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Abstract: In smart cities, unmanned aerial vehicles (UAVS) play a vital role in surveillance, moni-
toring, and data collection. However, the widespread integration of UAVs brings forth a pressing
concern: security and privacy vulnerabilities. This study introduces the SP-IoUAV (Secure and
Privacy Preserving Intrusion Detection and Prevention for UAVS) model, tailored specifically for the
Internet of UAVs ecosystem. The challenge lies in safeguarding UAV operations and ensuring data
confidentiality. Our model employs cutting-edge techniques, including federated learning, differ-
ential privacy, and secure multi-party computation. These fortify data confidentiality and enhance
intrusion detection accuracy. Central to our approach is the integration of deep neural networks
(DNNs) like the convolutional neural network-long short-term memory (CNN-LSTM) network,
enabling real-time anomaly detection and precise threat identification. This empowers UAVs to make
immediate decisions in dynamic environments. To proactively counteract security breaches, we have
implemented a real-time decision mechanism triggering alerts and initiating automatic blacklisting.
Furthermore, multi-factor authentication (MFA) strengthens access security for the intrusion detec-
tion system (IDS) database. The SP-IoUAV model not only establishes a comprehensive machine
framework for safeguarding UAV operations but also advocates for secure and privacy-preserving
machine learning in UAVS. Our model’s effectiveness is validated using the CIC-IDS2017 dataset, and
the comparative analysis showcases its superiority over previous approaches like FCL-SBL, RF-RSCV,
and RBFNNs, boasting exceptional levels of accuracy (99.98%), precision (99.93%), recall (99.92%),
and F-score (99.92%).

Keywords: unmanned aerial vehicles (UAVs); intrusion detection; privacy preserving; Internet of
UAVs; federated learning; real-time decision mechanism

1. Introduction

Recently, smart cities have gained significant traction as urban areas embrace advanced
technologies to improve efficiency, sustainability, and quality of life [1,2]. To integrate
diverse urban systems and improve the quality of services provided to residents, smart
cities incorporate cutting-edge technologies such as the Internet of Things (IoT), big data
analytics, and artificial intelligence [3–6].

UAVs offer unique advantages in smart-city environments, making them essen-
tial for a wide variety of programs. These flights offer actual-time surveillance and
monitoring capabilities, permitting authorities to accumulate essential statistics from
quite a few resources and locations wherein UAVs have verified benefits in range of
scenarios from site visitor tracking to environmental evaluation and disaster response
for public protection [7,8]. The ability to navigate challenging terrain and far off ar-
eas with ease makes them priceless assets for growing situational focus and a rapid
response time [9–11].
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1.1. Problem Statement and Motivation

As UAVs become increasingly prevalent in smart cities, safety and privacy concerns
have risen accordingly [12]. The use of UAVs raises the issues of safety breaches and
unauthorized access to sensitive information. Since UAVs gather and transmit a tremendous
amount of data, privacy concerns and intrusion detection and prevention become crucial.
The widespread integration of UAVs in smart cities has introduced a new dimension to
urban management and public safety. These versatile aircraft offer real-time data collection
capabilities across various domains, from traffic monitoring to disaster response. However,
with this proliferation comes a critical challenge: ensuring the security and privacy of
collected and transmitted data [13,14].

One of the primary concerns is the vulnerability of UAV networks to intrusions,
which can have severe repercussions on public safety and data integrity. As UAVs become
indispensable for critical applications, safeguarding their operations against potential
threats becomes paramount. Additionally, the sensitive nature of the data they handle
necessitates robust privacy-preserving mechanisms [15,16].

Existing security measures often fall short in addressing the unique challenges posed
by UAV deployments in smart cities. Conventional intrusion detection systems and privacy
protection techniques are not tailored to the dynamic and resource-constrained nature of
UAV networks [17,18]. This gap in existing solutions underscores the need for a specialized
framework designed specifically for this context. Additionally, the current landscape of
UAV security and privacy solutions lacks a comprehensive and tailored approach for
smart cities. Many existing approaches focus on conventional network security measures,
overlooking the intricacies of UAV operations [19,20]. Furthermore, privacy-preserving
techniques often do not account for the dynamic nature of UAV networks, leading to
suboptimal protection [21,22].

This apparent gap in the existing literature prompted the development of the SP-
IoUAV model. Our aim was to fill this gap by developing an innovative framework that
not only addresses the security and privacy concerns specific to UAV deployments in smart
cities but also employs cutting-edge techniques to ensure data integrity and confidentiality.

1.2. Proposed Work Contributions

The SP-IoUAV model makes the following contributions:

• Innovative Privacy-Preserving Mechanism: Our novel privacy-preserving mecha-
nism combines federated learning, differential privacy, and secure multi-party compu-
tation in a powerful way to preserve privacy. This mechanism significantly enhances
the detection and prevention of intrusions in UAV networks while ensuring the com-
prehensive protection of sensitive data.

• Robust Intrusion Detection Engine: An intrusion detection engine built on a CNN-
LSTM deep neural network forms the basis of our model, which is robust in nature.
Using this engine, UAVs can detect anomalies and classify them in real time, allowing
them to identify security threats quickly.

• Proactive Real-Time Decision Mechanism: In addition to providing instant alerts
and automatic blacklisting, our model also features a cutting-edge real-time decision
mechanism and automatic blacklisting. In order to prevent potential breaches, this
dynamic system responds quickly, notifies relevant personnel, and takes decisive
action when intrusions are detected.

• Multi-factor Authentication for Enhanced Security: For enhanced security, we use
multi-factor authentication (MFA) to control database access to the intrusion detection
system (IDS). In addition to providing an additional layer of protection against unau-
thorized access, MFA demonstrates the robustness of our overall system and reassures
users of its integrity.
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1.3. Paper Organization

The rest of this paper is organized as follows: Section 2 reviews the related works in
the literature. Section 3 details the methodology, algorithms, and design of our proposed
model. The Experimental Findings and Analysis section is presented in Section 4, divided
into four subsections covering system requirements, dataset description, simulation setup,
and comparative analysis. Lastly, in Section 5, we conclude this research work and outline
future research directions.

2. Related Works

The Literature Survey section reviews existing research on secure and privacy-preserving
intrusion detection for UAVs, providing insights for our proposed SP-IoUAV model.

The authors of [17] introduced a hybrid ML approach, combining logistic regression
and random forest, to classify data instances for enhanced privacy and security protection in
drones. The technique demonstrated a remarkable accuracy of 98.58%. However, to ensure
proper performance evaluation, the authors did not manage to clearly illustrate how their
methodology can provide privacy and security protection in UAVs.

The authors of [18] conducted an investigation into security challenges within UAV
networks, specifically concerning eavesdropping attacks enabled by the broadcast nature
of wireless channels and wide aerial coverage. They explored the application of machine
learning techniques to decrypt encrypted locations derived from wireless data transmission.
To counter machine-learning-based attacks, they proposed a location protection approach
utilizing random linear network coding and randomized encryption keys. The research
demonstrated the neural network’s capability to successfully decrypt encrypted locations
using conventional protection methods. However, this highlights the necessity for imple-
menting stronger security measures to safeguard sensitive location data transmitted in
UAV networks over wireless channels.

The authors of [23] proposed two frameworks, one for creating test data features from
wireless signals and another for generating training data to detect eavesdropping attacks in
UAV-aided wireless systems. Their results showed that OC-SVM outperformed k-means in
terms of stability, while k-means clustering performed better when the eavesdropper used
high transmission power. However, the process of detection remained unclear.

The authors of [24] introduced a supervised machine learning approach utilizing
an artificial neural network to detect GPS spoofing signals. Various features, including
pseudo-range, Doppler shift, and signal-to-noise ratio (SNR), were employed to classify
GPS signals for detecting GPS spoofing attacks on unmanned aerial systems. The results
demonstrated the high probability of detection and low probability of false alarms achieved
by their proposed method. However, the details of the methodology remain unclear.

