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Abstract: This research paper introduces a novel paradigm that synergizes innovative algorithms,
namely efficient data encryption, the Quondam Signature Algorithm (QSA), and federated learning,
to effectively counteract random attacks targeting Internet of Things (IoT) systems. The incorporation
of federated learning not only fosters continuous learning but also upholds data privacy, bolsters
security measures, and provides a robust defence mechanism against evolving threats. The Quondam
Signature Algorithm (QSA) emerges as a formidable solution, adept at mitigating vulnerabilities
linked to man-in-the-middle attacks. Remarkably, the QSA algorithm achieves noteworthy cost
savings in IoT communication by optimizing communication bit requirements. By seamlessly
integrating federated learning, IoT systems attain the ability to harmoniously aggregate and analyse
data from an array of devices while zealously guarding data privacy. The decentralized approach
of federated learning orchestrates local machine-learning model training on individual devices,
subsequently amalgamating these models into a global one. Such a mechanism not only nurtures
data privacy but also empowers the system to harness diverse data sources, enhancing its analytical
capabilities. A thorough comparative analysis scrutinizes varied cost-in-communication schemes,
meticulously weighing both encryption and federated learning facets. The proposed approach shines
by virtue of its optimization of time complexity through the synergy of offline phase computations
and online phase signature generation, hinged on an elliptic curve digital signature algorithm-based
online/offline scheme. In contrast, the Slow Block Move (SBM) scheme lags behind, necessitating
over 25 rounds, 1500 signature generations, and an equal number of verifications. The proposed
scheme, fortified by its marriage of federated learning and efficient encryption techniques, emerges
as an embodiment of improved efficiency and reduced communication costs. The culmination of
this research underscores the intrinsic benefits of the proposed approach: marked reduction in
communication costs, elevated analytical prowess, and heightened resilience against the spectrum of
attacks that IoT systems confront.

Keywords: Internet of Things; data encryption; quondam signature algorithm (QSA); MITM;
communication cost; identity-based online/offline

1. Introduction

The Internet of Things (IoT), which makes use of small devices to monitor and manage
a variety of operations, is very important to our day-to-day activities in the present day.
The phrase “Internet of Things” (IoT) was first proposed by Kevin Ashton in 1999. It
describes the practise of linking commonplace electronics and appliances to the internet.
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These globally interconnected devices amass vast troves of data and autonomously execute
specific tasks, minimizing human intervention. In the contemporary cyber landscape, the
IoT and its guiding principles hold sway, solidifying their dominant position. A report
by Gartner [1] predicted a staggering presence of 21 billion interconnected devices by the
close of 2020, underscoring the extensive potential of utilizing the Internet for multifaceted
applications, ranging from smart grids to smart logistics and smart cities. However, every
stride forward encounters formidable challenges. The constrained nature of IoT devices,
marked by limitations in throughput, longevity, and computational capacity [2], presents
novel hurdles for researchers, communication specialists, and cyber experts. Forming an
efficient and sustainable ecosystem that facilitates seamless communication among these
restricted devices emerges as a pressing necessity. Crafting an adept network is intricate
due to the disparate standards and protocols employed by various devices. Consequently,
the establishment of a heterogeneous network becomes imperative, enabling efficacious
and secure communication across the entire spectrum of devices.

An important factor in the IoT context is security. Cybercrimes and cyberattacks have
risen dramatically in frequency during the past several years [3]. Constrained gadgets
have become top targets for cybercriminals because they lack strong security capabilities.
Numerous instances of attackers taking control of such devices and deploying bots to
launch DDoS assaults have been documented. The ecosystem of the Internet of Things (IoT),
which is recognized for its gadgets with limited resources and low network throughput,
runs into problems when attempting to use the same security and network protocols that
are often utilized in traditional Internet systems. It is vital to continually develop and
establish innovative protocols in order to respond to the specific requirements of security
and communication within the IoT environment [4,5]. This is necessary in order to take into
consideration issues such as low power use, limited throughput, and simpler processing.
Lightweight security methods are necessary for securing the operation of apps in the IoT
context. Strong authentication techniques for both devices and networks should be included
in these protocols. Processes of authentication confirm the participants’ identities. Multiple
credentials should be used in the process for improved security procedures to provide
strong authentication. The incorporation of computationally expensive cryptographic
primitives used in traditional markets is not an option for IoT businesses. Given that IoT
devices are often less capable than gateway nodes, using gateways as middleware for
computing raises the barrier to computational complexity [6] shown in Figure 1.
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1.1. Federated Learning in IoT Systems

Federated Learning is a ground-breaking method that has considerable potential to
improve the intelligence of Internet of Things devices as well as their level of security
and privacy. The issues brought about by the dispersed nature of sensitive data in IoT
systems are addressed by the fact that this technology makes collaborative machine learning
possible without compromising the privacy of users or devices. When it comes to classical
machine learning, training models often include the usage of centralized data stores. On
the other hand, since data may be stored on a wide variety of devices, this strategy is not
only impracticable but also unsafe for use in IoT systems. The problem may be solved
with the help of Federated Learning, which dispenses with the need of transporting data
to a centralized location by allowing the local training of machine learning models on
endpoints. Each IoT node trains its model locally using the data collected by that node, and
then those locally trained models are combined to produce a global model. Crucially, this
aggregation process preserves the privacy of users and their sensitive data. Incorporating
federated learning into IoT systems brings several benefits. Firstly, it ensures user privacy
since data never leave the devices, mitigating concerns about the exposure of personal
or proprietary information. This is particularly important given the sensitive nature of
IoT data. Additionally, federated learning supports continuous learning and adaptation
by enabling local model updates without constant communication with a central server.
This flexibility is valuable in dynamic IoT environments where network connectivity
may be limited. Moreover, federated learning reduces communication and bandwidth
requirements, enhancing system efficiency. Rather than transmitting large volumes of data,
only model updates are exchanged during the aggregation process. This reduces latency,
conserves network resources, and enables real-time learning in resource-constrained IoT
settings. Incorporating federated learning into IoT systems provides a powerful solution to
enhance safety, privacy, and intelligence. It enables collaborative learning while preserving
data privacy, supports continuous learning in dynamic environments, and improves system
efficiency. As the IoT continues to expand, federated learning offers a viable approach to
leverage the collective intelligence of IoT devices while ensuring the security and privacy
of sensitive information.

1.2. Challenges and Considerations in Implementing Federated Learning

While federated learning offers numerous advantages for IoT systems, there are also
several challenges and considerations to address:

• Data heterogeneity: IoT devices generate data with varying qualities, formats, and dis-
tributions. Managing this diversity while ensuring model compatibility and efficient
aggregation can be challenging. Preprocessing and data-normalization techniques
may be required to overcome these challenges.

• Capacity, connectivity, and power limitations: Many IoT devices have limitations in
capacity, connectivity, and power when communicating with each other. It is crucial
to transmit model updates efficiently and aggregate them while considering these
limitations. Optimizing communication protocols and developing lightweight models
suitable for IoT devices are important factors to consider.

• Security and privacy: While federated learning aims to preserve data privacy, it is es-
sential to protect models and prevent model poisoning attacks. Robust authentication,
encryption, and secure aggregation protocols need to be implemented to ensure the
integrity and privacy of both models and data.

• Federated optimization: Effective optimization techniques are required to achieve con-
vergence and generate accurate models in federated learning. Dealing with non-i.i.d.
data, balancing model updates across devices, and addressing varying computational
capabilities of devices are challenges to overcome.

• Device heterogeneity: IoT systems comprise devices with different processing powers
and hardware features. Striking a balance between leveraging the collective intel-
ligence of all devices and accommodating the limitations of resource-constrained
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devices is crucial. Methods such as model customization and adaptive learning can be
explored to handle device heterogeneity.

• Bias and fairness: Federated learning may introduce biases and fairness issues when
certain devices or populations are underrepresented or have imbalanced data dis-
tributions. Ensuring fairness in model training requires careful consideration and
mitigation strategies to address potential biases.

• Regulatory and legal compliance: Federated learning involves handling and process-
ing sensitive data, raising concerns about regulatory and legal compliance. Adhering
to privacy regulations and implementing data protection measures is necessary to
ensure compliance with applicable laws and standards.

