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Abstract: With the progression of marine exploration and exploitation, as well as the advancements in
mechanical intelligence, the utilization of the unmanned surface vehicle (USV) and the design of their
guidance system have become prominent areas of focus. However, the stern ramp recovery of the USV
is still in its infancy due to its unique attitude requirements and automation design. Furthermore,
few studies have addressed the impact of maritime disturbances, with most research limited to
simulations. To enhance the efficiency and accuracy of stern ramp recovery, this paper presents the
development and construction of a novel recovery system. By incorporating physical modeling of
disturbance forces acting on USVs at sea, the practicality of the system is improved. Additionally, an
optimized genetic algorithm is introduced in the navigation module to improve convergence rates
and subsequently enhance recovery efficiency. A line-of-sight (LOS) algorithm based on average
velocity is proposed in this paper to ensure the attainment of unique attitude requirements and to
improve the effectiveness of stern chute recovery. This paper provides a detailed description of the
independently designed USV hardware system. Moreover, simulations and practical experiments
conducted using this experimental platform are presented, offering a new solution for the USV’s
stern ramp recovery.

Keywords: the unmanned surface vehicle; path planning; genetic algorithm; line of sight method;
autonomous guidance and recovery; stern ramp recovery

1. Introduction

If you ask chatGPT how much of the ocean has yet to be explored by mankind, it
will tell you that over 80% of the ocean remains unmapped, unobserved, and unexplored.
To be honest, we have no idea exactly how much of the ocean is uncharted by humanity.
But we cannot deny that there has been an increasing enthusiasm and confidence among
researchers in the development of ocean exploration technologies in recent years. Driven by
oceanographic research and other marine equipment requirements, the unmanned surface
vehicle (USV) has gained worldwide attention for its remarkable autonomy and mission
assistance capabilities.

Compared to other vessels, the USV has the advantage of being smaller and operating
more agilely, requiring only sufficient space for the relevant sensors and auxiliary naviga-
tion devices to make sure the vehicle functions properly. Moreover, the USV can be applied
in extreme conditions independently, such as strong waves, tides, and radiation leaks, by
means of a predefined system or remote control by professionals; thus, the safety of the
operators can be ensured. Due to a variety of these aforementioned advantages, the USV
has been well-accepted in both civilian and military fields in recent years [1–4], as shown
in Figure 1.
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(a) (b)
Figure 1. (a) Unmanned Surface Vehicle (USV) for civilian use; (b) USV for military use [5–12].

Unlike maritime navigation, the recovery situation of the USV does not need to
consider the International Regulations for Preventing Collisions at Sea (COLREGS) for
its immediate environment, close to the stern ramp of its large target ship, without the
interference of other vessels. The intelligence of the stowage and release process of the USV
will have a direct impact on the efficiency of its mission performance. It is mainly divided
into hoist-based recovery, well-deck recovery, and stern ramp recovery. Examples are
shown in Figure 2. The hoist-based recovery method shows advanced development with
minimal modifications to the mother ship’s hull, but recovery speed is highly affected by
water surface conditions, leading to challenging bracket alignment and extended retrieval
times. In contrast, the well-deck recovery technique accommodates complex water surface
conditions and achieves rapid retrieval speeds but requires greater structural demands on
the mother ship and the inclusion of a spacious docking bay.

(a) (b) (c)
Figure 2. (a) Hoist-based recovery requires the installation of davits, parking racks, and towing devices
on board the mother ship. To complete the unhooking operation, manual assistance is needed [13].
(b) The recovery enables small boat stowage on racks in a well-deck, and once the water reaches a certain
depth, the release mechanism activates for deployment [14]. (c) The stern ramp of a ship [15].

