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Abstract: Surface plasmon resonance microscopy (SPRM) combines the principles of traditional
microscopy with the versatility of surface plasmons to develop label-free imaging methods. This paper
describes a proof-of-principles approach based on deep learning that utilized the Y-Net convolutional
neural network model to improve the detection and analysis methodology of SPRM. A machine-
learning based image analysis technique was used to provide a method for the one-shot analysis
of SPRM images to estimate scattering parameters such as the scatterer location. The method was
assessed by applying the approach to SPRM images and reconstructing an image from the network
output for comparison with the original image. The results showed that deep learning can localize
scatterers and predict other variables of scattering objects with high accuracy in a noisy environment.
The results also confirmed that with a larger field of view, deep learning can be used to improve
traditional SPRM such that it localizes and produces scatterer characteristics in one shot, considerably
increasing the detection capabilities of SPRM.

Keywords: surface plasmon resonance; neural network; reconstruction; microscopy; Y-Net

1. Introduction

Advanced imaging techniques are crucial in various fields, such as science, medicine,
and technology. These techniques enable the visualization and understanding of different
objects and systems at various scales. For instance, microscopic techniques enable the
observation of microscopic events that are invisible to the naked eye. Label-free microscopic
imaging has become increasingly important as it bypasses the complex labeling process,
eliminating the need to consider interactions between the label and the sample [1–5].

Among the many label-free techniques are those that rely on surface plasmon reso-
nance (SPR), in which the surface plasmon (SP) represents the collective oscillation of elec-
trons caused by momentum matching with incident electromagnetic waves on a boundary,
most often a dielectric–metal interface [6–9]. Under specific conditions, these oscillations
create an evanescent wave that extends to the surrounding medium. The wave is highly
sensitive to variations on the sample surface, which creates possibilities for the label-free
detection and imaging of objects near the surface.

SPR microscopy (SPRM) combines the characteristics of SPR and microscopy to intro-
duce a label-free detection method with high sensitivity and throughput by acquiring the
refractive index distribution of an object. Advancements in nanofabrication and optical
analysis techniques have further improved the possibilities and capabilities of this method
for imaging and detecting smaller signals and interactions [10–18].

In this study, we investigated interferometric plasmonic microscopy (iPM), a modified
version of SPRM, with improved sensitivity and spatial resolution. The optimization of
detection methods and image-processing techniques in iPM has enabled the detection of
single exosomes with miniscule signals [19]. Although iPM may detect small objects such
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as nanoparticles, information extraction using traditional methods remains limited due to
the complex information extraction process, which we explored using deep learning.

Deep learning has attracted significant interest over the past decade because of its
ability to learn features and utilize them in image analysis. Since the success of AlexNet in
the 2012 ImageNet competition demonstrated the promise of deep convolutional neural
networks (CNNs) in the area of image analysis, CNNs have been researched intensively
for possible applications including plasmonics [20–31]. In this study, we explored a deep
learning network to analyze and extract data such as scatterer location, amplitude, and
phase from iPM images. We aimed to utilize the feature extraction properties of CNNs to
image nanoparticles as objects in a complex noisy environment dominated by SP scattering.
We also extracted other scattering parameters to simulate the iPM and compared the recon-
structed image with real-world images to confirm the validity of our method. In contrast to
previous studies that used deep learning in a limited manner for the classification task in
SPRM, e.g., to determine the number of scatterers [32], identify extracellular vesicles [33],
and predict the phase response of an image [34], this study used a trained network to effec-
tively localize an object and extract spatial and feature information regarding scattering
objects in a noisy environment from one-shot image acquisition. Label-free molecular detec-
tion assays can directly benefit from a deep learning approach, which provides considerably
improved detection capabilities in plasmon-based imaging and microscopy techniques.

