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Abstract: Prognostic and health management (PHM) plays a vital role in ensuring the safety and
reliability of aircraft systems. The process entails the proactive surveillance and evaluation of the
state and functional effectiveness of crucial subsystems. The principal aim of PHM is to predict
the remaining useful life (RUL) of subsystems and proactively mitigate future breakdowns in order
to minimize consequences. The achievement of this objective is helped by employing predictive
modeling techniques and doing real-time data analysis. The incorporation of prognostic method-
ologies is of utmost importance in the execution of condition-based maintenance (CBM), a strategic
approach that emphasizes the prioritization of repairing components that have experienced quan-
tifiable damage. Multiple methodologies are employed to support the advancement of prognostics
for aviation systems, encompassing physics-based modeling, data-driven techniques, and hybrid
prognosis. These methodologies enable the prediction and mitigation of failures by identifying
relevant health indicators. Despite the promising outcomes in the aviation sector pertaining to the
implementation of PHM, there exists a deficiency in the research concerning the efficient integration
of hybrid PHM applications. The primary aim of this paper is to provide a thorough analysis of
the current state of research advancements in prognostics for aircraft systems, with a specific focus
on prominent algorithms and their practical applications and challenges. The paper concludes by
providing a detailed analysis of prospective directions for future research within the field.

Keywords: prognostics and health management; hybrid model; remaining useful life; physics-based
model; data driven model; aircraft systems; condition-based maintenance; predictive

1. Introduction

The maintenance of the safety and dependability of aircraft heavily relies on the
prognostic and health management (PHM) of essential subsystems or components [1].
Predictive maintenance (PM) solutions rely on the utilization of real-time data to diagnose
potential failures and forecast the overall health of machinery. The process is distinguished
by its proactive aspect, necessitating the application of predictive modelling tools to trigger
maintenance operations, and its capacity to anticipate probable faults before they actually
happen [2,3]. PHM is a systematic approach employed to monitor and assess the condition
and operational efficiency of essential subsystems or components inside an aviation system.
The primary objective of PHM is to uphold the integrity and reliability of the aircraft
by proactively forecasting and averting malfunctions prior to their manifestation. PHM
systems play a crucial role in aviation maintenance by offering diagnostic and prognostic
capabilities. These systems take advantage of the abundant sensor data available on
contemporary aircraft [4,5]. Several examples of PHM methodologies encompass data
analysis, modeling, and simulation techniques. The utilization of these tactics enables the
anticipation and mitigation of failures in advance of their actual occurrence.

The estimation of the remaining useful life (RUL) of subsystems is a crucial aspect
of PHM in aviation. This technique is of considerable significance for several reasons.
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First and foremost, this enables operations to enhance their maintenance strategies by
transitioning from predetermined timetables to proactive, condition-based methodologies.
As a result, this subsequently leads to a decrease in unplanned periods of inactivity and
a reduction in expenses associated with maintenance. Furthermore, the forecast of RUL
plays a significant role in improving safety and dependability, particularly in industries
with high safety requirements like aviation. The proactive identification of possible failures
or deterioration in subsystems significantly contributes to the prevention of accidents and
operational interruptions. Moreover, it facilitates the process of making decisions based
on data, thus offering significant insights into the health and performance of subsystems.
Consequently, this facilitates the ability to make more knowledgeable decisions pertaining
to the upkeep, fixing, and substitution.

Due to its ability to forecast the RUL of a system while in operation, PHM facilitates
the implementation of condition-based maintenance (CBM), a novel maintenance approach
that exclusively addresses the repair or replacement of components that have incurred
real damage. This method has the potential to diminish the overall life cycle costs as-
sociated with maintenance. CBM encompasses a set of hardware and software systems
that are automated in nature. These systems are designed to effectively monitor, identify,
isolate, and anticipate the performance and deterioration of equipment. Importantly, CBM
achieves these objectives without causing any interruptions to the everyday operation
of the systems in question. CBM is a maintenance approach that relies on the current
state of equipment or components, as opposed to relying on breakdown or planned repair.
Prognostics plays a crucial role as an enabling technology for CBM, facilitating the timely
decision-making process for maintenance activities by offering a range of the following
advantageous outcomes:

• Early Fault Detection: PHM systems possess the capability to scrutinize data obtained
from diverse sensors and discern minute alterations in the health of assets. This
enables the timely recognition of prospective difficulties prior to their escalation into
major problems;

• The concept of PHM involves the ability to anticipate the failure or maintenance needs
of an asset, allowing for the proactive scheduling of maintenance operations. This
approach coincides with the ideas of CBM;

• Data-driven decision-making is a process in which PHM systems utilize data ana-
lytics and machine learning techniques to provide valuable insights into the health
and performance of assets. These insights enable maintenance teams to make well-
informed decisions;

• The use of PHM enables the enhancement of maintenance plans through the prioriti-
zation of assets that exhibit a higher likelihood of failure or those that would obtain
the greatest value from maintenance activities;

• The use of PHM may effectively mitigate unexpected downtime and production
interruptions by promptly identifying concerns and strategically planning mainte-
nance activities.

Figure 1 illustrates the operationalization of prognosis within a conceptual framework
for Open System Architecture Condition Based Maintenance system (OSA-CBM).

Every system has a decline in performance when it operates under stress or load over
a period of time. Hence, it is important to implement maintenance practices to ensure
a desirable degree of dependability over the lifespan of the system. The initial kind of
maintenance that was practiced is known as corrective maintenance, often referred to as
reactive, unplanned, or breakdown maintenance. This type of maintenance is performed
solely in response to a failure that has already happened, hence it may be characterized
as passive in its approach. The practice of corrective maintenance, sometimes referred to
as first-generation maintenance, has been implemented since the inception of machines
created by humans. Given that corrective maintenance takes place once the system has
fully exhausted its useful life, there is no prior preparatory period for maintenance ac-
tivities. The duration of maintenance is significantly prolonged, and the associated costs
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of forced outages are maximized, unless there is an existing availability of replacement
components. Due to the inherent difficulty in accurately forecasting system failures, the sys-
tem’s availability is notably suboptimal. Nevertheless, the replacement process exclusively
targets components that have undergone deterioration, resulting in a minimal quantity of
replacement parts [6].
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One subsequent maintenance strategy is time-based preventive maintenance, also
known as scheduled maintenance or second-generation maintenance. This approach
establishes regular intervals for maintenance activities to prevent failures, irrespective of the
current health condition of the system. Traditional approaches for predicting dependability
often rely on either handbooks or previous field data. The maintenance method that
is widely adopted and involves the scheduling of most replacements in advance is the
most popular. The primary consideration in preventative maintenance is cost, as it entails
the replacement of all components, even though a significant portion of them may not
require replacement. The cost-effectiveness of preventive maintenance is contingent upon
the assumption that all components are anticipated to break at around the same time.
Nevertheless, this approach proves to be efficient only in cases when there is a limited
occurrence of part failures, as it necessitates the replacement of several parts that are not
anticipated to fail.

To elucidate the matter of inefficient maintenance practices, the maintenance proce-
dures involved in rectifying fractures present in airplane panels is explained as follows:
according to the regulations set out by the Federal Aviation Administration (FAA), it is
mandatory to address any cracks measuring 0.1 inches in size during a type-C inspection,
which is conducted at intervals of 6000 flight cycles [8]. The purpose of this rule is to ensure
the safety of the airplane frame by conducting a reliability evaluation. The objective is to
achieve a reliability level, indicating that there should be no more than one failure every
ten million instances. If a fracture with a size of 0.1 inches is present, the likelihood of the
crack expanding and becoming unstable within the following 6000 flights is estimated to
be around 10−7. Hence, in the event of a type-C inspection, the identification of a fracture
measuring 0.1 inch necessitates repair, whereas the detection of many cracks necessitates
panel replacement.

The maintenance cost increases as contemporary systems grow increasingly sophisti-
cated and maintain greater levels of dependability due to the fast development of technol-
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ogy. Over time, the implementation of PM has emerged as a significant financial burden
for several industrial enterprises. The implementation of CBM has emerged as a viable
approach to save maintenance expenses while ensuring the desired standards of depend-
ability and safety. CBM involves performing maintenance activities solely when necessary,
and PHM serves as the pivotal technology to achieve this objective. CBM exhibits notable
distinctions from conventional maintenance methodologies such as PM and reactive main-
tenance (RM). In contrast to conventional systems that rely on predetermined timetables or
reactive responses to failures, CBM emphasizes proactive maintenance based on real-time
condition assessments. This paper aims to elucidate the distinctions between CBM and con-
ventional maintenance techniques while also exploring the role of PHM in supporting CBM.
In essence, CBM distinguishes itself from conventional maintenance methodologies by its
emphasis on continuous asset condition monitoring and subsequent maintenance actions
prompted by the observed condition. The integration of PHM with CBM is advantageous
due to its capacity to use data-driven insights, detect faults at an early stage, and enable
PM. As a result, this integration contributes to the enhancement of asset dependability, cost
reduction, and extension of asset lifespan. Table 1 presents a comparative comparison of
CBM and conventional maintenance approaches.

Table 1. Comparative analysis of CBM and conventional maintenance methods.

CBM Conventional Maintenances

Trigger Mechanism

Maintenance strategy initiated either
by real-time monitoring or periodic

evaluation of an asset’s state. This can
encompass the utilization of diverse

sensors and monitoring
methodologies to gather data

pertaining to variables such as
temperature, vibration, oil quality,

and other relevant parameters.

Involves scheduling
maintenance work based on
predefined time intervals or

consumption levels. RM
responds to failures after

their occurrence.

Temporal Aspect

Implemented exclusively when there
is observable evidence indicating the
degradation or imminent critical state

of the asset’s condition. By
minimizing needless maintenance,

the longevity of the asset is extended.

Rise to the issue of
over-maintenance when

operations are carried out
preemptively before required.

Relying only on RM can lead to
expensive periods of downtime

and repairs due to
unforeseen problems.

Cost Efficiency

Typically considered to be a more
economically efficient approach due

to its focused maintenance operations
that are informed by the actual state

of assets. It effectively reduces
downtime and minimizes the

occurrence of superfluous
maintenance tasks.

Might incur significant expenses
because of unneeded

maintenance efforts. Conversely,
relying on RM can lead to
increased repair costs and

productivity losses.

Operational Lifespan

Aimed at optimizing the lifespan of
assets by implementing maintenance

activities at the most opportune
moments to effectively prolong the

asset’s operational duration.

Potentially result in the
degradation of assets because of
excessive maintenance (PM) or

premature failure owing to
inadequate maintenance (RM).

In the process of developing commercial aircraft, many models are employed to
facilitate the design of PHM systems, or alternatively, as integral components of the PHM
itself. These models may encompass physics-based modeling, sensitivity analysis, and
uncertainty propagation [9,10]. The objective of these models is to anticipate and avert
failures prior to their occurrence through the identification of the most pertinent health
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indicators (HIs) and the estimation of probability density functions (PDFs) for HIs in both
optimal and deteriorated conditions [9,10].

Within the realm of evaluating aviation system performance, the utilization of physics-
based modeling entails the application of comprehensive understanding of the system to
construct models capable of forecasting and preempting faults before to their occurrence.
These models have the potential to be utilized in conjunction with other methodologies,
such as data-driven modeling and physics-based models, to enhance their precision and
dependability [11].

To offer a comprehensive assessment of the current research landscape on PHM within
the aviation industry, authors of this paper conducted a systematic search utilizing pertinent
keywords such as ‘prognostic’, ‘aircraft’, and ‘system’ in the SCOPUS research database.
The results suggest that the implementation of PHM in aircraft systems has produced
favorable results, as demonstrated by the considerable volume of published research work.
Nevertheless, it is crucial to acknowledge that a notable discrepancy persists in the research
advancements of PHM for aircraft systems compared to other associated fields. The extent
of the research gap is more evident when examining the keywords ‘hybrid prognostic’,
‘aircraft’, and ‘system’. This suggests that there remains a substantial amount of work to be
performed in effectively integrating hybrid PHM applications in the aviation sector. The
searched results from 1972 to 2024 are depicted in Figures 2 and 3, which are investigated
initially by SCOPUS.
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This paper aims to provide an overview of the current research status pertaining
to the application of PHM in the aviation industry. It accomplishes this by showcasing
various mainstream algorithms and their applications. The intended audience for this paper
includes researchers, academicians, and engineers seeking a comprehensive understanding
of PHM in the aviation industry.

The subsequent sections of the paper are structured in the following manner. Section 1
provides an overview of prediction approaches and their connection to integrated vehicle
health management (IVHM). It also introduces the concept of prognostics and concludes
by discussing the issues associated with prognostics. Section 2 provides an overview of
prognostics approaches in physics-based models and data-driven models. It discusses the
fundamental concepts, applications, and issues associated with these approaches in the
context of aircraft systems. Section 3 of this paper presents a contemporary and promising
amalgamation of hybrid prognostic methodologies that have been combined with both
physics-based and data-driven models. Section 4 discusses the current challenges in the
field. Section 5 serves as the concluding section of the paper, providing an overview of the
main findings and implications of the study. Additionally, it highlights potential directions
for future research and further exploration in the field.
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1.1. Types of Prediction Techniques

Predictions can be realized using several methodologies, such as statistical analy-
sis, experience-based methods, computer models, physic-of-failure (PoF) approaches, or
combinations of these techniques [12].

1. The field of statistics is related to the collection, analysis, interpretation, presentation,
and organization of data. This methodology employs many statistical techniques,
including autoregressive moving average (ARMA) and exponential smoothing, to
analyze data. These techniques utilize random variables to enhance the distribution
of unknown characteristics in newly acquired data. Regression analysis is a statistical
method used to establish the relationships between variables and estimate the param-
eter values to make predictions about the RUL. ARMA is commonly employed in
typical operational scenarios to discern and comprehend the dynamic characteristics
of various components. When utilized in the context of lifecycle issues, this model
has demonstrated its ability to generate precise and dependable estimates of RUL;

2. The use of this strategy is predicated upon the discernment of individuals with special-
ized expertise. Knowledge may be categorized into the following two forms: explicit
and tacit. It is acquired via the expertise of those who possess a deep understanding
of a particular field. This approach is employed to facilitate decision-making related
to the maintenance of deterioration, whereby ongoing monitoring of processes and ob-
jects is conducted. Understanding is derived from the collection of data acquired from
both failed occurrences and developmental test events. The examination of the data
allows for the identification of characteristics derived from degradation mechanisms,
which in turn aids in the creation of datasets. Additionally, it enables the imple-
mentation of classification criteria to ascertain the RUL of an asset by establishing a
predetermined threshold level;

3. Computational intelligence, sometimes referred to as computer model, encompasses
the utilization of fuzzy logic and neural networks that rely on parameters and input
data to generate the intended output. Artificial neural networks (ANNs) utilize data
obtained from continuous monitoring systems and necessitate the presence of training
samples. ANNs, sometimes referred to as ‘black boxes’, offer limited visibility into
its internal mechanisms [13]; however, by using ANNs, data obtained from sensors
may be processed to forecast the RUL of an asset. Alternative methodologies include
Bayesian prediction and support vector machines, both of which employ statistical
techniques to estimate conditions based on limited samples to establish a foundation
for predictive learning;

4. The PoF methodology necessitates the use of parametric data and encompasses several
methodologies, such as continuum damage mechanics, linear damage rules, nonlinear
damage curves, and two-stage linearization. Methods for modifying the life curve of
stress and load interaction, as well as concepts related to fracture development and
energy-based damage models, are also accessible;

5. Fusion refers to the process of combining several sets of data to create a more refined
and consolidated state. The proposed methodology involves the extraction, pre-
processing, and fusion of data to achieve an accurate and efficient forecasting of
the RUL. One potential approach to enhance the integration of fusion is to employ
the fuzzy method to categorize data, hence augmenting the precision of the RUL
estimation. In the realm of uncertainty surrounding RUL estimation, the integration
of on-demand data obtained from various sensors is accomplished using centralized
or decentralized methods to achieve precise predictions of useful life. This fusion
process is facilitated by the utilization of principal component analysis.

1.2. Prognostics and Integrated Vehicle Health Management (IVHM)

The inception of PHM can be traced back to the 1980s when the Civil Aviation Author-
ity (CAA) of the United Kingdom initiated its implementation with the aim of mitigating
the occurrence of helicopter accidents. Subsequently, in the 1990s, PHM underwent further
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advancements by including health and usage monitoring systems (HUMS), which enable
the measurement of both the health conditions and performance of helicopters. The im-
plementation of the HUMS has yielded significant outcomes in the reduction of accident
rates, surpassing a 50% decrease. This fatal accident rate is illustrated in Figure 3, which
demonstrates the effectiveness of HUMS when applied to in-service helicopters.

In the 1990s, the aerospace research division of NASA in the United States included
the idea of vehicle health monitoring (VHM), which involves the monitoring of the health
status of outer space vehicles. Nevertheless, it was subsequently substituted with a more
comprehensive designation known as IVHM or system health management (SHM), which
encompasses the prognostics of diverse space systems [14]. During the early 2000s, the
Defense Advanced Research Projects Agency (DARPA) in the United States of America
successfully devised two systems, namely, the Structural Integrity Prognosis System (SIPS)
and Condition-Based Maintenance Plus (CBM+), both serving a similar objective. The
term prognostics and health management were initially introduced in the program for joint
strike fighter (JSF) development (Joint Strike Fighter Program Office, 2016) [15].

Subsequently, the technology known as PHM has experienced substantial advance-
ments across several domains. These advancements encompass the comprehensive exami-
nation of failure physics, the refinement of sensor technologies, the extraction of relevant
features, the implementation of diagnostic techniques for the detection and classification
of faults, as well as the establishment of prognostic methodologies for the prediction of
failures. These strategies have been extensively investigated and developed upon in sev-
eral sectors. The proliferation of technological advancements in the business has led to a
growing body of literature that explores successful applications across several sectors [16].

The development of IVHM arose from the recognition that PM has mostly concentrated
on individual aircraft subsystems in isolation from one another. The manufacturers of
the engines, avionics, structure, and other components designed their own PHM systems
independently. IVHM proposes that PHM should be implemented as a comprehensive
and unified platform, backed by a solid commercial rationale. The design and construction
of an IVHM system should adhere to an open and layered architecture, employing a
systems-engineering approach to achieve comprehensive platform capabilities. This system
should serve as a foundation for improving or substituting conventional maintenance
practices, hence providing maintenance credits. The utilization of an open architecture
allows manufacturers of subsystems to construct PM systems that possess the capability
to exchange data with other platform systems. While the concepts of IVHM have mostly
been formulated within the aerospace sector, the underlying principles may be applied to
many other industries as well. In various scenarios, there may arise a necessity to broaden
the interpretation of the term vehicle within the context of IVHM, so as to encompass any
form of industrial facility. The term vehicle is sometimes misinterpreted as exclusively
referring to movable assets, which is an inaccurate assumption. For a more comprehensive
understanding of IVHM, one may refer to [13] (Figure 4).

Numerous industrial facilities already employ predictive maintenance systems, which
encompass various techniques such as periodic vibration analysis via portable vibration
sensing equipment, oil and oil debris analysis conducted through laboratory testing, and
perhaps additional non-destructive testing (NDT) or examination (NDE) methods. Typi-
cally, these findings are assessed independently from one another and without considering
any other PM system. Frequently, the information technology (IT) systems employed for
data collection and result generation operate independently, with the data being private
and hence not amenable to sharing across disparate IT systems. This overlooks the potential
to integrate the available information to obtain an understanding of machinery health and
condition, in accordance with the principles underlying IVHM.
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1.3. Challenges in Prognostics

While the field of PHM offers several advantages, presents numerous benefits, it is
crucial to recognize that there are still obstacles that need to be addressed [17].

The implementation of optimal sensor selection and localization is a key. The pro-
cess of acquiring data is an initial and crucial part of prognostics. The measurement of
environmental, rational, and performance parameters of a system frequently necessitates
the utilization of sensor systems. The prognostic performance may be compromised due
to inaccurate readings resulting from the inappropriate selection and placement of sen-
sors. The sensors must possess the capability to precisely quantify the alterations in the
parameters associated with the catastrophic failure mechanism. It is important to consider
the potential for sensor reliability and failures. Several solutions have been proposed to
enhance the reliability of sensors. These include the utilization of redundant sensors to
monitor a given system and the implementation of sensor validation techniques to evaluate
the accuracy and reliability of a sensor system, afterwards making appropriate adjustments
or corrections.