The stern ramp recovery technology exhibits superior overall performance in terms of
the mother ship’s hull structure requirements, adaptability to water surface conditions, and
stowage efficiency, making it highly suitable for the rapid autonomous recovery of USVs.
This method not only allows the mother ship to retract and release small boats at higher
speeds, but also adapts to sea conditions of level 6. This advantage allows the mother ship to
choose the appropriate timing for flushing. The primary operating principle of the stern ramp
recovery system is that during recovery, the USV navigates a predetermined trajectory toward
the mother ship’s aft section. During this approach, the USV continuously adjusts its heading
angle to ensure alignment with the centerline of the mother ship’s stern ramp. In addition, it
maintains a specified distance from the aft section of the mother ship while staying on course.
However, achieving precise centering and control near the stern ramp remains challenging.
The low dependency on manual assistance from the mothership during the recycling process
results in high autonomous navigation accuracy and strong resistance to wake interference
from the USV. This places higher demands on the convergence rate of the USV path planning
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algorithm and the accuracy of the recovery system. The development of autonomous recovery
technology for USVs is still in its nascent stages.

Due to the special requirements of stern ramp recovery for the path and USV’s attitude,
the question of which path planning algorithm to choose is particularly important for the
establishment of the recovery system. We hope that factors such as resistance to ocean
current disturbance, smooth motion, accurate heading angle, and reasonable dynamic
parameters of the USV are comprehensively considered in the proposed recycling system.
Therefore, the algorithm used should have a multidimensional evaluation system rather
than a single optimization method. In comparison with other intelligent algorithms, the
genetic algorithm (GA) has significant advantages due to its adaptive evaluation indicators.
Also, the genetic algorithm does not fall into the local optimum problem as easily as
gradient-based optimization algorithms. For this reason, we chose this algorithm and
optimized it to be combined with the recycling system. Furthermore, a suitable control
system for the dynamics of the USV is imperative from a hardware perspective. To enhance
the realism of the simulation in a maritime environment, we also conducted modeling of
the interference environment and incorporated it into the tracking algorithm. Our main
contributions are summarized as follows.

• We conducted physical modeling of currents and waves to analyze the impact of
USV movement in a water environment from a force perspective. Subsequently, we
applied these findings to our tracking algorithm in order to enhance the accuracy and
effectiveness of the tracking process.

• To meet the specific requirements of stern ramp recovery, we enhanced the genetic
algorithm by incorporating three-dimensional modeling and genetic manipulation
techniques. This resulted in an improved convergence rate of the algorithm. Addition-
ally, we designed a multi-dimensional evaluation index fitness function to streamline
the screening mechanism.

• We improved the tracking algorithm and introduced a new tracking algorithm specifi-
cally designed for average speed based on line of sight (LOS). This exclusive algorithm
ensures the effectiveness of waypoint tracking.

• We independently constructed the experimental platform and devised a hardware
connection system within the USV. This system serves as a solution for implementing
the algorithm in the actual operation of the USV.

2. Related Works

Based on the detailed introduction of the recycling method provided in the previous
section, this section will primarily focus on presenting the relevant methods employed by
scholars for unmanned boat path planning. Furthermore, we will elucidate the rationale
behind our selection of the genetic algorithm and LOS as the research methodology.

2.1. The Planning Algorithm

Currently, path planning algorithms used for USVs in domestic and international
research can be classified into four main categories: graph search algorithms, virtual
potential field methods, random sampling algorithms, and intelligent algorithms.

Graph search algorithms are considered classical path planning algorithms; however,
their usage has declined in recent years due to the slow computational speed of individual
underlying logic. Among these algorithms, the A* algorithm has garnered attention for
its remarkable scalability. Singh et al. [16] considered moving ships as quasi-static entities
and other ships as static obstacles during the current planning time for map modeling.
They used the A* algorithm to search for collision avoidance paths by incorporating the
notion of ship safety. Simulation results demonstrated the effectiveness of the algorithm in
effectively avoiding moving ships while achieving commendable real-time performance.

The basic concept of the virtual potential field (VPF) method is to construct a virtual
potential field within the map using certain techniques. The path is then generated using
the gradient descent algorithm. However, this method suffers from inherent limitations
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such as local minima and oscillations. Kim et al. [17] integrated the method with the velocity
obstacle method by incorporating a repulsive force field associated with the encountered
velocity obstacle between two ships into the classical potential field. This fusion approach
enabled dynamic collision avoidance for USVs. Similarly, Sang et al. [18] used a hierarchical
programming approach. They first used the A* algorithm to generate an initial path and
then used an improved artificial potential field (APF) method to generate the desired
USV formation.