The authors of [25] introduced a long short-term memory (LSTM) recurrent neural
network method for UAV anomaly detection. Initially, a prediction model was formulated
based on a training dataset containing normal data only, enabling the prediction of data
at a subsequent time. Subsequently, by considering the prediction results during the
training phase, an estimation of the prediction uncertainty was obtained. Finally, anomaly
detection was accomplished by comparing the prediction value with the uncertain interval.
The proposed method was validated using real UAV sensor data with point anomalies in
north velocity and pneumatic lifting velocity, showing its effective ability to detect point
anomalies. However, using a single neural network method may not be as effective as
using a hybrid architecture, which could potentially offer improved performance in UAV
anomaly detection.

The authors of [26] proposed an approach that addresses data privacy in UAVs using
blockchain technology. They analyzed security solutions combining machine learning and
blockchain for UAV collaborative applications. The findings show that machine learning
enhances UAV security, and blockchain offers decentralized security. The hybrid model
of machine learning and blockchain improves data reliability. This approach can benefit
diverse applications, including healthcare and industries where security and data quality
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are vital. However, further research is needed to explore the full potential of blockchain
technology for decentralized UAV security.

The authors of [27] proposed a powerful DL-based blockchain IDS named BIIR for
secure IoD environments. This system utilizes RL and RBFNN as agents, representing
the DL component of the technique. It achieved high accuracy in identifying attacks even
with an increased number of drones, outperforming state-of-the-art techniques. The BIIR
approach demonstrated resilience against various known threats in real-world IoD appli-
cation scenarios. However, it is important to note that our proposed SP-IoUAV model
complements the BIIR approach by addressing additional security and privacy challenges
in the Internet of Unmanned Aerial Vehicles.

The authors of [28] proposed an advanced IDS for UAV swarms to detect in-flight
anomalies and network attacks, addressing security challenges in UAV technology. The IDS
offers wider attack coverage, privacy protection, and hardware independence. However,
there is a potential gap in evaluating the system’s real efficiency and impact in practical
scenarios on hardware components. Additionally, further exploration of using blockchain
for enhanced privacy and testing the IDS on a swarm of UAVs could be considered.

The authors of [29] introduced a collaborative intrusion detection algorithm, utilizing
CGAN-LSTM with blockchain-empowered distributed federation learning. This algorithm
achieves exceptional accuracy exceeding 95% and outperforms other methods. However,
to achieve even better performance, it is advisable to explore an ensemble of secure and
privacy-preserving approaches.

The authors of [30] presented an intelligent intrusion detection framework empowered
by mobile edge computing technology for detecting and predicting diverse attacks in the
UAV network. The proposed optimized random forest model, integrated into dedicated
UAV-MEC servers, demonstrated efficient attack detection in various UAV network zones.
However, since the framework relies on a single DNN algorithm, a combination of multiple
secure and privacy-preserving approaches could potentially improve the accuracy of attack
detection even further.

The authors of [31] proposed a novel IDS framework based on federated continuous
learning with stacked BLS learning systems. They employ DTN to enhance attack detec-
tion by decentralizing the learning process. The framework addresses data silos, ensures
privacy and security, and achieves high accuracy and training efficiency. However, com-
bining this approach with other secure and privacy-preserving techniques could further
enhance performance.

The authors of [32] introduced an optimized hierarchical anomaly-based intrusion
detection system specialized in identifying and alerting lethal attacks in military operations
within Internet of Drones networks. By utilizing an optimized hyperparameters algorithm
and randomized search cross-validation, an efficient random forest classifier was designed
as the baseline algorithm for the IDS. The simulation results confirmed the superiority of
the proposed model, which outperformed selected optimized models based on essential
performance metrics. However, the reliance on a single classifier could be further improved
by exploring a combination of secure and privacy-preserving approaches for enhanced
attack detection accuracy.

The authors of [33] proposed a supervised ML approach for detecting Sybil attacks in
FANETs-based IoFT. While achieving a high classification accuracy of over 91%, the study
lacks clarity in the analysis and does not fully demonstrate the model’s potential in handling
diverse attacks in UAV networks. A more comprehensive evaluation of the proposed model
under varied attack scenarios is needed for real-world applicability. Likewise, FANETs
have been utilized in UAV networks to optimize communication using the fisheye state
routing (FSR) protocol [34].

The authors of [35] proposed an innovative solution focused on preserving the privacy
of lane images. Their approach combines ELA, ANN, and a U-Net model for real-time
lane detection. The final step employs proxy re-encryption with RSA and ECC algorithms
to ensure image integrity. However, the approach primarily addresses image security in
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rural lane contexts. In contrast, our research takes a more comprehensive approach, encom-
passing security and privacy concerns across the entire UAV ecosystem. This includes a
significant emphasis on robust intrusion detection mechanisms, crucial for safeguarding
operations against a range of potential threats.

In the literature, many authors have provided different methods for intrusion detection
and prevention in the Internet of UAVs. However, it is crucial to acknowledge that this
progression is not without its challenges. Table 1 illustrates the methods, limitations,
and advantages of each research work cited in the literature survey.

Table 1. Related Works: Methods, Limitations, and Advantages.

Paper Methods Limitations Advantages

[17] Hybrid ML technique of Logistic
Regression and Random Forest Weak security measures High accuracy (98.58%)

[18] Enhanced K-vector perturbation and
Random LNC (RLNC) Insufficiency of sensitive data security Explores UAV security,

Decrypts locations

[23] OC-SVM and K-Means++ Clustering Unclear detection process OC-SVM outperforms k-means

[24] Neural Network Algorithm Unclear methodology description High detection, low false alarms

[25] LSTM Single NN less effective Effective point anomaly detection

[26]
Hybrid ML (K-Nearest Neighbor
(KNN), Naive Bayes (NB)),
and blockchain

Unclear methodology description Enhanced security, data reliability

[27] Radial Basis Function Neural Network
(RBFNN) and Blockchain Need of BIIR Complements High accuracy in attack identification

[28]

Supervised Learning (LightGBM and
GANS), and Unsupervised Learning
(One-class classifier and
Federated Learning)

Efficiency evaluation gap Wider attack coverage, privacy

[29] CGAN, Blockchain, and LSTM Need of ensemble approaches Exceptional accuracy (>95%)

[30] Mobile Edge Computing (MEG),
Optimized Random Forest (RCSV)

Need of ensemble for improved
accuracy

Efficient attack detection in
various zones

[31] Federated Learning, Deep
Deterministic Policy Gradient (DDPG) Ensemble technique needed High accuracy, training efficiency

[32] Random Forest Ensemble technique needed for
improved accuracy

Superiority in identifying
lethal attacks

[33] Supervised ML (J48, Classification via
Regression, OneR and JRip) Performance evaluation not systematic High classification accuracy (>91%)

[34] FSR protocol Limited network scenarios Efficient resource utilization, high
delivery ratios

[35] ELA and ANN Algorithms Only rural image security focus Authentic assessment of
satellite images

One significant limitation in the existing literature revolves around the security and
privacy concerns associated with UAV operations. As UAVs become increasingly integrated
into urban environments, safeguarding data transmission and preventing unauthorized
access have emerged as critical issues. In response to these challenges, our proposed
SP-IoUAV model leverages a novel privacy-preserving mechanism, combining federated
learning, differential privacy, and secure multi-party computation. This approach not only
enhances the detection and prevention of sensitive data breaches but also addresses the
broader spectrum of security and privacy concerns within the UAV ecosystem. By miti-
gating these limitations, our model seeks to provide a robust framework for secure and
privacy-preserving UAV operations within smart cities.
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3. The Proposed SP-IoUAV Model

We present in this section a model for detecting and preventing intrusions with
security and privacy in the Internet of UAVs. In order to ensure data privacy during data
transmission, the model uses advanced techniques such as federated learning, differential
privacy, and secure multi-party computation. As our IDS architecture enhances security
and privacy for UAVs by adding multi-factor authentication (MFA) to secure database
access, we are facilitating seamless collaboration and efficient decision making within the
smart-city environment. The proposed model is depicted in Figure 1, while in Table 2, we
describe and define all symbols, variables, and notations used in this research work.