Feature extraction is a crucial stage in prognostics because it enables the collection of
data that is directly related to the occurrence of damage, thereby ensuring the significance
of the prognostic analysis. However, in a number of instances, the collection of damage
data is instantaneously difficult or impossible. Due to the continuous rotation of the
bearing, measuring the fractures in the bearing’s race presents a significant challenge. In
this scenario, damage estimation is accomplished by measuring a system reaction that is
directly related to the damage. The installation of accelerometers near bearings to monitor
and evaluate the magnitude of vibration signals is an example of an accelerometer’s
application. Due to the presence of noise in system vibration, it becomes difficult to extract
damage-related signals. In the context of complex systems, the amount of harm is not
negligible in comparison to the entire system. The magnitude of the signals associated
with damage is typically much less than the magnitude of the signals associated with the
system’s response. Consequently, it is difficult to extract these small signals associated with
damage from a relatively large quantity of noise.
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In line with what has been mentioned so far, most people agree that there are the
following two main types of prediction methods: those based on physics and those based
on data. To figure out when a system has reached the end of its useful life, physics-based
methods use an understanding of failure mechanism models or other models that describe
the system. Few data points are required to consistently predict the RUL, which is a
significant advantage; however, it is essential to understand the failure process. In the
context of fracture development models, it is essential to consider a few factors, including
the properties of the materials used, the geometry of the structure, how it is utilized, and
how it is loaded by the environment. Incorporating these features into systems may be
difficult. In addition, the use of models requires a comprehensive understanding of the
fundamental physical mechanisms for failure and their operational principles. In complex
systems, however, it is difficult to obtain such models, so physics-based methods must
account for significant limitations. Data-driven strategies employ empirical data from
the actual world to acquire knowledge and ascertain the underlying factors contributing
to deterioration. This enables the prediction of future states without relying on explicit
physical models. Therefore, the precision of RUL prediction outcomes mostly relies on
the caliber of the training dataset. This paper provides a comprehensive examination of
the characteristics of prevalent algorithms employed in physics-based and data-driven
methodologies. The objective is to facilitate the development of hybrid methodologies by
comprehensively examining the characteristics of each algorithm.

The analysis of prognostic uncertainty and the assessment of its accuracy pose signif-
icant challenges. One significant obstacle in the implementation of prognostics is to the
formulation of approaches that may effectively address the uncertainty encountered in
practical situations, resulting in less precise prognostications. Figure 5 illustrates many
sources of uncertainty that are found in the field of prognostics. These sources are often
classified into the following three distinct categories:
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The presence of these uncertainties possesses the capacity to give rise to significant
disparities between projected results and the factual condition. The significance of develop-
ing approaches that can accurately describe uncertainty bounds and confidence levels for
prognosis cannot be overstated. In order to ascertain and measure the level of trust in a
prognostics system, it is important to incorporate a methodology for assessing the accuracy
of prognostications. There is currently no agreement among scholars on the most suitable
and universally recognized methods for assessing prognostic performance; however, some
academics have put out several techniques for consideration. The authors [18] offered a
comprehensive array of metrics aimed at assessing the efficacy of prognostics algorithms in
their study. The criteria under consideration encompass prognostics hit score, false alarm
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rate, missed estimation rate, accurate rejection rate, and prognostics effectivity. In addition,
reference [19] developed a comprehensive set of measurements for examining the essential
components of RUL prediction. The metrics include prognostic horizon, α–λ performance,
relative accuracy, and convergence, as seen in Figure 6.
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The aviation industry has several challenges when it comes to the application of
PHM. One major impediment is the integration of PHM systems into current aircraft
and maintenance operations. The issue under consideration covers the following several
unique aspects:

• Compatibility with legacy systems: a considerable proportion of aircraft now in service
were manufactured and designed prior to the extensive use of PHM technology. The
integration of PHM systems into outdated aircraft presents difficulties as a result of
potential inconsistencies with the preexisting onboard systems and data connection
protocols, which may not have been initially developed to support PHM capabilities.
The implementation of PHM capabilities in these aircraft might potentially result in
substantial costs and need complex processes;

• The aggregation of data acquired from various sensors and systems deployed on the
aircraft is a crucial component of PHM, highlighting the significance of data integration
in this field. The process of accurately gathering, transferring, and consolidating
data from several sources into a unified PHM system is a significant challenge. The
successful attainment of this aim requires the use of standardized data formats and
communication protocols;

• The aviation sector is widely recognized as critical infrastructure owing to its signifi-
cant role in upholding essential social functions. In this particular industry, the data
generated by PHM systems possesses considerable sensitivity and necessitates the im-
plementation of strong cybersecurity protocols. The preservation of the confidentiality
and integrity of sensitive data in the face of cyber threats is of paramount significance.
The integration of PHM into aviation systems poses a significant challenge in terms
of maintaining cybersecurity. This challenge requires the establishment of robust
cybersecurity standards and continuous monitoring;

• The aviation industry is subjected to comprehensive laws, which require strict compli-
ance with rigorous safety and reliability standards when introducing new technologies
and systems. The endeavor of assuring the adherence of PHM systems to aviation
standards may provide obstacles in terms of intricacy and time expenditure;
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• The discipline of human factors recognizes that PHM systems yield a significant
amount of data and diagnostic information. It is crucial to guarantee the proper dis-
semination of the aforementioned information to pilots, maintenance crews, and other
pertinent stakeholders in a manner that is easily understandable and can be promptly
implemented. The successful implementation of PHM requires the meticulous con-
sideration of human factors, encompassing elements such as user interface design
and training;

• The deployment of PHM systems carries substantial financial implications, prompting
airlines and operators to carefully evaluate the economic investment. The task of
measuring the advantages of improved maintenance, reduced downtime, and in-
creased safety presents a considerable difficulty in determining a measurable return
on investment (ROI);

• The ability to adapt is of utmost importance for PHM systems, as they must contain the
capacity to adjust and accommodate a wide range of aircraft types and fleet sizes. The
effective implementation of PHM technologies in diverse aircraft poses a significant
and complex undertaking.

In order to address these challenges in a comprehensive manner, it is crucial to cul-
tivate a spirit of collaboration among many key actors, including aircraft manufacturers,
maintenance providers, regulatory entities, and technological innovators. The application
of PHM in the aviation sector requires addressing specific problems, notwithstanding its
promise to improve safety and efficiency.

2. Prognostics Approaches

There exist the following three distinct methodologies for data analysis in the context
of prognostic:

• Physics-based models (PbM);
• Data-driven models (DdM);
• Knowledge-based models (KbM).

The physics-based methodology necessitates a precise representation of the physical
system’s behavior, encompassing both its normal and defective states. The inference of
a system’s health may be made by comparing the data obtained from sensors with the
predictions of the model. Physical techniques encompass the utilization of PoF models. One
approach to crack growth analysis involves the integration of experiments, observation,
geometric analysis, and condition monitoring data to assess the extent of damage caused
by a certain failure mechanism.

The data-driven methodology employs historical data on prior actions to ascertain
current performance and forecast the RUL and are based on the utilization of past run-to-
failure (RTF) data. These strategies are frequently employed for estimate purposes, relying
on a pre-established threshold for failure. The application of wavelet packet decomposition
technique and/or hidden Markov models (HMMs) can be utilized to improve the accuracy
of results by incorporating time frequency data, hence providing greater precision in
comparison to solely examining time variables. Nevertheless, the methodologies that
utilize historical data for asset life prediction need a comprehensive understanding of the
asset’s physical characteristics.

2.1. Physics-Based Approaches

The fundamental assumption postulates the presence of a tangible framework that
clarifies the process of deterioration. As a result of this reasoning, the physical model is
occasionally referred to as a degradation model, whereas the physics-based prognostics is
commonly known as a model-based prognostics [21]. The main objective of this section
is to present essential physics-based prognostics algorithms and analyze the challenges
related to their practical application.

If there exists a precise physical model that effectively characterizes the deterioration of
damage over time, then the field of prognostics may be considered substantially addressed.
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This is due to the fact that the future behavior of damage can be ascertained by advancing
the degradation model into subsequent time periods. In practical use, it is important to
note that the degradation model may not be fully comprehensive, and there is uncertainty
regarding the future usage conditions. Hence, the primary concerns in physics-based
prognostics pertain to enhancing the precision of deterioration models and integrating
future uncertainties. For an instance, the Paris model provides an explanation for the
process of fracture propagation under fatigue loading conditions, with the stress intensity
factor range serving as a representative parameter. The rate at which fractures form
depends on the level of stress intensity, which can vary due to different usage conditions.
Additionally, the rate at which the damage will increase is determined by two model
parameters, namely, m and C. The uncertainty of these characteristics arises from the
variability inherent in the production process. Furthermore, it should be noted that the
Paris model is specifically formulated for the analysis of an infinite plate subjected to
model fatigue loading. In practical applications, it is common for plates to possess finite
dimensions and be subject to boundary restrictions that impose constraints when interacting
with other components. Hence, it is imperative that the decision-making process pertaining
to prognostics include the many sources of uncertainty and is grounded on a cautious
assessment of damage deterioration.

The methodology of physics-based prognostics is depicted in Figure 7. The deteriora-
tion model is formulated as a mathematical function that depends on the usage (or loading)
circumstances, denoted as L, as well as the elapsed time, denoted as t, and the model
parameters, denoted as θ. The primary source of uncertainty is from usage conditions,
which are characterized by unknown future usages; however, it is commonly believed
that usage conditions and time are predetermined when developing physics-based models.
Given this premise, the primary emphasis of PbM pertains to the identification of model
parameters and the prediction of future deterioration patterns.

Sensors 2023, 23, x FOR PEER REVIEW  15  of  70 
 

 

The methodology of physics‐based prognostics is depicted in Figure 7. The deterio‐

ration model is formulated as a mathematical function that depends on the usage (or load‐

ing) circumstances, denoted as  𝐿, as well as the elapsed time, denoted as 𝑡, and the model 

parameters, denoted as  𝜃. The primary source of uncertainty is from usage conditions, 

which are characterized by unknown  future usages; however,  it  is commonly believed 

that usage conditions and time are predetermined when developing physics‐based mod‐

els. Given  this premise,  the primary emphasis of PbM pertains  to  the  identification of 

model parameters and the prediction of future deterioration patterns. 

 

Figure 7. Illustration of physics–based model. 

While it is feasible to obtain the model parameters through laboratory experiments, 

it is crucial to acknowledge that the actual model parameters utilized in a specific system 

may differ from those obtained through laboratory investigations. For example, when dif‐

ferent batches of materials are used inside a specific system, they have discernible charac‐

teristics that differ from the material employed in that system. In order to accommodate 

the  inherent variability  in material properties among different batches, material hand‐

books frequently encompass a wide spectrum of material features. 

The effectiveness of prognostics can be significantly  influenced by the existence of 

uncertainty in model parameters. For example, it has been demonstrated that the expo‐

nent (𝑚) for aluminum alloys in the Paris model falls within the range between 3.6 and 

4.2. The phenomenon explains a modest 16% of the observed variability, although the life 

cycle can demonstrate a significant range of up to 500%. If a conservative estimation is 

performed, it is possible that maintenance may need to be scheduled around once after 

approximately 20% of the overall lifespan has been utilized. Therefore, it is imperative to 

reduce the degree of uncertainty linked to model parameters to improve the precision of 

forecasting the RUL and, consequently, the duration of maintenance. 

Once the model parameters have been determined through the updating process, it 

becomes feasible to anticipate the future deterioration behavior by extending the model 

to future time periods. This involves substituting the identified parameters into the deg‐

radation model, along with time and loadings. The prediction of RUL is achieved by con‐

tinuously  propagating  the  deterioration  condition  until  it  surpasses  a  predetermined 

threshold. 

Parameter estimation techniques serve as criteria for categorizing various physics‐

based methods. There are several strategies for model parameter identification, including 

nonlinear  least squares  (NLS),  the Bayesian method  (BM), and multiple  filtering‐based 

approaches such as the Kalman filter (KF) [22] and particle filter (PF). The filtering tech‐

niques employed are grounded in the principles of the recursive Bayesian approach. The 

KF provides the precise posterior distribution in the context of a linear system that is sub‐

ject  to Gaussian  noise.  To  enhance  the  performance  for  nonlinear  systems,  other  ap‐

proaches within the KF family have been devised, including the extended KF (EKF) and 

the unscented KF (UKF) [23,24]. 

Figure 7. Illustration of physics–based model.

While it is feasible to obtain the model parameters through laboratory experiments, it
is crucial to acknowledge that the actual model parameters utilized in a specific system may
differ from those obtained through laboratory investigations. For example, when different
batches of materials are used inside a specific system, they have discernible characteristics
that differ from the material employed in that system. In order to accommodate the inherent
variability in material properties among different batches, material handbooks frequently
encompass a wide spectrum of material features.

The effectiveness of prognostics can be significantly influenced by the existence of
uncertainty in model parameters. For example, it has been demonstrated that the exponent
(m) for aluminum alloys in the Paris model falls within the range between 3.6 and 4.2. The
phenomenon explains a modest 16% of the observed variability, although the life cycle can
demonstrate a significant range of up to 500%. If a conservative estimation is performed, it
is possible that maintenance may need to be scheduled around once after approximately
20% of the overall lifespan has been utilized. Therefore, it is imperative to reduce the degree
of uncertainty linked to model parameters to improve the precision of forecasting the RUL
and, consequently, the duration of maintenance.
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Once the model parameters have been determined through the updating process, it be-
comes feasible to anticipate the future deterioration behavior by extending the model to fu-
ture time periods. This involves substituting the identified parameters into the degradation
model, along with time and loadings. The prediction of RUL is achieved by continuously
propagating the deterioration condition until it surpasses a predetermined threshold.

Parameter estimation techniques serve as criteria for categorizing various physics-
based methods. There are several strategies for model parameter identification, including
nonlinear least squares (NLS), the Bayesian method (BM), and multiple filtering-based
approaches such as the Kalman filter (KF) [22] and particle filter (PF). The filtering tech-
niques employed are grounded in the principles of the recursive Bayesian approach. The
KF provides the precise posterior distribution in the context of a linear system that is
subject to Gaussian noise. To enhance the performance for nonlinear systems, other ap-
proaches within the KF family have been devised, including the extended KF (EKF) and
the unscented KF (UKF) [23,24].

The paper [24] utilized three kinds of real-time model-based methods, including the
EKF, UKF, and PF, to estimate the state-of-charge (SOC) of sodium-ion batteries (SIBs). In
their study, the authors of [24,25] put forth a physics-informed smooth particle filter (SPF)
framework aimed at predicting the RUL of lithium-ion batteries (LiBs). This framework
involves the estimation of parameters associated with a single particle model (SPM) of
LiBs, with a focus on identifying and extracting three primary degradation mechanisms.
In another study, reference [26] employed the usage of PF to estimate wear coefficients
in centrifugal pumps. They also devised a prognostics methodology based on a model,
whereby the task of defining various damage development routes is approached as a joint
problem. The utilization of PF is proposed to estimate the parameters associated with
the damage and degradation mode of a battery degradation model. Additionally, a crack
growth model is employed to elucidate the process of updating model parameters, damage
progression, and prediction of RUL. This approach addresses the challenge of estimating
the state parameters involved in RUL prediction [27].

The KF-family and PF algorithms, as aforementioned, employ a filtering approach that
iteratively changes parameters by including individual measurement data. The efficacy
of the KF family is heavily influenced by the starting condition of the parameters and the
variance of the parameter, as well as the accuracy of the linearization approximation. In
contrast, the utilization of PF is not subject to any limitations with regards to systems and
the type of noise.

The selection of a prognostic’s technique should be dependent on many application
parameters, including but not limited to data type, uncertainty, data noise, and data size [28].
It is crucial to acknowledge that no universal algorithm can cater to the requirements of
every system. Several instances of physics-based prognostics can be found in the literature,
such as a battery deterioration model and a crack development model [29]. The approaches
integrate a physical model with observable data to ascertain model parameters, which in
turn enable the prediction of the RUL [27].

A technique is proposed for prognostics in battery deterioration utilizing a combina-
tion of a physical model and observed data to estimate model parameters. These parameters
are then used to forecast the RUL of the battery [30]. The influence of model parameters
on model behavior is significant and frequently not well understood, necessitating their
identification as an integral component of the prognostic process [31]. Various techniques
can be employed to estimate model parameters, including KF and PF [32].

In terms of integrating physics-based models in hybrid prognostics, one possible
approach involves the incorporation of PbMs with DdMs, such as machine learning in-
fluenced by physics principles, to improve the capabilities of prognostics. The authors
of [33] proposed a framework utilizing physics-based performance models to deduce unob-
servable model parameters pertaining to the health of a system’s components through the
resolution of a calibration problem. The aforementioned factors are later integrated with
sensor inputs and employed as inputs to a deep neural network, resulting in the creation
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of a data-driven prognostics model that incorporate physics-augmented characteristics.
The authors of [34] utilized a modeling approach that incorporates a natural probabilistic
interpretation of the prognostics exercise. A comprehensive evaluation of various classifier
models is conducted on two actual datasets derived from the aeronautics industry. The
findings suggest that deep learning classifier approaches are very appropriate for prognos-
tics of this nature and have the potential to outperform traditional classification techniques
by a substantial margin.

The paper [35] introduces a hybrid modeling methodology that integrates princi-
ples of physics into deep neural networks. Reduced-order models capture a significant
portion of the input–output relationship; however, the utilization of data-driven kernels
serves to minimize the disparity between forecasts and observations. The entire battery
discharge is represented using a reduced-order model that is based on the Nernst and
Butler–Volmer equations. Additionally, the battery’s non-ideal voltage is modeled using a
multilayer perceptron.

The authors of [36] present a proposed multi-physics model that operates under a
limited number of simplifying assumptions. The model includes a solution for the behavior
of the lubricating film using the finite difference method. The model is subsequently
implemented on an established, empirically verified model of the flight control actuators of
a currently operational, large scale commercial aircraft in the face of excessive backlash.
Developing novel health monitoring methods for detecting fault initiation and tracking the
progression of rod ends till failure circumstances is realized by establishing a physics-based
model of these components. As proposed by [37], the field of epigenetics offers valuable
insights into the influence of environmental influences on the expression of an organism’s
genes. This knowledge contributes to our understanding of the overall health of biological
systems and can be utilized to make predictions about their future states. The relationship
between environmental influences and epigenetic alterations, which subsequently gives
rise to visible features, can be associated with conditions that impact the overall health of
a system.

The work of [38] introduces a novel approach rooted in physics-based principles,
referred to as a model order reduction (MOR) method, to simulate the dynamics of aircraft.
The concept of employing a physics-based learning approach involves the integration
of the fundamental principles of aircraft dynamical systems into machine learning mod-
els, with the aim of minimizing training expenses and improving simulation capabilities.
The research indicates that the physics-based learning approach demonstrates enhanced
computational efficiency in comparison to a traditional numerical method. This is due
to the capacity of the physics-based learning method to employ larger time step sizes,
which violate the numerical stability constraint, while maintaining an explicit time integra-
tion scheme.

The present work of [39] introduces a physics-based model to elucidate the phe-
nomenon of blockage. The suggested model is based on a well-established pressure drop
equation and possesses the capacity to mimic three distinct stages of the clogging phe-
nomena. The proposed model incorporates particle filters to create predictions pertaining
to future levels of clogging and to estimate the remaining lifespan of fuel filters. The
results indicate that the approach utilized in this research produces prognostic forecasts
that exhibit a high level of accuracy and precision.

Physics-informed machine learning (PIML) is an approach that integrates data with
the fundamental laws of physics, enabling the utilization of models that may include incom-
plete physical knowledge in a coherent manner. The representation of this phenomena may
be effectively achieved by employing automated differentiation and neural networks that
are especially designed to create predictions that conform to the fundamental principles
of physics [40]. The incorporation of PIML allows for the alignment of the model with
physical principles, hence enabling the steering of the model towards appropriate solutions.
As a result, the utilization of PIML leads to an improvement in both the precision and the
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effectiveness of the model, especially in scenarios that are marked by unpredictability and
a large number of variables [40,41].

2.1.1. Challenges in Physics-Based Prognostics

In contrast to data-driven methodologies in next section, physics-based prognostics
algorithms provide several advantages. Physics-based approaches have the capability to
create long-term predictions. Once the model parameters have been reliably discovered, it
becomes feasible to forecast the RUL by propagating the physical model until deterioration
approaches a preset threshold. Additionally, physics-based methodologies need a very
little amount of data. In a theoretical context, it is conceivable to ascertain the parameters
of a model when the quantity of available data is equivalent to the number of unknown
parameters inside the model. In practice, however, a larger quantity of data is necessary
due to the presence of noise in the data and the insensitivity of degradation behavior to
parameters. It is worth noting that physics-based prognostics algorithms often require a
smaller amount of data compared to data-driven techniques.

