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Abstract: Cardio-mechanical monitoring techniques, such as Seismocardiography (SCG) and Gyro-
cardiography (GCG), have received an ever-growing interest in recent years as potential alternatives
to Electrocardiography (ECG) for heart rate monitoring. Wearable SCG and GCG devices based
on lightweight accelerometers and gyroscopes are particularly appealing for continuous, long-term
monitoring of heart rate and its variability (HRV). Heartbeat detection in cardio-mechanical sig-
nals is usually performed with the support of a concurrent ECG lead, which, however, limits their
applicability in standalone cardio-mechanical monitoring applications. The complex and variable
morphology of SCG and GCG signals makes the ECG-free heartbeat detection task quite challenging;
therefore, only a few methods have been proposed. Very recently, a template matching method based
on normalized cross-correlation (NCC) has been demonstrated to provide very accurate detection of
heartbeats and estimation of inter-beat intervals in SCG and GCG signals of pathological subjects. In
this study, the accuracy of HRV indices obtained with this template matching method is evaluated by
comparison with ECG. Tests were performed on two public datasets of SCG and GCG signals from
healthy and pathological subjects. Linear regression, correlation, and Bland-Altman analyses were
carried out to evaluate the agreement of 24 HRV indices obtained from SCG and GCG signals with
those obtained from ECG signals, simultaneously acquired from the same subjects. The results of
this study show that the NCC-based template matching method allowed estimating HRV indices
from SCG and GCG signals of healthy subjects with acceptable accuracy. On healthy subjects, the
relative errors on time-domain indices ranged from 0.25% to 15%, on frequency-domain indices
ranged from 10% to 20%, and on non-linear indices were within 8%. The estimates obtained on
signals from pathological subjects were affected by larger errors. Overall, GCG provided slightly
better performances as compared to SCG, both on healthy and pathological subjects. These findings
provide, for the first time, clear evidence that monitoring HRV via SCG and GCG sensors without
concurrent ECG is feasible with the NCC-based template matching method for heartbeat detection.

Keywords: gyrocardiography; seismocardiography; heart rate variability; heartbeat detection;
template matching; heart rate; mechanocardiography

1. Introduction

Heart rate variability (HRV) is defined as the beat-to-beat variation in heart rate or
inter-beat interval due to the functioning of the autonomic nervous system under phys-
iological mechanisms, mainly respiration, baroreflexes, and thermoregulation [1–6]. In
healthy people, HRV exhibits repeating patterns with the circadian rhythms. On the other
hand, the alteration or loss of this variability has prognostic significance in several patho-
logical conditions. The analysis of HRV has been recognized as a valuable diagnostic tool
as it provides early warning signs for autonomic impairments in many life-threatening
cardiac and non-cardiac diseases [1–6]. HRV analysis is a critical task in the monitoring
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of people at high risk for sudden cardiac death, such as post-infarction survivors, indi-
viduals affected by congestive heart failure, valvular dysfunctions or cardiomyopathies,
heart transplantation recipients, or subjects with a history of myocardial ischemia [1–10].
Abnormalities in the physiological modulation of heart rhythm are also associated with
different non-cardiac diseases. These include diabetes mellitus, obesity, end-stage renal
failure, stroke, multiple sclerosis, muscular dystrophy, epilepsy, and neonatal distress
syndrome [1–6,10,11]. Moreover, HRV indices are useful to assess mental health and help
in the diagnosis of emotional disorders [10,12]. HRV analysis has also been investigated in
sport science and rehabilitation medicine to monitor the autonomic response to physical
exercise [10,13,14]. Furthermore, the evaluation of HRV has an important role in promoting
people’s well-being since it is affected by many lifestyle factors, such as sleep, drugs, stress,
diet, alcohol consumption, smoking, etc. [2,10,15,16]. HRV is also used in sleep studies [17],
e.g., to support the sleep staging task [18].

Different approaches are available for HRV analysis. They can be essentially divided
into three classes: time-domain methods, frequency-domain methods, and non-linear
methods. In time-domain HRV analysis, many statistical and geometric indices are com-
puted from the time series of inter-beat intervals, also known as the tachogram. On the
contrary, various spectral analyses are applied to the tachogram to obtain HRV measures
in the frequency domain. Furthermore, non-linear parameters are often evaluated from
the inter-beat intervals to capture HRV non-linear properties. Generally, HRV analysis is
carried out on Electrocardiography (ECG) recordings acquired within a few minutes or
24 h. For this reason, a distinction can be made between short-term and long-term HRV
analysis [3–5,19]. Heartbeat localization is a fundamental step in HRV analysis. The peaks
of R waves in any ECG tracing are the most accepted fiducial points for heartbeats. Hence,
inter-beat intervals are computed as temporal differences between consecutive R-peaks.
ECG is certainly the reference technique in clinical practice for monitoring heart rate and,
therefore, for analyzing its variability [1–6]. However, it requires supervision by trained
clinical staff. Moreover, some practical issues must be considered: the need for stable
electrodes placement over time, which could be compromised by their possible detach-
ment or slipping, and proper skin preparation via the application of an electrolytic gel,
which dries after prolonged time. In addition, the inconvenience of cable connections, the
inherent susceptibility to electromagnetic interference, and electrical risks represent further
drawbacks of this technique. For these reasons, ECG is not well suited to continuous,
long-term monitoring, especially in non-clinical settings [20–25]. Photoplethysmography
has also been investigated as a wearable surrogate for ECG in HRV analysis [26–32], also
by using modern smart watches and with the support of machine learning [33–35]. How-
ever, the strong sensitivity to motion artifacts prevents precise identification of heartbeat
markers, thus limiting its application to continuous heart rate monitoring and therefore the
possibility of obtaining accurate HRV measurements [36–39].

In the last decades, the great advances in sensor technology have led to a growing
interest in cardio-mechanical monitoring techniques, which monitor the small vibrations
induced on the body surface by the mechanical activity of the cardiovascular system. In
addition to the well-established Phonocardiography (PCG) [40–43], alternative techniques
such as Ballistocardiography (BCG) [44–49] and Seismocardiography (SCG) [50–57] have
regained attention due to their suitability for wearable applications. Novel techniques
have also been introduced, such as Gyrocardiography (GCG) [58–61], Kinocardiography
(KCG) [62,63] and Forcecardiography (FCG) [64–71]. BCG signals are commonly measured
via weighing scales as well as sensing systems embedded in beds or chairs to capture
the mechanical vibrations of the whole body due to blood flowing through the vascular
tree. On the other hand, SCG and GCG make use of three-dimensional accelerometers
and gyroscopes to record linear accelerations and angular velocities of the chest wall, re-
spectively. Combined SCG and GCG measurements have also been investigated thanks
to the availability of inertial measurement units (IMUs) that integrate both types of sen-
sors [72]. KCG uses two IMUs, placed on the chest and on the lower back, thus performing
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12 degrees-of-freedom measurements. Finally, FCG captures respiration, infrasonic cardiac
vibrations, and heart sounds all simultaneously from a single site of the chest via broadband
force sensors.