Privacy-Preserving
Ensemble

UAVs

Secure Multiparty 
Computation

Differential Privacy

Federated Learning

Data Collector
Intrusion Detection

Engine
Real-Time Decision 

Mechanism
Database

Data
Preprocessing

Anomaly Detection
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Smart City Control Center

A
le

rt
 N

ot
ifi
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n 
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Protected Under Multifactor
Authentication (MFA)
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Real-Time
Alert

Provision

Blacklist
Management

Figure 1. The Proposed SP-IoUAV Model.
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Table 2. Notation Table.

Notation Meaning

D = {D1, D2, . . . , Dn} Local datasets from n UAVs
θ Global model parameters

F(θ) Global loss function
Di Local data of UAV i

fi(θ) Local loss function of UAV i
θi Local model parameters of UAV i

θglobal Updated global model parameters
Aggregate(θglobal, θ1, θ2, . . . , θn) Aggregation process

ε Privacy parameter (epsilon)
Ei Encrypted dataset from UAV i
∆x Sensitivity

Lap(0, ∆x/ε) Laplace noise
Eout Encrypted output

UAVi UAV i
D′i Privatized dataset from UAV i

Eout Encrypted output
Xcollected Collected data

Xnormalized Normalized data
Xtransformed Transformed data
Xpreprocessed Preprocessed data

yij Output feature map
x(i+m)(j+n) Input data at position (i + m, j + n)
Xanomalies Detected anomalies from CNN

xt Input at time step t
ht Hidden state at time step t
Ct Cell state at time step t
it Input gate activation at time step t
ft Forget gate activation at time step t
ot Output gate activation at time step t
C̃t Candidate cell state at time step t
σ Sigmoid activation function
� Element-wise multiplication

Wxi, Wx f , Wxo, Wxc Weight matrices for input, forget, output, and candidate gate, respectively
Whi, Wh f , Who, Whc Weight matrices for input, forget, output, and candidate gate, respectively

bi, b f , bo, bc Bias vectors for input, forget, output, and candidate gate, respectively
ei i-th entity or intrusion identified as a threat

Tintrusion Detected Intrusion Type
PUAV UAV Operators’ Preference

3.1. Unmanned Aerial Vehicles (UAVs)

Using UAVs as its backbone, the proposed model collects information and dissemi-
nates it in the IoUV ecosystem of unmanned aerial vehicles. In order to collect real-time
data from their surroundings, such as video feeds, environmental parameters, and network
traffic, these self-driving vehicles are equipped with sensors and communication modules.
In the proposed model, UAVs play the following roles:

• Data Collection: UAVs continuously gather visual and non-visual data from their
environment, including images, videos, environmental parameters, and network
traffic data.

• Data Tagging: UAVs add unique identifiers or tags to each data point before trans-
mission to indicate their source, maintaining privacy during data sharing.

• Data Encryption: UAVs employ encryption techniques to secure both visual and
non-visual data before transmitting the data to the data collector, safeguarding sensi-
tive information.

• Data Transmission: UAVs collaboratively and securely transmit encrypted data to
the data collector, contributing to the collective security framework.
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• Real-time Communication: UAVs retain real-time communication links with one
another and with the smart city control center, allowing for rapid information sharing
and reaction to safety issues.

• Autonomous Operation: UAVs function independently, making decisions and adapt-
ing to changing situations without human interference, hence, improving monitoring
and surveillance abilities.

3.2. Privacy-Preserving Ensemble

The privacy-preserving ensembles in the proposed model are crucial components
suggested for securing sensitive data during intrusion detection and prevention processes.
In this collaborative approach, the IDS can take advantage of the collective intelligence of
UAVs while maintaining data privacy. The ensemble integrates machine learning models
from various UAVs while maintaining the privacy of individual data points. A brief
description of each technique follows.

3.2.1. Federated Learning

Machine learning techniques such as federated learning enable models to be trained
on different devices or nodes without transferring raw data. After combining all UAV
models, data privacy is protected because the actual data are not shared after they are
combined. Each UAV stores its own local data and uses these to train its own model.

Suppose D = D1, D2, . . . , Dn represents local datasets from n UAVs, where θ repre-
sents the global model parameters, and F(θ) represents the global loss function. Based on
its local data Di, each UAV i trains its local model to minimize its own local loss function
fi(θ). The local models are then sent to a central server where they are combined to update
the global model parameters as follows:

θglobal ← Aggregate
(

θglobal, θ1, θ2, . . . , θn

)
(1)

As part of the aggregation process, a weighted average of local model parameters is
calculated according to the size of each UAV’s dataset. Upon updating the global model,
the UAVs are then sent back to iterate until convergence is achieved.

Algorithm 1 describes clearly how our proposed federated learning model works.

Algorithm 1 Federated Learning Algorithm
Input: Global model parameters θglobal
Output: Updated global model parameters θglobal

1 Initialize global model parameters θglobal;
2 for each round t = 1, 2, . . . , T do
3 for each UAV i = 1, 2, . . . , n do
4 Receive global model parameters θglobal;
5 Train local model using data Di and update local parameters:

θi ← argminθ fi(θ);
6 Send local model parameters θi to the central server;
7 end
8 Aggregate local model parameters using Equation (1);
9 end

Several UAVs are involved in the algorithm, which operates in rounds. Global model
parameters are initialized and shared with UAVs for local model training. UAVs update
the global model using their local models, protecting data privacy. As UAV privacy is
protected, federated learning improves intrusion detection and prevention.
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3.2.2. Differential Privacy

With our proposed model, we implement a fundamental privacy-preserving technique
called differential privacy that protects individual data points while allowing accurate
analysis of aggregate data. Differential privacy prevents sensitive information from being
extracted about particular individuals or entities by adding carefully calibrated noise to the
data. It can be defined as follows:

Given two neighboring datasets D1 and D2 that differ in only one data point, and a
privacy parameter ε (epsilon), a randomized algorithm M provides ε-differential privacy if
for all possible output sets S:

Pr[M(D1) ∈ S] ≤ eε · Pr[M(D2) ∈ S] (2)

As part of our proposed model, each UAV data point is perturbed with differential
privacy noise before it is sent to the central server for analysis. In addition to preserving
the overall utility of the data for analyzing trends and patterns, this noise ensures that the
statistical properties of the data remain intact.

Our proposed differential privacy model involves the following steps:

Sensitivity = max
neighboring datasets Di ,D′i

‖x− x′‖1 (3)

For each data point x ∈ Di:

∆x = max
neighboring datasets Di ,D′i

‖x− x′‖1 (4)

Apply Laplace noise to each data point:

x′ = x + Lap(0, ∆x/ε) (5)

Our proposed differential privacy model is explained in Algorithm 2.

Algorithm 2 Differential Privacy Algorithm
Data: Dataset Di from UAV i, privacy parameter ε
Result: Privatized dataset D′i

1 Calculate sensitivity of the dataset using Equation (3);
2 for each data point x ∈ Di do
3 Calculate ∆x using Equation (4);
4 Apply Laplace noise using Equation (5);
5 end
6 Return the privatized dataset D′i containing all the privatized data points;
7 End

With differential privacy, UAV data privacy is preserved by adding Laplace noise
before transmission. Based on the privacy parameter ε, sensitivity is calculated to determine
the noise magnitude. As a result, the original data are protected while allowing accurate
analysis at the central server.