There are the following three significant concerns in the realm of physics-based
prognostics that hinder its practicality: model suitability, estimation of parameters, and
data sources.

Model Suitability

The problem of model adequacy pertains to the extent to which the physical model
possesses the capability to accurately forecast the future deterioration behavior. The issue of
curve-fitting in regression differs slightly from the typical approach, since regression focuses
on the accuracy between data points, which may be seen as the error in the interpolating
area. In the field of prognostics, there is a particular focus on the analysis of several data
points, specifically the mistake associated with extrapolation. Physics-based models are
advantageous in forecasting the long-term behaviors of damage due to their utilization of a
physical model that describes the behavior of damage. Prior to any further analysis, it is
imperative to conduct model validation as a first step, as the majority of models inherently
involve assumptions and approximations. There has been a significant research institution
dedicated to the validation of models using statistical methods, including hypothesis testing
and Bayesian approaches [42,43].

In general, when the level of intricacy in a model increase, there is a corresponding
increase in the quantity of model parameters. Consequently, the estimation of these
parameters becomes more arduous. The authors in references [44,45] have shown that
addressing the issue of model adequacy can be alleviated by identifying the comparable
parameters from a simpler model. The prediction of crack formation in complex geometries
was achieved through the utilization of a simplified Paris model, in which an assumed stress
intensity component was employed. The model parameters were modified to accommodate
the inherent imprecision linked to the stress intensity factor. The focus of this paper is
limited to the comparison of damage behavior between basic and elaborate models. This
approach eliminates the need for additional validation techniques to assure the accuracy of
the models.

Estimation of Parameters

The process of parameter estimation has significant importance in physics-based
prognostics since it enables the uncomplicated prediction of RUL after the model param-
eters have been known. Physics-based parameter estimation involves addressing two
distinct difficulties.

• The estimation accuracy is influenced by the properties of different approaches;
• The presence of correlations between model parameters, as well as between model

parameters and loading circumstances, poses challenges in accurately identifying
the parameters.
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An efficient prognostics algorithm demonstrates the capacity to accurately estimate
model parameters with a little amount of data. Although there may be difficulties in prop-
erly identifying components, it is still possible to obtain precise predictions in deterioration
and RUL.

The Dataset Pertaining to the Source of Failure

The utilization of structural health monitoring (SHM) data is commonly employed
to forecast and anticipate the model parameters of a system that is in operation. The
data acquired from SHM may demonstrate a noteworthy level of noise and bias due to
several factors, including the specific attributes of the sensor equipment employed and
the prevailing conditions within the measurement environment. Noise is the term used
to describe the random fluctuations that are noticed in measured data or signals. These
fluctuations occur due to the interference or unwanted electromagnetic fields present in
electronic equipment. Bias is a phenomenon characterized by the constant deviation of
signals from their true values, sometimes caused by calibration problems. The existence of
noise presents difficulties in effectively distinguishing signals linked to degradation, while
bias causes mistakes in prediction results. The investigation of noise mitigation and bias
correction has become popular within the prognostics discipline.

Reference [46] proposed a prognostics methodology for identifying the decline in per-
formance of multilayer ceramic capacitors when subjected to temperature–humidity–bias
circumstances. Reference [47] proposed a technique for developing interpretive prognostics
for switch mode power supplies with electromagnetic input filters. This approach involves
modeling the degradation trajectories of sub-components and utilizing discrete event sim-
ulation to generate lifecycle data related to the system impedances. These data are then
employed as inputs for machine learning-based prognostics, enabling the generation of
interpretable predictions regarding the RUL of the system. The presence of noise in sensor
signals is a significant obstacle to the accurate identification of deterioration features. This
interference has a detrimental impact on the prognostics capabilities of both physics-based
and data-driven systems. In signal processing, the process of mitigating this issue is often
accomplished by the application of de-noising techniques. The utilization of a multilevel
hierarchical kriging (MHK) model was suggested by [48] to expedite the convergence of a
high-fidelity aero structural optimization of helicopter rotors towards the global optimum.
This model has the capability to include three or more degrees of fidelity.

2.2. Data-Driven Models

Data-driven models involve the acquisition of knowledge regarding the behavior of a
system through the analysis and interpretation of data obtained from different engineering
systems. These approaches strive to employ a neutral and implicit approach to the learn
the system by leveraging raw data gathered from real-world observations. Researchers in-
vestigate the correlations among multiple variables and observations, revealing unforeseen
patterns in the natural world. This method allows for the identification of new scientific
concepts and, in certain instances, enables predictions to be made even in the absence of
existing experiences [49].

The behavioral systems theory defines a system as a set of trajectories, which are
patterns of behavior. As a result, this definition possesses an innate inclination towards
approaches that depend on empirical data for the purpose of analysis and research. The
determination of system representations, input/output partitioning of variables, zero be-
ginning state, and other assumptions, is not predetermined. The data-driven methodology
enables a perspective of a dynamical system that is devoid of any specific representation,
instead viewing it as a compilation of trajectories [50]. The application of algorithms to
identify patterns within data and make predictions about new data is fundamental to
data-driven approaches in classification.

Data-driven modeling refers to the application of empirical measures and machine
learning techniques to efficiently develop models that can predict and prevent issues before
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they occur. The complexity of the models is smaller in comparison to physics-based models;
however, their dependability may also be reduced [51]. To improve accuracy and reliability,
the integration of data-driven models with other methodologies, such as physics-based
modeling and feature selection strategies, has been suggested [52,53].

The implementation of a data-driven strategy involves a series of consecutive stages.
Several pieces of advice aimed at facilitating the modeling process are suggested in Figure 8
as follows:
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A wide array of data analysis tools exists, encompassing both rudimentary spreadsheet
applications and sophisticated business intelligence systems. Several commonly used tools
for data analysis include the following:

• Python v3.11 is a widely utilized programming language that is well regarded in the
fields of data analysis and machine learning;

• R v4.3 is a computer language and software environment that is specifically designed
for statistical computation and graphics;

• SAS v8 is a comprehensive software package that encompasses a wide range of
applications, including advanced analytics, multivariate analysis, business intelligence,
data management, and predictive analytics;

• Excel is a spreadsheet application that is extensively utilized and provides a range of
features for data analysis and visualization;

• Power BI is a business analytics service developed by Microsoft that offers a range of
interactive visualizations and business intelligence functionalities;

• Tableau v2023.2 is a software tool designed for data visualization, enabling users to
obtain insights and comprehension from their data;

• Apache Spark is an open-source distributed computing system designed for the
purpose of processing large-scale data;

• MATLAB R2023b is a well-known software that has well-developed built-in toolboxes
and applications that can be useful to researchers working on data analytics;

• JMP Pro 17 is powerful statistical software designed with scientists and engineers
solving problems with data, which is packed with tools for data preparation, analy-
sis, graphing.

The aforementioned software provides a diverse array of functionalities for anyone
involved in data analysis and encompasses tasks such as data cleansing, manipulation,
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visualization, and modeling. The selection of an appropriate tool is of utmost significance,
taking into consideration both the specific requirements and the proficiency level of the user.

The theoretical understanding of data analysis design involves the procedure of for-
mulating the problem as an endeavor to acquire knowledge from the data, considering
an unknown input distribution. Researchers are currently engaged in the development of
robust computational and statistical techniques for the design of combinatorial algorithms
driven by data. This pertains to both offline and online scenarios, wherein a set of represen-
tative problem instances from a specific application are presented either simultaneously
or sequentially, respectively [54]. The aims of algorithm development grounded on data
analysis closely correspond to those of algorithms that hold the potential to improve their
own performance. The main finding suggests that it is feasible to utilize and enhance
approaches established from learning theory to achieve these goals in various algorithmic
contexts [55].

2.2.1. Neural Networks (NNs) and Learning Methods

Neural networks (NNs) are derived from computational models that emulate the
structural organization of the human brain. Artificial neural networks (ANNs), originally
conceptualized by McCulloch and Pitts in 1943, are computational models that aim to
emulate the cognitive processes of the human brain involved in learning. Complex systems
are simulated and analyzed using known input/output instances. In contrast to the neural
structures seen in the human brain, the algorithm under consideration operates by means
of a network of interconnected pre-processing units, facilitating the processing of data. The
NN can be regarded as an opaque entity. The black box, known as NN, generates a set of
proposed actions to solve a given scheduling instance, producing results that cannot be
derived from a known mathematical function [56].

An NN is a dynamic system consisting of several artificial neurons that are coupled to
create a sophisticated network. These neurons possess the ability to modify their structure
in response to internal or external input. Put simply, this model is not explicitly designed to
address a certain problem. Instead, it acquires the ability to tackle such problems through a
training or learning procedure that involves the use of instances. The dataset referred to
as the training set consists of input data paired with their respective output values. The
approach closely replicates the cognitive capacity of the human brain to acquire knowledge
from past encounters.

Numerous algorithms are employed in the training of neural networks, exhibiting
a wide range of variations. Several often-used terms in the field include feedforward,
backpropagation, gradient descent, cost function, and sigmoid. Figure 9 depicts a simplified
feedforward ANN framework.

During the conclusion of a forward pass in the training phase, the output layer
receives the predictions (network outputs) H from the preceding layer and computes
the loss O by comparing these predictions with the training objectives. The output layer
calculates the partial derivatives of the loss function O with respect to the predicted values
H and transmits (propagates) these results to the preceding layer. Figure 10 illustrates the
sequential movement of data inside a convolutional neural network, culminating at the
output layer.

The inaccuracy of NNs is determined during a testing phase, when the network’s
predictive capability is assessed while altering the weights of its connections. Once a
training set of examples has been constructed using historical data and the appropriate
architecture, such as feedforward networks or recurrent networks, the subsequent crucial
stage in the implementation of NNs is the learning process. During the training process,
the NN can deduce the connections between the input and output, establishing the relative
weights of the connections between individual neurons. Each neuron computes a weighted
sum of its inputs and generates a binary signal if the cumulative input surpasses a specific
activation threshold. As a result of this mechanism, the network can successfully execute
highly intricate tasks. Learning algorithms may be classified into several types [57].
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A conventional NN consists of artificial neurons, also known as units, organized
in a hierarchical structure of interconnected layers, where each layer is connected to the
next levels. The quantity of units might vary significantly, ranging from a few hundred
to several million units. Certain units, referred to as input units, are specifically built to
receive diverse types of information from the external environment, which the network
will endeavor to acquire knowledge, identify, or otherwise analyze. The output units
are situated on the opposing side of the network and are responsible for indicating their
response to the acquired information. The artificial brain consists of layers of hidden units
positioned between the input units and output units, collectively constituting most of
its structure.

The majority of NNs exhibit complete connectivity, wherein every hidden unit and
output unit establishes connections with all units in the next layers. The associations
between individual units are denoted by a numerical value known as a weight, which can
assume either a positive value or a negative value. The greater the weight, the greater the
impact that one unit has on another. This phenomenon is analogous to the intercellular
communication observed in the human brain, where neurons stimulate each other through
synaptic junctions [58].

The transmission of information inside an NN occurs through two distinct pathways.
During the process of learning or subsequent operation following training, the NN receives
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patterns of information through the input units. These input units then activate the hidden
units, which then propagate signals to the output units. The architecture that is commonly
referred to as a feedforward network is known by this name. Not all units are in a state of
constant operation. In NN, every unit is subject to receiving inputs from the units positioned
to its left. These inputs are thereafter subjected to multiplication by the weights associated
with the connections via which they traverse. Each unit in a network accumulates the
inputs it receives and, in the case of the simplest sort of network, if the sum exceeds a
specific threshold value, the unit becomes activated and subsequently activates the units it
is linked to [59].

In order for an NN to acquire knowledge, it is necessary to incorporate an analogous
feedback mechanism to how toddlers learn via receiving guidance on their correct or
incorrect actions. Feedback is a ubiquitous tool employed by individuals for the purpose of
learning on a regular basis.

NNs acquire knowledge by a feedback mechanism known as backpropagation, which
is the standard method employed for learning. This process entails the comparison of
the network’s generated output with its intended output, and subsequently utilizing the
disparity between the two to adjust the weights of the connections between the units within
the network. This adjustment process occurs in a reverse manner, starting from the output
units, passing through the hidden units, and concluding at the input units. Over time,
the backpropagation algorithm facilitates the learning process of the NN by minimizing
the discrepancy between the observed output and the desired output, ultimately leading
to a state where the two align perfectly. Consequently, the network achieves optimal
performance by accurately comprehending the underlying patterns and relationships [59].

The primary task entails converting information into a meaningful output. NNs can
exhibit either feedforward or feedback behavior, determined by the direction in which
information is propagated [60,61].

• Feedforward networks are a type of NN architecture in which signals propagate in a
unidirectional manner, moving from the input layer towards the output layer. These
NNs consist of a solitary input layer and a solitary output layer, with the possibility of
containing several hidden layers or none at all. The information flow may be divided
into the following two distinct stages: the learning phase, which occurs when the
network is being taught, and the regular operating phase, which takes place after the
network has completed its training process. Feedforward networks are commonly
employed in the field of pattern recognition;

• Feedback networks, particularly recurrent or interactive networks, utilize memory,
known as their internal state, to effectively process input sequences. Network loops fa-
cilitate the transmission of signals in both directions. Feedback networks are frequently
utilized within the framework of time series or sequential processes.

Learning algorithms are classified into the following types [62]:

• Supervised learning involves the acquisition of knowledge by a network through the
analysis of known instances derived from past data, enabling the network to establish
connections between input and output;

• Weak supervision, alternatively known as semi-supervised learning, is a prominent
approach within the field of machine learning. Its significance and prominence have
been amplified in recent times, particularly with the emergence of extensive language
models. This is primarily attributed to the substantial volume of data necessary for
effectively training these models. The approach is distinguished by its use of a limited
quantity of human-labeled data, which is solely employed in the more resource-
intensive and time-consuming supervised learning framework. This is then followed
by the utilization of a substantial quantity of unlabeled data, which is exclusively
employed in the unsupervised learning framework. Put simply, the desired output
values are only given for a portion of the training data;
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• Unsupervised learning refers to a type of learning where just the input values are
provided, without any explicit labels or guidance. In this context, it is observed that
comparable stimulations tend to activate neurons that are near each other, whereas
dissimilar stimulations tend to activate neurons that are further apart.

Supervised learning is a machine learning paradigm that leverages annotated datasets
to facilitate the training of algorithms with the objective of accurately classifying data or
predicting outcomes. Supervised learning involves the provision of an algorithm with
a collection of input–output pairs, with the objective of acquiring a comprehensive rule
that establishes a mapping between the given inputs and outputs. Supervised learning is
extensively employed in various domains, including but not limited to speech recognition,
mechanical engineering, and aerospace. An instance of supervised learning can be observed
in the context of generalized methodology for the PM of aircraft systems. The paper of [63]
is exemplified through its utilization of three distinct test cases, namely, the engine, the
environmental control system, and the fuel system. It provides a comprehensive description
of the digital twin configuration, simulation parameters for both normal and problematic
scenarios, and a diagnosis approach based on OSA-CBM as previously depicted in Figure 1.
The process of diagnostics is conducted sequentially for each system, employing four
supervised machine learning algorithms. The most effective method for each system
will thereafter be utilized in a vehicle-level reasoner known as FAVER (A Framework for
Aerospace Vehicle Reasoning). This reasoner relies on these system diagnoses as an initial
reference for vehicle reasoning and the resolution of fault ambiguity.

In contrast, semi-supervised learning refers to a machine learning approach that
involves the integration of a limited quantity of labeled data with a substantial quantity
of unlabeled data during the training process. Semi-supervised learning occupies an
intermediate position between unsupervised learning, which lacks labeled training data,
and supervised learning, which relies solely on labeled training data. The objective of semi-
supervised learning is to leverage unlabeled data to enhance the efficacy of a model that
has been trained on labelled data. In this study, reference [64] provides an innovative semi-
supervised prognostic model designed for systems that exhibit partially observable failure
modes. Specifically, our model addresses situations where the training dataset contains
only a limited number of systems with known failure modes. Initially, a graph-based semi-
supervised learning approach is devised to extract distinctive properties that delineate the
various failure scenarios. Subsequently, the variables, along with the multi-sensor streams,
are utilized as inputs for an elastic net functional regression model to forecast the RUL.

Unsupervised learning algorithms are utilized for the analysis of data, enabling the
grouping into distinct segments according to the shared characteristics or disparities. An
illustration can be found within the domain of developing health indicators and RUL prog-
nostics. The authors of [65] utilize unsupervised learning techniques for the development
of health indicators in systems characterized by a number of failures. The autoencoder is
trained using unlabeled data samples so that the actual RUL is unknown. The autoencoder
incorporates the diverse operating characteristics of aircraft, such as variable altitude and
speed, into its framework. The health indicators are subsequently employed to forecast the
RUL of the aircraft system through the utilization of a similarity-based matching methodol-
ogy. The methodology employed in the study yields precise RUL estimations, exhibiting a
root mean square error (RMSE) of merely 2.67 flights.

The efficacy of machine learning models, regardless of whether they fall under the
categories of supervised, unsupervised, or semi-supervised learning, is contingent upon
various factors. These factors encompass the caliber and volume of the data employed for
model training, the selection of algorithm, and the intricacy of the problem. In general,
supervised learning algorithms are often observed to exhibit higher accuracy compared to
unsupervised learning algorithms due to their utilization of labeled data for model training.
This enables the algorithm to acquire knowledge from established input–output pairs and
enhance the precision of its predictions. Nevertheless, the efficacy of supervised learning
algorithms may be constrained by the accessibility and caliber of annotated data.
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Unsupervised learning algorithms abstain from utilizing labeled data and instead rely
on identifying inherent patterns and correlations within the data. As a result, the accuracy
of their results may vary depending on the complexity of the task and the quality of the
data. Semi-supervised learning algorithms use elements from both supervised and unsu-
pervised learning methodologies. The utilization of a restricted amount of annotated data is
employed to augment the effectiveness of the model that has been trained on unannotated
data. The effectiveness of semi-supervised learning algorithms has the potential to exceed
that of unsupervised learning algorithms; however, this outcome is dependent on the
availability and quality of annotated data. In summary, the accuracy of machine learning
models depends on various parameters, and there is no generally applicable method to
find the most precise type of machine learning. Table 2 presents more details regarding
supervised and unsupervised learning methodologies.

Table 2. The comparison between unsupervised learning and supervised learning.

Properties Unsupervised Learning Supervised Learning

Definition

Unsupervised learning is when a
machine learns without being

watched by a person. A machine
searches through data on its own

for trends.

Supervised learning is a type of
machine learning that happens with
the help of a person. Input data are
labeled with answer keys that show

the machine how to obtain the
results that are wanted.

Data Unlabeled Labeled

Utilization of data
A model only has input factors

and no output data to go
with them.

A model is given input variables,
output variables, and an algorithm
to learn the function from inputs

to outputs.

When to apply

The user lacks a clear
understanding of the specific

criteria they are seeking inside
the dataset.

The user possesses a clear
understanding of the desired

attributes inside a dataset.

Useful for Clustering and
association problems

Classification and
regression problems

Accuracy Deliver less precise outcomes Provision of more precise outcomes

Algorithms

K-means
Gaussian mixture models

Frequent Pattern (FP) growth
Principal Component

Analysis (PCA)

Support Vector Machines (SVM)
Decision trees

Random Forest (RF)
Naïve Bayes

Use cases Recommender systems
Anomaly detection

Image recognition
Demand forecasting

The utilization of the backpropagation algorithm in supervised learning has emerged
as the predominant approach for training neural networks [66].

2.2.2. Recurrent Neural Network (RNN) and Long Short-Term Memory (LSTM)

LSTM is an abbreviation for long short-term memory. This particular neural network
variant finds application in the domains of artificial intelligence and deep learning. In
contrast to conventional feedforward neural networks, LSTM networks possess feedback
connections, hence classifying them as a variant of recurrent neural network (RNN). The
utilization of LSTM enables the processing of not just individual data points, such as images,
but also full sequences of data.