2. Materials and Methods
2.1. Scattering Simulation Model

As a technique that enhances the spatial resolution and sensitivity of traditional SPRM
for detecting single nanoparticles such as exosomes, the principle of iPM can be summarized
as common-path interferometry [35]. The scattering model of iPM in the Kretschmann
configuration for a nanostructured object is illustrated in Figure 1. Because SPR occurs
when the incident light is transverse magnetic (TM), the incident wave is assumed to be TM
polarized at λ = 633 nm. SPs may be scattered by an object and localized with a significantly
amplified light field for various imaging and sensing applications [36–40].
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Figure 1. Schematic of iPM based on the superposition of the reflected wave (black) and leakage
radiation (red) associated with the scattering of surface plasmons. The combined radiation creates
interferometric patterns at the imaging plane. The arrows represent beam rays (z: displacement of
the back focal plane; θ: angle of light incidence).

The collected light can be modeled as a superposition of the reflected wave from the
dielectric–metal interface and the object wave created by scattering caused by nanoparticles
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on the sample surface. The reflected wave can then be modeled as a plane wave, as shown
in Equation (1):

ER(x, y) = e−ik(ycosθ+xsinθ) (1)

The reflected wave is a plane wave propagating in the dielectric region, and k (=k′+ jk′′ )
is the complex wavenumber of the dielectric material. θ is the incident angle of the
electromagnetic wave with respect to the normal to the interface. The variables x and
y represent the coordinates of the plane normal to the sample surface aligned with the
direction of electromagnetic wave propagation. Moreover, the object wave can be modeled
as a spherical wave with a scattering particle located at the center, as shown in Equation (2).

EO
(
r, r′, z

)
= αER

(
r′
)
· e−2k′′ |r−r′ |e−ik′ |r−r′ |+

√
|nk0|2−|ksp |2z (2)

An object wave is an evanescent field that decreases from the scatterer. r′ denotes the
location of a nanoparticle, and r is the location on the sample [41]. The rate of oscillation and
the exponential decrease in magnitude are determined by k′ and k′′, which are determined
by the complex permittivity of the materials used in the experiment. The displacement of
the back focal plane (z) is shown in Figure 1. The combination of these electromagnetic wave
components creates the final intensity of the output wave, as expressed in Equation (3).

I = |ER + EO|2 = |ER|2 + |EO|2 + ERE∗O + E∗REO (3)

An iPM image is obtained by acquiring the background image and subtracting it from
the object image. An object wave has a much smaller amplitude than the reflected wave;
therefore, the amplitude of the object wave can be ignored. The final intensity of the iPM
image can then be expressed using Equation (4).

I′ = |ER + EO|2 − |ER|2 ≈ ERE∗O + E∗REO (4)

The iPM image is highly dependent on the object wave, enabling the increased sensi-
tivity of the scatterer and thus improving the ability of SPRM [42].

The final iPM image depends on the other parameters of the optical configuration.
Changing the focus by moving the back focal plane can dramatically modify the received
image. Other factors such as film thickness, propagation angle, incident angle, and scatter-
ing particle characteristics can also affect an image.

2.2. Optical Configuration

The optical configuration used to acquire the iPM images is shown in Figure 2. The
Kretschmann configuration was used, and an inverted microscope (Eclipse Ti-U, Nikon,
Tokyo, Japan) was used to obtain images. A continuous-wave HeNe laser (25-lhp-925-230,
Melles Griot, Carlsbad, CA, USA) radiating 633 nm electromagnetic waves was employed
as the light source. The laser was polarized using a linear polarizer and a half-wave plate to
produce a TM-polarized electromagnetic wave. The laser was modulated using lenses such
that it irradiated the entire field of view of the camera. A piezoelectric mirror (S-334.2SL,
Physik Instrumente, Karlsruhe, Germany) was used to change the incident angle of the
light to induce SPR. An output image was captured by an objective lens with a numerical
aperture of 1.49 (CFI Apo TIRF 100XC Oil, Nikon) before being separated from the incident
light through a beam splitter and acquired using an electron-multiplying charge-coupled
device (EMCCD) camera (1024 × 1024 pixels, 13 µm pixel size, iXon Ultra 888, Andor,
Belfast, UK) as an imaging detector. After optical magnification, the size of a single pixel
was approximately 93 nm.