3.2.3. Secure Multi-Party Computation (SMC)

SMC is a fundamental cryptographic technique used in our proposed model to ensure
data privacy and security. The IDS we provide enables multiple UAVs to collaborate on
encrypted data in one solution.

As part of the SMC process, data are encrypted before they are shared with other
participants. UAVs hold secret keys that encrypt their data before sharing these data as



Sensors 2023, 23, 8077 10 of 27

encrypted inputs with other UAVs. Since the actual computations take place on encrypted
data, no UAV is able to access plain text data held by other participants.

Let UAVi represent a UAV, and Di be its encrypted dataset. Each UAV computes a
function fi on its encrypted data:

Ei = Encrypt(Di, keyi) (6)

where Encrypt(·) denotes the encryption function using the UAV’s secret key keyi, and Ei
is the encrypted dataset shared with other UAVs.

After receiving the encrypted inputs Ei from all UAVs, the collaborative computation
is performed using secure cryptographic protocols. The result is an encrypted output that
contains the collective insights from all UAVs without exposing any individual UAV’s data.

The secure computation can be represented as:

Eout = Compute(E1, E2, . . . , En) (7)

where Compute(·) denotes the secure computation function, and Eout is the encrypted
output shared with all UAVs.

By utilizing advanced cryptographic protocols like secure multi-party computation,
the proposed model enables UAVs to collaboratively train machine learning models and
collectively detect anomalies without the need to disclose raw data to other entities. This
privacy-preserving mechanism enhances the overall security of UAV operations in a smart
city environment and strengthens the resilience of the IDS against potential attacks.

SMC plays a pivotal role in the collective decision-making process, allowing UAVs
to share insights from their individual data sets without compromising data privacy. This
collaborative approach facilitates the detection of sophisticated security threats that may
span across multiple UAVs and ensures that the system operates effectively in real-time,
adapting to evolving security challenges within the Internet of Unmanned Aerial Vehicles
(IoUV) ecosystem.

Algorithm 3 clearly describes the functionality of SCM in our proposed model.

Algorithm 3 Secure Multi-party Computation Algorithm
Data: Encrypted dataset Ei from UAV i
Result: Encrypted output Eout

1 Input: Receive encrypted datasets Ei from all UAVs;
2 Initialize: Set Eout to empty encrypted data;
3 for each UAV i in the network do
4 Perform secure computation on Ei using cryptographic protocols (see

Equation (6));
5 Aggregate: Add the result of secure computation to Eout (see Equation (7));
6 end
7 Output: Encrypted output Eout;

The secure multi-party computation algorithm facilitates data exchange and collabora-
tive computations using encrypted datasets, producing the encrypted collective output Eout.
This method enables collective learning without revealing individual UAVs’ data, ensuring
data privacy within the privacy-preserving ensemble. Real-time updates of the ensemble
models with new data further enhance the IDS’s effectiveness in dynamic environments,
enabling robust threat detection and prevention.

3.3. Intrusion Detection System (IDS)

As part of our proposed model for detecting and preventing intrusions in the Internet
of UAVs ecosystem, the IDS is a critical component. Within the UAV network, it efficiently
identifies threats and abnormalities.
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3.3.1. Data Collector

The data collector is a critical component of our proposed IDS model, responsible for
efficiently collecting encrypted data from the privacy-preserving ensemble. This ensemble,
consisting of federated learning, differential privacy, and secure multi-party computation
techniques, securely aggregates data from multiple UAVs while preserving individual data
privacy. Using advanced cryptographic protocols, the data collector receives the encrypted
dataset Ei from the privacy-preserving ensemble, where Ei represents the collective data
from multiple UAVs. Each UAV’s data are encrypted using its respective secret key keyi
before transmission to the data collector. The encryption process can be represented as:

Ei = Encrypt(Di, keyi) (8)

where Encrypt(·) denotes the encryption function using the UAV’s secret key, and Di is the
dataset collectively aggregated from multiple UAVs.

Algorithm 4 outlines the steps performed by the data collector:

Algorithm 4 Data Collection Algorithm
Data: Encrypted datasets Ei from the privacy-preserving ensemble
Result: Encrypted datasets stored in the data collector

1 for each UAV i do
2 Receive encrypted dataset Ei from the privacy-preserving ensemble;
3 if Verification of authenticity and integrity of Ei is successful then
4 Store the encrypted dataset Ei securely in the data collector’s database;
5 end
6 else
7 Alert: Invalid or tampered encrypted dataset received from UAV i;
8 Terminate: Data collection process for UAV i;
9 end

10 end
11 End

This algorithm securely receives encrypted datasets Ei from the privacy-preserving en-
semble, aggregating data from multiple UAVs. It then verifies the authenticity and integrity
of the data before securely storing the data in its database. This collaborative approach
empowers the intrusion detection system (IDS) to efficiently analyze data from multiple
UAV sources while preserving data privacy, enhancing the security and responsiveness of
UAV operations within the smart-city environment.

3.3.2. Intrusion Detection Engine

The intrusion detection engine is a critical component within the proposed model
responsible for efficiently identifying potential security threats and abnormal activities
within the UAV network. It plays a key role in analyzing the collected and preprocessed
data to detect any suspicious patterns or behaviors that may indicate intrusion attempts or
anomalous activities. The intrusion detection engine is composed of two main stages: data
preprocessing and anomaly detection and classification.

• Data Preprocessing: Before feeding the data into the anomaly detection and classifi-
cation stage, the data preprocessing stage performs essential tasks to ensure the data
are in a suitable format for analysis. Data normalization, feature extraction, and data
transformation are all part of this stage.

• Data normalization: Data normalization is an important step in data preprocessing
that ensures all features are of equal importance and scale. Normalization techniques
vary, but one popular technique is min-max scaling. The data are scaled to a fixed
range, typically between 0 and 1, using the following formula:
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Xnormalized =
X− Xmin

Xmax − Xmin
(9)

where X represents the original data, Xmin represents the dataset’s minimum value,
and Xmax represents the dataset’s maximum value.

• Feature extraction: Feature extraction entails extracting the most relevant features
from the collected data. Principal component analysis (PCA) is a common feature
extraction technique. PCA converts the data into a new coordinate system in which
the new features, known as principal components, are orthogonal to each other and
capture the most variance in the data.

In this step, we will need to calculate the covariance matrix C, which can be calculated
as follows:

C =
1

n− 1

n

∑
i=1

(xi − x̄)(xi − x̄)T (10)

where n is the number of data points, xi represents each data point, and x̄ is the mean vector
of the data points. The term (xi − x̄)(xi − x̄)T represents the outer product of the centered
data point with itself. We will also need to compute the eigenvectors and eigenvalues of C,
as follows:

C ·V = V ·Λ (11)

where C represents the covariance matrix of the dataset, V represents a matrix containing
the eigenvectors, and Λ is a diagonal matrix containing the eigenvalues.

After that, we have to compute the transformed data using the PCA equation. PCA is
expressed as follows:

Xtransformed = X ·V (12)

where X represents the original data matrix and V is the eigenvector matrix derived from
the data covariance matrix.