Cardio-mechanical monitoring techniques are not affected by the typical ECG draw-
backs related to electrodes. However, they are still affected by motion artifacts, which
currently limit their use in long-term monitoring for clinical purposes. These techniques
rely on small, lightweight, low-cost sensors, which are particularly appealing for wearable
applications. In this regard, continuous, long-term monitoring would benefit from wearable
devices, especially in daily life environments, all the more so if one considers that accelerom-
eters and gyroscopes are largely integrated into smartphones nowadays. For these reasons,
many studies investigated the suitability of cardio-mechanical signals for HRV analysis,
particularly BCG [73–75], SCG [36,57,76–78], and GCG [76,79]. Specific peaks or valleys
of these signals, which correlate with important cardiac cycle events, were considered as
heartbeat fiducial points, e.g., the aortic valve opening (AO) on SCG/GCG signals and
the peak of the J wave on BCG signals. However, the localization of fiducial points is
usually performed by taking advantage of a simultaneous ECG recording [48,50–52,60],
which limits the application of such methods to standalone cardio-mechanical monitoring.
There were also some attempts to perform HRV analysis on time series of inter-beat inter-
vals obtained without the support of concurrent ECG tracings [78,80–86]; however, these
methods were only tested on limited cohorts of healthy subjects. Furthermore, it should
be underlined that the cardio-mechanical signals of pathological subjects show atypical
waveforms with high morphological variability [87]. This aspect makes heartbeat detection
a much more complex task. Few studies by Sieciński et al. investigated the feasibility of
HRV analysis on cardio-mechanical signals of pathological subjects [88–90]. Specifically,
HRV indices obtained from the SCG and/or GCG signals of 30 healthy volunteers and
30 patients with valvular heart diseases (VHDs) were compared with those computed from
reference ECG signals. The inter-beat intervals considered for HRV analysis were estimated
as temporal differences between consecutive AO events, which were identified by taking
advantage of simultaneous ECG signals.

Recently, a template matching algorithm for ECG-free heartbeat detection has been
presented. In detail, this method assesses the morphological similarity between a heartbeat
template and the whole signal by using the normalized cross-correlation (NCC) as a
similarity measure. In particular, the local maxima of the NCC function, which correspond
to the signal chunks with the highest local similarity to the selected template, are considered
heartbeat fiducial points. This ECG-free heartbeat detection method was tested on both
SCG and GCG signals of 100 patients with one or more VHDs [91,92], made available in a
public database [93]. The results of these studies demonstrated that the template matching
algorithm provides high accuracy in heartbeat detection and inter-beat interval estimation,
both in SCG and GCG signals. It is worth highlighting that in [91,92] the inter-beat intervals
were computed from NCC local maxima instead of common SCG/GCG fiducial points,
and only the inter-beat intervals related to correctly detected heartbeats in SCG and GCG
signals were compared against those obtained from ECG. However, in real standalone
cardio-mechanical monitoring, it is not possible to exclude inter-beat intervals related to
missed and/or spurious heartbeats; therefore, their impact on HRV analysis should be
evaluated. In addition, it is important to evaluate how measurement errors, although very
small, affect the accuracy of HRV analysis.

The present study addressed this issue by performing extensive HRV analyses on two
public databases, consisting of SCG, GCG, and ECG recordings from 100 VHD patients [93]
and 29 healthy subjects [94]. To this end, the ECG-free heartbeat detection method based
on template matching was applied to these signals for inter-beat interval estimation. Then,
several time-domain, frequency-domain, and non-linear HRV indices were computed from
SCG and GCG data and compared with those obtained from ECG via linear regression,
correlation, and Bland-Altman analyses. The results demonstrate that the HRV indices
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obtained by using the ECG-free heartbeat detection based on template matching are in very
close agreement with those provided by ECG.

2. Materials and Methods
2.1. Datasets
2.1.1. Pathological Subjects Dataset

Two public datasets were considered for this study. The first one, which is thoroughly
described in [93], consists of SCG, GCG, and ECG signals collected from 100 patients
(59 males and 41 females, age 68 ± 14 years) suffering from one or more valvular heart
diseases (VHDs) at a moderate or severe stage. All signals were recorded via an ECG
front-end and an inertial measurement unit consisting of a tri-axial MEMS accelerometer
and gyroscope, all integrated in the Shimmer 3 ECG module (Shimmer Sensing, Dublin,
Ireland), which was secured on subjects’ chests. The recordings were carried out on patients
lying supine and breathing at a natural pace.

ECG leads II, SCGz, and GCGy signals from this database have already been processed
in previous studies [91,92], which focused on detecting heartbeats via a novel ECG-free
detection method, which is also briefly described in the next section. Some patients’
recordings have been excluded from SCG and/or GCG analysis due to extremely poor
signal quality (detailed information is reported in [91,92]). The results obtained from [91,92]
were used in this study for HRV analysis.

2.1.2. Healthy Subjects Dataset

The second public dataset considered in this study consists of simultaneously acquired
ECG, SCG, and GCG signals, collected from 29 male healthy subjects (age 29 ± 5 years) [94].
A triaxial capacitive digital accelerometer (MMA8451Q, Freescale Semiconductor, Austin,
TX, USA), a triaxial gyroscope (MAX21000, Maxim Integrated, San Jose, CA, USA), and
an ECG front-end (ADS1293, Texas Instruments, Dallas, TX, USA) were used to acquire,
respectively, SCG, GCG, and ECG signals, simultaneously sampled at 800 Hz. Recordings
were performed with sensors attached via double-sided tape to the sternum of the subjects
while lying either in the supine position or on their left or right side.

Heartbeat detection was performed on ECG, SCG, and GCG signals from the healthy
subjects database via the same procedure adopted for the pathological subjects dataset.
Then, inter-beat intervals were computed and used for HRV analysis.

2.2. Heartbeat Detection and Inter-Beat Intervals Estimation

Inter-beat intervals used for HRV analysis were obtained from the results of previous
studies [91,92]. In these studies, after a first pre-processing step aimed at resampling ECG,
SCG, and GCG signals at 1 kHz via linear interpolation and improving their signal-to-
noise ratio, the heartbeats were detected in such signals and eventually used to compute
the inter-beat intervals. To this end, the heartbeats were detected in ECG signals by
locating the R-peaks via the well-known Pan and Tompkins algorithm [95], implemented
in the BioSigKit Matlab®toolbox [96]. On the other hand, the heartbeats were detected in
SCG and GCG signals by using a novel ECG-free heartbeat detection algorithm based on
template matching via normalized cross-correlation (NCC), which is extensively described
in [91,92]. Essentially, the template matching method computes the NCC between the
whole signal (SCG or GCG) and a heartbeat template selected from the same signal and
then locates the local maxima of the NCC function corresponding to the time locations at
which the signal exhibits the local highest similarity with the selected heartbeat template.
Therefore, unlike common approaches that use specific fiducial points, such as the aortic
valve opening, to locate the heartbeats in SCG and GCG signals [48,50–52,60], the template
matching approach adopted in [91,92] provides the timings of NCC local maxima as the
time locations of the heartbeats. In [91,92], only the inter-beat intervals related to correctly
detected heartbeats in SCG and GCG signals were compared against those obtained from
ECG, demonstrating a very close agreement. In this study, instead, the inter-beat intervals
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related to missed and false heartbeats were also considered in order to effectively evaluate
the agreement of HRV indices obtained from SCG and GCG signals in a full standalone
operation with those obtained from reference ECG.

The same procedure was applied to the signals collected in the healthy subjects dataset.
Therefore, after resampling and filtering operations, heartbeats were first detected in the
ECG signals via the Pan and Tompkins algorithm and in the SCGz and GCGy signals
via the ECG-free heartbeat detection algorithm based on template matching; then, the
inter-beat intervals were computed from the heartbeat locations just obtained and fed to
the subsequent HRV analysis.