Random sampling methods exhibit varying convergence rates, making them exten-
sively employed in the context of Multi-Agent Path Finding (MAPF) due to their inherent
efficacy. Lee et al. [19] introduced a novel approach called the grafting RRT algorithm to
achieve dynamic collision avoidance in USVs which uses the speed obstacle method to
detect potential collisions and calculates the grafting angle. By generating and inserting
grafting points based on this angle, successful dynamic collision avoidance is achieved.

In terms of obstacle avoidance, Khan et al. introduce a penalty term in the objective
function, so that the tracking control and obstacle avoidance problems are unified into a
constrained optimization problem, and active rewards are given to obstacle evaders [20]. As
objectives become more complex, intelligent algorithms, such as the genetic algorithm, excel
in path planning. It utilizes genetic manipulations like mutation and crossover to enhance
diversity in the sample population, enabling efficient multi-target search. However, the tra-
ditional genetic algorithm exhibits low convergence rates in USV path planning and heavily
relies on well-designed genetic operators. To address these limitations, Wang et al. [21]
propose a combination of GA and fuzzy APF for hierarchical path planning, effectively
adapting to unpredictable environments. Nonetheless, challenges persist in handling time-
varying dynamic obstacles. Xin et al. [22] suggest mitigating these issues by increasing the
number of superior offspring through multi-domain inversion and second fitness evalua-
tion. Nevertheless, this approach introduces additional complexities to the algorithm and
encoding process.

2.2. The Tracking Algorithm

The purpose of tracking control is to manipulate the propulsion system, such as
the propeller and rudder, based on a rational tracking control law. This enables the
USV to navigate along the intended trajectory determined by the path planning module.
Depending on whether the trajectory includes a time dimension, the problem can be
divided into two categories: path tracking and trajectory tracking. The stern ramp recovery
involves dynamic obstacle avoidance and requires a higher speed than the mother ship
during the slope flushing phase. Therefore, it is a trajectory tracking problem.

Pettersen [23] used the LOS algorithm to compute the desired heading angle and
combined it with a cascaded feedback controller to control the yaw torque. This approach
achieved linear tracking of the USV at a constant velocity. Fossen [24], using kinematic
models for both USV and Unmanned Aerial Vehicle (UAV), rigorously proved the unified
semi-global exponential stability of path tracking under LOS control. This contribution
enriched the theoretical foundation of the LOS guidance law.

To improve the tracking stability and accuracy of the USV under environmental
disturbances such as wind, waves, and currents, Caharija [25] introduced an integral term
into the classical LOS guidance. This term compensated for the lateral drift of the USV and
mitigated tracking biases caused by environmental disturbances. Building on this work,
Fossen [26] used a nonlinear adaptive controller to achieve two-dimensional Dubins curve
path tracking. Simulation results demonstrated the successful application of this tracking
control method in accurately tracking the USV even under significant drift angles induced
by wind, waves, and power disturbances.

Liu [27] proposed an improved LOS tracking algorithm based on prediction. This
algorithm was designed for tracking underactuated USVs, effectively compensating the
uncontrollable sideslip caused by marine environmental disturbances through adaptive
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terms. In addition, this study cascaded the tracking error system with the prediction error
system and rigorously demonstrated the consistent global stability of the entire system.

3. Recovery System of USVs Based on Stern Ramp

Due to the particular environment of the autonomous recovery using a stern ramp,
most of the recovery strategies have less concern about interference caused by currents
as well as the effects of malposition on recovery effects. For a successful ramp approach,
it is essential to have sufficient power and to approach the ramp at an optimal angle.
This combination guarantees a seamless and proficient transition onto the ramp surface,
facilitating a smooth and efficient docking process. To ensure the safety and efficiency of
the recovery process, we have developed an innovative stern ramp recovery system that
prioritizes three key factors: precise visibility, seamless guidance, and stable navigation.
The recovery system structure is shown in Figure 3.