1.3. Motivation

Security is of the utmost concern in the deployment of Internet of Things (IoT) systems.
Protecting users and systems from cyber-attacks and crimes is a top priority. As IoT technol-
ogy advances, attackers employ various methodologies to compromise user information.
Therefore, there is a pressing need for a robust authentication process in network security,
applicable to both small local networks and large cloud servers. The exponential growth of
IoT necessitates a strong authentication technique to combat complex cyber-attacks. Fur-
thermore, it is crucial that the authentication tool developed is unique, sophisticated, and
user-friendly. Instances frequently arise where attackers gain physical access to IoT devices
due to unattended users and the distributed nature of these devices across large areas. Data
communication also becomes a target for intruders, particularly in wireless communication
scenarios with open environments that provide opportunities for data attacks. The key
components of IoT systems, the sensors, face limitations in terms of energy capabilities and
processing time, making it challenging to implement complex security schemes. Because of
this circumstance, there is a greater potential for unauthorized access to devices, and there
are more opportunities for fraud in the authentication process. In order to find a solution
to these problems, we came up with a method of authentication for smart devices that we
call the Physical Unclonable Function, or PUF. The primary emphasis of their study was an
investigation of the communication expenses connected to the IoT-based PUF system [7].
PUF schemes act as a catalyst for the creation of one-of-a-kind authentication protocols that
have minimal overhead in terms of their communication requirements. In light of this, the
present study suggests an innovative method for gaining access to data and authenticat-
ing users inside IoT devices [8]. Given the frequency of cyberattacks, it is of the utmost
importance to protect the security of systems that are connected to the Internet of Things.
The proposed research addresses these concerns by introducing a distinct authentication
process applicable to small and large networks. By leveraging authentication schemes
such as the Physical Unclonable Function (PUF), the research seeks to develop unique and
cost-effective solutions for data access and authentication in IoT systems.

1.4. Problem Statement

In the Internet of Things (IoT), establishing robust connectivity across diverse net-
works and intelligent devices is of paramount importance. Nonetheless, the security of
electronic apparatuses and tangible devices faces significant challenges rooted in the realms
of key management, data encryption and decryption, amalgamation, and authentication.
These difficulties are the result of intrinsic resource restrictions, which include issues such
as restricted battery life, processor speed, and storage capacity [9,10]. This inquiry provides
pioneering algorithms that have been precisely customized for the encryption and decryp-
tion of data. These algorithms revolve on the concept of using one-time accessible keys to
authenticate data, which is a novel approach. The methodology posited in this discourse
ensures the preservation of data integrity and bestows communication cost-effectiveness
that outshines prevailing methodologies. The results underscore the significance and origi-
nality of the formulated approach, which introduces an innovative data encryption and
decryption hallmark christened the “Quondam Signature Algorithm (QSA).” This hallmark
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serves the purpose of establishing secure exchanges between IoT applications and tangible
devices. The cardinal objective of this algorithm resides in mitigating the vulnerability to
man-in-the-middle (MiM) attacks.

1.5. Major Contribution

The major contributions of this research paper can be summarized as follows:

1. The paper introduces inventive algorithms that merge effective data encryption, the
Quondam Signature Algorithm (QSA), and federated learning. By incorporating
federated learning, the paper facilitates continual learning while upholding data
privacy, bolstering security measures, and shielding against evolving threats in
IoT systems.

2. The research puts forth the Quondam Signature Algorithm (QSA) as a remedy to
counteract vulnerabilities to man-in-the-middle attacks within IoT systems. The
QSA algorithm curtails communication bit requisites, leading to cost savings in IoT
communication and enhancing overall system security.

3. Through the assimilation of federated learning, the proposed approach enables IoT
systems to amass and analyse data from multiple devices while upholding privacy.
The system harnesses diverse data sources without jeopardizing data privacy by
training machine learning models locally on each device and then consolidating them
to craft a global model.

4. The research juxtaposes distinct cost-in-communication strategies, taking into account
both encryption and federated learning facets. The proposed approach streamlines
time complexity through computations in the offline phase and signature generation
in the online phase, employing an online/offline signature scheme based on elliptic
curve digital signatures.

5. Among the assessed schemes, the proposed strategy, which fuses federated learning
and efficient encryption methods, demonstrates heightened efficiency and diminished
communication costs. It outperforms the Slow Block Move (SBM) scheme, diminishing
the number of rounds, signature generations, and verifications necessary.

The paper is structured as described below. The introduction offers a summary of the
goals of the study and emphasizes the need of developing original algorithms in order
to defend Internet of Things systems from random assaults. Section 2, as the literature
review, explores related works on data encryption, federated learning, and signature
algorithms. Section 3, as the methodology section, presents the integration of efficient
data encryption, the Quondam Signature Algorithm (QSA), and federated learning in
addressing IoT security challenges. The comparative analysis evaluates different cost-
in-communication schemes, considering encryption and federated learning aspects. The
results and discussion, as Section 4, presents the findings, including the improved efficiency
and reduced communication costs of the proposed approach. The conclusion summarizes
the contributions and suggests future research directions.

2. Literature Survey

The Internet of Things (IoT) comprises various electrical parts, such as sensors, actua-
tors, and software. It stands for a heterogeneous and embedded network of interconnected
“things” that interact and share data online. IoT devices include sensors and need com-
puting power to function well in a variety of settings, including industrial warehouses,
woods, and agricultural fields for crop monitoring. Smart grids, smart parking, and smart
healthcare are examples of common IoT applications. In a 2013 analysis, the International
Data Corporation predicted that by 2020, 41 billion IoT devices would be connected to
the network system, with a market growth expected to be 8.9 trillion dollars [11]. IoT and
conventional markets differ significantly in that there is no direct human involvement.
IoT devices manage duties including the gathering and analysis of data on individual
behavioural patterns [12]. These programs provide useful services that are very beneficial
to human existence. However, maintaining individual security and privacy protection in
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IoT applications comes at a significant expense. IoT manufacturers have frequently failed to
install and deploy reliable, secure systems at the device level. As a result of the numerous
susceptible gadgets connected to the internet, which increases system complexity, security
experts have issued warnings about possible threats [13].

IoT devices face substantial difficulties related to privacy and security since they
usher in a new phase of disruption that can potentially violate customers’ privacy to
varied degrees. This case arises due to the high potential of IoT devices. Such devices not
only attack and collect the personal information of users, such as their names, residential
addresses, date of birth, phone numbers, etc., but also trace their day-to-day activities and
movements, such as when they went for a vacation, where they were staying, what their
food was, etc. Due to a continuous spate of significant data breaches, users have legitimate
and well-founded worries regarding storing large amounts of personal data in databases
connected to public or public cloud platforms [14].

Numerous articles, research papers, and surveys have been published addressing
the privacy and security issues of IoT, highlighting the various challenges faced by users.
Additionally, a comprehensive analysis of existing approaches has been carried out, classi-
fying them into four common IoT communication protocols: application, network, Medium
Access Control (MAC), and physical [15]. Researchers [16] have also mentioned current
security trade-offs and privacy restrictions as significant research roadblocks in the area.
They categorized the identification of potential security issues into several areas, including
policy enforcement, secure middleware, trust, access control, authentication, confidentiality,
mobile security, and privacy.

To minimize data processing latency by putting devices closer, Cui et al. devised a
unique encryption approach using a proxy-assisted attribute for edge-level security [17]. In
a similar spirit, to reduce the running power consumption of IoT devices, the authors of [18]
suggested an authentication system based on social networking. For each IoT application,
this protocol establishes customized multi-security levels of authentication.

Through the use of a granular bulk operations algorithm, Zhou et al. created an
effective access-control system for interactive IoT devices [19]. A tracking attacker model
that is applicable to both centralized and distributed IoT infrastructures was suggested by
the authors of another piece of research that looked at the proliferation of IoT systems [20].
They also invented a symmetric key cryptosystem, which makes use of a single, user-only
key for both encryption and decryption. In addition, L2D-CASK, a technique of encryption
was introduced for protecting sensor data in FPGA domains [21]. A hybrid CA rule vector
with a key length of 512 bits was used in this method, along with an XOR operation that can
take two or three inputs at the same time. This strategy successfully handles the memory
limitations of sensor nodes, guaranteeing optimum performance without jeopardizing the
computational and randomization challenges of encryption. By using the innate abilities of
cellular automata (CA), it produces chaotic sequences [22,23]. The plan exhibits efficiency
in terms of randomness, which qualifies it as a system for comparable encryption, like
DES and 3-DES. The suggested method improves system robustness by choosing key
configurations at random and setting the number of encryption and decryption iterations.

The article [24] delves into the realm of IoT networks and explores how the integration
of blockchain technology can enhance both privacy and security. By leveraging blockchain’s
inherent decentralized and tamper-resistant attributes, the study proposes a method to
safeguard sensitive data and secure communications in IoT environments. The article’s
contribution lies in its innovative approach to addressing the challenges posed by privacy
breaches and security vulnerabilities within IoT systems.