Within the field of aviation prognosis, LSTM networks have demonstrated consider-
able efficacy in the analysis and prediction of aircraft trajectory data. A proposed model for
trajectory prediction is an attention-based LSTM model, comprising two separate compo-
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nents. During the initial phase, the LSTM model is utilized to extract the temporal features
of the flight trajectory. In the following section, the attention mechanism is employed to
effectively manage the processed sequence features. The attention mechanism operates by
amplifying the significance of primary aspects while reducing the importance of minor
elements [67,68].

A RNN is a specific variant of an artificial neural network (ANN) that allows for
connections between nodes. This unique characteristic enables the output of nodes to
impact the future input of those same nodes. This feature allows it to exhibit temporal
dynamic behavior. RNNs can use their internal state, referred to as memory, to proficiently
comprehend input sequences that possess diverse lengths. These characteristics make
them appropriate for various applications, including unsegmented, linked handwriting
recognition or speech recognition. RNNs are distinguished by their capacity to integrate
information from preceding inputs to modify the current input and output. Conventional
deep neural networks operate on the assumption that the input and output variables are
mutually independent. In the context of RNNs, it is important to note that the output is
influenced by the preceding parts within the sequence.

Reference [69] conducts a comprehensive analysis and assessment of different prog-
nostic models for aviation engines’ RUL and seeks to compare the effectiveness of these
models with an LSTM technique, which utilizes a data-driven machine learning approach.
This paper utilizes the C-MAPSS datasets to assess the performance and outcomes of
each technique. The results obtained indicate that the utilization of the modified LSTM
technique incorporating an attention mechanism yields enhanced predictive accuracy for
the RUL estimation of aviation engines, hence exhibiting superior performance. Another
study introduces a novel approach that employs an LSTM network, a specialized archi-
tecture intended for identifying concealed patterns in time series data. The objective of
this approach is to monitor system degradation and estimate the exhaust gas temperature
(EGT). The effectiveness of the suggested methodology is assessed by employing health
monitoring data related to turbofan engines used in aircraft. The network’s ability to recog-
nize the input data as a real-time sequence enables the possibility of predicting the output
in the following stage. The results of the study indicate a significant ability to forecast the
outcome in the following period. Additionally, the model being examined demonstrates a
diminished rate of learning over time and improved precision [70].

2.2.3. K-Means

The k-means clustering algorithm is a type of unsupervised learning technique that
aims to divide a given dataset into k distinct groups, taking into consideration the similarity
and distance metrics between data points. Every individual data point is assigned to
the cluster that has the closest mean value, which acts as a representative prototype for
that cluster. The k-means clustering algorithm aims to minimize the total sum of squared
distances between the data points and the cluster centroids. The centroids of the clusters
are determined by calculating the arithmetic mean of the data points within each cluster.
The method of k-means clustering involves iteratively reassigning data points to clusters
until a convergence condition is satisfied.

As an illustration, research introduces a novel hybrid data preparation model with the
aim of enhancing the accuracy of failure count prediction. The suggested approach operates
in two distinct stages. In the initial phase, the ReliefF technique, which is a feature selection
approach employed for attribute evaluation, is utilized to identify the most impactful
and least impactful factors. During the second step, the k-means algorithm undergoes
modifications to effectively remove noisy or inconsistent data points. The evaluation
of the hybrid data preparation model’s performance is conducted on the maintenance
dataset pertaining to the equipment [71]. The study of [72] proposes a novel degradation
prognostics strategy for aeroengines operating under various conditions. A k-means
algorithm and three defined indicators are combined to distinguish between various
operational conditions, then monotonic and trending degradation features are extracted.
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A deep forest classifier (DFC) and an LSTM are employed to develop an offline health
state estimation model and a degradation trend prediction model. The results demonstrate
that the proposed strategy for aeroengines in a variety of operating conditions is effective
and realizable.

Multiple techniques exist for determining the optimal number of clusters in k-means
clustering. One approach that can be used is the elbow method, which entails calculating
the sum of squared distances (referred to as the within-cluster sum of squares) for various
values of k and selecting the value of k at which the drop in the sum of squared distances
starts to stabilize. Silhouette analysis is an additional technique that can be employed to
examine the degree of separation between groups generated by a clustering algorithm. It
also enables the evaluation of parameters, such as the optimal number of clusters. One
example of the utilization of k-means clustering in the field of aircraft systems involves
the detection and categorization of malfunctions in quadcopter unmanned aerial vehicles
(UAVs). The objective of the study outlined in reference [73] was to design a failure detection
system for UAVs by analyzing vibration data and employing the k-means clustering
algorithm. The purpose was to accurately identify any potential issues that may arise during
UAV flights. The results demonstrated that the combination of the gyroscope parameter in
the vertical direction and the accelerometer parameter in the same direction resulted in the
most accurate detection of failures during emergency landings of malfunctioning UAVs.

2.2.4. Density-Based Spatial Clustering of Applications with Noise (DBSCAN) Algorithm

In addition to the k-means method, a number of clustering methods are available. One
example that can be used to illustrate this concept is the density-based spatial clustering
of applications with noise (DBSCAN) algorithm. DBSCAN is a data clustering algorithm
proposed by Martin Ester, Hans-Peter Kriegel, Jörg Sander and Xiaowei Xu in 1996 [74].
The DBSCAN algorithm is a density-based clustering technique that can identify clusters of
different shapes and sizes, as well as identify outlier points that do not belong to any one
cluster. The DBSCAN algorithm functions by defining a local neighborhood around each
individual data point and subsequently finding and grouping points that are near form
clusters. The points that do not fall into any cluster are classified as noise. The approach
exhibits two main parameters, specifically the radius of the neighborhood encompassing
each data point and the minimum number of points required to form a dense region.

DBSCAN exhibits several advantages in comparison to k-means, encompassing its
capability to identify clusters of diverse shapes and sizes, as well as its proficiency in
managing noise and outliers. Nevertheless, the algorithm’s performance can be influenced
by the selection of parameters and may exhibit suboptimal results when applied to datasets
with significant variations in density.

The methodology involves the creation of a limited area around each individual data
point, followed by the grouping together of points that are near separate clusters. The points
that do not fall into any cluster are classified as noise. The algorithm exhibits two main
parameters, specifically the ε parameter, which signifies the radius of the neighborhood
encompassing each data point, and the ‘minPts’ parameter which indicates the minimum
number of core points required to establish a dense region.

The process initiates by choosing a point at random and retrieving all points that
fall within its ε neighborhood. A new cluster is formed if the number of points in the
neighborhood is equal to, or more than the minimum number of points required. The
algorithm proceeds to extend the cluster by including all points within the ε neighborhood
of each point in the cluster. If the count of points within the vicinity is below the minimum
threshold ‘minPts’, the point is designated as noise.

Following is an illustration of how to perform DBSCAN on input data. The DBSCAN
algorithm can cluster a 2-D circular dataset using the Euclidean distance metric as the
default. Using the squared Euclidean distance metric, it is also essential to compare the
results of the DBSCAN and k-means clustering algorithms applied to the dataset. Figure 11
depicts the existence of two distinct clusters within the dataset with different metrics. The
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first step is to generate a dataset consisting of two noisy circular patterns. Specify values
ε = 1, while minPts = 5. DBSCAN accurately divides the dataset into two clusters using the
Euclidean distance metric. Then, employ the DBSCAN clustering algorithm in conjunction
with the squared Euclidean distance metric. Alternately, specify ε equal to 1 and minPts
equal to 5. The application of the squared Euclidean distance metric within the DBSCAN
algorithm detects and distinguishes the two clusters present in the given dataset with
precision. The implementation of k-means clustering using the squared Euclidean distance
metric follows. Specify the value k for the number of clusters, which is 2. The application
of the squared Euclidean distance metric in k-means clustering leads to an inaccurate
identification of the two clusters present in the provided dataset. A novel enhancement
to the DBSCAN method is suggested in [75], whereby dynamic time warping (DTW) is
used to effectively tackle the clustering concern. The suggested method is validated using
two distinct flight datasets derived from fleet data, which exhibit varying lengths. The
experimental findings demonstrate that the enhanced DBSCAN algorithm has the capability
to identify potential anomalous flying behaviors during both the ascent and descent phases.
In [76], several deep neural network autoencoder architectures were trained on nominal
data to calculate a health indicator using the anomaly scores. The findings indicate a
positive correlation between high anomaly scores and the presence of detected failures in
the maintenance logs. Additionally, many scenarios exhibit a rise in the anomaly score for
multiple flights preceding the breakdown of the system, hence providing a viable approach
for early detection of faults.
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2.2.5. Fuzzy Logic

The recognition of the importance of inference in the management of uncertainty is
growing within engineering applications. In situations where engineers and scientists
encounter numerical difficulties that cannot be effectively addressed by standard mathe-
matical methods, the utilization of fuzzy logic is frequently considered as a feasible solution.
Fuzzy logic facilitates the characterization and control of a system that lacks a formally
recognized or precisely defined model [77]. The field of fuzzy theory offers the capacity
to effectively represent and simulate human cognitive processes related to common sense
reasoning and decision-making.

Fuzzy logic is an extension of Boolean logic based on the mathematical principles of
fuzzy sets, which provide a broader interpretation of the classical set theory. Incorporating
the notion of degree into condition verification, fuzzy logic offers significant flexibility
in reasoning. This permits conditions to exist in states beyond true and false. Therefore,
fuzzy logic permits the consideration of errors and uncertainties during decision-making
processes. There is a tenuous connection between hazy logic and probability theory. Com-
monly, the Bayesian framework is used to characterize probability approaches that deal
with imprecise knowledge [78,79]. It is essential to observe that fuzzy logic does not always
necessitate a probabilistic justification. The generalization of the findings pertinent to
multivalued logic with the intention of retaining a portion of the underlying algebraic
structure is a common method.

The study of [80] introduces a methodology for forecasting the RUL of a generic system,
specifically focusing on achieving a greater level of interpretability in the prediction model.
The utilization of established computational intelligence methodologies, including decision
trees, fuzzy logic, and genetic algorithms, facilitates the development of a composite
framework known as a genetic fuzzy rule-based system (GFRBS), which involves the
automatic generation of fuzzy rules and the subsequent tuning of the membership functions
that relate to these rules. The proposed methodology is implemented in a case study
examining the deterioration of aircraft engines. Fuzzy logic is currently used in a number
of industrial and consumer electronics devices that require an effective control system but
where optimal control is not necessarily a concern [81].

2.2.6. Decision Trees

A decision tree is a decision assistance tool that uses a visual representation or model
in the form of a tree to illustrate various options and their corresponding consequences.
This tool is employed to determine the outcome of occurrences that are characterized by
uncertainty. One strategy for presenting an algorithm that consists solely of conditional
control statements is by utilizing a specific methodology. A decision tree is a visual
depiction that has a resemblance to a flowchart. The structure is comprised of internal
nodes that serve as attribute tests, such as evaluating the outcome of a coin flip as either
heads or tails. The branches of the tree symbolize the potential outcomes of the tests, while
the leaf nodes symbolize the class labels, which are the decisions made after evaluating all
qualities. The paths that span from the root to the leaf nodes serve as representations of
categorization criteria.

Tree-based learning algorithms are commonly acknowledged as highly powerful and
often used methodologies for supervised learning. Predictive models possess the inherent
capability to improve the precision, consistency, and comprehensibility of outcomes. These
models effectively capture the complexities of nonlinear interactions, enabling the analysis
of various types of issues such as classification and regression tasks. There are several
frequently used terms that are linked with decision trees [82].

1. The root node functions as the central representation of the complete sample or
population and is subsequently divided into two or more subsets that exhibit compa-
rable characteristics;

2. The notion of splitting entails the process of dividing a certain node into multiple
sub-nodes;



Sensors 2023, 23, 8124 28 of 65

3. A decision node can be defined as a sub-node that bifurcates into other sub-nodes;
4. Leaf or terminal nodes are defined as nodes that do not experience any additional splitting;
5. Pruning refers to the removal of sub-nodes from a decision node. The opposite of

splitting is the act of combining or merging;
6. In the context of tree structures, a branch or sub-tree denotes a specific component or

subdivision inside the larger hierarchical framework;
7. The concept of a parent node and child node is a fundamental aspect in the field of

computer science and data structures. In a hierarchical structure, such as a tree, a
parent node is defined as a node that has one or more child nodes directly connected.
In the context of a hierarchical structure, a node that is partitioned into smaller nodes
is referred to as a parent node, while the smaller nodes are considered as child nodes.

The decision tree is a supervised learning technique that is employed in classification
situations when there exists a predetermined target variable. This approach is applicable
to both categorical and continuous input and output variables. The sample is divided
into two or more homogenous subsets, often known as sub-populations, depending on
the most significant splitter or differentiator found in the input variables [82]. Decision
trees have an inherent structure characterized by a “if. . .then. . .else” framework, rendering
them very compatible with programmed structures. Moreover, they exhibit a high degree
of suitability for classification tasks when traits or features are methodically examined to
ascertain a definitive category.

An instance of employing a decision tree is in aircraft predictive maintenance applica-
tions of airplane [83]. In the paper, the hybrid algorithm’s architecture comprises a decision
tree, wherein each node represents a neural network that has been trained to perform binary
classification for a particular output category. It demonstrates the ability to categorize data
of diverse volume and variety accurately and efficiently. This exemplifies the algorithm’s
practicality in real-life situations, while also highlighting the advantages of integrating
decision trees and neural networks rather than utilizing them separately. Another research
article [84] presents a new approach for predicting the RUL of aircraft engines using a
deep bidirectional recurrent neural networks (DBRNNs) ensemble method. The iterative
training process of multiple regression decision tree (RDT) models involves changing the
weights of components in the domain. The experimental findings demonstrate that the
proposed methodology has attained a higher level of performance in comparison to other
established approaches.

2.2.7. Support Vector Machine (SVM)

Support Vector Machines (SVMs) are a type of supervised learning algorithms that are
commonly employed for tasks such as classification, regression, and outlier identification.
SVMs are typically employed in the context of classification tasks. Support vectors are the
specific coordinates of individual observations. In the SVM method, every data item is
represented as a point in an n-dimensional space, where n is the number of features. The nu-
merical representation of each feature corresponds to the value of a certain coordinate [85].
As depicted in Table 3, SVMs have a number of advantages and disadvantages.

Artificial neural networks, support vector machines, decision trees, and k-means
clustering are distinct machine learning techniques used for classification tasks, and each
is distinguished by its own operational mechanisms. Table 4 summarizes how machine
learning methods function.

The process of selecting an appropriate machine learning model for a given dataset can
be intricate. When making a model selection, it is important to consider many aspects. The
aspects encompassed within this particular context encompass the dimensions and proper-
ties of the dataset, the intricacy of the problem being addressed, as well as the performance,
interpretability, and sustainability of the model. One method for model selection involves
running trials using several algorithms and later evaluating their performance on the given
dataset. Techniques like cross-validation may be employed to evaluate the effectiveness
of each model in making predictions on unseen data. The careful evaluation of trade-offs
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between the performance of a model and its other properties, such as explainability and
complexity, has significant significance.

Table 3. Advantages and limitations of SVM.

Advantages Limitations

The method demonstrates efficiency in
high-dimensional environments, even in

scenarios where the number of dimensions
surpasses the number of samples.

There is a chance of overfitting when the
number of features is much higher than the

number of samples. When this happens, it is
important to choose the right kernel functions

and regularization terms.

The decision function has the potential to be
tailored to specific needs by the utilization of
alternative kernel functions, hence enhancing

its versatility.

SVMs do not inherently provide estimation
and probability values. These values must be
computed using five-fold cross-validation, a

computationally intensive method.

The decision function has the potential to be
tailored to specific needs by the utilization of
alternative kernel functions, hence enhancing

its versatility.

Table 4. Machine learning techniques and its working scheme.

Methods Working Scheme

Artificial Neural
Networks (ANNs)

ANNs are composed of interconnected nodes or neurons that process
information using a connectionist paradigm. The complex structure
and cognitive processes of the human brain serve as their foundation.
By modifying how neuronal connections are made, ANNs are able to

learn new information and identify patterns in large datasets.

Support Vector
Machines (SVMs)

SVMs determine how to partition the data into distinct classes by
identifying the hyperplane that does so most effectively. SVMs

employ a technique known as the ‘kernel trick’ to transfer the data
into a higher-dimensional space where it is simpler to locate a

distinct hyperplane.

Decision Trees (DTs)

Decision trees function by continually dividing data into groups
based on the values of the features that comprise the tree. At each
split, the optimal method to divide the data into distinct classes is

determined based on a particular characteristic. Each leaf node of the
resulting tree structure represents a class name.

K-means

K-means clustering is an unsupervised learning technique that
divides data into k categories, where k is a user-specified parameter.
Each data point is assigned to the cluster with the closest mean, and

the cluster means are updated until convergence.

In addition to assessing the effectiveness of the model, it is advisable to analyze the
clarity of the results. Several algorithms, such linear regression and decision trees, exhibit a
reasonably straightforward interpretability, while others, such as neural networks, pose
more significant hurdles in terms of interpretability. The consideration of model complexity
is an additional factor that requires careful attention. Sophisticated models provide the
capability to detect intricate patterns within data; however, this advantage comes at the
cost of heightened challenges in terms of maintenance and interpretability. The size of
the dataset should be carefully taken into account, as certain algorithms demonstrate
better performance when used to big datasets, while others are more proficient in handling
smaller datasets. The choice of the most suitable data model is contingent upon the specific
needs and objectives at hand. The subsequent paragraphs outline the overall benefits and
drawbacks linked to the utilization of these algorithms in prognostic applications.



Sensors 2023, 23, 8124 30 of 65

Table 5 presents a comprehensive overview of the benefits and drawbacks linked to
different techniques.

Table 5. Machine learning techniques and its advantages and disadvantages.

Methods Advantages Limitations

Artificial neural
networks (ANNs)

• Useful tools for modeling
complex input—output
relationships.

• Accurate predictions even when
the underlying relationships
are nonlinear.

• Hard to interpret.
• Require massive data.
• Computational cost

Support vector
machines (SVMs)

• Effective at locating the optimal
class boundary.

• Robust over overfitting

• Dependent on the selection
of kernel function and
additional hyperparameters

• May not scale well to very
large datasets

Decision trees
(DTs)

• Easy to interpret both numerical
and categorical data

• Relatively quicker to train even
with smaller datasets

• Prone to overfitting
specifically when the tree is
set to grow too deep

K-means

• Simple and efficient for
partitioning data into clusters

• Capable of handling unlabeled
data and large datasets

• User must specify the
number of clusters

• May not function well with
clusters of varying sizes

2.2.8. Anomaly Detection Algorithms

Anomaly detection is a technique used to detect and identify patterns that deviate from
expected behaviors, also known as outliers. There are numerous applications of artificial
intelligence (AI). These applications range from detecting potential intrusion attempts by
identifying unusual patterns in network traffic to monitoring the health of systems by
identifying malignant tumors in magnetic resonance imaging scans. In addition, AI is used
to identify faults in operating environments and aerospace engineering [86].

Similarities exist between anomaly detection, noise reduction, and novelty detection;
however, it is not identical to these ideas. Novelty detection is concerned with identifying
previously unobserved patterns among newly observed data points that were not included
in the original training dataset. Noise reduction refers to the process of minimizing the influ-
ence of unwanted observations on the analysis, thereby removing noise from a signal with
inherent significance [86]. There are three major sorts of methods for detecting anomalies.

• Density-based anomaly identification is a method employed for the purpose of detect-
ing anomalies or outliers within a given dataset. This methodology relies on analyzing
the density distribution of the data points to identify and isolate such abnormalities;

• Clustering-based anomaly detection is an approach employed to find anomalies in
each dataset through the utilization of clustering methodologies;

• SVM-based anomaly detection refers to the utilization of SVMs for the purpose of
identifying anomalies within a given dataset.

Density-Based Anomaly

The concept of density-based anomaly identification refers to a method used in data
analysis to identify anomalies or outliers in a dataset based on the density distribution of
the data points.

Density-based anomaly detection relies on the utilization of the k-Nearest Neighbors
(kNN) technique. The underlying premise posits that typical data points are concentrated
within proximity, whereas anomalies are situated at a considerable distance. The proximity
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of a given collection of data points is assessed using a scoring mechanism, such as the
Euclidean distance or a comparable metric, which is contingent upon the nature of the
data being analyzed, whether it is categorical or numerical in nature. The kNN algorithm
is a straightforward and non-parametric approach for passive learning. It is commonly
employed for data classification by using distance metrics like Euclidean, Manhattan,
Minkowski, or Hamming distance to identify similarities between data points. Data can
also be categorized according to its relative density [87]. This phenomenon is commonly
referred to as the local outlier factor. The foundation of this idea is rooted in a distance
metric known as reachability distance.