The spatial difference method was used to capture iPM images. An image without an
object was taken as the background. The field of view was changed to obtain an image of
the area containing the nanoparticles. The difference from the background image was the
final iPM image.
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Figure 2. Schematic of the optical configuration used to obtain iPM images (SP: sample plane
consisting of gold film and nanostructures, OB: objective lens, BS: beam splitter, CL: converging lens,
EX: beam expander, PM: piezoelectric mirror, HWP: half-wave plate, LP: linear polarizer, LS: light
source, and EMCCD: camera detector). The combination of HWP and LP with LS produces TM
incident light, which is used to excite SPR and obtain SPRM images.

Two types of sample objects were used in this study: an electron beam resist-based
nanopost array and a gold film with gold nanoparticles. The samples were created by first
cleaning a BK7 glass slide, which was evaporated to form a 50 nm thick gold film on the
glass. The electron beam resist sample was then coated with an electron beam resist (AR-N
7520, Allresist, Strausberg, Germany) at a 4000 rpm angular velocity to create a 400 nm
thick coating. The electron beam resist was used to create the nanopost array using electron
beam lithography for a period of 20 µm.

Gold nanoparticles were added to the second sample using a gold nanoparticle solu-
tion (#742031, Sigma-Aldrich, St. Louis, MO, USA) with particles possessing a diameter
of 100 nm and an optical density of 1 suspended in a 0.1 mM PBS solution. The solution
was diluted to a tenth of the original concentration and dropped onto the sample. After
evaporation, only nanoparticles remained on the sample.

2.3. Modified Y-Net

The U-Net neural network model is a fully convolutional neural network first intro-
duced for biomedical image segmentation and has proven to be an effective model for
image-to-image tasks [43]. The U-Net architecture can be divided into contractive and
expansive paths. The contractive path contains convolutional and downsampling layers
that reduce the spatial information while increasing the feature information. The expansive
path uses intermediate results from the contractive path and the upconvolution of the
contractive path output to combine features and spatial information. This process ensures
that the image-to-image network produces the output of an image that contains spatial
information and is aware of the feature information, thereby increasing the image-to-image
task capability.

Y-Net utilizes the feature extraction power of the contractive path of U-Net to extract
patch-specific data from the input images [44]. The end of the contractive path is used
to create a separate output from the traditional U-Net output while maintaining the fast
training speed of a fully convolutional neural network. Patch-specific data are used to
further amplify the classification ability of the traditional U-Net.

In this study, Y-Net was engineered to create a regression output from the end of the
contractive path to obtain a significantly larger amount of information. The final model
used in this study is shown in Figure 3. To implement the Y-Net model, we added a
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convolutional layer with an activation layer and regression layer to the U-Net at the end of
the contractive path. The final intermediate output before the expansive path contained
the feature information for the entire image. For iPM images, this layer contained informa-
tion on image-wide variables such as the individual pixel size, back focal plane location,
incident angle of an electromagnetic wave, propagation angle of an electromagnetic wave,
and phase shift of the wave caused by the gold film thickness and optical path length.
The feature extraction power of the contractive path could be used to obtain this infor-
mation, and the use of a regression layer enabled the estimation of these variables for
noise-free reconstruction.
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Figure 3. The modified Y-Net neural network model and the image reconstruction pipeline. The
trained model was used to obtain image-wide variables and scatterer characteristics. The extraction of
image-wide variables from the intermediate output for noise-free reconstruction through three image
channels, i.e., probability map, amplitude, and phase, represents the modification to implement the
Y-Net model. Legends on the right show the pipeline flow.

The image output was a three-channel image with dimensions that were the same
as the original image. The first channel was the probability that a particle existed at a
particular location in the simulated input image. The second channel was the estimated
particle amplitude, and the third channel was the estimated particle phase. These three
variables determined the locations and characteristics of the scattering particles.

Four different loss functions were utilized during the training process. These loss
functions were used to ensure that the model could estimate the scatterer characteristics
and variables specific to the optical setup with high precision. The four loss functions
Li (i = 1, 2, 3, and 4) were combined to create the final loss value, as shown in Equation (5).