2.3. Heart Rate Variability Analysis

HRV analysis was carried out using the well-established software “Kubios HRV Stan-
dard”, which has been developed for more than 20 years and is enriched with state-of-the-art
methodologies for accurate HRV indices extraction [97–100]. For this reason, Kubios has
been used in many scientific studies [101–109]. In this study, time-domain, frequency-
domain, and non-linear HRV indices were considered, which are outlined in Table 1.

Table 1. Time-domain, frequency-domain, and non-linear HRV indices considered in this study.

Time-Domain Indices Frequency-Domain Indices Non-Linear Indices

Mean RR (ms) LF absolute power (ms2) Poincaré SD1 (ms)
SDNN (ms) HF absolute power (ms2) Poincaré SD2 (ms)
Mean HR (bpm) LF relative power Poincaré SD2/SD1
SD HR (bpm) HF relative power Approximate entropy
Min HR (bpm) LF normalized power Sample entropy
Max HR (bpm) HF normalized power DFA α1
RMSSD (ms) Total power (ms2) DFA α2
NN50 (beats) LF/HF
pNN50 (adim)

Before performing the HRV analysis, a thorough examination of ECG signals from the
pathological subjects dataset was carried out to recognize all subjects with signs of atrial
fibrillation/flutter or other forms of arrhythmias, as well as those presenting ECG signals
where P-waves cannot be clearly identified and/or an excessive number of premature
ventricular contractions occurred. This step was instrumental in excluding those subjects
from HRV analysis since those anomalies in ECG signals are not related to the fluctuations
of the sinus rhythm caused by autonomic nervous system control, which is the main subject
of HRV analysis.

The time series of the inter-beat intervals (i.e., tachograms) extracted from each of
the ECG, SCG, and GCG signals of all subjects included in the analysis were imported
into Kubios HRV Standard. Before actually extracting the HRV indices outlined in Table 1,
each tachogram was analyzed to detect and correct possible artifacts, as recommended in
the Kubios HRV guidelines [110]. Kubios HRV Standard offers a correction algorithm based
on predefined thresholds (ranging from “very low” to “very strong”) or possibly a custom
threshold, which are used to detect potential artifacts. A sample of the tachogram (i.e., an
inter-beat interval) is classified as an artifact if the difference with a local median of the
tachogram exceeds the selected threshold [110]. The detected artifacts are then corrected
with values obtained via interpolation with cubic splines. The predefined threshold values
decrease from the “very low” option to the “very strong” option; thus, the “very low” option
detects only the tachogram points featuring the highest differences with the local median,
while the other options toward “very strong” detect points with progressively lower dif-
ferences. This implies that selecting a stronger correction option increases the chance of
erroneously classifying a correct inter-beat interval as an artifact, which would be then
replaced by an interpolated value, thus corrupting the actual HRV trend. For this reason,
the Kubios HRV guidelines recommend that the user select the lowest correction option that
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allows detecting and correcting all artifacts while minimizing the number of correct points
that are erroneously considered artifacts. The correction of the tachograms analyzed in this
study was performed according to Kubios HRV guidelines.

2.4. Statistical Analyses

Correlation, Passing-Bablok linear regression [111], and Bland-Altman analyses [112,113]
were carried out to compare the HRV indices obtained from SCG and GCG signals with
respect to those obtained from ECG, which were considered the ground truth. In particular,
data from healthy and pathological subjects were analyzed separately. Therefore, for each
HRV index, the values obtained from SCG signals of all subjects in the considered group
were compared with those obtained from the related ECG signals; the same procedure
was then applied to the values obtained from GCG signals. Correlation and Bland-Altman
analyses were performed via the Matlab®function bland-altman-and-correlation-plot [114].

3. Results
3.1. Analysis of Healthy Subjects Data

All 29 subjects in the healthy subjects dataset were considered for the analyses, which
were performed on a total of 10,967 inter-beat intervals. The results of linear regression and
correlation analyses and of Bland-Altman analysis performed on HRV indices extracted
from SCG signals are outlined in Tables 2 and 3, respectively, while those related to GCG
signals are outlined in Tables 4 and 5.

Table 2. Results of correlation and Passing-Bablok linear regression analyses performed on SCG and
ECG signals from the 29 subjects in the healthy subjects dataset.

HRV Index r CIr Slope CIslope Intercept CIintercept

Mean RR * 0.998 [0.995; 0.999] 1.003 [1.000; 1.013] −2.840 [−12.394; −0.116]
SDNN * 0.994 [0.987; 0.997] 0.996 [0.967; 1.015] 0.343 [−0.463; 1.434]
Mean HR * 0.999 [0.997; 0.999] 1.003 [1.000; 1.012] −0.173 [−0.781; −0.008]
SD HR * 0.982 [0.962; 0.992] 0.991 [0.939; 1.011] 0.042 [−0.022; 0.188]
Min HR * 0.982 [0.962; 0.992] 1.000 [0.999; 1.002] 0.009 [−0.117; 0.066]
Max HR * 0.915 [0.825; 0.960] 1.001 [0.996; 1.006] −0.037 [−0.418; 0.371]
RMSSD * 0.993 [0.985; 0.997] 0.998 [0.969; 1.022] 0.313 [−0.778; 1.388]
NN50 * 0.998 [0.996; 0.999] 1.000 [0.972; 1.031] 1.000 [−3.047; 2.593]
pNN50 * 0.997 [0.994; 0.999] 1.012 [0.975; 1.052] −0.211 [−1.072; 0.838]
LF absolute power * 0.984 [0.967; 0.993] 0.998 [0.973; 1.012] 10.921 [0.503; 37.109]
HF absolute power * 0.983 [0.965; 0.992] 1.004 [0.959; 1.032] 9.575 [−11.543; 47.347]
LF relative power * 0.974 [0.945; 0.988] 0.990 [0.930; 1.018] 0.475 [−1.152; 3.107]
HF relative power * 0.974 [0.945; 0.988] 0.991 [0.932; 1.021] 0.506 [−0.883; 3.799]
LF normalized power * 0.974 [0.945; 0.988] 0.991 [0.932; 1.022] 0.421 [−1.194; 2.741]
HF normalized power * 0.974 [0.945; 0.988] 0.991 [0.931; 1.022] 0.503 [−0.975; 4.071]
Total power * 0.993 [0.985; 0.997] 0.995 [0.936; 1.014] 26.638 [−6.793; 115.472]
LF/HF * 0.982 [0.961; 0.991] 0.984 [0.897; 1.020] 0.012 [−0.021; 0.062]
Poincaré SD1 * 0.993 [0.985; 0.997] 0.998 [0.969; 1.021] 0.222 [−0.522; 0.992]
Poincaré SD2 * 0.995 [0.988; 0.998] 0.988 [0.957; 1.002] 0.882 [0.093; 2.399]
SD2/SD1 * 0.990 [0.979; 0.995] 0.996 [0.961; 1.042] 0.007 [−0.078; 0.066]
Approximate entropy * 0.993 [0.984; 0.997] 1.016 [0.968; 1.066] −0.016 [−0.067; 0.029]
Sample entropy * 0.852 [0.705; 0.928] 1.025 [0.899; 1.149] −0.036 [−0.226; 0.159]
DFA α1 * 0.972 [0.940; 0.987] 1.001 [0.971; 1.051] 0 [−0.049; 0.028]
DFA α2 * 0.967 [0.930; 0.985] 0.990 [0.925; 1.024] 0.003 [−0.003; 0.018]

* cusum linearity test p-value > 0.1.