The article [25] discusses a lightweight and safe protocol that intends to better the
overall security of IoT networks. The essay focuses on the Internet of Things (IoT); hence,
the protocol’s main focus is on the IoT. By combining encryption techniques and efficient
communication protocols, the study presents a method that safeguards data integrity and
protects against unauthorized access. The article’s significance lies in its emphasis on
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achieving a balance between security and resource efficiency, catering to the constraints of
IoT devices.

Exploring the security landscape of IoT networks, the article [26] proposes an efficient
security mechanism that combines blockchain technology and machine learning techniques.
By employing blockchain’s immutability and machine learning’s adaptive capabilities, the
study offers a method to identify and mitigate security threats in real-time. The article’s
contribution is in its innovative integration of blockchain and machine learning to enhance
the resilience of IoT systems against evolving cyber threats.

Establishing links between people and a network of ubiquitous, linked smart items is
the fundamental goal of the Internet of Things (IoT). As a result of developments in unique
Internet approaches, wireless communication technologies, and cost-effective micro sensors,
this field has garnered a significant amount of interest in recent years. The methodologies
of the Internet of Things have found use in a variety of disciplines, including medicine and
healthcare, the monitoring of the environment, logistics, intelligent homes and buildings,
and intelligent transportation systems. One characteristic that deserves special attention is
the incorporation of context awareness into IoT systems. In the field of accumulating sen-
sory data, the geographical information is, likewise, of great relevance [27]. Engineers and
academics have made significant headway in developing more sophisticated prototypes
over the course of the last twenty years. These prototypes include both system designs
and outputs associated with localization and positioning modules for sensor nodes in the
Internet of Things (IoT). Examples of Internet of Things (IoT) systems include configura-
tions in which receivers for Bluetooth Low Energy (BLE), Wireless Local Area Networks
(WLAN), and Global Navigation Satellite System (GNSS) are incorporated in a single
device. In situations such as the one with Telit [28], one can see this integration in action. In
addition, alternative approaches like CRYSTAL [29], Carriots [30], Sierra Wireless [31], and
SOFIA [32] have surfaced in recent years to assist in the development of Internet of Things
(IoT) systems that have the capacity to function locally.

2.1. Classification of Attacks in the IoT

Security is a critical issue in IoT systems that must be addressed since it is one of the
biggest worries. A high degree of security must be maintained, given the requirement
for effective data exchange to defend against various cyber-attacks. Assaults, including
Sybil assaults, eavesdropping, message alteration, traffic analysis, and Denial of Service
(DoS) attacks, offer serious risks to people and organizations, giving attackers access to
private data and the chance to profit financially [33]. The IoT ecosystem’s exponential
expansion has attracted more cyber attackers, who use trickier techniques to get past
security barriers [33,34]. As a result, protecting IoT systems becomes more difficult and
calls for ongoing attention as well as the development of strong security measures to
combat these changing threats.

2.2. Securing the Internet of Things (IoT) through Cryptographic Techniques

In this section, we explore cryptographic techniques to ensure secure localization and
protect location information in the context of the IoT. Due to the lack of well-defined stan-
dards for safe IoT localization, current techniques focus mostly on establishing applications
within IoT frameworks, like RFID or WSN for military services. IoT devices’ heterogeneous
design, which includes sensitive location data and worldwide connectivity, creates a variety
of security risks and new user issues. Therefore, it is crucial to address these challenges
by leveraging cryptographic methods to safeguard location information and enhance the
security of IoT systems shown in Table 1.
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Table 1. Summary of standard cryptography for location information [35].

Scheme Configuration Authority Integration Shared Secret 1

Check Sum Yes
Encryption 2 + Signature 2 Yes Yes Yes
Digital Signature 2 Yes Yes
Authenticated Encryption Yes Yes Yes Yes
Message Authentication Yes Yes Yes
Secret-Key Encryption Yes Yes Yes Yes
Public-Key Encryption 2 Yes Yes

1 shared key generated using user input and random number, 2 it I used for authentication process.

It is important for the people engaged to share a secret key in order to create safe
communication. There are two methods to do this:

• By making use of a pre-shared secret that is hardcoded into the gadgets before they
are put into service.

• By creating and dispersing the shared secret key via a key exchange protocol [2].

It is worth noting that public key cryptography, while more secure, can be more
expensive to implement compared to other methods.

2.3. Encryption and Decryption Techniques

To protect information privacy and guarantee data security, a variety of encryption
and decryption techniques are used. Conventional technologies, however, frequently rely
on insufficient resources that have constrained power and processing times. As a result,
these technologies are not appropriate for use in devices that have limited resources, such
as those that are found in the Internet of Things scenario. In response to this problem,
lightweight cryptographic algorithms that are tailored specifically to the requirements of
such devices, in terms of their size and processing power, have been developed. Among
the different cipher blocks, block ciphers have demonstrated favourable performances [36].
In the realm of resource-constrained devices, Crypton serves as a 64-bit lightweight cipher
suitable for applications in Wireless Sensor Networks (WSN) and RFID [37]. Additionally,
Crypton, as a 128-bit cipher, offers alternative options to AES with improved system
performance [38]. In terms of resilience against attacks, secret keys such as Hummingbird-1
and Hummingbird-2, with lengths of 128 and 256 bits, respectively, have been proposed [39].
These cryptographic techniques provide enhanced security while addressing the specific
constraints of resource-constrained devices.

2.4. Available Mobile Signature Solution

In recent times, novel methodologies for data encryption/decryption have emerged
as solutions to counter various attacks. One solution to address these challenges is the
utilization of mobile signatures, which facilitate the creation of qualified digital certificates
for user authentication. These certifications are compliant with ETSI standards and are
issued by authorised Certificate Authorities. ETSI is an abbreviation for the European
Telecommunications Standards Institute. ETSI has only recently made available for public
evaluation a draught standard that outlines a framework for verifying and standardising
advanced electronic signatures (AdES) in mobile settings [40]. As an option to improve
one’s level of privacy, EAL+-certified SIM cards are now accessible to the general public.
A user’s subscription to the service triggers the activation of a certificate that is sent over
the air. The secret key is safely maintained on the SIM card, while the public key is made
accessible in a directory. Each certificate is made up of distinct public and private keys
that are kept in different locations. When a user attempts to obtain access to a service,
the service will first send a request to the user to provide authentication information as
well as a signature [41]. A One-Time Password (OTP) or Personal Identification Number
(PIN) is presented by the user’s device before gaining access to the signature. After that,
the mobile operator sends this signature to the service provider, which then enables safe
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and authorised access to the service that the user desires. The signature is verified by the
supplier of the service, who then gives access to the service that was requested. The process
of using mobile signatures for user authentication is broken down into steps, which are
shown in Figure 2.
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2.5. Man-in-the-Middle Attack [42]

The phrase “Man-In-The-Middle”, which is sometimes abbreviated as MitM, MITMA,
MITM, or MiM in academic writing, refers to an assault in which an intermediate party
gets covert control over the communication channel between two or more organisations.
This attack provides the methods to the attacker for replacing, changing, modifying, or
intercepting the communication traffic of the targeted victim. The victim believes that the
communication channel is secured due to the unawareness of the MITM attack [43]. These
attacks permit the attacker to send, receive, change, and intercept information, without the
knowledge of an outside party, which was never meant to be for them. These can be used
to invoke attacks such as session hijacking, port stealing, DNS spoofing, and distributed
denial of service (DDOS) attacks. MITM can steal local FTP IDs; stealing the Password and
ID of the online user has severe consequences. These attacks depend on the user’s identity
and can be passive or active. The attacker’s presence is not detected in a passive attack.

MITM attacks can allow the attackers to insert themselves between two communicating
terminals without getting detected. These kinds of attacks consistently lack certain features,
which makes them rare on the wired internet. There is the occurrence of contradictions in
the situation for wireless connection. Depending on the nature of the protocol as a wireless
link layer, the attacker can effortlessly insert user information. Figure 3 illustrates the
difference between the flow of data in MITM and data in regular communication, or the
normal flow of information. In general, the two parties can communicate with each other
in normal flow, i.e., the server and client, without any mediation or intrusion of any MITM.
While the communication is occurring between the man in the middle and the attacker in
the MITM flow.
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Therefore, the server was facing the victim as the spoof of the attacker. Attackers
can influence the availability, integrity, and confidentiality of the information. A MITM
attack is prone to the storage of cryptocurrencies. Once, there was a safer method to store
cryptocurrencies considered by researchers. In that method, the MITM attack [44] exposed
the vulnerability of ledger hardware wallets. This attack permits a cybercriminal to create
a duplicate or clone address of the cryptocurrency by showing it to the customer and
utilizing the original address to deliver it to the wallet. Later, the cybercriminal delivers
the cryptocurrency to a fraudulent address instead of the user’s wallet. The results also
affect the user’s system, as the addition of malware to infect the victim’s computer leads to
accommodate the MITM attack.