Clustering-Based Anomaly

Clustering is well recognized as a prominent idea within the field of unsupervised
learning. The fundamental premise posits that data points exhibiting similarity are inclined
to be members of comparable groupings or clusters, as ascertained by their proximity to
local centroids. The k-means technique is extensively employed in the field of clustering.
The algorithm generates k groups of data points that exhibit similarity. Anomalies may be
identified for data instances that do not belong to these groupings [88].

Anomaly Detection with SVM

As previously mentioned, SVMs are well recognized as a highly efficient approach
for the identification of anomalies and are frequently utilized in supervised learning
scenarios. Nevertheless, some adaptations, such as the implementation of core vector
machine (CVM) [89], facilitate the detection of irregularities in an unsupervised fashion,
even in scenarios where the training dataset does not possess any labeled data. The method
utilizes the training set to acquire knowledge of a flexible border to categorize the normal
data samples. Following this, the system adapts its parameters according to the specific
testing instance to identify any anomalies that fall beyond the established range.

The results generated by an anomaly detection system can exhibit variability, contin-
gent upon the specific application or context in which it is employed. The system has the
capability to generate numerical scalar values that can be utilized for data filtration accord-
ing to domain-specific criteria, as well as textual labels that offer descriptive information.

2.2.9. Conventional Numerical Techniques
Kalman Filter (KF)

The Kalman filter (KF), initially proposed by Kalman in 1960, has been extensively
utilized in various practical fields, notably in the realms of aeronautics and aerospace. With
the growing number of applications, some concerns have been recognized, one of which
is the issue of divergence. The issue at hand is a result of the inherent lack of reliability
in the numerical methodology employed or the inaccurate portrayal of the system under
investigation [90]. The KF is a method that leverages a series of measurements observed
over a duration, incorporating statistical noise and other sources of flaws, to provide
predictions of unknown variables that demonstrate enhanced accuracy in comparison to
estimations generated solely from a solitary observation. The operation of the system
incorporates a two-phase mechanism consisting of prediction and update stages. During
the prediction phase, the KF generates estimates of the current state variables, together
with their accompanying uncertainties. Following the observation of the subsequent
measurement outcome, the estimates are modified using a weighted average method,
wherein estimates with higher levels of certainty are accorded greater emphasis [91].

The KF is extensively employed in various technical disciplines. One commonly ob-
served use is to the guidance, navigation, and control of many types of vehicles, particularly
airplanes, satellites, and dynamically positioned ships. Furthermore, the application of the
KF is widespread in the realm of time series analysis, namely, in disciplines such as signal
processing and econometrics. The KF is a widely recognized topic in the domain of robotic
motion planning and control, and it is also employed in trajectory optimization.



Sensors 2023, 23, 8124 32 of 65

The square root filter (SRF) has been suggested as a more reliable alternative to the
Kalman filter (KF) [92]. It is expected that incorporating numerically stable orthogonal
transformations at each iteration will improve the precision of the filter estimations. The uti-
lization of Sequential Monte Carlo Recursive Filtering (SMCRF) has a higher computational
burden in comparison to the conventional KF. As a result, researchers have developed
alternate versions of the SRF, such as UDU-algorithms and the Chandrasekhar form [93].
The efficiency of these implementations can be enhanced to achieve or even exceed that of
the standard KF, especially when considering the Chandrasekhar SRF, within appropriate
experimental circumstances [94].

Since its initial use in a variety of applications, the numerical stability issues associated
with KF have been well-recognized. The optimality of the estimation procedure implies a
susceptibility to various forms of errors. Commonly employed strategies to address these
stability concerns include the following [93]:

1. One potential enhancement would be to increase the level of mathematical precision;
2. One such approach is to use a square root filtering technique;
3. The covariance matrix should be symmetrized at each stage;
4. It is recommended to initialize the covariance appropriately in order to mitigate

significant fluctuations;
5. One such approach is to employ a fading memory filter;
6. Utilize hypothetical process noise.

The investigation of improving the execution speed of the KF has not been thoroughly
examined. To enhance robustness and enable the integration of fixed-point arithmetic,
hence enabling the migration of a design to high-speed digital signal processors, it is
imperative for the covariance matrix to exhibit the characteristics of symmetry and positive
definiteness. If these criteria are not met, the covariance matrix cannot effectively reflect
statistical information related to the components of the state vector. During the early stages
of KF applications, it was recognized that factored form SRFs were the preferred option
for developing applications requiring a significant degree of operational reliability. The
elements of the covariance matrix are decomposed and subsequently propagated forward
during the measurement process, undergoing updates at each measurement step. The
positive semi-definiteness of the covariance matrix can be demonstrated by expressing it as
the result of multiplying its constituent elements.

The UDUT filter is a commonly employed factored-form KF [95]. The covariance
matrix P may be expressed in terms of the matrix elements U and D in Equation (1)
as follows.

P = UDUT (1)

The UDUT KF formulation has exhibited effective performance and dedicated digi-
tal implementations have been developed to provide comparable processing speeds for
factored covariance filters and conventional covariance propagation methods.

The components of the covariance matrix can be regarded as in Equation (2):

Pij = σiσjρij (2)

The symbol Pij represents ijth element of the covariance matrix. The symbol σi is
the standard deviation of the estimate for the ith component of the state, whereas ρij

represents the correlation coefficient between the ith and jth components of the state. Both
σi and ρij encompass significant physical information that characterizes the advancement
of KF estimation. This information pertains to the present efficacy of estimate and the
potential occurrence of numerical challenges in the future. Nevertheless, the individual
components included in matrices utilized for factored-form filters lack meaningful physical
significance until the covariance matrix is calculated, along with the statistical parameters
in Equation (2).
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The optimality of the KF is dependent on the assumption that the model is accurate,
which makes it intolerant of any model errors. The values of the initial state may be
completely unknown, necessitating the use of approximations for the initial states along
with significant standard deviations. In addition, starting state correlations are frequently
unknown and assumed to be zero. Frequently, the use of convenient beginning conditions
results in the occurrence of extremely pronounced first transient phenomena and premature
filter failure.

Recognizing that instability frequently arises because of acquiring an excessive quan-
tity of information quickly during the estimation process is one strategy that could be
employed. To avoid potential di-convergence, it is preferable to have a delayed rate of
convergence and/or a lower threshold for the predicted standard deviation. Calculating the
updated covariance using the physics-based model parameters and evaluating the resulting
covariance matrix is one possible method for achieving this result. If a substantial improve-
ment in estimation is anticipated, it is possible to increase the levels of measurement noise
or process noise and then recalculate the covariance update prior to continuing data pro-
cessing at this juncture. Utilizing an iterative process yields a constrained information filter
in which the potential increase in standard deviation for each state is re-restricted. Similarly,
it is possible to impose a restriction on the lower limit of a state’s standard deviation by
specifying either an absolute number or a percentage of the initial level of uncertainty.
The primary difficulties associated with adaptive techniques are primarily computational
in nature. A filter form can be designed rapidly to iteratively execute covariance update
computations, thereby modifying noise models to limit the extraction of information.

The difficulties associated early KF implementations have been alleviated as a result
of the increased computational cost. Notwithstanding, KF solutions are rarely considered
for high-speed embedded applications [96]. One of the limitations associated with the
fundamental KF is its underlying assumption of linearity. Therefore, numerous altered
versions of the KF have been proposed to circumvent these numerical challenges. Several
of these changes are derived from heuristics, such as the stabilized KF or the ordinary KF
with reduced bounds. Consequently, the successful implementation of these modifications
typically necessitates a greater level of knowledge.

The presence of nonlinearity can be attributed to either the process model, the obser-
vation model, or both. The Extended Kalman Filter (EKF) and Unscented Kalman Filter
(UKF) are the prevailing forms of KFs utilized for nonlinear systems [97].

Extended Kalman Filter (EKF)

The Extended Kalman Filter (EKF) is a variant of the KF that is intended for nonlinear
systems. This is achieved by linearizing the system dynamics around a current estimate of
the mean and covariance. In the fields of nonlinear state estimation, navigation systems,
and the Global Positioning System (GPS), the EKF is widely regarded as the established
standard when dealing with clearly characterized transition models [98]. The EKF addresses
nonlinearity by linearizing state transition and observation models around an estimate
of the current mean and covariance. The state transition and observation models are not
required to manifest linearity with respect to state variables within the EKF framework.
These models may alternatively be represented by differentiable functions. At each time
step, the current anticipated states are used to build and evaluate the Jacobian matrix
of partial derivatives. The use of these matrices is applicable within the KF’s equations.
Effectively transforming the nonlinear function into a linear approximation in the vicinity
of the current estimate.

In the EKF, the Jacobian is used to linearize the state transition and observation models
around an approximation of the current mean and covariance. Throughout each time
iteration, the Jacobian matrix, which comprises of partial derivatives, is calculated, and
evaluated using the current anticipated states. Utilizing these matrices within the KF
equations facilitates the nearly linear propagation of the state and state covariance.



Sensors 2023, 23, 8124 34 of 65

The EKF state propagation procedure consists of the following two discrete phases:
prediction and update. During the prediction stage, the current state is estimated by
utilizing a series of previous state estimations. As it is based on previous projections and
lacks empirical evidence regarding the current state of the system, the projected estimate
may be regarded as prior knowledge. During the update procedure, the prior estimate and
the current data are combined to generate an estimate of the current and future states of the
system. Typically, these processes are performed iteratively in an alternating fashion, with
prediction occurring until the next observation, followed by an update process utilizing the
most recent observations.

To optimize the efficacy of an EKF, its parameters must be modified. The process
noise, which describes the degree of variation or ambiguity between the actual movement
of the object and the selected motion model, is an essential parameter that can be modified.
By modulating the process noise, the filter can assign greater significance to more recent
observations than to older ones. This allows the filter to accommodate changes in direction
or velocity. A further important parameter that can be modified is the measurement noise,
which characterizes the level of measurement uncertainty. By manipulating the level of
measurement noise, the filter can allocate greater weight to readings that are deemed
more trustworthy.

The authors of [99] present a novel approach for prognostics, which integrates the EKF
with a newly designed linearization technique. The prognostics approach being proposed
has been formulated within the specific context of fatigue fracture propagation in fuselage
panels. In this scenario, the model parameters are not known, and the crack propaga-
tion is subject to various forms of uncertainty. The findings indicate that the coupled
EKF-linearization approach yields favorable outcomes. Specifically, the EKF algorithm ef-
fectively identifies the model parameters, and the linearization method produces prediction
results that are comparable to those obtained by the Monte Carlo method; moreover, this
approach offers substantial computational savings. Another research article [100] presents
an approach for optimizing predictive line maintenance of redundant aeronautical equip-
ment under various wear situations. The estimation of degradation patterns and future
wear values is conducted by employing a multiple model approach of EKF technique. The
effectiveness and value of the proposed methodology are demonstrated by a case study
that utilizes field prognostics data from hydraulic systems.

Particle Filter (PF)

Particle filters (PFs), also known as the sequential Monte Carlo method, are able to ef-
fectively address problems with substantial nonlinearity without the need for linearization.
The concept underlying the PF can be summed up as follows. Consider a circumstance
in which the mathematical model represents a nonlinear stochastic dynamic system. The
goal is to estimate the hidden states of the system by integrating model predictions with
imperfect and insufficient observations of the system. The Bayes filter, also known as the
optimal filter, can be used for this purpose [101]. Using Bayes’ rule, the posterior PDF
of the concealed states is estimated iteratively. The absence of a closed-form analytical
expression for the posterior distribution in most cases presents a challenge. Numerous
approximation techniques, including the EKF, have been proposed as potential solutions to
this problem. In cases where the system exhibits excessive nonlinearity or the posterior
distribution deviates substantially from Gaussian characteristics, the technique may en-
counter difficulties [102]. By utilizing Monte Carlo sampling, the PF method is used to
estimate the posterior distribution. This method eliminates the need to presume linearity
in the dynamic model or Gaussian noise distribution.

Particles, which are isolated random realizations sampled directly from the state
space, are utilized by PF. These particles are used to represent the posterior probability
and to facilitate the revision of the posterior by incorporating new observations. Utilizing
the Bayesian formula, the particle system is precisely positioned, assigned weights, and
propagated recursively.



Sensors 2023, 23, 8124 35 of 65

Since its inception, PF algorithm has found applications in several domains, including
but not limited to signal processing, economics, robotics, and geophysics.

The paper of [103] introduces a methodology for adaptive data-driven prognostics
reasoning. The prognostic reasoning approach has been demonstrated through the utiliza-
tion of a case study on the turbofan jet engine in the field of engineering. This article uses
the NN to construct the nominal model, while the PF is utilized to monitor the current
degradation and degradation parameters. The study conducted by [104] demonstrates the
utilization of the PF methodology in the context of forecasting the degradation of steam
generator tubes. Authors can effectively showcase the range of prediction outcomes by
employing a case study, hence highlighting the influence of uncertainty levels linked to
measurement data. The paper by [105] introduces a robust particle filtering approach that
systematically forecasts future health conditions and creates a probability distribution for
the expected health state based on the number of selected particles. Insufficient attention
has been given to the study of errors arising from the numerical implementation of the
particle filter.

In practice, the state equations in nearly all systems necessitate numerical solutions,
which unavoidably introduce errors into the filtering process [106,107]. The RUL of a
hydraulic pump was estimated using an adaptive-order particle filter. The prediction was
accomplished by the utilization of a state recognition method that depended on wavelet
packet norm entropy. This method involved monitoring the deteriorating trend of the pump.
Significantly, this methodology was utilized within complex operational environments [2].

Another example can be found in a research study that investigated the process of
determining the mass and propulsion settings of departing aircraft using a recursive particle
filter. The methodology employed in this research was based on a nonlinear state-space
system derived from aircraft point-mass performance models, as cited in reference [108].
The investigation observed the deterioration pattern of the hydraulic pump by employing
a state identification technique that relies on wavelet packet norm entropy, particularly in
the presence of intricate operational circumstances. According to the findings, the adaptive-
order PF demonstrated effectiveness in forecasting the RUL of the hydraulic pump.

In addition to the applications related to the use of PFs for RUL, there are further
applications of PFs in the prognostication of aviation systems. A research investigation
was undertaken to assess the effectiveness of four advanced PFs of online crack develop-
ment prognosis utilizing guide wave-based SHM. The enhanced PFs considered were the
auxiliary particle filter (APF), regularized particle filter (RPF), dual regularized particle
filter (DRPF), and guide wave-based marginalized particle filter (GW-MPPF). The study
utilized a fatigue test on attachment lugs to substantiate its findings. Additionally, the
study analyzed two distinct scenarios, with a specific focus on assessing the precision of
the measurement equation [108].

Regression

Regression analysis is a statistical method used to estimate an overdetermined system,
which is defined as a system with more equations than unknown variables. This method
demonstrates its benefits in situations where the identification of a precise solution becomes
too complex as a result of measurement mistakes or random noise present in the dataset.
The utilization of it demonstrates a broad spectrum of practical implementations across
several academic disciplines [109]. The utilization of this tool allows for the assessment
of the extent of the relationship between the variables, as well as the capacity to develop
prediction models for their future interactions. Regression analysis consists of the following
three primary types: linear regression, multiple linear regression, and nonlinear regression.
The linear and multilinear models are commonly acknowledged as the predominant models
in the field. Nonlinear regression models are commonly used in the examination of intri-
cate datasets that exhibit nonlinear associations between the dependent and independent
variables [109]. Figure 12 depicts the three classifications.
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Linear regression is widely recognized as the most used regression model in academic
and practical contexts. In this model, the objective is to forecast the outcome of n data
points (x1, y1), (x2, y2), . . . , (xn, yn) using a regression model expressed as in Equation (3):

y = a0 + a1x (3)

where a0 and a1 represent the fixed parameters of the regression model.
One way to assess the quality of the prediction made by the linear model a0 + a1x for

the response variable y is by examining the amount of the residual εi at each of the n data
points. The equation may be expressed as follows:

Ei = yi − (a0 + a1x) (4)

In an optimal situation, if all the residual εi are equal to zero, it is conceivable that
we have identified an equation in which all data points adhere to the model. Hence, the
objective of estimating the regression coefficients is to minimize the residual. The least
squares method is widely acknowledged as the predominant methodology employed to
minimize the residual. The approach employed in this methodology involves the selection
of the model’s constants estimates in a manner that aims to minimize the sum of the squared

residuals, as indicated in the reference [110]; that is
n
∑

i=1
E2

i .

Nonlinear regression is a statistical technique employed to describe the connections
present in observational data by utilizing a nonlinear combination of the model parameters
and one or more independent variables. Certain nonlinear regression problems have the
potential to be converted into the linear domain [110,111].

In practical applications, researchers often start the analysis by picking a suitable
model for estimation. Subsequently, they employ their preferred methodology, such as
ordinary least squares, to estimate the parameters of the chosen model. Regression models
often consist of several components [112]. The parameters that are not known are often
represented as a scalar or vector β. The independent variables, often represented as a vector
Xi, are observed within the dataset. The index i is used to indicate a specific row of data.
The dependent variable, commonly represented as the scalar Yi, is the observed variable in
the dataset. The error terms, commonly represented as the scalar ei, are unobservable in
the collected data.

It should be noted that in many fields of application, other terminology is employed
in lieu of dependent and independent variables. Many regression models posit that the
dependent variable Yi may be expressed as a function of the independent variable Xi and
the parameter β, as in Equation (5):

Yi = f (Xi, β) + ei (5)

The variable ei in this context denotes an error term that accounts for unmodeled factors
influencing Yi or random statistical noise.
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The objective is to determine the function f (Xi, β) that provides the best possible
fit to the given data. The functional form of this function may be derived from a priori
knowledge of the relationships between Yi and Xi, without relying on the specific facts at
hand. In the absence of accessible knowledge, the analyst opts for a form that is adaptable.
As an illustration, the utilization of a basic univariate regression model in Equation (6):

f (Xi, β) = β0 + β1Xi (6)

which implies that the Equation (7):

Yi = β0 + β1Xi + ei (7)

provides a reasonable approximation of the underlying statistical process responsible for
creating the observed data.

After a statistical model is confirmed, there are several techniques at disposal to
estimate the parameters β. For instance, the least squares technique, including ordinary
least squares, aims to determine the optimal value of β by minimizing the sum of squared
errors. The regression technique that is used will ultimately yield an estimation of the
parameter β, often represented as ∑

i
(Yi − f (Xi, β))2, to differentiate it from the actual

(unknown) parameter value that produced the data.
The utilization of least squares is prevalent due to its ability to provide an estimated

function f (Xi, β̂) that closely approximates the conditional expectation E(Xi|Yi). How-
ever, alternative methods such as least absolute deviations or quantile regression can be
employed to effectively describe other functions f (Xi, β).

Adequate data are required to make an accurate estimation of a regression model. If
N observations are processed, each consists of a dependent variable and two independent
variables (Yi, X1i, X2i). Additionally, considering the scenario where to estimate a bivariate
linear model as in Equation (8):

Yi = β0 + β1X1i + β2X2i + ei (8)

using the method of least squares. When provided with a limited number of N = 2 data
points, there are an endless number of combinations (β̂, β̂1, β̂2) that can equally explain the
observed data. Any combination that fulfills the given condition

Ŷi = β̂0 + β̂1X1i + β̂2X2i (9)

can be selected. All these factors contribute to and, thus, represent legitimate solutions that
minimize the sum of squared residuals in Equation (10)

∑
i

ê2
i = ∑

i
(Ŷi −

(
β̂0 + β̂1X1i + β̂2X2i

)
)2 = 0 (10)

The presence of a multitude of solutions can be ascribed to the underdetermined
characteristic of the equation system N = 2, which encompasses three variables of uncertain
values. In an alternative methodology, one can utilize visualization tools to depict a
multitude of three-dimensional planes that cross at a constant quantity of two points,
designated as N = 2.