• Data transformation techniques: These techniques such as t-distributed stochas-
tic neighbor embedding (t-SNE) are used to further enhance the data representa-
tion, especially for visualization purposes. t-SNE is commonly used to reduce high-
dimensional data to a lower-dimensional space while preserving the local structure of
the data. Here, we compute the pairwise distances between data points in Xtransformed
as follows:

d(xi, xj) =

√
n

∑
k=1

(xik − xjk)2 (13)

where d(xi, xj) represents the pairwise Euclidean distance between data points xi and xj, n
is the number of dimensions (features) in the data, and xik and xjk are the k-th features of
data points xi and xj, respectively. t-SNE can be represented as follows:

Pij =

exp
(
− |xi−xj |2

2σ2
i

)
∑k 6=i exp

(
− |xi−xk |2

2σ2
i

) (14)

Qij =
(1 + |yi − yj|2)−1

∑k 6=i(1 + |yi − yk|2)−1 (15)

C = ∑
i

KL(Pi|Qi) = ∑
i

∑
j

Pij log
Pij

Qij
(16)

where xi and xj are data points in the original space, yi and yj are their corresponding points
in the lower-dimensional space, σi is the variance of the Gaussian distribution around xi,
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Pij is the conditional probability that xi would pick xj as its neighbor, Qij is the conditional
probability that yi would pick yj as its neighbor, and KL(Pi|Qi) is the Kullback–Leibler
divergence between Pi and Qi.

These data preprocessing steps, including normalization, feature extraction with PCA,
and data transformation using t-SNE, are essential for improving the data representa-
tion and facilitating more effective anomaly detection and classification in the intrusion
detection engine.

Algorithm 5 summarizes the data preprocessing stage.

Algorithm 5 Data Preprocessing Algorithm
Data: Collected data Xcollected
Result: Preprocessed data Xpreprocessed

1 Data Normalization:
2 for each feature x in Xcollected do
3 Normalize the data using Equation (9);
4 end
5 END Data Normalization
6 Feature Extraction using PCA:
7 Compute the covariance matrix C of Xnormalized using Equation (10);
8 Compute the eigenvectors and eigenvalues of Cusing Equation (11);
9 Select the top k eigenvectors with the highest eigenvalues;

10 Construct the transformation matrix V from the selected eigenvectors;
11 Xtransformed ← Xnormalized ·V ;
12 Compute the transformed data using Equation (12);
13 END Feature Extraction
14 Data Transformation using t-SNE:
15 Compute the pairwise distances between data points in Xtransformed using

Equation (13);
16 Compute the conditional probabilities Pij and Qij based on the pairwise distances

using Equations (14) and (15);
17 Compute the Kullback–Leibler divergence C between P and Q using

Equation (16);
18 Use gradient descent to minimize C and obtain the lower-dimensional data

Xpreprocessed;
19 END Data Transformation
20 Output: Preprocessed data Xpreprocessed;

• Anomaly Detection and Classification: In this stage, the preprocessed data are fed
into advanced machine learning algorithms, such as the convolutional neural network-
long short-term memory (CNN-LSTM) network, for anomaly detection and classifica-
tion. The combination of CNN and LSTM allows the system to perform comprehensive
anomaly detection and classification, enhancing the intrusion detection system’s ability
to effectively identify and respond to security threats in the UAV network.

• Convolutional Neural Network (CNN): CNN is a powerful deep learning model
commonly used for image and spatial data analysis. The CNN plays a critical role
in anomaly detection in the proposed intrusion detection system for UAVs by learn-
ing spatial patterns and features from preprocessed data. The CNN architecture is
made up of several layers, such as convolutional layers, pooling layers, and fully
connected layers.
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The convolution operation is the essential building component of a CNN. It entails
applying filters (kernels) to input data in order to derive feature maps. In the output feature
map, the convolution process for a specific pixel can be expressed as:

yij = ∑
m

∑
n

wmn · x(i+m)(j+n) (17)

where yij i represents the output feature map, wmn is the filter (kernel) value at position
(m, n), and x(i+m)(j+n) represents the input data at position (i + m, j + n).

The activation function adds nonlinearity to the CNN, allowing it to simulate com-
plicated data relationships. ReLU (rectified linear unit) and sigmoid are two common
activation functions. The ReLU activation function is defined as follows:

f (x) = max(0, x) (18)

Pooling layers reduce the spatial dimensions of the feature maps, lowering computa-
tional cost and preventing overfitting. The MaxPooling operation picks the largest value
inside a particular window, while the Average Pooling operation computes the average
value. The MaxPooling procedure can be represented as follows:

yij = max(x(i+m)(j+n)) (19)

where yij represents the pooled output, and x(i+m)(j+n) represents the input data in the
pooling window.

Algorithm 6 summarizes the functionality of CNN in our proposed model.

Algorithm 6 Convolutional Neural Network (CNN) Algorithm
Data: Preprocessed data Xpreprocessed
Result: Anomaly Detection using CNN

1 Initialize CNN architecture with convolutional layers, pooling layers, and fully
connected layers;

2 Input preprocessed data Xpreprocessed into the CNN;
3 for each Convolutional Layer do
4 Apply convolution operation using Equation (17);
5 Apply ReLU activation function using Equation (18);
6 end
7 for each pooling layer do
8 Perform pooling operation to reduce spatial dimensions using Equation (19);
9 end

10 Flatten the feature maps into a vector;
11 Feed the vector into the fully connected layers for classification;
12 Output the detection results for anomalies;
13 End

The CNN is largely in charge of recognizing and differentiating anomalies from
routine UAV operations. It is particularly good at learning spatial features and patterns
from preprocessed data. As a result, by evaluating geographical information, it may detect
unexpected or abnormal patterns in data, indicating potential security threats or breaches.

• Long Short-Term Memory (LSTM): The LSTM is a recurrent neural network (RNN)
variant designed to handle sequential data, making it well-suited for time-series
analysis and capturing temporal dependencies. It is important in the context of our
proposed IDS as it takes detected anomalies from the convolutional neural network
(CNN) and classifies them into specific categories or types based on their temporal
characteristics. The LSTM is composed of memory cells that accumulate informa-
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tion over time, allowing it to remember and learn patterns that span multiple time
steps. Its unique ability to retain long-term dependencies enables it to recognize
complex temporal patterns in the sequence of detected anomalies, facilitating accurate
anomaly classification.

The LSTM computationally processes sequential data by employing a set of gating
mechanisms that regulate the flow of information. The input gate, forget gate, and output
gate are examples of these mechanisms. The LSTM’s cell state stores information over time,
while the gates determine how much information is retained or discarded at each time step.
The following are the LSTM equations:

Input Gate:
it = σ(Wxi · xt + Whi · ht−1 + bi) (20)

Forget Gate:
ft = σ(Wx f · xt + Wh f · ht−1 + b f ) (21)

Output Gate:
ot = σ(Wxo · xt + Who · ht−1 + bo) (22)

Candidate Cell State:

C̃t = tanh(Wxc · xt + Whc · ht−1 + bc) (23)

Cell State Update:
Ct = ft � Ct−1 + it � C̃t (24)

Hidden State Update:
ht = ot � tanh(Ct) (25)

where xt is the input at time step t, ht is the hidden state at time step t, Ct is the cell state
at time step t, it, ft, and ot are the input, forget, and output gates’ activations at time step
t, respectively, C̃t is the candidate cell state at time step t, W and b are weight matrices
and bias vectors, and σ is the sigmoid activation function, and � represents element-wise
multiplication. Algorithm 7 summarizes the functionality of LSTM in our proposed model.