Figure 3. The recovery system structure of our USV.

Enter the initial parameters for the planning algorithm into the upper computer, wait
for it to complete the calculations, and then package and transmit the set of waypoint
information generated by the genetic algorithm to the USV end. This set of information
includes the coordinates, real-time velocities, and headings of each waypoint. Upon
receiving the information, the PID controller actuates the electronic speed regulators to
regulate the propellers, thereby adjusting the speed and heading of the USV. Meanwhile,
the LOS controller accurately tracks the waypoint to prevent interference such as currents
from causing the USV to deviate from the planned route. In the meantime, the actual
position information of the USV obtained by the Global Positioning System (GPS) will also
be sent to the upper computer together with the current speed and the heading.

3.1. Precise Visibility Establishment of a Current Interference Model for Unmanned Surface Vehicles

The recovery process of the USV is affected by external environmental disturbances,
which have a significant impact on the speed and stability of the centering procedure.
Therefore, it is essential to develop a suitable mathematical model to account for these
external disturbances. Factors such as sea currents and waves particularly affect the
autonomous guided recovery motion.

The motion of the USV can be summarized into 6° of freedom, and in order to accu-
rately describe the motion state of the USV, a combination of a geodetic coordinate system
and follower coordinate system is used to describe the position and attitude information,
as shown in Figure 4.
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Figure 4. The geodetic coordinate system and the follower coordinate system.

Assuming that the center of gravity of the USV aligns with the center of the follower
coordinate system, we can deduce the equation of motion governing the forces exerted on
the USV during its movement. This equation is derived from the Newton–Euler equations
for rigid body motion in a fluid medium and is given as Equation (1).

mu̇−mvr = Fx
mv̇−mvr = Fy
IG ṙ = Fn

(1)

where m denotes the quality of the USV, v and u present the transverse and longitudinal
velocities, r is the bow-swinging angular velocity, IG is the moment of inertia of the USV on
the z-axis, and Fx, Fy, and Fn are the force in the x-direction and y-direction and the moment.

3.1.1. Current Interference Model

The disturbance force and disturbance moment experienced by the USV due to sea
currents can be attributed to two main components: (1) viscous resistance, arising from the
friction and pressure difference between the USV and the surrounding fluid; (2) inertial
resistance, resulting from the circulation patterns near the USV and the influence of the free
liquid surface. The equations are given by Equation (1).

Fcurrent
x = 1

2 ρS f V2
c Cx(β)

Fcurrent
y = 1

2 ρSrV2
c Cy(β)

Fcurrent
n = 1

2 ρSrV2
c Cn(β)

(2)

where Vc is the flow velocity; S f is the forward projected area of the USV above the
waterline; Sr is the side projected area of the USV above the waterline; β is the encounter
angle; Cx(β), Cy(β), Cn(β) are the test coefficients.

3.1.2. Wave Interference Model

The wave force can be categorized into two components: the first-order wave force and
the second-order wave force. The former induces vertical oscillation of the USV with a fixed
period, without altering its total mechanical energy. On the other hand, the latter causes the
USV to experience time-varying horizontal thrust, resulting in horizontal displacement [28],
which influences the autonomous guided recovery process. Hence, we disregard the impact
of the first-order wave force and focus our analysis on the effect of the second-order wave
force on the USV during its autonomous guided recovery.
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During the recovery process, the wave force primarily originates from the wind and
the wake of the mother ship. The drift force model proposed by Daidola [29] enables us to
derive the wave force from the wave model, as depicted in Equation (3):

Fwave
x = 1

2 ρLξ2 cos χWx(λw)

Fwave
y = 1

2 ρLξ2 sin χWy(λw)

Fwave
n = 1

2 ρLξ2 sin χWn(λw)

(3)

where ξ is the average wave amplitude; χ is the encounter angle; λw is the wave wavelength;
Wx(λw) and Wy(λw) are the wave drift coefficients; Wn(λw) is the drift moment coefficient
around the z-axis. The specific calculations are shown in Equation (4).