The results of correlation analyses report that all HRV indices extracted from both
SCG and GCG achieved Pearson’s correlation coefficients (with respect to ECG) in excess of
0.9, apart from Sample entropy obtained from GCG. However, the 95% confidence intervals
(CI) of correlation coefficients of some HRV indices presented lower bounds below 0.9,
namely, Max HR and Sample entropy estimated from SCG and GCG. According to the results



Sensors 2023, 23, 8114 7 of 21

of Passing-Bablok linear regression, for all HRV indices extracted from SCG, no statistically
significant differences from unity were found for the slopes (i.e., the CIs of the slopes
always included unity), while statistically significant intercepts were found for Mean RR,
Mean HR, LF absolute power, and Poincaré SD2. Concerning the results achieved on GCG
signals, no statistically significant differences from unity were found for the slopes of all
HRV indices but the RMSSD, while statistically significant intercepts were found for SDNN,
SD HR, Min HR, RMSSD, Poincaré SD1, and Poincaré SD2. In addition, the cusum test [111]
confirmed the linearity between all HRV indices extracted from SCG and ECG signals
(p > 0.1) and from GCG and ECG signals (p > 0.1). The results of Bland-Altman analyses
revealed modest yet statistically significant biases for SDNN, SD HR, Min HR, LF absolute
power, HF absolute power, and Total power estimated from both SCG and GCG signals, as
well as for Max HR, Poincaré SD2, and DFA α2 estimated from SCG, and RMSSD, NN50,
pNN50, and LF relative power estimated from GCG.

Table 3. Results of the Bland-Altman analysis performed on SCG and ECG signals from the 29 subjects
in the healthy subjects dataset In cases of measurement differences with a non-normal distribution,
the bias was estimated as the median of differences and the limits of agreement as the 2.5th and 97.5th
percentiles, respectively.

HRV Index Bias CIbias LoA CILoA min CILoA max

Mean RR * 0 [−0.061; 0.030] [−3.319; 33.299] [−3.365; −2.619] [25.352; 35.487]
SDNN * 0.106 [0.069; 0.478] [−11.024; 3.284] [−12.528; −4.828] [2.841; 3.379]
Mean HR * 0 [−0.002; 0.007] [−1.616; 0.213] [−1.623; −1.177] [0.158; 0.224]
SD HR * 0.013 [0.002; 0.026] [−1.032; 0.233] [−1.204; −0.354] [0.202; 0.234]
Min HR * −0.018 [−0.028; −0.012] [−5.775; 1.451] [−7.080; −1.015] [0.043; 1.857]
Max HR * 0.038 [0.019; 0.060] [−15.102; 5.219] [−15.254; −11.316] [1.213; 6.310]
RMSSD * 0.239 [−0.03; 0.403] [−13.254; 4.288] [−14.591; −7.061] [3.274; 4.456]
NN50 −0.138 [−2.025; 1.75] [−10.476; 10.200] [−13.838; −7.114] [6.838; 13.563]
pNN50 0.136 [−0.441; 0.712] [−3.021; 3.292] [−4.048; −1.995] [2.266; 4.319]
LF absolute power * 8.032 [3.756; 22.21] [−1991.966; 523.142] [−2262.832; −841.009] [69.770; 653.836]
HF absolute power * 12.248 [0.77; 27.906] [−958.158; 489.074] [−1132.237; −306.394] [219.932; 558.145]
LF relative power * −0.063 [−0.781; 0.174] [−12.024; 9.500] [−14.202; −4.461] [6.477; 9.983]
HF relative power * 0.067 [−0.284; 0.373] [−9.651; 12.934] [−9.930; −6.902] [4.421; 15.369]
LF normalized power * −0.078 [−0.407; 0.303] [−13.007; 9.697] [−15.444; −4.456] [6.828; 10.037]
HF normalized power * 0.077 [−0.302; 0.394] [−9.673; 13.001] [−10.018; −6.818] [4.459; 15.435]
Total power * 18.625 [7.175; 48.412] [−1983.120; 159.941] [−2346.200; −676.945] [143.153; 161.655]
LF/HF * −0.007 [−0.026; 0.007] [−0.661; 0.371] [−0.682; −0.583] [0.174; 0.424]
Poincaré SD1 * 0.169 [−0.021; 0.285] [−9.390; 3.067] [−10.327; −5.012] [2.320; 3.194]
Poincaré SD2 * 0.229 [0.083; 0.399] [−11.718; 3.699] [−13.841; −4.232] [3.039; 3.741]
SD2/SD1 * −0.001 [−0.012; 0.012] [−0.126; 0.180] [−0.133; −0.093] [0.144; 0.189]
Approximate entropy 0 [−0.012; 0.013] [−0.068; 0.068] [−0.090; −0.046] [0.046; 0.090]
Sample entropy * 0.002 [−0.036; 0.041] [−0.128; 0.652] [−0.132; −0.109] [0.117; 0.806]
DFA α1 * 0.001 [−0.002; 0.008] [−0.189; 0.093] [−0.196; −0.151] [0.067; 0.098]
DFA α2 * 0.002 [0; 0.006] [−0.016; 0.118] [−0.017; −0.009] [0.084; 0.125]

* Non-normal distribution of differences.

Table 4. Results of correlation and Passing-Bablok linear regression analyses performed on GCG and
ECG signals from the healthy subjects dataset (29 subjects).

HRV Index r CIr Slope CIslope Intercept CIintercept

Mean RR * 0.999 [0.997; 0.999] 1.000 [0.999; 1.001] −0.044 [−0.526; 1.166]
SDNN * 0.995 [0.990; 0.998] 0.986 [0.955; 1.002] 0.983 [0.307; 2.255]
Mean HR * 0.999 [0.998; 1.000] 1.000 [0.999; 1.001] −0.004 [−0.039; 0.079]
SD HR * 0.994 [0.986; 0.997] 0.993 [0.961; 1.007] 0.054 [0.008; 0.160]
Min HR * 0.994 [0.987; 0.997] 0.997 [0.986; 1.000] 0.137 [0.011; 0.793]
Max HR * 0.933 [0.861; 0.968] 1.001 [0.998; 1.007] −0.089 [−0.517; 0.202]
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Table 4. Cont.