Algorithm 7 Long Short-Term Memory (LSTM) Algorithm
Data: Detected anomalies from CNN: Xanomalies
Result: Anomaly Classification using LSTM

1 Initialize LSTM architecture with input layer, hidden layer, and LSTM cells; for
each time step t in Xanomalies do

2 Input Gate:
3 Compute input gate activation it using Equation (20);
4 Forget Gate:
5 Compute forget gate activation ft using Equation (21);
6 Output Gate:
7 Compute output gate activation ot using Equation (22);
8 Candidate Cell State:
9 Compute candidate cell state C̃t using Equation (23);

10 Cell State Update:
11 Update cell state Ct using Equation (24);
12 Hidden State Update:
13 Update hidden state ht using Equation (25);
14 end
15 Extract temporal features from the sequence of hidden states;
16 Feed the temporal features into the output layer for classification;
17 Output: Classification results for different anomaly types;
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LSTM is chosen in our proposed model for classifying intrusions due to its exceptional
ability to capture temporal dependencies within sequential data. Its unique architecture
analyzes the temporal dynamics of anomalies over time, recognizing recurrent patterns and
sequential behaviors crucial for accurate anomaly classification. By leveraging LSTM, our
IDS effectively identifies and categorizes diverse intrusion scenarios, enhancing UAV oper-
ations’ security in a smart-city environment. Categorizing intrusions offers benefits such
as improved response strategies, focused investigation, enhanced situational awareness,
adaptive anomaly detection, and simplified forensic analysis, enhancing overall system
reliability and safety in a dynamic smart-city environment.

Figure 2 illustrates the hybrid CNN-LSTM Model for intrusion detection and classifi-
cation in our proposed SP-IoUAV model.
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Figure 2. Hybrid CNN-LSTM Model for Intrusion Detection and Classification.

3.3.3. Real-Time Decision Mechanism

The real-time decision mechanism, a critical component of our proposed model,
comprises blacklist management and real-time alert provision.

• Blacklist Management: Blacklist management is a crucial part of the real-time de-
cision mechanism in our proposed model. It involves maintaining and updating a
blacklist that contains identified malicious entities, such as unauthorized intruders or
suspicious activities. The primary goal of blacklist management is to prevent future
interactions with known threats and enhance the security of the unmanned aerial
vehicle (UAV) network.

We can represent the blacklist as follows:

Blacklist = e1, e2, . . . , en (26)

where ei represents the i-th entity or intrusion identified as a threat.
Algorithm 8 summarizes the blacklisting functionality in our proposed model.
The blacklist management algorithm first checks if a new intrusion, enew, is already

present in the current blacklist. If not, it adds the new intrusion to the blacklist. If enew
is already present, the algorithm updates its entry with any new information. Finally,
the algorithm returns the updated blacklist, Blacklistupdated, which is then used to prevent
any future interactions with known threats.

By continuously updating the blacklist with newly identified threats, the blacklist
management component ensures that the UAV network remains protected from previously
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encountered malicious entities, significantly reducing the risk of security breaches and
enhancing the overall security posture of the system.

Algorithm 8 Blacklist Management Algorithm
Data: Current Blacklist Blacklistcurrent, New Intrusion enew
Result: Updated Blacklist Blacklistupdated

1 begin
2 if enew is not in Blacklistcurrent then
3 Add enew to Blacklistcurrent using Equation (26);
4 end
5 else
6 Update the entry for enew in Blacklistcurrent using Equation (26);
7 end
8 Blacklistupdated← Blacklistcurrent;
9 end

• Real-Time Alert Provision: In our proposed model, real-time alert provision serves as
a crucial mechanism for promptly notifying key stakeholders about detected security
threats. Specifically, the mechanism sends alerts to the smart city control center,
the privacy-preserving ensemble, and individual UAVs.

When it comes to UAVs, real-time alert provision offers flexibility in notification meth-
ods. Depending on the nature and severity of the detected intrusion, UAV operators can
receive notifications either on a global level, where all UAVs are informed collectively, or on
an individual level, where each UAV is notified separately. This adaptability allows UAV
operators to tailor their response strategies based on the specific context of the intrusion.

By notifying the smart city control center, the privacy-preserving ensemble, and UAVs
in a timely manner, our proposed model ensures a coordinated and swift response to
security threats. This proactive approach enhances the overall security and resilience
of UAV operations in the dynamic smart-city environment, facilitating effective threat
mitigation and safeguarding critical assets and data.

Algorithm 9 summarizes the real-time alert provision mechanism.

Algorithm 9 Real-Time Alert Provision Algorithm
Data: Detected Intrusion Type Tintrusion, UAV Operators’ Preference PUAV
Result: Alert Notifications

1 begin
2 if Detected Intrusion Type Tintrusion is Critical then
3 Send alert to smart city control center;
4 Send alert to Pprivacy-preserving ensemble;
5 end
6 if UAV Operators’ Preference PUAV is Global then
7 Send global alert to all UAVs;
8 end
9 else if UAV Operators’ Preference PUAV is Individual then

10 for each UAV in the network do
11 Send individual alert to UAV;
12 end
13 end
14 end
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In the real-time alert provision algorithm, the variables Tintrusion and PUAV hold crucial
roles. Tintrusion represents the type of detected intrusion, while PUAV captures the UAV
operators’ preferences for alert notifications, whether they prefer global alerts or individual
alerts. The algorithm begins by assessing the severity of the detected intrusion. For critical
intrusions, alerts are dispatched to the smart city control center, the privacy-preserving
ensemble, and UAVs based on their specified preference. In cases where the intrusion is
not deemed critical, the algorithm sends alerts exclusively to UAVs, again adhering to their
preferred notification method. By employing this approach, the algorithm ensures that
relevant entities receive timely notifications tailored to the nature of the intrusion and the
specific preferences of UAV operators.

3.3.4. Intrusion Detection Database

The database is a crucial component in our proposed model, serving as a central
repository for securely storing and managing critical information related to the intrusion
detection system (IDS). It plays a pivotal role in efficiently storing preprocessed data
collected by the data collector from various sources within the UAV network. These
data are critical for the intrusion detection engine’s real-time decision-making, anomaly
detection, and classification, which employs powerful convolutional neural network-long
short-term memory (CNN-LSTM) algorithms.

In addition, the database maintains a complete record of all identified intrusions and
their types, providing valuable historical references for analysis and auditing. These histor-
ical data allow the IDS to fine-tune its anomaly detection algorithms and response tactics,
improving the overall efficacy and resilience of the intrusion detection and prevention
system. Moreover, the database is critical in blacklist management, which protects the
UAV network by preventing future contacts with known dangerous entities or sources of
intrusion attempts.

• Database Protection: Our proposed model employs a strong multi-factor authentica-
tion (MFA) mechanism to ensure the highest level of security for sensitive data and
secure system access. The MFA system combines three types of authentication: tradi-
tional username and password, and advanced facial recognition technology. In the
first layer of authentication, users must provide a unique username and a strong,
complex password during the login process. By preventing unauthorized access and
protecting against brute-force attacks, this traditional method adds a fundamental
level of security. A username and password combination serves as an important
security barrier, allowing only authorized users to access the system.

Facial recognition is used as an additional authentication layer in our model to increase
security. During the login process, the system uses a camera or an image sensor to capture
the user’s facial features. These facial features are then compared to the stored biometric
data to confirm the user’s identity. Facial recognition adds a biometric factor to the au-
thentication process, making it extremely difficult for unauthorized users to impersonate
legitimate users. This advanced layer of security significantly strengthens the system’s
defense against unauthorized access attempts.

By integrating these three authentication factors, multi-factor authentication ensures
a robust and secure access control system. Even if an attacker manages to obtain the
username and password through phishing or other means, they would still need to pass
the facial recognition step, ensuring that only authorized users gain access to the system.
As a result, our intrusion detection system (IDS) for unmanned aerial vehicles (UAVs) in
the smart-city environment remains protected from potential security breaches and data
breaches, upholding data privacy and system integrity.