L = α1L1 + α2L2 + α3L3 + α4L4 (5)

Loss weights αi (i = 1, 2, 3, and 4) were used to ensure that the loss functions were
balanced, because unweighted losses have intrinsically different average values, creating a
final trained model that is proficient only in specific tasks. The weights for the four losses
were adjusted iteratively for multiple trainings such that their average losses were similar
and every training loss decreased with each training epoch. The model could use this
loss function to learn the information stored in the iPM image. In Equation (5), the first
loss function L1 was used to determine the difference between the image-wide variables
and the model regression output. These variables were features that affected the entire
image formation process. These included the pixel size, SPR propagation angle, incident
electromagnetic wave angle, back focal plane offset, gold film thickness, and reflected wave
phase offset caused by the light propagation path. The mean squared error (MSE) function
was used to quantify the difference between the model output and ground-truth values.
Normalization was used to ensure the fair training of different image-wide variables.
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The second loss function was the binary cross-entropy with logit loss function, e.g.,
BCEWithLogitsLoss in PyTorch, as detailed in Equation (6). The second loss function was
used to determine the likelihood of a nanoparticle existing at a certain location in the
image. In this study, the desired output was the localization of a pattern to a single pixel
within an 80 pixel × 80 pixel image. A standard BCEWithLogitsLoss function with model
weight ω = 1 converges to output a uniform probability map of nearly 0 s. ω was adjusted
accordingly to ensure that the model did not converge to a uniform zero output.

L2 = −[ω·yn·log σ(xn) + (1− yn)·log(1− σ(xn))] (6)

In Equation (6), xn, yn, and σ(xn) represent the input image, ground-truth output
image that utilizes a binary particle output probability map, and model forward pass that
produces the model output corresponding to input xn, respectively.

The third and fourth loss functions were used to determine the amplitude and phase
of the nanoparticle scatterer, respectively. When the output was an image, the only relevant
data point was the values at the nanoparticle location. Therefore, the loss functions were
variations of the MSE function, as expressed in Equation (7).

L3,4 = − 1
N ∑[mn·σ(xn)− yn]

2 (7)

Here, N and mn denote the batch size and mask, respectively, representing the ground-
truth probability map. The MSE value of the amplitude and phase of a nanoparticle was
multiplied elementwise by the ground truth of the nanoparticle location to consider only
the values at the location of the scatterer.

The four different losses were combined to obtain the final losses. The final loss was
used for backpropagation. The weights of the neural network were updated accordingly.
The model hyperparameters consisted of four loss weights (αi) and the model weight
(ω) that appeared in BCEWithLogitsLoss (five parameters in total). These parameters
were optimized by iterative training, in which the weights were adjusted until a model
was obtained with decreasing epochs of all loss terms in the training dataset with good
localization (no output with all 0 s). The model was trained using the adaptive moment
estimation (Adam) optimizer for faster convergence with a cosine-annealing scheduler
for the better estimation of the global minimum solution. Xavier initialization was used
to ensure that the model converged without exploding or vanishing gradients. The best
model was the last one without better results in the optimization process. The images
were augmented using the Albumentations library [45] to simulate noise during the image
acquisition process. Gaussian filters and Gaussian white noise were added to simulate the
noise. The model was trained on a server computer with an Intel Xeon W-2295 CPU and
NVIDIA RTX A4000 GPU. The model was trained using the PyTorch library for 200 epochs
with a training dataset of 20,000 images and a validation set of 10,000 images. Based on
the Y-Net output, we used the method for iPM simulation to reconstruct the image. The
reconstruction output was compared with the model input to confirm the ability of the
neural network.

3. Results

An example of the input and output of the Y-Net model for an image in the training
dataset is presented in Figure 4. The interferometric pattern created through simulations
was rescaled and used as the original initial input for the model, as shown in Figure 4a.
The output of Y-Net was a scatterer location probability map and an image-wide variable
estimation. This model could obtain the scattering parameters with high accuracy.

The final localization estimation created by the Y-Net was a probability map of the
nanoparticle location, as shown in Figure 4b. A cutoff value could be used to determine
the specific location of the nanoparticles in the output image. The predicted nanoparticle
location for the trained model was almost identical to the ground-truth location, which is
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presented in Figure 4c for comparison, showing that the model could learn and predict
nanoparticle locations from a given iPM image.
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The neural network loss is presented in Figure S1. The four different loss functions
decreased with respect to the epochs, suggesting that the model could extract features and
learn the characteristics of iPM from simulated images. The decrease in the validation
loss also showed that the model could predict information for images that it had not
previously seen.