HRV Index r CIr Slope CIslope Intercept CIintercept

RMSSD * 0.990 [0.979; 0.995] 0.975 [0.938; 0.995] 1.254 [0.388; 2.792]
NN50 * 0.996 [0.992; 0.998] 1.010 [0.992; 1.031] 0.651 [−0.653; 1.300]
pNN50 * 0.994 [0.988; 0.997] 1.009 [0.986; 1.026] 0.124 [−0.331; 0.865]
LF absolute power * 0.982 [0.962; 0.992] 1.013 [0.999; 1.031] 1.112 [−10.491; 13.718]
HF absolute power * 0.985 [0.968; 0.993] 1.017 [0.997; 1.038] 0.588 [−16.651; 16.293]
LF relative power * 0.966 [0.929; 0.984] 1.007 [0.988; 1.033] −0.617 [−1.693; 0.331]
HF relative power * 0.976 [0.950; 0.989] 1.010 [0.996; 1.034] −0.189 [−1.265; 0.522]
LF normalized power * 0.971 [0.939; 0.987] 1.008 [0.992; 1.032] −0.684 [−1.791; 0.220]
HF normalized power * 0.971 [0.939; 0.987] 1.008 [0.992; 1.032] −0.069 [−1.415; 0.616]
Total power * 0.990 [0.979; 0.995] 1.012 [0.996; 1.021] 4.421 [−9.378; 37.896]
LF/HF * 0.972 [0.940; 0.987] 0.996 [0.971; 1.024] −0.008 [−0.030; 0.011]
Poincaré SD1 * 0.990 [0.979; 0.995] 0.975 [0.938; 0.995] 0.888 [0.273; 1.983]
Poincaré SD2 * 0.990 [0.978; 0.995] 0.995 [0.977; 1.008] 0.717 [0.019; 1.629]
SD2/SD1 * 0.965 [0.925; 0.983] 0.994 [0.939; 1.018] 0.010 [−0.030; 0.108]
Approximate entropy * 0.992 [0.982; 0.996] 0.997 [0.971; 1.037] 0.009 [−0.032; 0.034]
Sample entropy * 0.871 [0.740; 0.938] 0.962 [0.863; 1.106] 0.066 [−0.144; 0.221]
DFA α1 * 0.957 [0.909; 0.980] 1.015 [0.989; 1.074] −0.018 [−0.065; 0.007]
DFA α2 * 0.974 [0.944; 0.988] 0.974 [0.942; 1.002] 0.005 [−0.001; 0.013]

* cusum linearity test p-value > 0.1.

Table 5. Results of Bland-Altman analysis performed on GCG and ECG signals from the healthy
subjects dataset (29 subjects). In cases of measurement differences with a non-normal distribution, the
bias was estimated as the median of differences and the limits of agreement as the 2.5th and 97.5th
percentiles, respectively.

HRV Index Bias CIbias LoA CILoA min CILoA max

Mean RR * 0.004 [−0.008; 0.034] [−15.224; 21.364] [−18.838; −2.367] [9.774; 23.969]
SDNN * 0.405 [0.146; 0.541] [−7.446; 5.486] [−8.708; −2.482] [4.146; 5.651]
Mean HR * 0 [−0.002; 0.001] [−1.000; 0.995] [−1.097; −0.090] [0.134; 1.239]
SD HR * 0.031 [0.022; 0.046] [−0.324; 0.448] [−0.359; −0.168] [0.354; 0.454]
Min HR * −0.012 [−0.028; 0] [−2.481; 2.030] [−2.99; −0.700] [1.533; 2.055]
Max HR * 0.019 [−0.021; 0.046] [−12.138; 8.000] [−13.549; −6.201] [5.643; 8.366]
RMSSD * 0.199 [0.024; 0.583] [−13.48; 1.884] [−13.785; −11.135] [1.715; 1.896]
NN50 * 1.000 [0; 3.000] [−26.475; 9.325] [−33.000; −3.325] [6.775; 10.000]
pNN50 * 0.429 [0; 0.893] [−7.631; 2.866] [−8.674; −3.361] [2.264; 2.941]
LF absolute power * 11.633 [3.469; 18.106] [−1637.084; 886.249] [−2051.11; −167.098] [150.984; 1094.418]
HF absolute power * 14.505 [2.195; 41.863] [−862.011; 262.361] [−982.636; −349.895] [195.484; 273.396]
LF relative power * −0.267 [−0.585; 0.032] [−4.241; 18.982] [−4.702; −2.518] [1.750; 23.901]
HF relative power * 0.368 [0.029; 0.584] [−17.048; 2.344] [−21.236; −2.147] [2.069; 2.347]
LF normalized power * −0.317 [−0.686; 0.002] [−3.245; 18.754] [−3.533; −2.132] [2.088; 23.474]
HF normalized power * 0.317 [−0.001; 0.684] [−18.744; 3.256] [−23.463; −2.081] [2.128; 3.549]
Total power * 25.093 [15.185; 58.74] [−1830.18; 406.8] [−2343.112; −51.739] [304.384; 420.661]
LF/HF * −0.011 [−0.023; 0] [−0.230; 1.177] [−0.239; −0.172] [0.178; 1.456]
Poincaré SD1 * 0.141 [0.017; 0.412] [−9.553; 1.335] [−9.771; −8.047] [1.247; 1.342]
Poincaré SD2 * 0.495 [0.318; 0.695] [−7.662; 14.356] [−9.463; −1.324] [7.332; 15.873]
SD2/SD1 * 0.002 [−0.007; 0.007] [−0.113; 0.520] [−0.120; −0.076] [0.238; 0.590]
Approximate entropy * 0.005 [−0.007; 0.013] [−0.086; 0.101] [−0.101; −0.030] [0.066; 0.108]
Sample entropy * 0.005 [−0.009; 0.021] [−0.258; 0.485] [−0.278; −0.163] [0.374; 0.490]
DFA α1 * −0.003 [−0.010; 0] [−0.073; 0.315] [−0.079; −0.050] [0.116; 0.369]
DFA α2 * 0 [−0.001; 0.002] [−0.043; 0.093] [−0.048; −0.021] [0.074; 0.097]

* Non-normal distribution of differences.

Figure 1 shows the box and whiskers plots of the relative percentage errors of HRV
indices obtained from SCG and GCG. In particular, the results related to time-domain
indices are shown in panels (Figure 1a,b), those related to frequency-domain indices are
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shown in panel (Figure 1c), and those related to non-linear indices are shown in panel
(Figure 1d).

(a)

(b)

(c)

Figure 1. Cont.
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(d)

Figure 1. Comparison of box and whiskers plots of relative percentage errors of HRV indices
extracted from SCG and GCG signals of the healthy subjects dataset: (a,b) time-domain indices; (c) I
frequency-domain indices; (d) non-linear indices.

3.2. Analysis of Pathological Subjects Data

A total of 51 pathological subjects were considered for the analyses (see Table A1 in
Appendix A). Six subjects were excluded from the SCG data analysis and two subjects from
the GCG data analysis because of the poor signal quality [91,92]. Therefore, HRV indices
were extracted from SCG signals of 45 subjects (total of 18,429 inter-beat intervals) and GCG
signals of 49 subjects (total of 20,578 inter-beat intervals). The results of linear regression
and correlation analyses and of Bland-Altman analysis performed on HRV indices extracted
from SCG signals are outlined in Tables 6 and 7, respectively. The results obtained on HRV
indices extracted from GCG signals are outlined in Tables 8 and 9.

Table 6. Results of correlation and Passing-Bablok linear regression analyses performed on SCG and
ECG signals from the pathological subjects dataset (42 subjects).