Algorithm 10 summarizes the database accessibility.
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Algorithm 10 Database Accessibility Algorithm with MFA
Data: Username, Password, Facial Image
Result: Access Granted or Denied

1 for each user attempt do
2 User provides a username and password for authentication.
3 if username and password match the stored credentials then
4 User is prompted to submit their facial image for facial recognition.
5 The system captures and analyzes the facial image for facial features and

unique characteristics.
6 if facial recognition is successful then
7 Grant access and log the successful access attempt.
8 end
9 else

10 Deny access due to facial recognition failure and log the unsuccessful
attempt.

11 end
12 end
13 else
14 Deny access due to invalid username/password and log the unsuccessful

attempt.
15 end
16 end

3.4. Smart City Control Center

The smart city control center is a critical component in our proposed model, serving
as the central command hub for overseeing and managing the UAV network’s security and
operations within the smart city environment. It gathers real-time data from the intrusion
detection system (IDS) and other surveillance systems deployed across the city. Utilizing
advanced data analytics and AI algorithms, it processes and analyzes incoming data to
identify potential security threats and anomalies in the UAV network. Prompt response
to detected intrusions and appropriate actions to mitigate security risks are facilitated by
leveraging IDS outputs.

Moreover, the smart city control center coordinates UAV responses during emergen-
cies, disaster management, and citywide events. It dynamically adjusts UAV flight paths,
allocates resources, and communicates with operators to ensure efficient UAV operations.
To enhance security and access control, the center implements multi-factor authentication
(MFA) requiring username, password, and facial recognition for authorized personnel to
access the system. This multi-layered security approach ensures that only authorized indi-
viduals access critical data and functionalities, safeguarding the UAV network’s integrity
and sensitive information.

With its real-time situational awareness, intelligent decision-making capabilities,
and robust security measures, the smart city control center plays a pivotal role in enabling
safe, efficient, and secure UAV operations in the smart city environment. Its centralized
management and control contribute to the overall success of our proposed model, ensuring
privacy-preserving, secure, and resilient UAV operations. In the next section, we present
“Experimental Findings and Analysis”, showcasing results and performance evaluation.

4. Experimental Findings and Analysis

In this section, we present a comprehensive evaluation of our proposed model’s
performance. This section is divided into five subsections, namely, “System Requirements”,
where we outline the hardware and software configurations used for experimentation,
“Dataset Description”, which provides insights into the dataset employed in the evaluation,
“Simulation Setup”, where we presents simulation parameters used in this research work,
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“Comparative Analysis”, where we compare the results of our proposed model with existing
intrusion detection systems, and “Security Analysis of the Proposed Model”, where we
assess the model’s robustness against various security threats. The experimental findings
and analysis aim to shed light on the effectiveness and reliability of our proposed intrusion
detection system within a smart-city environment.

4.1. System Requirements

The system requirements subsection details the essential hardware and software
prerequisites for the effective implementation and operation of our system. Meeting these
specific requirements, as presented in Table 3, is crucial to ensure the successful installation
and smooth execution of the system.

Table 3. System Requirements.

Specification Types Name Value

Software

Operating System Microsoft Windows 11 Pro

Programming Language Python3

Integrated Development Environment (IDE) Visual Studio Code (VSCode)

Development Framework OpenCV

Drawing and Visualization Tool Draw.io

Deep Learning Framework TensorFlow

Deep Learning Framework PyTorch

Simulation Tools ns3, OMNeT++

Data Analysis Tool Origin Pro 9.0 64bit

Hardware

Processor Intel(R) Core(TM) i5-8400 CPU @ 2.80 GHz,
6 Core(s), 6 Logical Processor(s)

RAM 24GB

Hard Disk 2TB

4.2. Dataset Description

Given the absence of a standardized intrusion dataset specifically tailored to the UAV
domain, our proposed model utilized the state-of-the-art Canadian Institute of Cyberse-
curity dataset, CICIDS2017 [36], for both training and testing. Specifically, 80% of the
dataset was allocated for training, allowing the model to learn intricate patterns and behav-
iors. The remaining 20% was reserved for testing, enabling the assessment of the model’s
performance on previously unseen data, as illustrated in Table 4.

Table 4. Training and Testing Data Distribution for CIC-IDS2017.

Classes Train Test

Web_Attack 1772 443
PortScan 126,160 31,540
Infiltration 29 7
DoS 310,268 77,567
Brute_Force 11,004 2751
Botnet 1552 388
Normal 1,808,288 452,072

This dataset comprehensively covers various normal and diverse contemporary at-
tacks, such as Brute Force FTP, Brute Force SSH, DoS, Web Attack, Infiltration, Botnet,
and DDoS. The decision to select CICIDS2017 over other options was driven by its inclu-
sion of complex and up-to-date network attack types not found in alternative datasets.
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Moreover, CICIDS2017 contains a mixture of benign and the latest common attacks, closely
resembling real-world data in the form of PCAPs. Additionally, it includes labeled flows
with essential details, such as timestamp, source and destination IPs, source and destination
ports, protocols, and attack information, stored in CSV files, facilitating network traffic
analysis using CICFlowMeter.

4.3. Simulation Setup

In the simulation setup subsection, we provide specific details regarding the parame-
ters and configurations used to evaluate the performance of the SP-IoUAV model. For our
simulation environment, we utilized the ns3 simulator, which allows us to recreate real-
world scenarios to assess the effectiveness of our proposed model in detecting and prevent-
ing intrusions in UAV networks. In our simulation, we considered a total of 50 UAV nodes,
each equipped with a communication range of 200 m to enable effective communication
within the network. To replicate the dynamic movement patterns of UAVs in a smart-city
environment, we implemented realistic mobility models, such as Random Waypoint and
Manhattan. For simulating real-world traffic scenarios, we integrated the CIC-IDS2017
dataset through the OMNeT++ framework, providing comprehensive smart-city traffic
patterns for evaluation. Additionally, we introduced various intrusion scenarios, including
data injection attacks and unauthorized access attempts, to assess the SP-IoUAV model’s
ability to detect and prevent different types of intrusions in UAV networks. By carefully
defining these parameters and scenarios, we established a comprehensive and representa-
tive simulation environment, enabling rigorous testing of the SP-IoUAV model’s efficiency
and robustness in safeguarding UAV operations within a smart-city setting.

4.4. Comparative Analysis

In this section, the proposed model’s performance is assessed by comparing it to
several state-of-the-art methods based on the same dataset, such as FCL-SBL [31], RF-
RSCV [30], and RBFNNs [27], considering parameters such as accuracy, precision, recall
and F-score. All performance results are based on the confusion matrix shown in Figure 3.

Figure 3. Confusion Matrix.

In machine learning, a confusion matrix is a table used to assess the performance of a
classification model. It compares the predicted and true labels of the data and displays the
number of true positives, true negatives, false positives, and false negatives. True positives
are correctly identified positive cases, true negatives are correctly identified negative cases,
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false positives are negative cases that were incorrectly identified as positive, and false
negatives are positive cases that were incorrectly identified as negative.

The confusion matrix is used to calculate metrics such as accuracy, precision, recall,
and F1-score, which provide valuable insights into the model’s effectiveness in distinguish-
ing between classes and identifying areas for improvement.

4.4.1. Accuracy

Accuracy is a performance metric used to measure the overall correctness of a predic-
tive model. It represents the proportion of correct predictions (both true positives and true
negatives) made by the model out of all instances in the dataset. Its formula is as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
× 100 (27)

where TP stands for true positives, TN stands for true negatives, FP stands for false
positives, and FN stands for false negatives. Figure 4 clearly illustrates the accuracy of our
proposed model.
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Figure 4. Accuracy of our proposed SP-IoUAV model.

The proposed SP-IoUAV model presents the highest accuracy of 99.98% compared
to 95.5%, 99.89%, and 99.84% of the existing approaches, respectively. The reason behind
this highest accuracy lies in its effective utilization of a combination of CNN-LSTM deep
learning algorithms for anomaly detection and classification.

4.4.2. Precision

Precision, in the context of classification models, is a performance metric that measures
the proportion of true positive predictions among all positive predictions made by the
model. It helps to assess the model’s ability to avoid false positive errors. It is calculated
as follows:

Precision =
TP

TP + FP
(28)

Figure 5 clearly illustrates the precision of our proposed model.
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Figure 5. Precision of our proposed SP-IoUAV Model.