The model could locate the original particles with high precision, as presented in
Figure 4. Note that the scatterer location loss shown in Figure S1c converged to 0 with an
increasing number of epochs, indicating that the model could locate particles with extremely
high accuracy, even for images in the validation set that were not used for training. The
large value of ω used for the BCEWithLogitsLoss function ensured that even a minor offset
in particle location prediction created a large loss value. The training and validation loss
converging to 0 quantitatively implied that the nanoparticle localization was accurate. The
model could also learn the scatterer amplitude and phase. It was suggested, however,
that image-wide scattering parameters were difficult to predict. The model learned these
variables with respect to the training set, which may not have translated accurately to the
validation set, as shown in Figure S1 in the Supporting Information. A quantitative analysis
of the localization precision was performed using 4000 images with a noise model from
augmentations, suggesting that the probability of correct localization within the diffraction
limit was approximately 84%, although a more realistic noise model may improve the
probability (for further details, see Figure S2). In addition, a physics-aware model with
more restrictions would better address problems such as overfitting.

We now use experimental data to prove the concept of the model. Atomic force
microscopy (AFM) was used to confirm the arrangement of the nanopost array, as shown
in Figure 5a. The optical configuration introduced in the previous section was employed to
obtain iPM images with interferometric patterns generated using gold nanoparticles and the
nanopost array. The acquired images are presented in Figure 5b,c. The gold nanoparticles
used to create interferometric patterns are shown in Figure 5b. Larger nanopost arrays
created a much more distinguishable pattern and were more clearly observed, as shown in
Figure 5c.

The interferometric pattern of a single scatterer was isolated and used as input for the
modified Y-Net model. From the output of the model, an image was reconstructed using
the simulation method. The Y-Net input image of a nanopost cropped in the array and the
reconstructed noise-free image are shown in Figure 6a,b. In addition, the reconstruction
through the iPM simulation based on the probability map estimated by Y-Net localization
in Figure 6c clearly shows the interference fringe patterns of a scattering object. The same
model was applied to the nanoparticles, as presented in Figure 6d–f.
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Figure 6. Localization and reconstruction of iPM: (a) experimentally acquired iPM image of a gold
nanopost, (b) final estimated nanopost location, and (c) reconstruction through iPM simulation
based on the probability map estimated by the Y-Net localization. (d–f) Corresponding images of a
gold nanoparticle. In (f), the reconstruction through iPM simulation was based on the nanoparticle
probability map estimated by the Y-Net localization. The red arrows mark the object location. Scale
bar: 1 µm.

The localization of the scattering particles was observed to be particularly accurate.
The U-Net part of the Y-Net model was extremely effective in using features and spatial
information to determine the location of particles. The local minima and maxima of the
reconstructed image were similar to those of the original input image when the interference
fringe observed in Figure 6a is compared with that in Figure 6c for a nanopost and that in
Figure 6d with that in Figure 6f for a nanoparticle. The interferometric pattern sizes and
tilts were similar in the original and reconstructed images despite weak fringe patterns in
the original image.
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4. Discussion

Although the optical resolution of iPM remained diffraction-limited, as long as the
optics that captured the iPM images were unchanged, the use of deep learning based on
the modified Y-Net method improved the extraction of spatial and feature information
from an iPM image. This enabled the recreation of an input image with reconstruction
algorithms, showing that the model was capable of extracting information and creating a
noise-free reconstruction of the original image. Specifically, the network could localize an
object with high accuracy, as shown by the extremely low training and validation losses
for scatterer localization. The results confirmed that the method employed in this study
could provide a one-shot method for scatterer localization with high accuracy and high
fidelity and provided an improvement in terms of polyparametric detectability over a CNN
modified from VGG19, which was applied to estimate the number of scatterers in the SPRM
of light scattering [32].