HRV Index r CIr Slope CIslope Intercept CIintercept

Mean RR * 0.9999 [0.9999; 1.0000] 1.002 [1.000; 1.005] −1.309 [−3.618; −0.044]
SDNN * 0.9944 [0.9895; 0.9970] 0.967 [0.939; 0.997] 0.423 [0.063; 0.942]
Mean HR * 0.99995 [0.9999; 1.0000] 1.001 [1.000; 1.004] −0.115 [−0.336; −0.024]
SD HR * 0.9911 [0.9835; 0.9953] 0.971 [0.947; 1.006] 0.045 [−0.002; 0.075]
Min HR * 0.9990 [0.9982; 0.9995] 0.999 [0.997; 1.001] 0.026 [−0.082; 0.166]
Max HR ** 0.9988 [0.9977; 0.9993] 1.005 [1.001; 1.016] −0.354 [−1.261; −0.033]
RMSSD * 0.9960 [0.9925; 0.9978] 0.945 [0.907; 0.978] 0.790 [0.093; 1.349]
NN50 * 0.9668 [0.9388; 0.9822] 0.939 [0.826; 0.980] 0 [0; 0]
pNN50 * 0.9797 [0.9623; 0.9891] 0.939 [0.812; 0.988] 0 [0; 0]
LF absolute power * 0.9665 [0.9382; 0.9820] 1.034 [0.994; 1.084] 0.013 [−1.461; 0.983]
HF absolute power * 0.9994 [0.9988; 0.9997] 0.921 [0.859; 0.947] 2.071 [0.118; 7.406]
LF relative power * 0.9011 [0.8223; 0.9459] 0.991 [0.872; 1.094] 1.522 [−2.258; 6.836]
HF relative power * 0.9401 [0.8907; 0.9676] 0.970 [0.871; 1.072] −0.034 [−5.927; 4.012]
LF normalized power * 0.9278 [0.8688; 0.9608] 0.988 [0.884; 1.103] 1.789 [−2.565; 7.255]
HF normalized power * 0.9279 [0.8691; 0.9609] 0.989 [0.883; 1.104] −0.630 [−7.780; 4.439]
Total power * 0.9946 [0.9900; 0.9971] 0.975 [0.938; 1.029] 5.212 [−2.606; 12.354]
LF/HF * 0.8127 [0.6757; 0.8955] 1.043 [0.923; 1.197] 0.013 [−0.038; 0.097]
Poincaré SD1 * 0.9960 [0.9925; 0.9978] 0.944 [0.906; 0.977] 0.566 [0.076; 0.964]
Poincaré SD2 * 0.9872 [0.9761; 0.9931] 0.973 [0.945; 0.996] 0.583 [0.061; 1.077]
SD2/SD1 * 0.9131 [0.8432; 0.9527] 0.936 [0.827; 1.074] 0.102 [−0.064; 0.252]
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Table 6. Cont.

HRV Index r CIr Slope CIslope Intercept CIintercept

Approximate entropy * 0.952 [0.9119; 0.9741] 1.160 [1.029; 1.294] −0.213 [−0.375; −0.047]
Sample entropy * 0.7910 [0.6413; 0.8827] 0.928 [0.799; 1.081] 0.107 [−0.170; 0.339]
DFA α1 * 0.9356 [0.8827; 0.9651] 0.969 [0.874; 1.080] 0.036 [−0.034; 0.127]
DFA α2 * 0.9535 [0.9146; 0.9749] 1.013 [0.951; 1.091] −0.011 [−0.046; 0.016]

* cusum linearity test p-value > 0.1. ** cusum linearity test p-value > 0.05.

Table 7. Results of Bland-Altman analysis performed on SCG and ECG signals from the pathological
subjects dataset (42 subjects). In cases of measurement differences with a non-normal distribution,
the bias was estimated as the median of differences, and the limits of agreement as the 2.5th and
97.5th percentiles, respectively.

HRV Index Bias CIbias LoA CILoA min CILoA max

Mean RR * 0.234 [0.031; 0.402] [−2.045; 6.132] [−2.990; −1.010] [3.606; 8.2]
SDNN * 0.040 [−0.192; 0.352] [−4.141; 4.414] [−4.975; −2.941] [2.889; 5.17]
Mean HR * −0.014 [−0.037; −0.003] [−0.381; 0.313] [−0.505; −0.260] [0.085; 0.556]
SD HR * 0.003 [−0.018; 0.031] [−0.327; 0.343] [−0.339; −0.241] [0.279; 0.376]
Min HR * −0.029 [−0.042; −0.013] [−2.200; 0.511] [−2.540; −1.472] [0.099; 0.936]
Max HR * 0 [−0.023; 0.047] [−2.227; 1.297] [−2.823; −1.543] [1.052; 1.423]
RMSSD * −0.301 [−0.800; 0.456] [−6.267; 2.886] [−7.064; −4.406] [2.718; 3.07]
NN50 * −0.500 [−1.000; 0] [−34.100; 6.900] [−66.000; −7.000] [5; 8]
pNN50 * −0.074 [−0.196; 0] [−9.148; 2.001] [−16.561; −2.166] [1.39; 2.103]
LF absolute power * 0.744 [0.122; 3.916] [−124.02; 415.754] [−151.708; −49.850] [223.816; 615.848]
HF absolute power * −2.725 [−9.616; −0.538] [−581.508; 34.352] [−1179.716; −87.789] [27.523; 39.36]
LF relative power * 0.962 [−0.230; 3.585] [−10.183; 26.251] [−11.033; −7.283] [21.037; 28.539]
HF relative power * −1.345 [−4.163; 0.014] [−24.080; 8.762] [−26.460; −18.815] [6.325; 11.33]
LF normalized power * 1.146 [−0.251; 4.520] [−8.879; 26.748] [−10.577; −7.105] [19.137; 28.597]
HF normalized power * −1.158 [−4.548; 0.128] [−26.661; 8.886] [−28.542; −18.413] [7.1; 10.569]
Total power * 0.909 [−2.803; 6.909] [−524.008; 374.227] [−881.252; −163.948] [152.056; 493.838]
LF/HF * 0.064 [−0.003; 0.220] [−0.874; 2.623] [−1.100; −0.616] [0.921; 4.133]
Poincaré SD1 * −0.212 [−0.566; 0.323] [−4.436; 2.046] [−4.999; −3.104] [1.884; 2.18]
Poincaré SD2 * 0.007 [−0.156; 0.325] [−5.381; 9.105] [−6.320; −3.318] [6.109; 12.683]
SD2/SD1 * 0.033 [−0.028; 0.082] [−0.406; 0.570] [−0.546; −0.241] [0.434; 0.626]
Approximate entropy −0.014 [−0.034; 0.006] [−0.142; 0.115] [−0.177; −0.108] [0.08; 0.149]
Sample entropy * −0.029 [−0.059; 0.017] [−0.641; 0.314] [−1.016; −0.311] [0.206; 0.335]
DFA α1 0.028 [−0.005; 0.062] [−0.192; 0.249] [−0.252; −0.133] [0.19; 0.308]
DFA α2 * −0.006 [−0.014; 0.003] [−0.096; 0.126] [−0.098; −0.083] [0.069; 0.17]

* Non-normal distribution of differences.

Table 8. Results of correlation and Passing-Bablok linear regression analyses performed on GCG and
ECG signals from the pathological subjects dataset (49 subjects).

HRV Index r CIr Slope CIslope Intercept CIintercept

Mean RR * 0.9988 [0.9979; 0.9993] 1.001 [1.000; 1.003] −0.611 [−1.974; 0.182]
SDNN * 0.9973 [0.9952; 0.9985] 0.958 [0.933; 0.981] 0.660 [0.290; 1.018]
Mean HR * 0.9993 [0.9988; 0.9996] 1.001 [1.000; 1.002] −0.049 [−0.148; 0.015]
SD HR * 0.9926 [0.9868; 0.9958] 0.953 [0.922; 0.991] 0.057 [0.007; 0.101]
Min HR * 0.9939 [0.9892; 0.9966] 1.000 [0.996; 1.003] −0.026 [−0.200; 0.225]
Max HR * 0.9697 [0.9465; 0.9829] 1.002 [0.999; 1.005] −0.117 [−0.346; 0.084]
RMSSD * 0.9655 [0.9393; 0.9805] 0.905 [0.861; 0.956] 1.064 [0.304; 1.858]
NN50 * 0.9480 [0.9092; 0.9705] 0.887 [0.722; 1.000] 0 [0; 0]
pNN50 * 0.9619 [0.9331; 0.9785] 0.890 [0.755; 1.000] 0 [0; 0]
LF absolute power * 0.8218 [0.7031; 0.8960] 1.017 [0.994; 1.061] 0.534 [−0.483; 2.067]
HF absolute power * 0.9264 [0.8724; 0.9580] 0.854 [0.772; 0.921] 2.643 [0.118; 7.785]
LF relative power * 0.8712 [0.7815; 0.9257] 0.996 [0.913; 1.070] 1.794 [−1.364; 5.745]
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Table 8. Cont.