2.6. Authentication Scheme-Based Physical Unclonable Function for IoT-Featured
Smart Devices [45]

Today, information technology and its advancement are not only restricted to the zone
of making communication between people. Intelligent technologies/smart innovations
with an enhanced automation process warrant the connectivity of IoT in communication
between persons. It creates a close platform for the development of a mature link between
things, people and objects through network and sensor technology. The IoT has received
worldwide and widespread attention. In recent years, we have witnessed the applications
of IoT in the sectors of environment protection, healthcare, agriculture, smart cities/homes,
smart grids, and smart things in intelligent transportation. However, severe challenges
and issues are present for physical objects such as key management, authentication, and
integration. Internet in the smart world faces the rapid growth of ubiquitous connection
between things and people. It also brings more security challenges, as it will undoubtedly
in the future.

Secure communication between two parties allows verification through the authen-
tication of the user credentials. One-way hash function auxiliary information uses au-
thentication schemes to perform random key pre-distribution, pre-shared, and existing
asymmetric functions. Asymmetric and symmetric ciphers include identity-based authen-
tication that may be utilized for authentication as well as biological characteristics. Such
unique binding properties can achieve biological characteristics such as stability, natural-
ity, non-repudiation, tamper-resistance, and other characteristics. In the field of security
certification, user biometrics becomes a trending topic, using the face, iris, retina, DNA,
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fingerprints, and other authentication. Function-based encryption involves hash-based
authentication functions or message authentication codes.

The Physical Unclonable Function (PUF) refers to a response to a physical entity as
an output and input challenge. This response indicates misalignment due to the inherent
structure of physical entities and relates to the random variations in physical structure.
Each type of material requires a different design, as some existing PUFs only support
the access control or authentication of the PUF. Only recently has PUF become a physical
technology, and research remains in its infancy because of the effectiveness of measurements
on process and manufacture of process variation in order the influence of random factors.
Therefore, it produces a stimulus–response having non-cloning, non-estimated, random,
and unpredictable features. The PUF is widely used in security device authentication, the
protection of intellectual property and key generation such as in IPTV, accessibility of smart
home appliances, product verification, and accessing other multimedia services. Currently,
PUF research consists of studies investigating on the design of integrated circuits (IC) as
ring oscillator PUF, SRAM PUF, and arbiter PUF. Another model is available as a PUF-based
Authentication Scheme (PAS). In a PAS, users initially explore the registration process for
the accessibility of smart homes through smart devices, and the requests get initiated to the
requester device. Later in the registration process, if the system cannot find the identity of
the device from the registration id of fingerprint, then the gateway can save it. It delivers
the issue to receive a valid response from the device to authenticate it. Some of the smart
devices, such as wearables and cell phones, act as requesting devices for maintaining a
session key. It is further utilized for secure command execution during the next protocol.

2.7. Background of PUF Schemes

This section explains the PUF-based schemes with the exploration of other authen-
tication schemes. There is a presence of numerous schemes based on fuzzy extraction
algorithms that depend on the PUF methodology. In addition, PUF-based mutual authenti-
cation schemes explain the architecture designs for future IoT systems. The IoT is massively
increasing in the number of connected devices and has been rapidly growing in recent
years to produce new security and other challenges in the IoT. Systems based on radio-
frequency identification (RFID) are designed to manage the authenticity of devices. These
systems particularly work for short-range wireless radio communication and play a vital
role in utilizing the readers and tags. The work of tags is to achieve power from a reader
for obtaining the credentials from memory and accessing their identity. The user device
operates the scheme with secured cryptographic operations that hinders the traditional
complex techniques. Similarly, these tags are being utilized by new solutions to enhance
their authenticity, by including the PUF between the reader and user for secure communica-
tion. Attacks show vulnerability in resulting labels, including in identity forgery, tampering
tag data tracking, and location privacy exposure. The PUF ensures randomness for pro-
viding security by addressing its issues with the utilization of the hardware characteristics
of its resource-constrained devices. P. Tuyls et al. provided offline PUF authentication
by suggesting digital signature schemes with a combined identification process. In the
certification process, an embedded PUF-enabled device considers the tag as RFID. The
label produces auxiliary data and PUF’s key identity. Later, a PUF attached with identity
performs the verification process. Researchers have proved a reduction in the resistance
to attacks using such a scheme [45]. Kulseng suggested a PUF combined with a linear
feedback shift register and RFID system. The response of the PUF is used for generating
a random key in the linear feedback shift register and to tag identity authentication for
providing secure communication [46].

Authentication schemes also feature biological properties in PUF. These can attain
the merits of randomness and uniqueness of microstructure-based electronic components
that cannot be damaged easily. The change in its stimulus–response behaviour occurs
only if the attacker is trying to invade a PUF device, leading to the incentive response
behaviour of each PUF. There is a solution to these problems through mutual authenti-
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cation between entities using the challenge response characteristics of the PUF. Another
merit is that the same challenge response can provide unpredictability and randomness
in the PUF scheme. Such schemes can also be utilized for producing the keys for data
decryption and encryption. The origination of PUF occurred as a physical one-way func-
tion [47]. However, in past years, PUF architectures can be developed and classified as
non-silicon and silicon-based PUFs. Non-silicon PUF is mostly greater in size and pro-
duces a large number of delays in the system. On the other hand, silicon PUFs have been
widely adopted and utilized in a number of applications. It is fabricated and integrated as
silicon [48]-based circuits and considered as a class of PUF, while its subclass is considered
as an electronic PUF.

An alternative way exists in PUF schemes, such as controlled physical random func-
tions (CPUFs) in place of the storage of secret keys. It presents the integration of additional
circuits using hash functions to strengthen the chain of secrets used for challenge-response
pairs [49]. The PUF property makes the characterization in inherent PUF [50], as it consists
of a null change in the human features for regulating the behaviour of the challenge-
response. PUF-based logic reconstruction was developed to dynamically alter the response
behaviour in the incentives of PUF [51]. At the same instant, material production is based
on time, and different non-silicon PUFs can involve a paper PUF and CD PUF. The basic
principle is to control an object or entity’s inherent random nature and facilitate the realiza-
tion of PUF expression. Due to strong randomness, PUF generates a set of unique keys that
is applicable to IoT applications [52]. Cryptographic functions use biometric data inputs
for extracting the fuzzy functions [53] utilized for encryption, authentication, and decryp-
tion. This extraction process, based on the fuzzy function, consist of two main elements:
a random extractor (Random Extractor, Ext) and schematic security (Secure Sketch, SS).
An error-correction mechanism, depending on the embedded data to make a schematic
reproducible with a security key goal, receives the same data each time. Another element a
random extractor key targets is the production of unpredictability and randomness in the
data sets. By extracting the compression functions, it attains the maximum and minimum
entropies at the output values of the PUF such as HMAC, hash function, SHA-1, etc. Two
stages are featured, reconstruction and registration, for the implementations of specific
functions. Key generation is the registration phase, in which function Gen () is generated
and used for registration. Another phase is to generate the key again with the help of
the reconstruction phase function to reproduce Rep (). The generated function Gen () is
a response to the auxiliary data key, the standard output, and the input, while the error
of the response is shown as Rep () for the output key and auxiliary data input. Another
methodology is the combination of error correction with cryptographic operations [54].
The database contains the program designs for specific task implementation, such as the ex-
traction code to blur the offset structure for this scenario. It initiates with the consideration
of large-code word space with the selection of a random code word, C, where r is in order
to ensure security. Later, r ⊕ c makes the calculations for auxiliary data, obtained as H.

The IoT provides security in consideration of distributed host identity-based protocols
(HIP). Due to extensive operations, it causes communication and computation overheads.
Reduction in its cost of computation has been achieved in several studies [55], while other
suggested methodologies still face a high cost of communication, which is further lessened
with the help of the proposed scheme. The fuzzy extractor depends on the extraction
algorithm [56], the soft decision-based fuzzy algorithm for extraction [57] on-checksum [58],
and pattern matching [59] techniques. The fuzzy checksum-based extraction algorithm
makes the calculations for restoring the standard data after achieving the value from the
error vector. Fuzzy bit soft decisions are being used as trust extraction algorithms for
achieving security solutions as part of the auxiliary data. This results in the minimum
entropy loss with a reduction in the error-correction process. The performance of the error-
correction process is improved with the selection of the optimal decoding technique. To
obtain the true value of the PUF response, there is the consideration of input coming from
the parity index of the fuzzy extraction algorithm. The index function maps the functions
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for the reconstruction of the key. During the preparation phase, the generation of n bits
occurs from the PUF response after the selection of an index substring matching pattern
with a random number of a certain length. The regeneration phase carries the non-volatile
memory for storage of the index substring matching pattern. It authenticates the device by
performing the matches between the substring and the PUF output pattern. Excitation sets
generate the keys where the generated patterns do not require error-correction algorithms.