To do an estimation of a least squares model with k unique parameters, it is necessary
to ensure that the number of different data points N is equal to or greater than k. In cases
when N exceeds k, it is typically not possible to identify a collection of parameters that can
precisely capture the data. The amount N− k is a common occurrence in regression analysis,
where (X1i, X2i, . . . , Xki) represents a set of variables. It is essential for these variables to
be linearly independent, meaning that it is not possible to rebuild any individual variable
by combining or multiplying the other ones. This condition guarantees that the matrix
XTX is invertible, hence implying the existence of a solution β [113].
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2.2.10. Statistical Approaches
Gamma Process

A gamma process is a stochastic process characterized by the property of having
increments that are independently distributed according to the gamma distribution [114].
The process, denoted as Γ(t, γ, λ), is commonly represented as a pure jump rising Lévy
process. It possesses an intensity measure v(x) = γx−1 exp(−λx) for x greater than zero.
Jumps with magnitudes falling within the range [x, x + dx) are seen to follow a Poisson
process characterized by an intensity function v(x)dx. The parameter γ governs the rate
at which jump intervals occur, whereas the scaling parameter γ determines the inverse
relationship between jump size and γ. The process is postulated to commence with an
initial value of 0 at time t = 0.

The gamma process may be characterized by its parameters, namely, the mean (µ)
and variance (υ) of the increase per unit time. These parameters are related to the shape
(γ) and rate (λ) parameters of the gamma distribution, where γ is equal to the square
of the mean divided by the variance γ = µ2/υ and λ is equal to the mean divided by
the variance λ = µ/υ. One possible strategy for mitigating the difficulties arising from
the scarcity of data and inherent uncertainties is to utilize a stochastic process model
to perform time-dependent reliability evaluations of structures. The utilization of the
stochastic gamma process model is deemed appropriate for the representation of the
unidirectional progression of a deterioration process, such as corrosion. The gamma
process is a stochastic process that exhibits independent and non-positive increments.
The increments in question adhere to a gamma distribution, wherein the scale parameter
remains constant, and the shape parameter fluctuates with time.

The integration of temporal uncertainty in the evolution of degradation is achieved by
the utilization of a stochastic process model. The gamma process is a suitable selection for
modeling the gradual accrual of deterioration over a period, particularly in scenarios related
to phenomena such as wear, fatigue, corrosion, fracture propagation, erosion, consumption,
creep, swell, and the deterioration of a health indicator. One advantage of employing
gamma processes for the purpose of simulating degradation processes is in the inherent
simplicity of the required mathematical computations [115].

Hidden Markov Model (HMM)

The application of a Markov chain is beneficial in scenarios where it becomes es-
sential to compute the probability linked to a sequence of observable events. In other
cases, however, certain occurrences that capture the attention remain hidden, as they are
not observable. In most cases, the inclusion is not commonly observed within a given
context. The elements are occasionally denoted as ‘hidden tags’ owing to their absence of
direct observation [116]. The utilization of a hidden Markov model (HMM) enables the
incorporation of both observable events and latent events, which are regarded as causal
components within the probabilistic framework. The components that define an HMM are
outlined in Table 6 [117,118].

Let Xt and Yt be continuous-time stochastic processes. The pair (Xt, Yt) is a HMM if:

Table 6. The components of a hidden Markov model (HMM) and its corresponding states.

Components States

Xn
is a Markov process whose behavior

is not directly observable
P(Yn ∈ A|X1 = x1, . . . , xn) = P(Yn ∈ A|Xn = xn) For every n ≥ 1, x1, . . . , xn

Components States

Xt
is a Markov process whose behavior

is not directly observable

P
(

Yt0 ∈ A
∣∣∣{Xt ∈ Bt}t≤t0

)
= P(Yt0 ∈ A|Xt0 = Bt0)

For every t0, and every family of
sets {Bt}t≤t0



Sensors 2023, 23, 8124 39 of 65

The state of the process Xn (resp. Xt) are called hidden states, and P(Yn ∈ A|Xn = xn)
(resp. P(Yt ∈ A|Xt = Bt)) is called emission probability or output probability.

In the context of academic concern, a first order refers to the initial level or primary
stage of a certain phenomenon or concept. HMMs are based on the instantiation of two
simple assumptions. Similar to a first order Markov chain, the probability of a certain state
is contingent solely upon the preceding state. The Markov assumption is a fundamental
concept in probability theory and stochastic processes. The conditional probability of qi
given q1 . . . qi−1 is denoted as in Equation (11):

P(qi|q1 . . . qi−1) = P(qi|qi−1) (11)

Furthermore, it is important to note that the likelihood of an output observation qi is solely
determined by the state that generated the observation and is not influenced by any other
states or observations [117] in Equation (12):

P(oi|q1 . . . qi, . . . , qT , o1 . . . oi, . . . , oT) = P(oi|qi) (12)

Relevance Vector Machine (SVM)

The relevance vector machine (RVM) approach is based on a solid theoretical frame-
work rooted in probability theory, particularly in the comprehension of Bayes’ theorem and
Gaussian distributions. This entails a thorough understanding of marginal and conditional
Gaussian distributions. In addition, it assumes a prerequisite level of proficiency in matrix
differentiation, the application of vector representation in regression analysis, and the
comprehension of kernel functions [119]. The RVM is a machine learning approach that
employs Bayesian inference to obtain succinct answers for regression and probabilistic
classification tasks. The functional architecture of the RVM bears a striking resemblance
to that of the SVM, albeit with a noteworthy differentiation in its ability to provide proba-
bilistic classification skills. The model can be regarded as a Gaussian process model with a
covariance function [120,121] as in Equation (13):

k(x, x′) =
N

∑
j=1

1
aj

ϕ(x, xj)ϕ(x′, xj) (13)

In the above expression, ϕ represents the kernel function, often assumed to be Gaussian.
αj denotes the variances of the prior distribution on the weight vectorω, which follows a
normal distribution as ω ∼ N

(
0, α−1 I

)
. Lastly, X1, . . . , XN represent the input vectors of

the training set.
The Bayesian formulation of RVM circumvents the need for a set of free parameters

that are often required in SVM, which often necessitates post-optimizations based on
cross-validation. Nevertheless, RVMs employ an expectation-maximization (EM) learning
approach, which renders them susceptible to encountering local minima. In contrast, the
techniques used by SVMs, namely, the typical sequential minimum optimization-based
algorithms, have been proven to ensure the discovery of a global optimum [122,123].

Autoregressive Model (AR)

Autoregressive (AR) models, also known as conditional models, Markov models,
or transition models, are employed to predict future behavior through the analysis of
past behavior. Time series forecasting is utilized in situations where there is a discernible
relationship between the values within a time series and the preceding and subsequent
values. The technique basically entails conducting a linear regression analysis on the data
contained within the given series, with the objective of establishing a correlation between
one or more past values within the same series.

The AR model posits a direct association between the value of the outcome variable
Y at a specific time point t, and the predictor variable X. The phenomenon under con-
sideration bears resemblance to the one observed in basic linear regression models. One



Sensors 2023, 23, 8124 40 of 65

key differentiation between standard linear regression and AR models is in the inherent
characteristics of the dependent variable Y. In AR models, the dependent variable Y is
influenced not only by the independent variable X, but also by preceding values of Y.

Autoregression is a stochastic process distinguished by the presence of intrinsic un-
certainty or unpredictability. Owing to the inherent probabilistic character of occurrences,
the prediction can be reasonably dependable, albeit unlikely, to attain complete precision
with a 100% degree of accuracy. Usually, the information that is presented is deemed to be
adequately precise, hence enabling its use across a diverse array of scenarios [124,125].

AR models are utilized in the disciplines of statistics, econometrics, and signal pro-
cessing to provide mathematical structures for describing a certain category of random
processes. As a result, it is utilized for the examination and depiction of dynamic events
observed in several fields, including the natural sciences and economics. The AR model
posits that the dependent variable is impacted by a linear mixture of its previous values
along with a stochastic component, which accounts for inherent unpredictability. As a
result, the model can be mathematically represented as a stochastic difference equation,
distinct from a differential equation. The utilization of the exponential smoothing model,
in combination with the moving average (MA) model, is a specific and integral component
of the broader autoregressive moving average model (ARMA) and AR-integrated MA
(ARIMA) models employed in the analysis of time series data. These models are known for
their complex stochastic frameworks. Furthermore, this can be seen as a specific case of
the vector autoregressive (VAR) model, which covers a collection of interrelated stochastic
difference equations involving several evolving random variables. In contrast to the MA
model, the AR model may not demonstrate stationarity as a result of the potential inclusion
of a unit root [124,126].

The paper [127] presents a fused ensemble learning algorithm integrated with various
methods, such as random forests (RFs), RNN), AR model, RVM, and others to enhance
predictive performance. The experimental findings have demonstrated that the ensemble
learning algorithm has a notable level of robustness in predicting the RUL of aviation
engines. Another paper [128] introduces a novel approach to prognostics modeling, which
utilizes a nonlinear autoregressive neural network (NARNET) to estimate the RUL of a
deteriorating system in the presence of dynamic operating conditions. The paper demon-
strates that the incorporation of an operating condition forecast into the prognostics model
yields improved accuracy and efficiency in predicting the RUL.

Multivariate Adaptive Regression Splines (MARS)

The multivariate adaptive regression splines (MARS) model is a non-parametric
modeling strategy that improves upon linear models by incorporating nonlinearities and
interactions among variables, which is a multifunctional method that enhances the effi-
ciency of developing prediction models. These tasks encompass activities like finding
relevant elements, altering independent variables, addressing missing data, and employing
a self-test to mitigate the potential problem of overfitting. Additionally, it exhibits the
capacity to generate predictions by considering structural factors that may influence the
dependent variable, thereby creating hypothetical models. The potential of the outcome is
such that it has the capacity to establish important thresholds within a collection of data
sequences [129].

The construction of a proficient regression model requires a considerable amount of
time and a high level of competence in the field of modeling. However, the use of MARS
allows for the systematic and automated creation of regression models, thus removing the
limitations imposed by the assumptions that traditional regression models must adhere
to. In conclusion, this particular methodology possesses the capacity to reveal complex
patterns and relationships that may present difficulties, if not impossibilities, for alternative
methodologies to determine [130].
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The MARS technique can be considered as an extension of recursive partitioning re-
gression. It involves the partitioning of the predictor variable space into several subregions.
The model can be expressed in mathematical notation as in Equation (14):

yt = f (xt) = β0 +
k

∑
i=1

βiβ(xit) (14)

The response variable at time t is denoted as yt, whereas the model parameters for the
corresponding variables xit, where i ranges from 1 to k, are represented by βi. The parameter
β0 denotes the intercept, which corresponds to the value of the dependent variable when
all independent variables are equal to zero. Additionally, the term “base functions” refers
to the fundamental functions used as a basis for constructing more complex functions or
models. The functions B(xit) are dependent on the variables xit, with each B(xit) being
defined as either B(xit) = max(0, xit − c) or B(xit) = max(0, c− xit). Here, c represents a
threshold value, and k denotes the number of explanatory variables, including interactions
of the predictor variables. The space partition points, and mode parameters are derived
from the analyzed data. The complexity of the model may be inferred from the number of
generated basic functions.

The MARS method generates cut points for many variables. Points are demarcated
by fundamental functions that indicate the beginning and end of a specific domain. In
each partitioned portion, the fundamental function of a variable is altered to demonstrate
linearity. The ultimate model is created by combining the derived fundamental functions.

To determine the cut spots, use a stepwise forward/backward stepwise method.
The forward stepwise technique first generates a model that tends to overstate the true
model due to the inclusion of a significant number of base functions. Following this, the
reverse stepwise approach is utilized to remove the nodes that have the least influence
on the total modification. The method’s termination condition is triggered when the
approximation generated includes a predetermined maximum number of functions, as
indicated by researchers [130]. The subsequent methods might be employed to ascertain
the optimal model:

• Cross-validation criteria are a metric utilized in academic research to assess the perfor-
mance and generalization ability of a machine learning model. The measure of fit to
data and penalty refers to the evaluation of how well a particular model or hypothesis
corresponds to the observed data, taking into account any costs or penalties associated
with the model’s complexity or simplicity. The necessity arises due to the model’s
complexity and the resultant increase in variance. Based on this criterion, it may be
preferable to select a simpler model over a more complex one [131];

• The determination coefficient, often known as adjusted R2, is a statistical measure used
to assess the goodness of fit of a regression model. The coefficient of determination is
used to assess the appropriateness of a model by comparing the observed values with
the projected values;

• The mean absolute error ratio is calculated based on the observed data and the pro-
jected value. The optimal model is characterized by the minimal error rate. The mean
absolute ratio is commonly denoted as in Equation (15):

n

∑
i=1

{[
Observed_Value−Predicted_value

Observed_value

]}
n

(15)

Various statistical software programs, such as R v4.3, MATLAB R2023b, and Python
v3.11, offer the capability to implement MARS.
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2.2.11. Classification, Cluster Analysis, and Bayesian Techniques
Classification

The classification issue is a prominent sub-field within the study of discriminant
analysis and has strong ties to other statistical disciplines. Classification is the process
of designating an element to the appropriate population within a given set of known
populations, taking observable factors into account. Significant emphasis is placed on
the development of multivariate statistics, which has wide-ranging applicability in a
variety of disciplines [132]. Both theoretical and applied statisticians find this topic to
be intriguing. There exist the following four primary approaches for addressing the
categorization problem:

Let D be the set of observed data objects, denoted as D = {X1, . . . , Xm}. Each instance
or item Xi is represented as an ordered vector of attribute values, Xi = {Xi1, . . . , Xik}.
The objective of classification is to identify the optimal class description h from a given
space H, which can effectively predict the data D. The word ‘best’ may be understood
as the hypothesis with the highest likelihood given the seen data D and some previous
knowledge about the hypothesis H in the absence of D. This refers to the prior probability
of the different hypotheses in H when no data have been observed. Bayes’ theorem offers a
method for calculating the probability of the most optimal hypothesis, based on the prior
probabilities, the probabilities of viewing the data under different hypotheses, and the
actual data [17].

The prior probability, denoted as P(h), represents the likelihood of a hypothesis h
being true prior to the observation of any evidence. Similarly, let P(D) represent the prior
probability of observing the data, indicating the likelihood of D without any knowledge
regarding which hypothesis is true. The notation P(D|h) represents the probability of
seeing the event D in a particular universe where the hypothesis h is assumed to be true.
The primary challenge in unsupervised classification is to determine the probability P(h|D),
which represents the likelihood of hypothesis h being valid, based on the observed data D.
The posterior probability of hypothesis h, denoted as P(h|D), is a term used in Bayesian
statistics to quantify the level of trust in hypothesis h after observing the relevant data.
Consequently, the collection of data elements influences the posterior probability, although
the prior probability remains unaffected by the specific dataset. Bayes’ theorem offers a
computational approach for determining the posterior probability [133] like Equation (16):

P(h|D) =
P(D|h)P(h)

P(D)
(16)

Or

P(h|D) =
P(D|h)P(h)

∑h P(D|h)P(h)
(17)

The theorem of total probability states that if occurrences h1, . . . , hn are mutually

exclusive with
n
∑

i=1
P(hi) = 1, then the probability of an event may be calculated by sum-

ming the probabilities of
n
∑

i=1
P(D|hi)P(hi) = 1 given each of the mutually exclusive events

h1, . . . , hn, weighted by their respective probabilities.
When the set of potential values for h is continuous, the prior distribution is trans-

formed into a differential distribution, and the summations over h are replaced by integrals;
hence, the execution of this algorithm becomes challenging.

The expectation-maximization (EM) technique is a Bayesian approach employed to
compute the local maximum likelihood or maximum a posteriori (MAP) estimates of
parameters in situations where the model relies on unobserved latent variables. In contrast
to the exhaustive consideration of all potential states of the world and corresponding
hypotheses in traditional approaches, the EM method focuses on a limited set of models.
This method operates on the assumption S that one of these models accurately represents
the world. A model is composed of two distinct sets of parameters. The first set, denoted as
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T, encompasses discrete parameters that define the functional characteristics of the model.
These parameters determine attributes such as the number of classes and the correlation
between attributes. The second set, denoted as V, comprises the continuous parameters
that assign specific values to the variables present in T. These values are necessary to fully
specify the general structure of the model.

The EM algorithm aims to identify the optimal combination of variables V and T that
can effectively classify a given dataset D. This is achieved by maximizing the probability of
the joint distribution P(DVT|S), which may be expressed as the product of the conditional
probability P(D|VTS) and the prior probability P(VT|S) [133,134].

Clustering

The issue of clustering holds considerable significance in the realm of unsuper-
vised learning. The commonly utilized clustering methods include the subsequent ap-
proaches [135]:

• K-means clustering, and mixture modeling are the most prevalent approaches utilized
for canonical and flat clustering;

• Hierarchical clustering is a data analysis technique that involves the examination of a
hierarchical structure, often depicted as a tree, to discern significant patterns within the
data at different levels of granularity. In contrast to alternative clustering techniques,
the primary goal of this method does not include achieving a singular partition of the
dataset. There exist two distinct categories of hierarchical clustering algorithms, specif-
ically agglomerative and divisive. The initial methodology investigates techniques
for consolidating individual data points with the aim of establishing a hierarchical
framework. Conversely, the subsequent methodology entails the iterative partitioning
of the data into progressively smaller clusters;

• Spectral clustering entails the calculation of a similarity matrix for every possible
combination of data points. The procedure entails performing an eigenvalue decom-
position, thereafter, projecting the data points onto a subspace delineated by a certain
set of eigenvectors. Following this, one of the clustering methodologies previously
mentioned, such as k-means or hierarchical clustering, is utilized to categorize the
data into distinct clusters.

Bayesian Methods

Bayesian methodologies provide a systematic framework for rationalizing and making
logical inferences about the surrounding environment, especially in the presence of inherent
ambiguity. The Bayesian technique is based on a rigorous approach to handling uncertainty,
which was initially developed by Bayes and Laplace in the 18th century and further refined
by statisticians and philosophers in the 20th century. Bayesian techniques have become
prominent models of human cognitive processes in various domains, such as multi-sensory
integration, motor learning, visual illusions, and brain computing. Moreover, they function
as the fundamental basis for machine learning systems [136].

Bayes’ theorem, sometimes known as Bayes’ rule, is a fundamental principle in proba-
bility theory. It expresses the conditional probability of an event θ given the occurrence of
event x in Equation (18):

P(θ|x) = P(x|θ)P(θ)
P(x)

(18)

This theorem may be derived from basic principles of probability theory. In this
context, x represents a specific data point, whereas θ denotes the model parameters. The
probability of θ, denoted as P(θ), is commonly known as the prior. It signifies the likelihood
of θ prior to acquiring any knowledge on x. The probability of x given θ, denoted as P(x|θ),
represents the likelihood in academic discourse. The posterior probability of θ, denoted as
P(θ|x), is the likelihood of θ given the observation x. The normalizing constant, P(x), is a
term that ensures the posterior probability distribution is properly normalized.
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Given the joint probability of x and θ as P(x, θ), by marginalizing θ, thus the function
P(x) may be expressed as the integral o f P(x, θ) with respect to θ in Equation (19):

P(x) =
∫

P(x, θ)dθ (19)

Therefore, P(x) can be regarded as the marginal probability of x.
The model m, which is characterized by the model parameter θ, may be represented

for a dataset of N data points, where D = {x1, x2, . . . , xN}.
The conditional probability of m given D, denoted as P(m|D), can be:

P(m|D) =
P(D|m) ∗ P(m)

P(D)
(20)

This can be calculated for a variety of models m. The optimal model for the given
data may be determined by selecting the model with the highest posterior probability. The
equation provided can be rewritten in a more academic manner as follows:

P(D|m) =
∫

P(D|θ, m)P(θ|m)dθ (21)

The aforementioned equation provides the marginal probability, which is a prerequisite
for the computation. It is also possible to make predictions about the likelihood of new,
unobserved data points, denoted as x∗. The conditional probability of x∗ given D and m,
denoted as P(x∗|D, m). The expression may be rewritten in an academic manner as follows
in Equations (22) and (23):

P(x∗|D, m) =
∫

P(x∗|θ)P(θ|D, m)dθ (22)

P(θ|D, m) =
P(D|θ, m) ∗ P(θ|m)

P(D|m)
(23)

The posterior probability of the model parameter θ, given the data D, is calculated
using Bayes’ method.

The utilization of Bayesian probability theory enables the representation of varying
levels of confidence in uncertain assertions. The derivation of basic probability theory can
be achieved by quantitatively representing beliefs, given a limited number of fundamental
assumptions [137,138]. The Dutch Book theorem, a significant finding in game theory,
asserts that unless our beliefs align with probability theory, including Bayes rule, we will
be susceptible to accepting a series of bets known as a Dutch book. These bets are designed
in such a way that they are certain to result in financial losses, irrespective of the actual
outcomes [135,136].

