compares the network’s performance status when the 

network uses specific modules alone. Because this network uses dual paths, the spatial 
and temporal features of the channel state information are learned separately; finally, the 
matrix information of the two paths is fused, which improves the problem of low accuracy 
when training and learning from one aspect alone. Path1 focuses on learning the spatial 
features of the channel state information, while Path2 focuses on learning the temporal 
features of the channel state information. In Path2, the one-dimensional convolutional 

Figure 7. Performance comparison with other algorithms in Indoor and Outdoor.



Sensors 2023, 23, 8139 14 of 16

4.3. Ablation Experiment

As shown in Table 2, this study compares the network’s performance status when the
network uses specific modules alone. Because this network uses dual paths, the spatial and
temporal features of the channel state information are learned separately; finally, the matrix
information of the two paths is fused, which improves the problem of low accuracy when
training and learning from one aspect alone. Path1 focuses on learning the spatial features
of the channel state information, while Path2 focuses on learning the temporal features
of the channel state information. In Path2, the one-dimensional convolutional modules
En_Multi_CNN, De_Multi_CNN1, and De_Multi_CNN1 are also used for more excellent
compression. As obtained from Table 2, the network performance is not optimal when a
particular path is used alone or in some of these modules.

Table 2. NMSE comparison of ablation study.

η
Path1 Path2 Path1 + Path2 without

Convolution Path1 + Path2

In Out In Out In Out In Out

1/4 −13.34 −8.77 −8.32 −2.90 −15.67 −9.66 −20.48 −14.05
1/8 −10.39 −5.92 −10.70 −2.62 −13.40 −6.84 −18.49 −13.48
1/16 −8.33 −3.46 −8.58 −1.29 −10.35 −4.30 −15.29 −9.57
1/32 −5.45 −2.21 −6.16 −2.92 −7.08 −2.72 −13.30 −7.75
1/64 −4.25 −1.95 −6.95 −4.30 −5.76 −2.48 −12.23 −5.01

η: Compression Ratio Value; In: indoor Scene; Out: outdoor Scene.

In the indoor scene, using Path1 alone reduces the average NMSE gain by 2.10 dB
compared to using the Path1 + Path2 no-convolution module and reduces the average
NMSE gain by 7.61 dB compared to using the Path1 + Path2 complete network NMSE. This
implies that in the indoor scene, using Path1 alone reduces the average NMSE gain by
53.18% compared to using the Path1 + Path2 no-convolution module The average NMSE
accuracy is reduced by 53.18% and the average NMSE gain is reduced by 80.00% using the
Path1 + Path2 complete network. Using Path2 alone in the indoor scene reduces the average
gain by 2.31 dB over the Path1 + Path2 convolution-free module NMSE and 7.81 dB over
the Path1 + Path2 full network NMSE, which implies that the average accuracy of Path2
alone in the indoor scene is reduced by 50.77% over the Path1 + Path2 convolution-free
module NMSE. The average accuracy is reduced by 50.77% and the average gain is reduced
by 79.05% compared to using the Path1 + Path2 complete network NMSE.

In the outdoor scene, the average NMSE gain of Path1 alone is 0.738 dB lower than
that of the Path1 + Path2 no-convolution module and 5.51 dB lower than that of the
Path1 + Path2 full network NMSE, which implies that the average NMSE accuracy of the
outdoor scene is 14.58% lower than that of the Path1 + Path2 no-convolution module, and
78.42% lower than the Path1 + Path2 complete network NMSE. The average NMSE accuracy
is reduced by 14.58%, and the average NMSE gain is reduced by 78.42% when using the
Path1 + Path2 complete network. In the outdoor scene, using Path2 alone reduces the
average gain by 2.39 dB over the Path1 + Path2 convolution-free module NMSE. It reduces
the average gain by 7.16 dB over the Path1 + Path2 complete network NMSE, which means
that in the outdoor scene, the average accuracy of Path2 alone reduces by 42.42% over the
Path1 + Path2 convolution-free module NMSE. The average accuracy is reduced by 42.42%,
and the average gain is reduced by 85.59% compared to using the Path1 + Path2 complete
network NMSE.

5. Conclusions

This thesis proposes a multi-source neural network, Mix_Multi_TransNet, to solve
the CSI feedback problem. The network learns different channel state information features
and the two proposed paths learn spatial and temporal features, respectively, and obtain
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the encoder compression results of the channel state information matrix. The encoder
compresses the channel state information matrix. Then, it is decoded by the decoder and
the highest precision of the matrix is restored to the original channel state information
matrix by fusing the feature information of the two paths. The Normalized Mean Square
Error (NMSE) is used as an error measure and compared with existing algorithms from the
COST2100 dataset. In the indoor scene, Mix_Multi_TransNet obtained the highest accuracy
for compression ratios η = 1/8, 1/16, 1/32, 1/64, and the NMSE gain was 4.06 dB, 4.92 dB,
4.82 dB, and 6.47 dB, respectively. Mix_Multi_TransNet obtained the highest accuracy in the
outdoor scene for all compression ratio values n. In the outdoor stage, all the compression
ratio values η, Mix_Multi_TransNet have the highest accuracy, and the gain obtained by
NMSE was 3.63 dB, 6.24 dB, 4.71 dB, 4.60 dB, and 2.93 dB, respectively.

In this study, a significant gain in NMSE was achieved in the indoor and outdoor
scenarios compared to other algorithms. In future work, we will focus more on improving
the model’s inference speed and the model’s size for use in natural industrial environments.
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