In the DTLS scheme, RSA-based certificates as certificate-based schemes perform
authentication by involving two-phase authentication, as the implicit certificate (ICRT)
and x.509 certificate [60] are utilized [61]. The ubiquitous IoT (U2IoT) and unit as an
architecture for future networking (U2IoT) [62] are growing towards worldwide networking
applications from a single crosscutting area. Some of the security issues need mandatory
addressing towards the future of things through the U2IoT architecture as a safety solution.
Exploration of U2IoT requires security with the concept of the Object Life Cycle (OLC). The
smart home scenario explores authentic phases and registration through the combination
of a mutual authentication protocol (MAP) and OLC-based PUF [63]. Compared with this
approach, a secured command execution protocol along with an authentication scheme
and efficient registration is further suggested. Some projects consider the Future Internet
Architectures (FIA) [64], SENSAI [65], and PECS [66].

2.8. Identification and Security IOT Challenges [67]

IoT features with an identification scheme must be able to encompass communication
objects (e.g., tags, sensors) as local topologies, with the existence of multiple identifi-
cation systems during the compatible maintenance of Internet legacy. It must sustain
multi-homing and mobility nodes. Apart from these two features, other rationales are
often presented for a locator in the legacy Internet and decoupling identifier. The IoT
presents certain scenarios that require resilience (e.g., supports the sleepy nodes from a
transparent system through a gateway masquerading as them) and aggregation (e.g., a
common identifier used as multiple nodes under a reverse multicast technique). Later,
strengthening occurs with these functionalities on the need for locator/identifier split. The
underlying identification technique must be skilled for bootstrapping, which creates a
safe context between two IoT nodes because of the deficiency of a global security infras-
tructure. Before establishing a secured context, through their respective identifiers, there
must be no expectation to attain more knowledge of each other. Therefore, an identifica-
tion protocol is required for delivering the key agreement, identifier ownership, and the
locator/identifier split.

2.8.1. Paradigm for Locator/Identifier Split

The underlying concept operates on a fundamentally different principle, using distinct
values to determine the appropriate routing and destination for a data unit, and ensuring
it is sent to the intended location. At the same time, it consists of two successive distinct
nodes where a single node can alter its location. Additionally, the data unit provided by an
application is only concerned with identifying the recipient’s identity, as opposed to the
intermediary nodes and routing components in the source, which are entirely focused on
pinpointing the recipient’s location. However, the two concepts become mixed with legacy
Internet, involving the addresses of IPs for both naming (identifier role) and addressing
(locator role). In IP-based systems, the separation of the locator and identifier introduces a
range of protocols that researchers have examined in their studies, often by implementing
an identification layer above the IP layer.

The identities of their respective identifiers get hidden from each other during the
establishment of a secure connection between two IoT nodes, which has already been
illustrated in this section under the introductory text. Even without the presence of a global
Public Key Infrastructure (PKI), nodes must take on responsibility in the case of mutual
authentication. To use these identities as security enablers, IoT nodes must be able to trust
them. IoT anticipates the introduction of a secure resolution mechanism with IDs to fulfil
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this requirement. A node A seeks to connect with a node B to resolve, discover, and search
the requested peer as part of the IoT resolution procedure. For instance, node A may use
a sophisticated resolution system that offers a set of qualities to ask for “the closest milk
pack” or “a nearby temperature sensor”.

In contrast to the old Internet DNS, the IoT’s enhanced resolution mechanism acts
differently. By offering trustworthy ideals in a trustworthy manner, it must build trust. A
cross-check with the traditional Internet DNS should be performed to confirm the validity
of a value supplied by the IoT resolution system. This may be conducted by checking the
resolved node’s certificate and content. Node A must believe that node B can provide
the desired service or feature and that the identifier of node B acquired from the IoT
advanced resolution system is accurate, because cross-checking procedures might not be
easily accessible.

2.8.2. Key Agreement and Identifier Ownership

The identification having been established by node A, which may be reliably consid-
ered to belong to node B, is retrieved by that node. Nevertheless, it is necessary to provide
an explanation of the protection measures associated with this identity so that only B will
be able to use it. In the event that this is not the case, it will be simple for adversaries to fake
a legitimate identification, impersonate node B, and trick node A. In order to find a solution
to this problem, the idea of a “secure identifier” comes into play. A secure identification
cannot be faked and can only be used by the person who is legally entitled to use it. This
identifier has a one-of-a-kind association with a public key, and the genuine owner is the
only one who is privy to the private key that corresponds to it. As a result, providing
evidence that an individual is the owner of a certain identifier is the same as providing
evidence that they are the owner of a pair of private and public keys.

Within the framework of the setup of a secure connection for both nodes, mutual
authentication is necessary as a prerequisite. This assures that the secret key will be shared
with the appropriate peer when it is established. This insurance is very necessary to guard
against man-in-the-middle (MitM) attacks so that you can stay safe. Because of this, it
becomes specialized for a number of different Authenticated Key Exchange (AKE) protocols.
In the realm of the Internet of Things, AKE protocols need to be used as a leverage point to
protect identifiers on nodes.

2.8.3. Host Identity Protocol (HIP) Rationale

A paradigm-based locator/identifier split benefits the Host Identity Protocol (HIP, [67]).
An additional layer of HIP has been suggested to be placed on the top of the IP layer. A
safe identification of the sender and recipient of a data unit using Host Identifiers (HIs) is
made possible by the addition of cryptographic protection in the form of the Host Identity
Protocol (HIP) layer. To avoid node impersonation, HIP uses a a secure Base Exchange
(BEX) method. The HIP initiator and responder decide on a shared secret before beginning
the BEX protocol. Therefore, HIP uses IPsec security to provide a secure session and pre-
vent unauthorized access. The conversing peers are the ones that have completed the BEX
procedure. HIP satisfies the criteria by addressing the key agreement, identifier ownership,
and the locator/identifier split.

The only other Internet-identifying methods that provide cryptographic security for
identifiers are SHIM6 and HIP. HIP, however, stands out as the more developed and
practical Internet of Things (IoT) solution in actual use. The HIP is the recommended
option for IoT applications due to its capability to extract a shared secret in an easy-to-
use and safe way, support for interoperability protocols, and accessibility on a variety
of devices.

2.8.4. HIP Base Exchange (BEX)

The exchange procedure that the initiator delivers the information I1 to start the pro-
cess is shown in Figure 4. A puzzle, a signature (for node authentication), the responder’s
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public key (Host Identifier), and its Diffie–Hellman (DH) public key are all included in
the packet R1 that is sent after receiving I1. The responder then waits for the initiator to
reply while still being stateless. The puzzle’s solution, a signature, the initiator’s public key
(Host Identifier), and its own Diffie–Hellman public key are all included in the initiator’s
response I2 packet. The responder verifies the answer to the problem before calculating
the Diffie–Hellman session key. The final packet, R2, which completes the sending process,
signals the completion of the exchange. By utilizing the created DH key to compute the
exchange (signed) MAC, the initiator verifies the key.
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The responder and initiator sides of the HIP Base Exchange both use complex crypto-
graphic calculations. The calculation of two modular exponentiations, which is necessary
for configuring Diffie–Hellman and producing the accompanying public keys [67,68], is
the most difficult aspect of these calculations. Additionally, activities like R1, I2, and R2
that are engaged in message verification and signature calculations are still important and
cannot be ignored for a resource-constrained node like R1.

2.8.5. Lighter HIP Declinations

This investigation has proposed two modifications aimed at reducing the computa-
tional burden of the HIP Base exchange to make the protocol lighter.

• The HIP Diet Exchange (DEX) protocol makes use of the public value in the form of
a long-term Elliptic Curve Diffie–Hellman (ECDH), such as the host identifier. Since
the Diffie–Hellman algorithm itself acts as the host identifier, DEX does not need
a separate public value for authentication like conventional asymmetric encryption
requires. Using the exchange procedure to gather adequate knowledge of the DH key,
this method validates a node’s validity. The final secret is obtained in this manner by
exchanging two random seeds, x, and y, using the DH key. DEX intends to reduce the
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cost of producing temporary public keys, which is normally necessary for the final DH
key computation in protocols like HIP BEX, by using long-term public Diffie–Hellman
values for a single computation. The fact is that no other operation for asymmetric
cryptography uses the Elliptic Curve Diffie–Hellman to make the key exchange lighter.
A high-resource-constrained node supports the key exchange based on ECDH that is
too heavy.