Bayesian methodologies inherently encompass the principle of Occam’s razor, which
asserts that when confronted with two hypotheses that explain all the accessible informa-
tion, the one that exhibits more simplicity is more probable to be correct. Its practicality
extends to other academic disciplines, including but not limited to religion, physics, and
medicine. In this analysis, we will examine two distinct models, labeled as m1 and m2. It
is important to acknowledge that m2 includes m1 as a particular case. For example, linear
functions in m1 can be seen as specific examples of higher-order polynomials in m2. If
the data are appropriately represented by model m1, such as by the utilization of a linear
function, the marginal probability for model m2 will be relatively diminished. However,
model m2 demonstrates greater efficacy in modeling certain datasets, particularly those
characterized by nonlinear functions, in contrast to model m1. Therefore, it is commonly
recognized that Bayesian procedures demonstrate a decreased vulnerability to overfitting
concerns, a phenomenon that is typically encountered in other approaches [139].
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The effectiveness of Gaussian process-based prognostics relies significantly on the
meticulous choice of global and covariance functions. Gaussian process (GP) has historically
been employed in the domain of interpolation, where a constant is typically employed to
represent a global function. As a result, the global function has been perceived as relatively
less significant in comparison to the covariance function. Within the domain of prognostics,
which is sometimes used interchangeably with extrapolation, the importance of the global
function in GP holds similar weight to that of the covariance function. Nevertheless, the
current body of research on the selection or update of the global function to improve the
predictive capabilities inside the extrapolation zone is somewhat restricted.

In contrast, covariance functions play a crucial role in determining the quality of
GP simulations across large areas. Consequently, several academics have dedicated their
efforts to investigating the impact of covariance functions and identifying more effective
alternatives. Reference [140] developed three unique optimized neural networks (ONNs)
based on the machine learning algorithm (MLA) framework. These ONNs were specifically
designed for predicting the FCG rate in various aluminum alloys. The effectiveness of
these optimized models was assessed through rigorous testing on different aluminum
alloys. Several papers have also proposed the use of nonstationary covariance functions,
which may adjust to varying levels of smoothness by including simple covariance functions
through addition or multiplication. Reference [141] presented a Bayesian model that
addresses the analysis of geographical data with continuous indices. This model has a
flexible parametric covariance regression structure, specifically designed for a convolution
kernel covariance matrix.

The determination of the number of input nodes is often found in the data-driven
method, since it allows for the inclusion of all relevant information, such as time, loading
conditions, and degradation data, as inputs. The study by [142] introduces a novel ap-
proach for bearing defect diagnosis through the utilization of a semi-supervised multi-scale
convolutional generative adversarial network. This approach leverages both partially
labeled samples and an abundant number of unlabeled samples throughout the training
process. The findings suggest that the semi-supervised convolutional generative adver-
sarial network, as described, demonstrates favorable performance in the detection of
bearing faults.

3. Hybrid Prognostic Approaches

The hybrid prognosis methodology entails the amalgamation of multiple approaches
to predict the future state of a certain system. PHM solutions in the aviation sector heav-
ily depend on the exploitation of real-time data to effectively identify potential failures
and evaluate the condition of machines. The presented approach is distinguished by its
proactive aspect, as it necessitates the application of predictive modeling tools to activate
maintenance alerts and anticipate the possibility of faults [2].

Numerous industries have adopted PhM methodologies since they have demonstrated
the ability to improve dependability and safety. In the aviation industry, safety requirements
are elevated due to the substantial investment and the possible dangers to human life that
are linked to aircraft malfunctions or operational disruptions. The utilization of artificial
intelligence algorithms is prevalent in commercial operations for the purpose of flight data
monitoring systems. Nevertheless, there is a dearth of research that specifically addresses
safety-critical systems, such as engine and hydraulic systems [143].

The utilization of hybrid prognosis methodologies within the aviation sector facilitates
the augmentation of precision in failure prognostication, thereby making a significant
contribution towards the enhancement of dependability and safety within aircraft systems.
The incorporation of several methodologies allows for the integration of hybrid prognosis,
which in turn facilitates a comprehensive evaluation of the health of a system and enhances
the effectiveness of predictive maintenance initiatives [71].

The achievement of a hybrid prognosis can be effectively accomplished using several
strategies, such as data-driven, physics-based, and knowledge-based techniques. Data-
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driven techniques utilize previous data to train machine learning algorithms in order to
predict future system behavior. Model-based techniques utilize mathematical models
to simulate the dynamics of a specific system and offer predictions regarding its future
state. Knowledge-based methodologies utilize expert knowledge and pre-established
norms to create predictions on the future state of a specific system. The use of a hybrid
prognosis has emerged as a feasible strategy in the aviation industry with the aim of
effectively monitoring the operational status of various aircraft systems, encompassing
engines, hydraulic systems, and avionics. Sensors are utilized to collect real-time data
regarding the operating effectiveness of these systems. Following this, the collected data
are then subjected to analysis using hybrid prognostic techniques, with the objective of
predicting possible problems and scheduling maintenance measures before their actual
occurrence [144].

The application of hybrid prognosis in the aviation sector is of considerable importance
as a tool for predictive maintenance. The installation of this technology plays a signifi-
cant role in improving the safety and reliability of aircraft systems while also reducing
maintenance costs and operating disruptions. The hybrid prognosis approach deviates
from traditional methodologies by incorporating various strategies to predict the future
condition of a system’s condition [145]. In contrast, traditional approaches frequently rely
on a single strategy for formulating prognostications. An excellent example pertains to
the typical prognostic techniques that rely on data-driven approaches, often requiring
manual extraction of features from raw sensory input. The process of feature selection
can be a laborious undertaking and does not ensure the identification of the most optimal
representative attributes in every instance. On the other hand, hybrid prognosis utilizes a
hybrid deep neural network structure to extract meaningful features directly from the raw
sensory input during the training period.

By using several approaches, hybrid prognosis possesses the ability to provide a
comprehensive understanding of the condition of a system and improve the accuracy
of predicting failures. The use of this methodology holds promise for improving the
reliability and safety of systems while simultaneously reducing costs related to upkeep and
operating disruptions.

One such topic is the development of a hybrid prognostic approach for estimating
the RUL of aircraft engines using a combination of PCA, classification and regression trees
(CART), and MARS techniques [146]. By employing this fitting method, it is possible to
determine the future health condition of a given system and to make precise RUL esti-
mates. The simulation results demonstrate that the PCA-CART-MARS-based methodology
could anticipate problems well in advance of their occurrence and accurately predicting
the RUL. The primary advantage of the proposed model is its independence from the
previous operational conditions of the engine’s input variables. In recent years, multi-
variate linear regression and ANNs have also been utilized for the RUL prediction. The
effectiveness of the PCA-CART-MARS-based methodology was evaluated in comparison
to these established methods. The PCA-CART-MARS-based approach has demonstrated
tremendous promise in the field of aircraft engine RUL estimation prognostics. The hybrid
model employs elements derived from sensor signals to train itself, thereby representing a
variety of aircraft engine health states. Lastly, there is a growing interest in prognostics for
autonomous electric-propulsion aircraft, which entails predicting and managing potential
system failures [147].

The hybrid prognosis technique is an innovative approach that integrates physics-
based modeling and data-driven methodologies to improve the accuracy of predictive
results. One example of the application of hybrid prognostics in aircraft systems involves
the prediction of fatigue life for metallic components located within the structures of
aircraft. The authors of the scholarly research paper developed a hybrid prognosis model
to accurately predict the crack growth regime and RUL of aluminum components [146]. A
supplementary example is available in a study that introduced a novel hybrid prognostic
methodology for predicting the RUL of multi-functional spoiler (MFS) systems. The systems



Sensors 2023, 23, 8124 47 of 65

are of utmost importance in facilitating the effective operation of aviation spoiler control
systems [148]. Another example of the application of hybrid prognosis may be seen in the
evaluation of aviation systems, particularly in the analysis of the effectiveness of hybrid
electric and distributed propulsion systems integrated into a light aircraft. The primary
objective of this study was to assess the importance of electric propulsion systems relative
to conventional systems, as well as hybrid propulsion systems. The specific focus was on
determining the most appropriate hybrid configuration for light aircraft. The inquiry was
carried out using the normalized range factor and range analysis as the main evaluation
criterion. Based on the findings of the study, it was concluded that a piston engine is the
optimal selection for a hybrid electric propulsion system within the domain of light aircraft.
Furthermore, the research findings indicated that a parallel hybrid propulsion system
exhibits greater advantages for light aircraft in comparison to a series-hybrid system [149].

There are several techniques available for the merging of physics-based algorithms
with data-driven algorithms within the domain of hybrid prognosis. One possible approach
is the utilization of a physics-based model to extract features that can then be employed
in a data-driven model. One example that may be used to illustrate this concept is the
application of a physics-based model to simulate the dynamics of a system under various
situations. The resulting data from this simulation can then be used as input for a data-
driven model. The data-driven model possesses the capacity to learn information from the
given data and afterward generate predictions. An alternate approach entails employing a
data-driven model to improve the precision of predictions given by a physics-based model.
An example that serves as an illustration involves the application of a physics-based model
to produce the first predictions concerning the behavior of a certain system. Following
this, the accuracy of these predictions can be further improved by utilizing a data-driven
model that has been trained using data collected from the same system. Both approaches
employ a physics-based model to include prior knowledge of the system being modeled
and enhance the learning process of the data-driven model. The utilization of a combination
of physics-based and data-driven approaches has the potential to boost the precision of
forecasts when compared to depending simply on either approach independently.

Prognostics technology encompasses a wide range of facets. For instance, prognostics
can provide early indications of potential failures and make estimations for the RUL. This
can ultimately lead to enhanced availability, reliability, and safety, while also contributing
to decreased maintenance expenses. Prognostics, as stipulated in ISO 13381-1 [150], refers
to the process of estimating the TTF and associated risk for one or more existing and
potential failure modes. This prediction is based on the current condition of the system
and its past operational profile [151]. The application of RUL prediction is extensive,
encompassing various domains such as military and aerospace systems, manufacturing
equipment, constructions, power systems, and electronics [152].

Generally, prediction models for RUL can be classified into the following three cat-
egories: experience-based models, data-driven models, and physics-based models, as
depicted in Figure 13 [152].

There are various methodologies available for the assessment of system conditions.
There are two primary strategies commonly employed for prognosis in aviation, namely,
physics-based and data-driven methods. Both techniques include distinct advantages and
limits, which is why they are frequently utilized with one another [153]. Prognostics is
an academic field that focuses on the prediction of the future performance of a system,
with a specific focus on identifying the moment when the system will no longer serve its
intended purpose, usually known as its TTF. The RUL factor has a key role in the field of
PHM, functioning as a critical element in the decision-making process for maintenance
and the mitigation of contingencies. Deterioration is a commonly seen phenomenon that
can occur during the whole lifespan of a system or component. Numerous methodologies
have been devised to predict the future performance of said systems and determine the
threshold at which they will no longer serve their original purpose [152].
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3.1. Experience-Based Models

Experience-based approaches, also known as knowledge-based approaches, encom-
pass the utilization of historical data collected over a significant period, encompassing
failure times, maintenance data, operational data, and other pertinent information, to
predict the TTF or RUL. The main advantage lies in their utilization of simple reliability
functions, such as the exponential law and Weibull law, instead of complex mathemati-
cal models.

The prognostic outcomes provided by these methodologies demonstrate reduced
levels of accuracy in comparison to the prognostics offered by physics-based and data-
driven approaches, especially in situations when the operational parameters are well-
known or when systems are in their initial phases and have limited failure data avail-
able [154]. Experience-based models are subject to limitations as they necessitate a sub-
stantial amount of personal knowledge pertaining to a certain component or system. In
this work, the authors will primarily focus on the contemporary advancements of physics-
based and data-driven models in the field of aviation, owing to their widespread usage
and appropriateness.

3.2. Data-Driven Models

Data-driven methodologies involve the utilization of sensors to acquire online data,
which is afterwards transformed into pertinent information. The data are utilized for the
purpose of investigating degradation patterns using a range of models and tools, including
NNs, Bayesian networks (BNs), and Markovian processes, as well as statistical methods.
This analysis aims to forecast the future health condition and the accompanying RUL of
the system.

Data-driven approaches possess a notable advantage over both physics-based and
experience-based methods. This advantage stems from the fact that, in practical industrial
applications, obtaining trustworthy data is a more feasible task compared to developing
models that capture physical or analytical behaviors. Furthermore, the behavioral models
derived from actual monitoring data yield more accurate predictive outcomes compared to
those derived from historical data as mentioned in the previous chapter.

3.3. Physics-Based Models

The physics-based methodologies employ an analytical framework that incorporates a
set of differential or algebraic equations to effectively represent the dynamic characteristics
and deterioration of the system. Ref. [155] presented a pioneering study where authors
introduced a fatigue life model for ball bearings that relies on stress analysis. The model has
improved accuracy in predicting prognosis. Nevertheless, it is crucial to acknowledge that
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real-world systems often exhibit nonlinearity, and the degradation mechanisms associated
with them tend to be inherently stochastic. As a result, the application of analytical
models presents difficulties. Hence, the feasibility of using this approach may be limited as
aforementioned in Section 2.1.

3.4. Hybrid Prognostic Models

Hybrid prognostic methodologies integrate the advantageous aspects of both data-
driven and physics-based modeling to enhance the precision and reliability of failure
prognostications. Various methodologies can be employed to anticipate and mitigate
failures in advance. This can be achieved by carefully picking pertinent hIs and calculating
the PDFs of hIs under both optimal and deteriorated conditions [34,156,157]. Hybrid
prognostic methodologies may encompass the integration of physics-informed machine
learning techniques [158].

One advantage of hybrid prognostics is its capacity to enhance the precision and
dependability of failure forecasts through the integration of the robustness of data-driven
and physics-based modeling [159]. The hybrid strategy, which combines elements of
physics-based and data-driven methodologies, is employed to mitigate the limitations of
each approach and leverage their respective advantages. However, it is important to note
that the hybrid approach does retain certain downsides associated with both methods.

The flowchart proposed by [12] serves as a reference for the purpose of selecting an
appropriate hybrid prognostics strategy, as depicted in Figure 14.
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The section presents a range of ways that utilize different combinations of the three
categories. The picture presented in this context is derived from a study conducted by [160]
and visually represents five unique combinations.

Hypothesis 1. Posits the integration of an experience-based model and a data-driven model.

Hypothesis 2. Posits the integration of an experience-based model and a physics-based model.

Hypothesis 3. posits that the utilization of a data-driven model in conjunction with another
data-driven model can yield significant benefits.

Hypothesis 4. Posits the integration of a data-driven model and a physics-based model.

Hypothesis 5. postulates that the amalgamation of an experiential model, a data-centric model,
and a physics-oriented model will yield favorable outcomes.
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One instance of a prognostic application within the aircraft sector can be observed
in the Joint Strike Fighter (JSF) [161]. The system is intended for utilization by the United
States Air Force, Navy, and Marine Corps, as well as select allied nations inside the United
States’ sphere of influence. The existing strategy entails implementing a PHM system that
offers fault detection and isolation capabilities for all significant systems and subsystems
present on the aircraft. Additionally, the system will proceed with prognostics specifically
for certain components. PHM constitutes a pivotal factor in substantiating the selection
of a singular-engine aircraft, with the primary objective of enhancing safety measures
and diminishing maintenance expenses. The architectural design being proposed incorpo-
rates an off-board PHM system, which will utilize data mining methodologies [162,163].
Moreover, automated prognostic research has been implemented in a diverse range of
systems, encompassing actuators, aerospace structures, aircraft engines, batteries, bearings,
clutch systems, cracks in rotating machinery, electronics, gas turbines, hydraulic pumps
and motors, military aircraft turbofan oil systems, semiconductor manufacturing, heating,
ventilation, and air conditioning, wheeled mobile robots, and UAV propulsion.

Prognostics applications have the capability to operate either in real-time, or near
real-time, regardless of whether they are aboard or off-board. Prognostics can also be
implemented in an offline manner, independent of the operational duration of the system
being monitored. Real-time prognostics involve the utilization of online data obtained
from a data-gathering system to estimate the RUL of a system. This calculation enables
the system to provide a timely warning regarding an imminent failure, hence facilitating
the reconfiguration of the system and the planning of subsequent missions. The offline
prognostics system utilizes fleet-wide system data and conducts extensive data mining
procedures that are not feasible to be executed onboard in real time due to resource limita-
tions and time constraints. The utilization of outcomes derived from an offline prognostics
system holds the potential for informing maintenance planning and facilitating decision-
making processes within the realm of logistical support management. The application of
prognostics first revolved around the practice of forecasting [164].

3.4.1. Physics-Based Models or Data-Driven Models

The data-driven model involves gathering monitoring data from sensors to simulate
the system’s degradation. The data are subjected to pre-processing to find relevant elements
that can be utilized in the development of models for health assessment and prediction of
RUL. Several machine learning techniques can be identified as aforementioned, including
NNs, HMMs, regression analysis, and support vector regression (SVR).

Physics-based model necessitates a comprehensive comprehension of the underlying
physical system, encompassing the intricate dynamics of degradation through time. The
utilization of physical principles is employed in the construction of a system model that
is afterward utilized for the purpose of simulations and RUL prediction [165]. The study
conducted by [166] employed a mathematical approach to investigate the deterioration of a
vehicle’s suspension system, with a focus on physics-based prognostics. In the investigation
of the progression of damage in a two-well magneto-mechanical oscillator, the authors [167]
adopted a comparable methodology by suggesting a technique rooted in the principles
of dynamic systems. It is crucial to recognize that within the realm of physics-based
prognostics, the construction of a model necessitates the inclusion of a degradation model,
which encompasses factors such as fatigue, corrosion, or wear-induced cracks. It can be
observed that data-driven models produce results with lower levels of precision than
physics-based methods. Accessibility of the data used to train deterioration models is an
additional limitation associated with data-driven prognostics. As stated previously, it is
necessary to collect data that accurately represents the degradation’s behavior. In practical
applications, it is essential to keep in mind that the statistics pertinent to the deterioration
of assets under identical operating conditions may exhibit variation. The model derived
from this dataset will capture the mean value; consequently, estimates of RUL will be
imprecise [168].
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Practitioners tend to prefer data-driven solutions due to their cost-effectiveness, versa-
tility, and simplicity. The utilization of physics-based methodologies in industrial systems
is impeded by the inherent difficulty of building a physical model that precisely depicts the
deterioration of the system. Physics-based approaches can be utilized in systems that have
pre-existing models or in certain types of systems, such as mechatronic systems. However,
it is necessary to perform empirical investigations to determine the underlying patterns
of system degradation. One notable benefit of employing physics-based methodologies is
their capacity to yield precise forecasts, especially in scenarios characterized by restricted
data availability. Nonetheless, the process of constructing precise models can present
difficulties and necessitates a profound comprehension of the system being subjected to
modeling. In contrast, data-driven methodologies exhibit a higher level of ease in their
implementation, albeit necessitating a substantial volume of historical data for optimal
efficacy. Table 7 presents a comprehensive analysis of the advantages and disadvantages
associated with each approach.

Table 7. The comparison between data-driven approaches and physics-based approaches in various
academic disciplines.

Approaches Advantages Limitations

Physics-based
Models

Enhanced accuracy
Deterministic methodologies

System-centric approach
The dynamics of the states can be

calculated and forecasted at
every instance

The failure thresholds can be
established based on the performance

of the system
Ability to simulate

several deteriorations

The utilization of a degradation
model is necessary

The implementation cost is
notably high.

The application of the degradation
model on complex systems

poses challenges.

Data-driven
Models

Simple implementation
Low cost

Reliable sources of dataset
Results vary even under same

operating condition
Less accuracy

Challenging to consider the effects of
varying operating conditions.

The focus is mostly on individual
components rather than the system as

a whole.
Establishing failure thresholds is a

complex task.

In essence, physics-based methodologies employ mathematical models grounded in
fundamental physical principles to provide predictions, whereas data-driven methodolo-
gies depend on historical data to acquire knowledge of the system’s behavior and generate
forecasts. Both methodologies possess their respective merits and demerits, and the selec-
tion between them is contingent upon the application and the accessibility of data. The
integration of both approaches in a hybrid approach to prognostics can effectively harness
their inherent strengths, resulting in improved forecasting capabilities. Concurrently, the
hybrid approach possesses the capacity to alleviate the specific drawbacks encountered by
individuals [169]. Ensemble learning holds promise for the future use of amalgamating
and incorporating diverse data-driven prognostics techniques. The integration of online
algorithms and uncertainty poses a significant concern in the context of a hybrid strategy
for RUL estimation [168,169].