ξ = hw/2
Wx(λw) = 0.05− 0.2( λw

L ) + 0.75( λw
L )2 − 0.51( λw

L )3

Wy(λw) = 0.46 + 6.83( λw
L )− 15.65( λw

L )2 + 8.44( λw
L )3

Wn(λw) = −0.11 + 0.68( λw
L )− 0.79( λw

L )2 + 0.21( λw
L )3

(4)

where hw is the wave height. The relationship between the height of the wave hw, the wave
period Twave, the wavelength λw, and the wind speed VR is shown in Equation (5).

hw = 0.015V2
R + 1.5

Twave = −0.001V3
R + 0.042V2

R + 5.6
λw = 0.54T2

wave

(5)

3.2. Seamless Guidance Path Planning Algorithm for Stern Ramp Recovery

The quality, efficiency, and convergence of path planning algorithms are crucial factors
to consider. The genetic algorithm, known for its intelligent nature and multi-evaluation
index mechanism, offers significant advantages in global path planning. However, tra-
ditional genetic algorithms rely on two-dimensional raster graphs, which suffer from
time-consuming computations, unstable algorithmic architectures, and non-uniqueness
in convergence rate performance. To address these limitations, we propose a novel ap-
proach that combines the characteristics and requirements of stern chute recovery, focusing
on optimizing waypoint distribution, improving population initialization, and utilizing
advanced genetic methods to establish a more suitable path planning algorithm.

3.2.1. Novel Collision Avoidance Based on Three-Dimensional Modeling

Considering the wide range of actual distances in latitude and longitude recorded
by GPS, it becomes necessary to perform additional processing on the coordinates. In our
simulation process and program design, we use the following coordinate information
transformation formula for actuation:{

XUSV = (XGPS − X0)/100, 000
YUSV = (YGPS −Y0)/100, 000

(6)

where XUSV and YUSV denote the current location of the USV, XGPS and YGPS present the
information GPS received, and X0 as well as Y0 indicate the position receiver placed.

It should be noted that there is a trade-off between the computational time and the
resolution [30]; if the resolution is higher, a longer computational time will be required.
However, while streamlining environment modeling can improve algorithm efficiency
and convergence rate, as well as reduce spatiotemporal complexity, it also introduces
potential drawbacks. These include sharper corners and excessively long sections in the
planned path, resulting in rougher paths that hinder smooth evolution. Therefore, it is
crucial to establish a robust algorithmic operation mechanism based on a well-designed
pre-processing method for the modeling environment. This ensures the practical feasibility
of the planning path.
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Considering the sparsely distributed obstacles on the water surface, we have opted
to use circular bounding boxes to represent these obstacles, as illustrated in Figure 5a.
The outer circle of the actual obstacle boundary is used as the obstacle in the planning
space, aligning with the cornering motion dynamics of the USV in a water environment.
This approach significantly reduces memory consumption associated with environment
modeling, as it only requires storing a few essential data points such as center coordinates,
radius, and movement speed for each obstacle. Taking into account the shifting caused by
interference and the error of being labeled as a particle, we add the compensation radius to
the boxes. The equation is given by Equation (7).

Rl = Robs + DUSV + Rc (7)

where Rl denotes the minimum radius of collision avoidance distance from the USV to the
center of the circular bounding box, Robs represents the initial radius of the box, and the
whole compensation radius is the length of the hull DUSV plus the possible displacement
Rc caused by environmental interference, which is usually taken as 1 m.

(a) (b)
Figure 5. (a) The circular bounding boxes. (b) The planning path in 3D coordinate system. The blue
line presents the planning path.