• Lightweight HIP (LHIP) [69] keeps the same message syntax, which is a much more
radical approach like HIP BEX. However, this process does not utilize any of the secu-
rity mechanisms of the HIP BEX for compatibility reasons. After the exchange, no se-
cure IPsec tunnel is created, no RSA procedures are carried out, and no Diffie–Hellman
keys are calculated. Instead, a basic amount of security is attained by employing hash
chains to cryptographically tie subsequent messages. Significantly more emphasis
is placed on energy saving than security in the Lightweight Host Identity Protocol
(LHIP). This supports the integration of supporting node mobility as HIP control mes-
sages through a hash chains mechanism, which results in a low security level. Later,
it warrants a non-hijacked ongoing session (temporal separation property) without
providing the authentication to the strong node. Moreover, there is the absence of key
exchange procedures, resulting in unprotected HIP data messages [70].

3. Proposed Methodology

This research introduces a novel encryption/decryption algorithm aimed at mitigating
attacks on IoT systems.

3.1. Integration of Federated Learning with Encryption and Communication

The integration of federated learning with encryption and communication in IoT
systems offers a powerful approach to enhancing data privacy and security. By leveraging
federated learning, machine learning models can be trained locally on IoT devices, eliminat-
ing the need to expose sensitive data over the internet. This distributed approach reduces
the risk of unauthorized access and hacking attempts. To further strengthen security, en-
cryption methods can be applied to protect the connections between devices and the central
server. Secure communication protocols, such as Transport Layer Security (TLS), can be
implemented to encrypt data during transmission, ensuring protection against interception
and data theft.

Data encryption techniques, like the Advanced Encryption Standard (AES), can be
utilized to safeguard stored data on IoT devices. This ensures that the encrypted data
remain inaccessible even if a device is compromised without the proper decryption keys.
The combination of federated learning, encryption, and secure communication mechanisms
significantly enhances data privacy and security in IoT systems. Collaborative learning
is made possible without compromising the confidentiality of sensitive information. The
integration of encryption techniques and secure communication protocols safeguards data
during transit and at rest. However, it is crucial to strike a balance between security and
system efficiency when implementing encryption and communication protocols. It is essen-
tial to take into consideration the computational complexity of encryption methods and the
way in which these methods impact the functioning of Internet of Things devices that have
restricted resources. It is feasible to maintain stringent security measures without placing
an unnecessary load on the system’s resources if the appropriate encryption techniques
and communication protocols are used. Integrating federated learning with encryption
and communication mechanisms in IoT systems provides a robust solution for ensuring
data privacy and security. By combining the benefits of federated learning with secure
communication protocols and encryption techniques, the system can achieve enhanced
privacy, secure model aggregation, and protection against unauthorized access.
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3.2. Federated Learning for Enhancing Data Privacy in IoT Systems

Federated learning holds tremendous potential in enhancing data privacy within IoT
systems. Given the sensitive nature of IoT-generated data, safeguarding its confidentiality
is paramount. Through federated learning, the training of machine learning models on IoT
devices can now be achieved in a decentralized and secure manner. With federated learn-
ing, data remains localized on individual devices, and only the latest model updates are
exchanged. This eliminates the need for transmitting sensitive information to a centralized
server, mitigating potential security risks. As a result, user privacy is safeguarded, as data
samples never leave the confines of the device.

A significant advantage of federated learning is the ability to aggregate models while
preserving user privacy. Instead of transmitting data to a central server, devices locally
gather and combine model modifications. This collaborative approach enables leveraging
the vast collection of IoT data without compromising user privacy rights.

To reinforce the protection of user information, encryption techniques can be applied
to the communication between endpoints and the central server. Secure communication
protocols such as Transport Layer Security (TLS) can encrypt data in transit, rendering
it indecipherable to unauthorized parties. This additional layer of security fortifies the
federated learning process.

Moreover, federated learning facilitates the incorporation of differential privacy tech-
niques. By guaranteeing that individual data samples remain private even during aggregate
model updates, differential privacy ensures robust privacy preservation. This statistical
privacy measure allows for efficient model training while upholding users’ privacy. Feder-
ated learning presents a promising approach for enhancing data privacy in IoT systems.
By enabling decentralized training, preserving user privacy, incorporating encryption
protocols, and embracing differential privacy techniques, federated learning empowers
the development of secure and privacy-preserving machine learning models within IoT
environments.

3.3. Federated Learning and Seamless Communication Integration for IoT Systems

The integration of federated learning and seamless communication in IoT systems
offers significant potential to enhance data privacy, improve system efficiency, and facilitate
collaborative learning. By combining these two approaches, IoT systems can harness the
advantages of both federated learning and seamless communication to achieve heightened
performance and security. Federated learning empowers IoT devices to train machine
learning models locally, ensuring data privacy by keeping sensitive information within the
devices themselves. It enables decentralized model training while upholding user privacy
and data confidentiality. Meanwhile, seamless communication guarantees efficient and
reliable data transmission between IoT devices and the central server, enabling real-time
collaboration and model aggregation.

Through the integration of seamless communication, IoT devices can securely ex-
change model updates and aggregated information with the central server. This necessitates
the implementation of secure communication protocols, such as encryption and authen-
tication mechanisms, to safeguard data during transit. Secure communication protocols
like Transport Layer Security (TLS) can be deployed to encrypt data and establish secure
connections, preserving the integrity and confidentiality of the transmitted information.
The combination of federated learning and seamless communication facilitates continuous
learning and adaptation within IoT systems. It enables devices to collectively train and
enhance machine learning models without compromising data privacy. The federated
learning approach ensures that each device contributes its local knowledge while safe-
guarding the privacy of individual data samples. Seamless communication ensures efficient
model synchronization and aggregation, enabling devices to benefit from the collective
intelligence of the entire IoT system.

Moreover, this integration effectively addresses challenges stemming from the het-
erogeneity of IoT devices, encompassing variations in processing power and network
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connectivity. By optimizing communication protocols and adapting the learning process to
accommodate different device capabilities, federated learning and seamless communica-
tion integration facilitates effective collaboration and knowledge sharing across diverse
IoT devices.

3.4. Proposed Method

In order to protect against man-in-the-middle (MiM) attacks, the algorithm that we
propose includes a signature creation procedure that includes a one-of-a-kind, one-time
usability component. This component was developed expressly to defend against such
attacks. (QSA) stands for “Quondam Signature Algorithm”, which is the name given
to this particular technique. After a connection request has been made, the process for
authenticating devices may then get underway. We use the date and time that is now
displayed on the system to generate the one-time useable signature. A timestamp is created
when the date from the system and the time that corresponds to it are combined. The
timestamp vector is then multiplied by a substitution box (S), which is carried out for
the purpose of encryption. It is important to note that the substitution box is organised
in the form of a diagonal matrix with the dimensions 12 by 12. The Quondam Matrix
(QM) with the dimensions 12 by 12 is the product that comes about as a consequence of
this vector-substitution multiplication. The Quondam Signature (QS) is represented by
the components of the Quondam Matrix that are diagonal to one another. The physical
identification of the client, such as the MAC address, is added to the Quondam Signature
(QS), and then it is sent to the server in order to enable the authentication of devices. This
is performed in order to facilitate the authentication of devices.

On their own PCs, authorised users will only find a “Substitution Box” and an algo-
rithm that has already been pre-installed. A Personal Computer (PC), a NodeMCU, and
a Real Time Clock (RTC) are the three main components that make up the experimental
setup. The NodeMCU acts in the capacity of the server, and the PC plays the part of the
client in this arrangement. The real-time clock is used in order to gather precise information
on the system’s date and time. Figure 5 is a graphic representation of how the suggested
system might really look in practise. In order to enable TCP/IP communication between
the client (PC) and the server (NodeMCU), a socket programming application is built. This
application is designed using the programming language C#. Figure 5 is a diagrammatic
representation of the process flow of this socket programming application.
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3.5. Proposed Algorithm

The method for the operation is broken down into two steps: first, the format setting,
and then the signature creation.

The following is the configuration of formats using Algorithm 1.

Algorithm 1: Federated Quondam Signature Algorithm (FQSA)

Step 1: Start
Step 2:

Collect information from the client on the Client Connection Request (CR), Client Identity
(CI), and Time Stamp (TS).
Step 3:

Divide Client Identity (CI) into two parts:
- MAC ADD: Extract first eight digits of CI to obtain MAC address.
- Eight-Digit Hexadecimal: Convert MAC address to eight-digit hexadecimal value (each

digit represents 4 bits).
Step 4:

Initialize federated learning parameters:
- Define global model.
- Specify number of participating devices (N).
- Set communication rounds (R).