Hybrid prognostics that use a combination of physics-based and data-driven tech-
niques can be classified into four discrete categories [170], as outlined in Table 8.
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Table 8. Overview of four distinct types of fusion between physics-based and data-driven models.

Types Objectives Description

Type 1
Utilizing the data-driven
approach for inferring the

physical model

In situations where obtaining the degradation
model is challenging or direct measurement of
the system state is not feasible, a data-driven
model can serve as a viable alternative to a

complex physics-based model.

Type 2

Utilizing a data-driven approach
for the purpose of estimating
forthcoming measurements in

conjunction with the
physics-based method

When there is a scarcity of measurements for
long-term prediction, the data-driven technique
can provide predicted measurements that can be
considered as additional measurements inside

the physics-based method

Type 3

Applying the data-driven
approach to estimate and alter the
parameters of the physics-based

methodology

The data-driven approach refers to a
methodology that utilizes data to analyze the

correlations and patterns associated with
degradation, and subsequently employs this

information to estimate the parameters within a
given model

Type 4

Applying the filtering technique
to ascertain and modify the

parameters of the data-driven
methodology

Filtering is a commonly employed technique in
data analysis to mitigate the effects of noise and

make estimations of model parameters

3.4.2. Hybrid Approach Integrating Data-Driven Models and Physics-Based Models

There does not exist a flawless prognostics model. Every model has its own set of
pros and limitations, and it is more prudent to consider the appropriateness of a model
based on the specific scenario being analyzed. In the field of power devices, a research
study conducted by [171] introduced a methodology for predicting RUL by employing a
combination of data-driven and physics-based prognostics algorithms. The drain-source
ON-state resistance was employed by the researchers as a metric for assessing the health
status. The methodology employed in this study involved the utilization of Gaussian pro-
cess regression as the data-driven component. The methodologies employed in this study
encompassed two physics-based techniques, namely, an EKF and a PF. The researchers
conducted accelerated aging experiments on power devices and employed prognostic
performance indicators to evaluate and compare the outcomes of the different method-
ologies. The PF approach exhibited superior performance in the field of prognostics. The
superiority of the physics-based approach can be attributed to the utilization of an ex-
ponential deterioration model with two parameters that are computed online within a
Bayesian framework. The Gaussian process regression model, which relies on data-driven
techniques, was unable to generate accurate RUL forecasts until a distinct degradation
behavior, namely, of exponential nature, became evident. On the other hand, in cases when
the degradation does not conform to an exponential model due to factors such as noisy
data or varying failure modes, the utilization of a data-driven model would provide more
precise outcomes. This is because the findings obtained from the data-driven model may
be compared to the historical deterioration patterns [160].

In the realm of RUL analysis, it is widely observed that a considerable number of
researchers exhibit a preference for a hybrid methodology. This approach entails the
integration of both data-driven and physics-based models, with the intention of capitalizing
on the unique advantages offered by each model type. The objective behind this integration
is to enhance the accuracy and reliability of RUL prediction [160].

3.4.3. The Prognostics Fusion Framework

The incorporation of data-driven and physics-based approaches into a fusion prognos-
tic framework shows potential for accurately predicting RUL. The physics-based technique,
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also known as the model-based approach [160], entails leveraging an understanding of the
fundamental principles of physics to generate accurate estimations. The approach outlines
the procedure for the degradation of a system using an analytical equation known as a
degradation model. The degradation model should accurately represent the process of
degradation; nevertheless, in practical implementation, deviations from the model may
occur. The use of data-driven prediction methods, which utilize past data and the specific
system being studied, holds promise for improving the accuracy of forecasts and reducing
uncertainty. The fusion architecture of merging data-driven and physics-based models is
illustrated in Figure 15.
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The figure depicted above provides a preliminary representation of the intricate rela-
tionship that exists between data-driven and physics-based methodologies, as referenced
in [152]. The integration of prognostics incorporates two data-driven techniques into
the traditional physics-based PF architecture, hence enhancing the precision of predic-
tions. The paper presents a novel approach utilizing data-driven techniques for estimating
the measurement model and another for forecasting future measurements in long-term
prediction scenarios.

The hybrid prognostics framework extends the applicability of Bayesian state estima-
tion by incorporating two data-driven techniques into a physics-based approach, namely,
utilizing the PF method. The sensor readings Yk typically do not provide direct access to the
internal system state Xk, such as degradation, in a complex system. This necessitates the
utilization of a physics-based approach to indirectly estimate the internal state of the system.
The conventional Bayesian state estimation method is based on an analytical measurement
model, Yk = h(Xk) + vk.

However, in many instances, it is not possible to obtain an analytical representation
of the measurement model. As a result, an approach based on data analysis is employed
instead. The utilization of the estimated data-driven measurement model enables the
execution of state tracking in a conventional manner, employing the system degradation
model Yk = h(Xk−1) + wk. During the phase of state prediction, the PF based on classical
physics utilized the system degradation model to extrapolate the internal state of the system.
In the proposed framework for fusion prognostics, a secondary data-driven approach is
employed to forecast future measurements as in Equation (24):

ˆYk+1 = g(Xk, Yk−1, . . .) + uk+1 (24)

The inputs are reintroduced into the PF algorithm. The state prediction phase is
conducted similarly to the state tracking phase, utilizing the anticipated measurements.
The particles and their corresponding weights can then be further adjusted [152].

3.4.4. Limitations of Hybrid Prognostic Approaches

Nevertheless, like any other methodology, hybrid prognostics have inherent limita-
tions. One limitation is the challenge associated with developing hybrid models that effec-
tively combine the benefits of data-driven and physics-based modeling techniques [34,172].
The effective integration of the distinct benefits provided by data-driven and physics-based
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modeling methodologies represents an additional obstacle in the development of hybrid
prognostic models in the aviation domain.

Hybrid models are required to possess the ability to accurately predict and prevent
failures in advance. This is achieved by carefully selecting the most relevant hIs and
accurately calculating the PDFs of hIs for both normal and deteriorated states [157,173].
Another challenge arises from the intricacy of hybrid models, which requires a significant
level of expertise for their creation and continuous upkeep. Additionally, it is important to
acknowledge that hybrid models may require a significant amount of data for training and
validation, which can be difficult to do in certain situations [174].

To tackle these challenges, researchers are presently involved in the exploration of in-
novative methodologies that combine data-driven and physics-based modeling techniques.
Furthermore, their efforts are focused on improving the accuracy and reliability. Within
the domain of hybrid prognostics for aircraft systems, PDFs can be utilized to evaluate the
probability of a system or component existing in a particular state, such as being in a state of
optimal health or experiencing degradation. This estimation is derived by considering the
hIs linked to the system or component. Hybrid models possess the capacity to accurately
predict and prevent failures by employing the estimate of PDFs for hIs in both healthy and
degraded states.

For instance, consider a system comprising two hIs, namely, temperature and vibration.
The PDFs of the hIs for both healthy and impaired states can be approximated using
historical data. Subsequently, upon the acquisition of novel temperature and vibration data
pertaining to the system, the PDFs can be employed to approximate the likelihood of the
system being in either a sound or deteriorated condition. If the likelihood of the system
being in a deteriorated state is considerable, proactive measures can be implemented to
mitigate the risk of a failure prior to its manifestation.

Current studies in hybrid prognostics for aviation have been primarily dedicated
to the advancement of novel approaches that integrate data-driven and physics-based
modeling techniques. The objective is to enhance the precision and dependability of failure
prognostications. An investigation was conducted in a study to examine the utilization of
classification methods, as opposed to regression approaches, for the purpose of identifying
problems in aircraft systems [34]. Recent papers examined the current advancements in
hybrid electric aircraft and the techniques employed for managing their energy [158,175].

These methodologies possess the capability to enhance the safety and reliability of
aircraft systems through the precise anticipation and preemptive mitigation of faults prior
to their occurrence. A study was conducted to examine the integration of physics-based
and deep learning models for the purpose of prognostics [176]. The objective of this study
is to construct hybrid models that proficiently integrate the advantages of data-driven
and physics-based modeling to precisely forecast and preempt problems prior to their
occurrence [12].

3.4.5. State of the Art

Reference [2] focuses on prognostics in aircraft systems and presents an overview of
contemporary research pertaining to predictive maintenance (PM) techniques employed
for the hydraulic system and engine of airplanes. The authors examine the significance
of PM and cutting-edge data pre-processing techniques in the context of handling huge
datasets. Additionally, they ascertain emerging patterns and obstacles within the realm of
project management for aircraft systems. This work presents a thorough examination of
the existing body of research in this field and serves as a great reference for individuals
seeking to expand their knowledge about PM for aircraft systems [2,177].

Reference [4] examines the latest advancements in research and the practical uses
of prognostics modeling methods in the field of engineering systems. The study that
has been examined is categorized into three primary domains, depending on whether
they integrate the understanding of the physics of failure into prognostics. These do-
mains are the data-driven prognostic techniques, the physics-based prognostic methods,
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and the hybrid prognostic approaches. The technical advantages and limitations of each
prognostic approach are analyzed and explained. Additionally, this paper provides a
comprehensive overview of the research and technological obstacles encountered in the
field of engineering system prognostics. Furthermore, it identifies potential directions for
future research endeavors.

Reference [178] elucidates the creation of a novel and authentic dataset comprising
run-to-failure trajectories for a fleet of aircraft engines operating in actual flight conditions.
This dataset holds significant value for the field of prognostics and diagnostics. The dataset
utilized in this study was derived from the Commercial Modular Aero-Propulsion System
Simulation (CMAPSS) model, which was originally designed by NASA. The authors
emphasize the significance of possessing representative run-to-failure datasets to facilitate
the creation of data-driven prognostics models. They also highlight the versatility of their
dataset, which may be utilized for both prognostics and fault diagnostics purposes. The
paper offers significant insights into the creation of authentic datasets for prognostics in
aircraft systems, rendering it a helpful resource for individuals seeking relevant information
in this field.

The utilization of data-driven methodologies, particularly ML, has significantly ad-
vanced maintenance modeling in recent times, leading to a wide array of practical ap-
plications [179]. In this study, several conclusions can be drawn. Firstly, the utilization
of publicly accessible data has the potential to enhance research endeavors. Secondly, a
significant proportion of academic papers depend on supervised techniques that necessitate
annotated data. Thirdly, the amalgamation of multiple data sources has the potential to
enhance the accuracy of results. Lastly, the adoption of deep learning methods is expected
to rise, but it is contingent upon the development of efficient and interpretable approaches
as well as the availability of substantial quantities of labeled data. ML methodologies
are currently being utilized for the purpose of mechanical defect detection and prediction
within the framework of practical industrial manufacturing scenarios [180]. This analysis
demonstrates that there has been a growing number of studies conducted in the manufac-
turing business in recent years. However, further research is required to effectively tackle
the issues posed by real-world situations [180,181].

Reference [182] examines the academic and industry literature to identify the primary
technological domains of electric aviation. These domains include battery technology,
electric machine technology, airframe technology, and propulsion technologies. The paper
discusses the current state of these technologies, their projected advancements in the
future, as well as the challenges they face. This study examines several design concepts,
prototypes, and current electric aircraft products to identify the limitations posed by
technology progress and regulatory frameworks that may hinder the implementation and
commercialization of suggested electric airplanes.

Reference [175] provides an overview of the current research progress in the field
of hybrid aircraft design and energy management, as well as hybrid propulsion systems.
Another instance of a hybrid methodology for prognostics can be observed in the context
of micro-electromechanical systems (MEMS), as elucidated by [183]. The proposed method-
ology consists of the following two distinct stages: an initial offline phase dedicated to the
characterization and modeling of the MEMS degradation, and a subsequent online phase
where the derived degradation model is employed in conjunction with the available data
for prognostic purposes. The offline phase encompasses the utilization of physics-based
models to elucidate the behavior of the MEMS and its constituent parts. Conversely, the on-
line phase entails the application of data-driven techniques to revise the model parameters
and generate forecasts regarding the system’s RUL.

An additional illustration may be found in the form of a model-based hybrid technique
utilized for circuit breaker prognostics. This approach effectively integrates the continuous
and discrete temporal behavior of the system, as demonstrated in references [184,185]. This
combination is well-suited for applications that need the consideration of deterministic
system behavior, particularly in cases where the deterioration is observed to increase at
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specific discrete time intervals. The instances serve as mere illustrations of the poten-
tial applications of hybrid methodologies in the field of prognostics. The integration of
data-driven and physics-based methodologies provides a robust approach to effectively
forecast the future dynamics of a given system, capitalizing on the respective advantages
of both approaches.

Reference [186] examines the application of Integrated System Health Management
(ISHM) technology in aerospace systems. ISHM technology integrates sensor data and
historical state-of-health information of components and subsystems to deliver actionable
insights and facilitate intelligent decision-making pertaining to system operation and
maintenance. The core foundation of ISHM is predicated on the utilization of evaluations
and prognostications pertaining to the overall well-being of a system. This encompasses
the timely identification of malfunctions and the calculation of the remaining duration of
optimal functionality. Various reasoning techniques, such as model-based, data-driven,
or hybrid approaches, can be employed to optimize the promptness and dependability of
diagnostic and prognostic data.

Reference [187] presents a novel approach in the field of artificial intelligence, utilizing
two distinct neural networks known as the growing neural networks (GNN) and variable
sequence LSTM (VarLSTM) model. The objective of this study is to automate the complex
tasks of diagnosis, prognosis, and health monitoring (DPHM) specifically for aerospace
systems. The proposed model utilizes the residuals between the measured telemetry data
and the predictions generated by the GNN algorithm to estimate a HI value. Subsequently,
this HI value is extrapolated for prognostics.

Reference [188] introduces a PHM model that integrates various deep learning meth-
ods to perform condition assessment, fault classification, sensor prediction, and RUL
estimation for aviation systems. In this study, a recurrent network utilizing LSTM is em-
ployed to forecast numerous multivariate time series originating from sensors. Additionally,
a deep belief network (DBN) is utilized to evaluate the condition of the system and clas-
sify errors pertaining to aviation systems. The estimation of the RUL can be achieved by
integrating condition assessment and sensor prediction techniques.

Another instance of a hybrid prognostics technique was suggested and implemented
in a study involving battery degradation, with the aim of demonstrating the possible ad-
vantages associated with the hybrid prognostics approach [189]. An additional illustration
pertains to a hybrid prognostics methodology employed to assess the RUL of wind turbine
bearings [173]. A novel approach to PHM has been suggested, which integrates data-
driven and physics-of-failure models. This methodology aims to address fault diagnosis
and life prediction of electronic equipment [190]. Table 9 presents some recent outstanding
advancements in research pertaining to hybrid prognosis within the aviation sector.

Table 9. Recent research outcomes of hybrid prognosis in aviation industry.

Authors Domain Methods Findings

Singh et al.
(2014) [154] Rolling element bearing Machine learning

The purpose of this study is to establish a
framework that can be utilized as a point of

reference by researchers in order to
investigate potential avenues for enhancing
the field of machine learning-based fault

diagnosis and prognosis of renewable
energy systems.

Omer et al.
(2019) [191]

Clogged filter
Crack propagation

Physics-based
Data-driven

Hybrid

The efficacy of the technique has been
assessed by a comparative analysis of

remaining usable life estimations derived
from both hybrid and individual

prognostic models. The findings indicate
enhanced accuracy, robustness.
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Table 9. Cont.

Authors Domain Methods Findings

Li et al. (2022) [145] Lug joint aluminum
Physics-based
Data-driven

Hybrid

This research employs an approach often
utilized in sensor defect detection and

proposes a novel hybrid prognostic model
for a large joint aluminum. The model

incorporates a bias component in both the
measurement equation and the state vector.

The findings demonstrate a strong and
consistent pattern.

Wang et al.
(2020) [172]

Wind turbine
bearings

Physics-based
Data-driven

Hybrid

The proposed hybrid prognostics is for
RUL estimation of wind turbine bearings.

The exponential deterioration model is
ultimately responsible for the attainment of
the RUL. The findings obtained suggested
methodology is both feasible and efficient

in predicting the RUL of wind
turbine bearings.

Zhang et al.
(2023) [189]

Aircraft turbofan
engine
Milling

1-D convolutional neural
network (1-DCNN)

Bidirectional gated recurrent
unit (BiGRU)

A parallel hybrid NN- 1-DCNN-BiGRU is
designed for RUL. The findings provide

evidence that the parallel hybrid network
is capable of accurately predicting the RUL

and outperform other
conventional methods.

Azar et al.
(2022) [190] Aircraft engines

Reinforcement learning
Machine learning

Hybrid

This paper presents a unique hybrid
Maintenance Decision Support System
(MDSS), which has been developed by
integrating ML with statistical models,

semi-supervised learning, in conjunction
with reinforcement learning, is utilized to

optimize the cognitive behavior model.

Giannakeas et al.
(2023) [192] Composite aircraft panels

Physics-based
Data-driven

Hybrid

The system integrates physics-based and
data-driven models in order to solve the

limitations of the former and tackle
concerns regarding the representativeness
of the training datasets with experimental

composite aircraft panel design.

Mitici et al.
(2023) [193] Turbofan engine CNN

This paper suggests an end-to-end strategy
for data-driven predictive maintenance
CNN for multiple components. It also

shows how data-driven predictive
maintenance could help save money and

improve dependability.

Cui et al. (2023) [194] Servo actuator
Physics-based
Data-driven

Hybrid

Predicts the deterioration of
integrated-servo-actuators (ISA) by
combining a physics-based model

nonlinear Wiener process (NWP) with a
data-driven model Echo-State Network

(ESN). The utilization of NWP is employed
to characterize the physical deterioration

process of the ISA. The data-driven ESN is
specifically designed to optimize the

description of the nonlinear degradation
process of the ISA. The suggested strategy

exhibits a greater level of
prediction accuracy.
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Table 9. Cont.

Authors Domain Methods Findings

Faiyetole et al.
(2023) [195] Boeing 737-100 Gompertz distribution model

The study found that 737–100 had the
highest survivability of all the series, while

Max 8 had a high hazard ratio when
interacting with the airline operator factor.

It concluded that intuitive and accurate
components diagnostics beyond PHM

should be encouraged.

4. Discussion

Overall, it appears that there is a considerable body of significant research being
undertaken in this field. Researchers are now engaged in the exploration of innovative
approaches that involve the application of machine learning, physical principles, and other
data-driven techniques to improve the effectiveness of prognostic tactics for PM and hybrid
systems in PHM for critical aircraft systems. These investigations have been conducted
over many instances. Hybrid prognostic approaches have gained widespread use across
several industries, encompassing sectors such as battery manufacturing, wind turbine
bearing production, and electronic device development.

However, these principles are only applicable to a limited number of systems in real-
life scenarios, primarily because they have undergone a relatively limited development
period compared to other more extensively established engineering systems. Furthermore,
it is important to note that there is currently no universally applicable prognostic model
that can be employed across all systems. It is crucial to recognize that the selection of
an appropriate prognostic model should be contingent upon the specific characteristics
and requirements of the individual systems under consideration. A further concern that
warrants attention is the absence of a readily available dataset for researchers to utilize
in evaluating the efficacy of their models. There remains significant scope for further
advancements in the domain of PHM for aviation systems, with particular emphasis on
hybrid prognostic models.

5. Conclusions

The proper implementation of PHM plays a vital role in ensuring the safety and
reliability of aircraft. PHM systems employ diverse datasets for the purpose of diagnosing
potential failures and predicting the health of machinery and facilitate the proactive identi-
fication and mitigation of potential failures. The application of PHM in aircraft systems
has yielded positive outcomes; however, there exists a notable research deficiency in the
integration of hybrid PHM applications. Notwithstanding these challenges, PHM presents
a multitude of advantages and benefits. However, it is imperative to address the obstacles
to attain optimal performance. This paper presented a comprehensive examination of
the existing research progress on PHM in the aviation sector. It highlighted a range of
widely used algorithms and their respective applications, while also discussing the benefits
and drawbacks associated with each algorithm. The paper included a limited selection of
methods and algorithms, as the authors had to take into account the constraints of paper
length. The authors of this paper will persist in their efforts to advance the development of
physics-based and data-driven models to achieve the ultimate objective of integrating a
groundbreaking hybrid prognostic approach for aircraft systems.
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