HRV Index r CIr Slope CIslope Intercept CIintercept

HF relative power * 0.8469 [0.7426; 0.9111] 0.994 [0.895; 1.073] −1.396 [−4.919; 2.196]
LF normalized power * 0.8567 [0.7581; 0.9170] 0.991 [0.900; 1.069] 2.662 [−1.178; 8.195]
HF normalized power * 0.8571 [0.7587; 0.9172] 0.991 [0.899; 1.069] −1.910 [−5.770; 1.857]
Total power * 0.9792 [0.9632; 0.9883] 0.945 [0.891; 0.983] 6.346 [2.552; 14.176]
LF/HF * 0.8069 [0.6800; 0.8869] 1.107 [0.965; 1.220] −0.004 [−0.088; 0.141]
Poincaré SD1 * 0.9655 [0.9393; 0.9805] 0.905 [0.861; 0.956] 0.754 [0.216; 1.314]
Poincaré SD2 * 0.9879 [0.9785; 0.9932] 0.975 [0.950; 1.005] 0.516 [−0.101; 0.871]
SD2/SD1 * 0.8623 [0.7671; 0.9203] 0.952 [0.847; 1.037] 0.109 [−0.012; 0.270]
Approximate entropy * 0.9353 [0.8875; 0.9632] 0.989 [0.896; 1.129] 0.003 [−0.162; 0.107]
Sample entropy * 0.7906 [0.6551; 0.8769] 0.884 [0.754; 1.092] 0.166 [−0.160; 0.414]
DFA α1 * 0.8812 [0.7976; 0.9315] 0.943 [0.830; 1.054] 0.078 [−0.026; 0.160]
DFA α2 * 0.976 [0.9576; 0.9864] 0.919 [0.869; 0.968] 0.026 [0.008; 0.048]

* cusum linearity test p-value > 0.1.

Table 9. Results of Bland-Altman analysis performed on GCG and ECG signals from the pathological
subjects dataset (49 subjects). In cases of measurement differences with a non-normal distribution, the
bias was estimated as the median of differences and the limits of agreement as the 2.5th and 97.5th
percentiles, respectively.

HRV Index Bias CIbias LoA CILoA min CILoA max

Mean RR * 0.089 [0.017; 0.326] [−13.877; 9.309] [−44.947; −1.722] [3.849; 22.720]
SDNN * −0.072 [−0.443; 0.175] [−4.526; 3.22] [−5.308; −3.330] [1.852; 5.051]
Mean HR * −0.007 [−0.031; −0.002] [−0.541; 0.94] [−1.199; −0.236] [0.187; 2.923]
SD HR * −0.011 [−0.029; 0.010] [−0.439; 0.379] [−0.703; −0.300] [0.180; 0.475]
Min HR * −0.026 [−0.046; 0] [−3.967; 0.782] [−9.512; −1.688] [0.215; 1.992]
Max HR * 0.032 [0; 0.060] [−0.875; 14.57] [−1.057; −0.440] [4.855; 18.485]
RMSSD * −0.409 [−1.223; 0.059] [−33.607; 4.577] [−62.82;0 −12.495] [3.774; 6.171]
NN50 * 0 [−1.000; 0] [−72.8; 9.1] [−96.000; −24.125] [4.750; 12.000]
pNN50 * 0 [−0.159; 0] [−20.793; 2.74] [−25.810; −7.614] [1.673; 2.793]
LF absolute power * 1.507 [0.859; 5.145] [−95.543; 2286.372] [−132.437; −44.195] [537.339; 6673.552]
HF absolute power * −5.075 [−23.853; −0.293] [−2952.447; 80.261] [−5421.979; −793.827] [33.796; 100.829]
LF relative power * 1.562 [0.069; 3.266] [−6.02; 40.733] [−6.082; −5.184] [23.365; 50.334]
HF relative power * −1.568 [−3.584; −0.135] [−50.884; 8.237] [−60.051; −30.322] [6.946; 10.86]
LF normalized power * 2.151 [0.156; 3.752] [−8.319; 47.927] [−10.683; −6.871] [30.824; 58.034]
HF normalized power * −2.276 [−3.770; −0.040] [−47.763; 8.307] [−57.968; −30.719] [7.242; 10.758]
Total power * 0.318 [−22.003; 5.581] [−604.787; 1136.585] [−1414.523; −255.895] [201.45; 2473.06]
LF/HF * 0.109 [0.001; 0.190] [−1.572; 5.298] [−2.751; −1.019] [2.435; 11.744]
Poincaré SD1 * −0.289 [−0.866; 0.042] [−23.799; 3.241] [−44.49; −7.980] [2.672; 4.370]
Poincaré SD2 * 0.019 [−0.200; 0.304] [−3.916; 16.183] [−4.601; −2.846] [6.266; 24.955]
SD2/SD1 * 0.048 [0.010; 0.086] [−0.689; 1.024] [−0.848; −0.403] [0.728; 1.145]
Approximate entropy −0.016 [−0.035; 0.002] [−0.147; 0.114] [−0.179; −0.115] [0.082; 0.147]
Sample entropy * −0.005 [−0.057; 0.032] [−0.572; 0.409] [−0.608; −0.368] [0.264; 0.411]
DFA α1 * 0.025 [−0.016; 0.053] [−0.230; 0.545] [−0.244; −0.180] [0.339; 0.599]
DFA α2 * −0.003 [−0.017; 0.001] [−0.14; 0.081] [−0.169; −0.079] [0.049; 0.122]

* Non-normal distribution of differences.

The results of correlation analyses report that all HRV indices extracted from both
SCG and GCG achieved Pearson’s correlation coefficients (with respect to ECG) in excess
of 0.9, apart from LF/HF and Sample entropy obtained from SCG and GCG, as well as LF
absolute, relative, and normalized powers, HF relative and normalized powers, SD2/SD1, and
DFA α1 obtained from GCG. However, the correlation coefficients Cis of some HRV indices
presented lower bounds below 0.9, namely, LF relative power, HF relative power, LF normalized
power, HF normalized power, LF/HF, SD2/SD1, Sample entropy, and DFA α1 estimated from
SCG and GCG, along with Total power estimated from SCG and LF absolute power, HF absolute
power, and Approximate entropy obtained from GCG. According to the results of Passing-
Bablok linear regression, no statistically significant differences from unity were found for
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the slopes of all HRV indices, apart from SDNN, RMSSD, and HF absolute power obtained
from SCG and GCG, as well as Max HR, NN50, pNN50, and Poincaré SD2 estimated from
SCG and SD HR, Total power, Poincaré SD1, and DFA α2 estimated from GCG. Statistically
significant intercepts were found for Mean RR, SDNN, Mean HR, Max HR, RMSSD, HF
absolute power, Poincaré SD1, and Poincaré SD2 obtained from SCG and for SDNN, SD HR,
RMSSD, HF absolute power, Total power, Poincaré SD1, and DFA α2 estimated from GCG. In
addition, the cusum test [111] confirmed the linearity between all HRV indices extracted
from SCG and ECG signals (p > 0.05 for Max HR and p > 0.1 for all other indices) and from
GCG and ECG signals (p > 0.1). The results of Bland-Altman analyses revealed modest yet
statistically significant biases for Mean RR, Mean HR, Min HR, LF absolute power, and HF
absolute power estimated from both SCG and GCG signals, as well as for LF relative power,
HF relative power, LF normalized power, HF normalized power, LF/HF, and SD2/SD1 obtained
from GCG.