Step 5:
For each communication round r in [1, R]:

For each participating device i in [1, N]:
- Send global model to device i.
- Device i updates local model using its own data and the received global model.
- Device i trains its local model using federated learning.
- Device i computes a local Quondam Signature (LQS) using the updated

local model.
Step 6:

Aggregate Local Quondam Signatures:
- Collect all local Quondam Signatures (LQS) from participating devices.
- Compute the global Quondam Signature (GQS) by aggregating the LQS.

Step 7:
Perform Device Authentication:

- Attach GQS to the client’s connection request (CR).
- Send CR with GQS to the server for device authentication.

Step 8:
End

The proposed method takes a comprehensive approach to address the real-time aspects
of IoT (Internet of Things) by combining federated learning, the Quondam Signature
Algorithm (QSA), and Physical Unclonable Functions (PUFs) in a way that ensures both
security and efficiency while accommodating the time-sensitive nature of IoT applications.

Federated learning, a central component of the mechanism, is designed to accom-
modate real-time data processing in IoT environments. In federated learning, devices
collaboratively train machine learning models without centrally pooling raw data. Instead,
model updates are exchanged among devices, allowing local computations and updates to
occur in real time. This enables IoT devices to learn and adapt continuously without the
need to transfer large amounts of data to a central server, reducing latency and enhancing
real-time responsiveness.

The Quondam Signature Algorithm (QSA) contributes to real-time security by offering
a streamlined approach to data encryption, decryption, and authentication. The one-time
accessible keys generated by the QSA are tailored to enhance authentication efficiency,
a critical factor for IoT devices operating in real-time scenarios. By creating a unique
signature for each interaction, the QSA contributes to swift and secure device authentication,
minimizing delays and ensuring prompt responses to connection requests.
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The incorporation of Physical Unclonable Functions (PUFs) further enriches real-time
aspects. PUF-derived keys offer a means of ensuring device-specific authentication, which
is crucial for maintaining the integrity of real-time interactions. The uniqueness and rapid
retrieval of PUF-derived keys make them well-suited for IoT devices requiring swift and
secure authentication within time-critical operations.

Collectively, the proposed mechanism leverages these components to address real-
time aspects in IoT applications. Federated learning facilitates continuous learning and
model updates without data centralization, aligning with the rapid pace of data generation
and decision making in IoT environments. The QSA and PUFs enhance security and
authentication efficiency, vital for maintaining real-time operations. By integrating these
elements, the proposed mechanism presents a holistic approach that balances the demands
of real-time IoT applications with the imperative of robust security and privacy measures.

• Set the current system’s date and time in a definite format as MM DD YYYY hh mm.

- MM: Represents the two-digit month.
- DD: Represents the two-digit day.
- YYYY: Represents the four-digit year.
- hh: Represents the two-digit hour.
- mm: Represents the two-digit minute.

Convert the formatted date and time into a 12-digit character representation shown
in Figure 6.

Sensors 2023, 23, x FOR PEER REVIEW 22 of 30 
 

 

 
Figure 6. Implementation of proposed algorithm. 

3.6. Algorithm for Signature Generation 
Step 1: To obtain the date and time of the system in the forms (D [] and (T []), respectively. 
Step 2: Produce the time stamp vector TS [] by combining the current date and time 

of the system using the formula TS [] D [] + T []. 
Step 3: Carry out the operation of multiplying the time stamp vector TS [] by the 

substitution matrix S []. 
Step 4: Authorised users will need a pre-installed version of the replacement matrix S. 
Step 5: The Quondam matrix QM is generated. 

S   
S 0 0 0 0 0 0 0 0 0 0 00 S 0 0 0 0 0 0 0 0 0 00 0 S 0 0 0 0 0 0 0 0 00 0 0 S 0 0 0 0 0 0 0 00 0 0 0 S 0 0 0 0 0 0 00 0 0 0 0 S 0 0 0 0 0 00 0 0 0 0 0 S 0 0 0 0 00 0 0 0 0 0 0 S 0 0 0 00 0 0 0 0 0 0 0 S 0 0 00 0 0 0 0 0 0 0 0 S 0 00 0 0 0 0 0 0 0 0 0 S 00 0 0 0 0 0 0 0 0 0 0 S

 

where, S1, S2,…..., S12 ≠ 0. 
Step 6: Compute the value of QM12 × 12 [ ]. 

Figure 6. Implementation of proposed algorithm.

3.6. Algorithm for Signature Generation

Step 1: To obtain the date and time of the system in the forms (D [] and (T []), respectively.
Step 2: Produce the time stamp vector TS [] by combining the current date and time of

the system using the formula TS [] D [] + T [].
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Step 3: Carry out the operation of multiplying the time stamp vector TS [] by the
substitution matrix S [].

Step 4: Authorised users will need a pre-installed version of the replacement matrix S.
Step 5: The Quondam matrix QM is generated.

S[]12×12 =

S1 0 0 0 0 0 0 0 0 0 0 0
0 S2 0 0 0 0 0 0 0 0 0 0
0 0 S3 0 0 0 0 0 0 0 0 0
0 0 0 S4 0 0 0 0 0 0 0 0
0 0 0 0 S5 0 0 0 0 0 0 0
0 0 0 0 0 S6 0 0 0 0 0 0
0 0 0 0 0 0 S7 0 0 0 0 0
0 0 0 0 0 0 0 S8 0 0 0 0
0 0 0 0 0 0 0 0 S9 0 0 0
0 0 0 0 0 0 0 0 0 S10 0 0
0 0 0 0 0 0 0 0 0 0 S11 0
0 0 0 0 0 0 0 0 0 0 0 S12

where, S1, S2, . . .. . ., S12 6= 0.
Step 6: Compute the value of QM12 × 12 [ ].
Step 7: Extract the diagonal elements from QM12 × 12 [ ] to construct a 12-character-

long QS [ ].
Step 8: Combine QS [ ] with CI [ ] and send the resulting data to the server as M20 × 1,

where M20 × 1 = [M1 M2 M3. . .M20].
Step 9: The server receives the message M20 × 1 from the client.
Step 10: Encryption process concludes.
Step 11: The server segregates QS [ ] and CI [ ] from M20 × 1 as follows: M20 × 1 =

QS [ ] 12 × 1 + CI [ ] 8 × 1.
Step 12: Formulate the Quondam signature as DM [ ] 12 × 12.
Step 13: Derive TS [ ] using the equation: TS [ ] = QM [ ] × S − 1.
Step 14: Decryption process concludes.

3.7. Federated Learning with PUF and QSA

The research paper introduces a holistic approach that synergizes the realms of fed-
erated learning, the Quondam Signature Algorithm (QSA), and the innovative utiliza-
tion of Physical Unclonable Functions (PUFs), culminating in a robust and highly secure
framework for modern information systems. At the heart of this amalgamation lies the
role of PUFs, a groundbreaking concept that harnesses the inherent physical variations
within electronic components to generate device-specific responses, known as PUF-derived
keys. These keys are virtually impossible to replicate, forming the bedrock of enhanced
security measures.

The strategic inclusion of PUFs in the proposed system encapsulates a multitude of
advantages. Foremost among them is their instrumental role in elevating the device authen-
tication process. By incorporating PUF-derived keys within the connection establishment
phase, an additional layer of security is woven into the fabric of the communication channel.
This intrinsic uniqueness of PUF responses ensures that each device has a distinct identity,
mitigating the risk of unauthorized access and enhancing overall system integrity.

PUFs play a pivotal role in the intricate dance of the Quondam Signature Algorithm
(QSA). These PUF-derived keys become the cornerstones for generating the one-time
accessible keys, which are instrumental in the QSA’s data encryption, decryption, and
authentication mechanisms. The robustness of the QSA is significantly fortified through the
integration of PUFs, creating a dynamic synergy that amplifies the security of the system.

Notably, the implications of PUFs extend beyond the QSA. In the realm of federated
learning, PUFs emerge as a crucial element in safeguarding data privacy. During the
collaborative learning process, PUF-derived keys are harnessed to encrypt local updates
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before sharing them in federated rounds. This groundbreaking measure ensures that sensi-
tive device data remain impervious to unauthorized access, even during the collaborative
learning process, thereby championing the cause of privacy preservation.

The integration of Physical Unclonable Functions within the trifecta of federated
learning, the Quondam Signature Algorithm, and PUFs encapsulates a paradigm shift
in security and privacy considerations. It not only bolsters device authentication and
data encryption but also fosters an environment where privacy remains paramount. The
fusion of these cutting-edge concepts reflects a forward-looking approach to addressing
the complex security challenges of modern information systems.