As illustrated in Figure 5, our proposed model presents the highest precision of 99.93%
compared to 94.8%, 99.89%, and 99.76% of the existing approaches, respectively. This is
due to the robust data preprocessing techniques employed in our model, which includes
data normalization, feature extraction, and data transformation. These preprocessing steps
enhance the quality and relevance of the input data, resulting in better representation and
separation of the positive samples from the negative ones during the training phase. As a
consequence, the model achieves a higher proportion of true positive predictions among all
positive predictions, minimizing false positive errors and leading to the improved precision
observed in our results.

4.4.3. Recall

Recall, also known as true positive rate or sensitivity, is a metric used in classification
tasks to measure the ability of a model to correctly identify positive instances (i.e., the pro-
portion of actual positive samples that were correctly predicted as positive by the model).
The formula for recall is given as:

Recall =
TP

TP + FN
(29)

Figure 6 clearly illustrates the recall of our proposed SP-IoUAV Model.
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Figure 6. Recall of our proposed SP-IoUAV Model.
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As illustrated in Figure 6 , our proposed model also presents the highest recall of
99.92% compared to 94.3%, 99.89%, and 99.68% of the existing approaches, respectively.
This is due to its ability to effectively detect and capture a larger proportion of true positive
instances (intrusions) in the dataset. The incorporation of sophisticated deep learning
algorithms, such as CNN-LSTM, and the utilization of a comprehensive data preprocessing
approach that includes data normalization, feature extraction, and data transformation
techniques contribute to the model’s exceptional performance in accurately identifying and
recalling instances of intrusions, even in complex and dynamic UAV environments.

4.4.4. F-Score

The F-score, also known as the F1-score, is a performance metric used to evaluate
the balance between precision and recall of a classification model. It considers both false
positives and false negatives, making it a useful measure when dealing with imbalanced
datasets. The formula for F-score is given by:

F-Score =
2× Precision× Recall

Precision + Recall
(30)

Figure 7 clearly illustrates F-score of our proposed model.
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Figure 7. F-score of our proposed SP-IoUAV Model.

Our SP-IoUAV model has the highest F-score of 99.92%, compared to 94.3%, 99.89%,
and 99.68% of the existing approaches. This is due to the synergistic combination of
precision and recall achieved by integrating CNN-LSTM deep learning algorithms for
anomaly detection and classification. This combination enables our model to detect and
classify intrusions with high accuracy while minimizing false positives and false negatives.
Furthermore, data preprocessing techniques such as data normalization, feature extraction,
and data transformation improve the model’s ability to handle complex and dynamic UAV
network data, contributing to its superior F-Score performance.

Our proposed SP-IoUAV model outperformed previous approaches in terms of accu-
racy, precision, recall, and F-Score in this comparative analysis. Its exceptional performance
was enabled by the integration of CNN-LSTM deep learning algorithms, data prepro-
cessing, and a secure ensemble of federated learning, differential privacy, and secure
multi-party computation. The real-time decision-making capability enhanced threat identi-
fication and response in dynamic environments. Overall, our SP-IoUAV model proved to
be a robust and efficient solution for securing UAV-based applications in smart cities and
other industries.
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4.5. Security Analysis of the Proposed SP-IoUAV Model

In the security analysis of the SP-IoUAV model, we thoroughly evaluate its ability to
counter a range of intrusions that could jeopardize UAV operations in a smart city. Our
model effectively combats the following intrusions using advanced methodologies:

• Distributed Denial of Service (DDoS) Attacks: DDoS attacks pose a significant threat
to UAV networks, aiming to disrupt services by flooding them with a high volume of
malicious traffic. To counter this, our proposed model incorporates a sophisticated
“intrusion Detection Engine”. Within this engine, the “Anomaly Detection and Classifi-
cation” stage employs advanced machine learning algorithms, including the powerful
CNN-LSTM. This stage plays a pivotal role in recognizing and classifying various
anomalies, including DDoS attacks. It excels in identifying abnormal patterns within
network traffic, making it a crucial component in safeguarding the UAV network
within the dynamic environment of a smart city (refer to Section 3.3.2).

• Man-in-the-Middle (MitM) Attacks: MitM attacks attempt to intercept communica-
tion between UAVs and the smart-city infrastructure. Our model incorporates an
“Intrusion Detection Engine” that actively monitors the network for any suspicious
activities, providing an essential layer of defense against unauthorized access and
ensuring ensuring data security (refer to Section 3.3.2).

• Code Injection: In the scenarios involving code injection, where malicious code is
inserted into the UAV system to compromise its operations, the SP-IoUAV model
employs a multi-step approach within the intrusion detection engine. This begins with
robust preprocessing techniques, including crucial sub-steps like feature extraction, all
designed to enhance the system’s ability to detect and prevent code injection attempts.
Principal component analysis (PCA) plays a pivotal role in this process, enabling
efficient feature extraction. These combined efforts ensure the integrity and seamless
operation of the UAV system, even in the face of potential code injection threats (refer
to Section 3.3.2).

• Eavesdropping: Eavesdropping involves unauthorized interception of data trans-
mission. Our model utilizes secure communication channels and encryption tech-
niques, along with t-distributed stochastic neighbor embedding (t-SNE) for data
transformation, to safeguard data privacy and prevent eavesdropping attacks (refer to
Section 3.3.2).

• Spoofing: Spoofing attacks involve impersonating legitimate UAVs or smart-city
devices to gain unauthorized access. The SP-IoUAV model employs device authentica-
tion and verification mechanisms, along with min–max scaling for data normalization,
to detect and thwart spoofing attempts (refer to Section 3.3.2).

In addition to these methodologies, our model also integrates multi-factor authentica-
tion (MFA) to protect the IDS database from various types of attacks, including brute-force
attacks, credential stuffing, phishing, man-in-the-middle attacks, and account takeovers.
MFA adds an extra layer of security by requiring users to provide multiple authentication
factors, enhancing the overall security posture of our proposed SP-IoUAV model (refer to
Section 3.3.4).

5. Conclusions and Future Research Directions

In this research, we proposed the SP-IoUAV model, an innovative approach address-
ing security and privacy concerns in UAVs within the Internet of UAVs ecosystem. By in-
corporating a hybrid privacy-preserving mechanism that combines federated learning,
differential privacy, and secure multi-party computation, our model ensures robust data
protection and enhances intrusion detection accuracy. The use of deep neural networks
like CNN-LSTM in our intrusion detection engine enables precise and timely threat iden-
tification, enabling real-time decision-making in dynamic environments and bolstering
UAV security in smart cities. The use of multi-factor authentication (MFA) further safe-
guards the IDS database. Our proposed model has been evaluated using the CIC-IDS2017
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dataset. The results have shown its superiority over previous approaches, such as FCL-SBL,
RF-RSCV, and RBFNNs. It achieved high levels of accuracy (99.98%), precision (99.93%),
recall (99.92%), and F-score (99.92%). While the SP-IoUAV model demonstrates promis-
ing results, it is important to acknowledge certain limitations. For instance, the model’s
computational requirements may pose challenges in resource-constrained environments.
Additionally, scalability and generalizability across diverse UAV mission scenarios require
further investigation.

In future work, we aim to integrate blockchain technology for enhanced data security
and transparency. Expanding and diversifying the experimental dataset will be pivotal
in refining the SP-IoUAV model. Additionally, we will focus on real-time adaptability
to dynamic network conditions, multi-modal data fusion for more effective intrusion
detection, and improving energy efficiency on resource-constrained UAVs. These steps
are essential for strengthening our model and advancing intelligent UAV systems to meet
evolving security challenges in dynamic urban environments.
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