Figure 2 shows the box and whiskers plots of the relative percentage errors of HRV
indices obtained from SCG and GCG signals of the 40 subjects for which both SCG and
GCG analyses were performed. In particular, the results related to time-domain indices
are shown in panels (Figure 2a,b), those related to frequency-domain indices are shown in
panel (Figure 2c), and those related to non-linear indices are shown in panel (Figure 2d).
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4. Discussion

This study evaluated the accuracy of HRV indices computed from inter-beat intervals
estimated from SCG and GCG signals via an ECG-free heartbeat detection algorithm based
on template matching. The inter-beat intervals were computed from heartbeat locations
determined as local maxima of the normalized cross-correlation between the whole signal
and a heartbeat template selected from the same signal. In principle, the inter-beat intervals
thus obtained are affected by two error contributions: (1) missed and spurious heartbeats,
which introduce false increases and decreases in inter-beat intervals; and (2) the potential
inconstancy of the locations of NCC maxima within successive cardiac cycles, which
introduces inaccuracies in inter-beat interval estimation.

The results of this study show that the ECG-free heartbeat detection algorithm based on
template matching allowed estimating HRV indices from SCG and GCG signals of healthy
subjects with acceptable accuracy. The estimates obtained on signals from pathological
subjects were affected by larger errors. In particular, errors achieved in healthy subjects for
Mean RR, Mean HR, Min HR, and Max HR turned out to be confined within 0.25%; SDNN
and SD HR within 2%; RMSSD within 5%; NN50 and pNN50 within 15%; HF absolute power
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and LF/HF within 20%; all other frequency-domain indices within 10%; and non-linear
domain indices within 8%. For pathological subjects, errors on Mean RR, Mean HR, Min HR,
and Max HR were confined within 0.35%; SDNN and SD HR within 15%; RMSSD within
25%; NN50 and pNN50 within 100%; HF absolute power and LF/HF within 90%; all other
frequency-domain indices within 40%; and non-linear indices within 30%. Overall, GCG
provided slightly better or at least comparable performances with respect to SCG, both on
healthy and pathological subjects.

Only a few studies in the literature have evaluated the accuracy of HRV indices
extracted from SCG and GCG signals. Some of these studies performed heartbeat detection
by taking advantage of a concurrently acquired ECG lead; this aspect limits the significance
of their results for standalone cardio-mechanical monitoring. In addition, all methods
presented in the literature are based on the localization of specific fiducial points in SCG
and GCG signals, which represents a potential weakness. Indeed, according to the findings
of [87], many pathological subjects exhibit signal morphologies that do not allow clear
identification of fiducial points. Hence, in such cases, the heartbeat detection methods based
on fiducial points could fail or at least provide inaccurate measures of inter-beat intervals.
This study demonstrated that acceptable HRV indices can be computed from NCC local
maxima provided by the ECG-free heartbeat detection method based on template matching,
which overcomes potential issues in localizing SCG/GCG fiducial points. It is also worth
underlining that only [88–90] analyzed signals from pathological subjects, while all other
studies focused on small cohorts of healthy subjects. In addition, many of these studies do
not report the number of inter-beat intervals considered for HRV analysis, which impacts
the reliability of the statistical analyses. Unfortunately, none of these studies presented
a thorough evaluation of the agreement between HRV indices obtained from SCG/GCG
and ECG by using linear regression and Bland-Altman analyses. Some studies performed
Student t-tests to verify, at least, if differences in HRV indices were statistically significant.
In some cases, a Bland-Altman comparison between inter-beat intervals obtained from
SCG/GCG signals and from ECG was performed; however, reporting limits of agreement
considerably higher than those achieved by the ECG-free heartbeat detection method
adopted in this study. Such a higher LoA could explain the larger errors achieved in HRV
analysis as compared to the results of this study.

The significance of the encouraging results of this study is limited to short-term
HRV indices evaluated on healthy subjects and VHD patients at rest. These limitations
arise from the specific protocols adopted in data collection for the considered datasets.
Further evaluations should be carried out on much longer recordings to allow long-term
HRV analyses, possibly including motion artifacts due to physical activities (e.g., walking,
running). Moreover, additional tests should be conducted on the cardio-mechanical signals
of patients affected by other cardiac pathologies.

5. Conclusions

The objective of this study was to quantitatively assess the accuracy of Heart Rate
Variability indices computed from heartbeat locations identified in Seismocardiography and
Gyrocardiography signals via a novel ECG-free template matching method, particularly
by considering the local maxima of the normalized cross-correlation between a heartbeat
template and the whole signal as heartbeat markers in place of the most commonly used
SCG/GCG fiducial points (e.g., aortic valve opening). This study presents, for the first
time, a thorough evaluation of the accuracy of HRV indices computed from SCG and
GCG signals by considering the largest cohort of subjects among all studies presented in
the literature, with the highest number of pathological subjects, and also by performing
rigorous statistical analyses to assess the suitability of SCG and GCG signals for HRV
analysis based on ECG-free, cardio-mechanical monitoring.

The results demonstrate that the ECG-free template matching method for heartbeat
detection provides acceptable heartbeat timings in SCG and GCG signals, so that HRV
indices extracted from these signals are in very close agreement with those provided by
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ECG. These findings provide, for the first time, clear evidence that monitoring HRV via
SCG and GCG sensors without concurrent ECG is feasible.
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Appendix A

Table A1. Patient ID# of the pathological subjects considered for HRV analyses on SCG and
GCG signals.

Patient ID#

SCG GCG

CP01 CP01
CP02 CP02
CP05 CP05

Not Included CP06
CP07 CP07
CP08 CP08
CP13 CP13
CP15 CP15

Not Included CP17
Not Included CP18

CP19 CP19
CP20 CP20
CP21 CP21
CP23 CP23
CP27 CP27
CP28 CP28
CP30 CP30
CP34 CP34
CP36 CP36

Not Included CP37
CP39 CP39
CP41 CP41
CP44 CP44
CP45 CP45

Not Included CP50
Not Included CP51

CP53 CP53
CP57 CP57
CP58 CP58
CP59 CP59
CP60 CP60
CP61 CP61
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Table A1. Cont.

Patient ID#

SCG GCG

CP63 CP63
CP65 CP65
CP66 CP66
CP69 CP69
UP01 Not Included
UP02 UP02
UP04 UP04
UP07 UP07
UP08 UP08
UP09 UP09
UP11 UP11
UP12 UP12
UP14 UP14
UP15 UP15
UP17 Not Included
UP20 UP20
UP26 UP26
UP29 UP29
UP30 UP30
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