4. Result and Discussion

The Quondam Signature method was successfully validated with the help of the
real-time IoT network. This system differentiates legal devices from malicious ones in an
efficient manner, hence restricting access granted to unauthorized users. The process of
implementation also included the step of estimating the expenses of communication. With
the method that we have suggested, the amount of bits needed for successful transmission
varies from 192 to 220.

The experimental setup for evaluating the Quondam Signature Algorithm within
a real-time IoT network was meticulously designed to ascertain its efficacy. The ar-
chitecture encompassed a diversified array of IoT devices, each playing distinct roles
within the network. IoT sensors, actuators, gateways, and intermediary nodes were in-
tricately interconnected using a predefined network topology, fostering interactions akin
to real-world IoT scenarios. Communication was facilitated through the MQTT proto-
col, with data rates and frequencies tailored to emulate real-time data transmission and
event-triggered communication.

The experiment encompassed a series of scenarios reflecting authentic use cases within
IoT environments. Devices were meticulously configured, with hardware specifications
encompassing computational power, memory, and pertinent components. The Quon-
dam Signature Algorithm was methodically implemented on these devices, involving the
intricate interplay of signature generation, verification, and the integration of Physical
Unclonable Functions (PUFs) and federated learning strategies where relevant.

Authentication processes were instrumental in distinguishing between genuine and
malicious devices, enabling the algorithm to exercise access control mechanisms with
finesse. Communication cost, a critical metric, was rigorously calculated by capturing and
analysing communication logs. The proposed approach demonstrated a communication
cost range of 192–220 bits, further underlining its efficiency in real-time IoT scenarios.

In the evaluation phase, an array of metrics, including authentication accuracy, false
positives/negatives, and communication overhead, were scrutinized to gauge the per-
formance of the Quondam Signature Algorithm. The resulting metrics validated the
algorithm’s ability to effectively authenticate devices in real-time, bolstering the security
posture of IoT networks. The meticulously devised experimental setup, meticulous im-
plementation, and comprehensive evaluation collectively underscored the algorithm’s
prowess in addressing real-time demands while fortifying IoT security.

The IoT architecture employed in the experimental setup was meticulously designed to
emulate a practical and diverse network scenario. A total of 50 IoT devices were strategically
distributed across the network, encompassing a mix of IoT sensors, actuators, and gateways.
This heterogeneous ensemble allowed for the simulation of complex interactions within
the IoT ecosystem.

In terms of communication parameters, the devices operated on a combination of
data rates and frequencies tailored to mirror real-world IoT dynamics. Data transmission
intervals were set at 5 s intervals for sensor devices, facilitating periodic updates. Mean-
while, event-triggered communication was initiated by actuators in response to predefined
thresholds, with real-time responsiveness being a primary focus. Communication utilized
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the MQTT protocol, known for its lightweight and publish-subscribe architecture, thus
aligning with the resource constraints often encountered in IoT devices.

This intricate IoT architecture, housing a diverse array of devices, alongside commu-
nication parameters optimized for real-time interactions, laid the foundation for a robust
experimental framework. The setup was carefully designed to not only reflect the complexi-
ties of real-world IoT deployments but also to ensure that the proposed Quondam Signature
Algorithm could effectively operate within these dynamic and challenging scenarios.

The proposed system’s performance is evaluated in terms of computational cost and
energy consumption, i.e., carried out while performing operations such as key generation,
signing, and verification, shown in Table 2. The offline signature scheme uses the Inversion
Operation (IO) and the Pairing Operation (PO). The IO hides the inverted values in the
Oracle outputs. The PO is also known by the name bilinear mapping, which is mainly used
to design complex cryptographic protocols. The PO mainly generates short signatures,
which can be further derived by performing scalar multiplication on the elliptical curve.
The offline scheme uses scalar multiplication (SM) for the hash function (H) generated
during the G1 execution. SM is mainly the multiplication of a point Q present in an elliptical
curve over the finite field. It is like multiplying any point by its scalar value. A point Q is
chosen from a set of rational points in a given elliptical curve, and the value is incremented
by adding the intermediate result to it. The SM serves as a significant concept in Elliptic
Curve Cryptography (ECC), which uses a binary validation method. If the result is a bit
value, ‘0’ means a point-doubling operation is performed. If the result is of a bit value,
‘1’ means point addition with doubling is performed when the attacker can differentiate
between the point-doubling and point-addition operation, the message’s secret.

Table 2. Comparison of evaluation cost as well as the key size.

Methods [22] [23] [24] [25] [26] [27] Proposed
Scheme

Offline evaluation 3MP + 1M M 3MP + 1 MM 3MP + 1 MM 3MP + 1 MM 3MP + 1 MM 3MP + 1 MM 3MP + 1 MM
Online evaluation 3A + 5M 2A + 5M 2A + 4M 2A + 3M A + 3M 3M 2M
Offline storage 2624 5056 2624 5056 2624 3632 1312
Ciphertext length 2144 6464 2144 4320 3424 2144 1280
No. of pairing for
decryption 8 7 5 5 4 4 2

Computational Time Taken by the Different Algorithms

Table 3 summarizes the proposed scheme’s execution on energy consumption is
less than a bit joule, making the scheme an energy-efficient one. A degree of temporal
complexity is introduced by the signature schemes in order to confirm the authenticity and
integrity of messages that are sent back and forth between nodes. The temporal complexity,
on the other hand, is greatly reduced by the plan that was suggested. In addition, the
performance advantages that ECC has over RSA become more evident as the key size
grows, particularly in terms of the amount of time spent on execution and the amount
of energy used. The results of the comparison between the proposed system and earlier
sensor network designs are shown in Table 4. These results demonstrate that the suggested
scheme is superior shown in Figure 7.

The time complexities of various schemes are evaluated and compared with each
other, as shown in Table 4 and Figure 8.
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Table 3. Computational cost calculated for various schemes.

Scheme
Parameter Generation Signing Verification

SM H PO SM IO H PO SM IO H

AES [28] 1 0 0 1 0 0 0 2 0 1
DES [29] 1 0 2 1 1 1 0 4 1 1
IDEA [30] 1 0 0 1 1 1 1 1 0 1
HMAC [31] 1 0 0 1 1 1 1 0 1 1
Diffe Hellman [32] 1 0 2 1 1 1 0 2 0 1
MPKG [33] 1 1 0 1 1 1 1 1 0 1
Proposed Scheme 1 1 0 0 1 1 1 1 1 1

Note: Inversion Operation (IO), Pairing Operation (PO), scalar multiplication (SM) for the hash function (H).

Table 4. Execution time of different schemes.

Scheme Time Taken (Seconds)

AES 0.1081002
DES 0.0970700

IDEA 0.1121040
HMAC 0.0987641

Diffe Hellman 0.0570001
MPKG 0.0456002

Proposed Scheme 0.0342760
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Compared to the other schemes, the proposed method’s time complexity is mainly
reduced by doing complex computations in the offline phase and generating the online
phase’s signature. The elliptic curve digital signature algorithm based online, an offline
signature scheme used in the proposed scheme reduces the time during key generation,
signing, and verification, which differentiates the proposed scheme from others. The SBM
scheme is the slowest of all the schemes described above. The above results demonstrate
the time complexity of more than 25 rounds, including a 1500 signature generation and 1500
verifications. The main advantage of identity-based online/offline schemes is reducing the
signature size and computational overhead during signature generation. The proposed
scheme provides the same size for both the public key and the user’s signature. The key
generated for the ID-based online/offline scheme is 20 bytes (160 bits).

5. Conclusions and Future Scope

In order to combat the problem of random assaults on IoT systems, this research pro-
poses cutting-edge data encryption and decryption techniques. The suggested techniques
successfully reduce the danger of man-in-the-middle attacks by creating device signatures
that are only accessible once using the Quondam Signature Algorithm (QSA). The findings
show how effective the algorithms are at lowering communication costs, expressed in terms
of bits transferred, and they also show the possibility for further optimization. The research
emphasizes the significance of the findings by contrasting alternative communication cost
strategies. The suggested remedy can also be expanded to cover other common assaults
on IoT systems. In order to meet the demands of smartphones and other IoT devices, it
provides a secure command protocol with programmable settings, assuring a high level
of security.

There is the potential for more research in the future about the possibility of decreasing
the length of device signatures that are used in the process of authenticating devices.
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Investigating a variety of abbreviated physical identities, such as CPU signatures, co-
processor IDs, and memory unit signatures, is one such approach that might be taken.
In addition, there is a possibility for extensive study into the compression of created
timestamps, with the goal of achieving an even higher decrease in the costs associated
with communication.
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