For image-wide variables, deep learning using the network made it more difficult
to estimate the values with high accuracy, as the validation loss decreased by a limited
amount. Multiple image-wide variables could be associated with a single SPRM image,
potentially resulting in an inverse problem, and could produce interfering effects on the
image output among the variables that were dependent on each other. The film thickness
and reference wave phase shift had almost identical effects on the interferometric pattern,
enabling the model to estimate these parameters. Other image-wide variables were subject
to similar scenarios in which a change in one variable had a similar effect to a change in
another. Changes in pixel size and optical configuration angles could produce a similar
effect, decreasing the ability of the model to predict these variables.

The reconstructed images created using the information extracted by the Y-Net model
were similar to the original input image. For the training sets, the model could predict
image-wide variables with high accuracy, creating a perfectly noise-free reconstructed
version of the original input image. The ability of the model to analyze unknown images
was reduced. The model lost accuracy because different variables had similar effects on the
final output image. Whereas the model could reconstruct an image that was similar to the
original input image, the fidelity of the reconstruction for images outside the training set
was not guaranteed, thereby reducing the effectiveness of this approach for image analysis.
Regularization may resolve this issue. In addition, a model with improved awareness of
the physics of iPM is desired to further increase the model effectiveness. In this work, the
scatterer characteristics and six image-wide variables were left as unknown variables for
the neural network to predict. However, an appropriate physics-aware method may reduce
the number of variables, creating a more accurate model with high fidelity.

The Y-Net model explored in this study used a generator to create the data. The
validation on the simulated and experimental data is described in Figures S2 and 6. The
similarity between the experimental and generated images is obvious when Figure 6c,f are
compared to Figure 4a. Nonetheless, more independent testing datasets may be crucial
for the generalized performance of the model on unseen data. This method could also be
extended to predict more than one object within the field of view. The simplest approach
would be to divide a field of view acquired by iPM into several sub-fields for each object,
as was implemented for nanoposts, and to perform the method in each sub-field (‘crop
and go’). If two or more objects were close to each other, affecting each other and yet apart
by more than the diffraction limit, the Y-Net model could still be applied, i.e., patterns
produced by multiple particles could be used to generate validation and test datasets for
deep learning. Based on these datasets, improved results were obtained using the model
learned through the Y-Net architecture. If the objects were too close to each other within
the diffraction limit, they could not be resolved: therefore, prediction could be difficult
without additional information. Nonetheless, the measurement precision was determined
by a single pixel size, which was much smaller than the diffraction limit. Image artifacts
could occur due to external factors, which could affect the quality of the images or the
validity of the model.



Sensors 2023, 23, 8100 10 of 12

5. Conclusions

A CNN was demonstrated to be able to effectively determine the location and scat-
tering parameters of an iPM image. A modified Y-Net was introduced with a regression
layer at the end of the contractive path to estimate image-wide parameters. We employed
simulation techniques to create a generator for the training dataset used for Y-Net. We used
the generator to create a preliminary test dataset and a validation dataset to monitor the
training process of Y-Net. Four loss functions were used to train the network. The trained
Y-Net model was used to analyze the experimentally obtained iPM images.

The trained network could effectively localize the nanoparticle scatterer in a real-world
image. The trained modified Y-Net model could extract spatial and feature information
from a rescaled raw iPM image, thereby providing a simple one-shot method for analyzing
images created by interferometry in a noisy environment. Reconstruction using information
extracted by Y-Net, as well as a comparison with the original input image, showed that the
model could estimate scattering parameters effectively. Further advancements in neural
networks to cover the entire microscopic field of view while being more aware of the
physics of iPM will enable a simple method for extracting all scattering parameters of
iPM, significantly improving its capabilities and possibilities. Moreover, label-free imaging
and detection techniques other than iPM may benefit from the deep learning approach
explored in this work. In the future, we plan to confirm the effect of deep learning on
images acquired using various quantitative phase imaging methods.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/s23198100/s1, Figure S1: The loss values of the train-
ing set and the validation set during the training process of Y-Net for the four different types of
losses; Figure S2: Some of the scattering patterns under the noise model are provided in the inset of
the figure.
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