Upon introducing the time dimension into the modeling, the bounding boxes of the
obstacles are represented as oblique or straight cylinders in the x-y-t coordinate system.
The expression of the three-dimensional geometry is depicted in Equation (8). (X− Xobs + Vxt)2 +

(
Y−Yobs + Vyt

)2
= R2

obs
Vx = 0 m/s when static obstacle
Vy = 0 m/s when static obstacle

(8)

where Xobs and Yobs denote the abscissa and ordinate of the center of the circular bounding
boxes, Robs represents its radius, and Vx and Vy denote the velocity in the x-direction and
velocity in the y-direction.

In order to simplify the mathematical modeling of obstacle avoidance, we made the
following assumptions.

• Dynamic obstacles move in uniform linear motion.
• The USV performs segmented uniform acceleration linear motion, with each consecu-

tive pair of waypoints forming a segment.

By solving for temporal intersections between the motion trajectory of the USV and
the movement trajectory of the obstacles, we can determine whether the proposed planning
will result in a collision. The relevant equation is given by Equation (9).
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[(
VUy + VOy

)2
+
(
VUx + VOx

)2
]

T2

+2
[(

VUy + VOy
)
(Yusv −Yobs) +

(
VUx + VOx

)
(Xusv − Xobs)

]
T

+
[
(Xusv − Xobs)

2 + (Yusv −Yobs)
2 − R2

obs

]
= 0

(9)

where VUx and VUy are the average velocities of the certain segment, and VOx and VOy are
the velocities of the obstacle bounding boxes.

Given the particularity of stern ramp recovery, we adopt the horizontal line represent-
ing the stern ramp as the x-axis in a 2D plane. This division separates the water into two
symmetrical parts, one above and one below the stern ramp. The distribution of obstacles
and the performance of the planned path are shown in Figure 5b.

3.2.2. Improvements in Genetic Manipulation

In this paper, the genetic algorithm selects the population as the solution set for the
recovery paths. Each path is represented by a distinct genetic individual. These individuals
encompass three-dimensional coordinate information of multiple waypoints, storing the X,
Y, and T coordinates along with real-time speed. The enhanced global planning algorithm
autonomously determines the number of gene loci based on the input start and end points.
This effectively enhances the computational capability of the genetic algorithm. Rather
than generating the waypoints randomly, we designate the X-axis direction as the step
direction and establish the range of intervals for each waypoint based on the step size DSL.
The length of DSL varies according to different scenarios and accuracy requirements.

After that, the waypoints will then be generated in each interval in turn. The code
conversion between binary and decimal is shown below.

Xtr = Xi − DSL · (i− 1)− 1
Ytr = Yi + 64
Vtr = Vi · 5

(10)

where Xtr and Xi denote the abscissa of binary system and decimal system. Ordinate and
velocity are presented in a similar way.

Xi =
3
∑

n=1
m · 2(n−1) + 1

Yi =
10
∑

n=4
m · 2(n−1) − 64

Vi =
14
∑

n=11

m·2(n−1)

5

Ti =
N−1
∑

n=1

√
(Xn+1−Xn)

2+(Yn+1−Yn)
2·2

Vi+Vi+1

(11)

where n represents the number of bits in the binary sequence and N represents the total
number of waypoints. An example of the encoding is shown in Figure 6.

Figure 6. The translation process of the encoding.
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The binary sequence serves as the fundamental basis for genetic algorithm mutation.
However, a common issue arises with value overflow subsequent to decoding. Conse-
quently, a mapping procedure is introduced to the binary sequence, involving binary
conversion, decoding, and subsequent restoration of the original decimal sequence through
inverse mapping. This measure effectively addresses the challenge of overflow encountered
in the process.

The collision avoidance operations of the traditional genetic algorithm, based on 2D
raster maps, consume significant memory resources and require additional time. To address
this issue, as mentioned in the previous section, we employed a memory-efficient obstacle
design during the 3D modeling process. This approach enables collision avoidance opera-
tions during population initialization. As illustrated in Figure 7, this preheating process
facilitates the generation of high-quality initial individuals and enhances the convergence
rate of the algorithm.

Figure 7. The comparison on whether to adopt the preheating process during population initialization.
The results were simulated with the assistance of MATLAB R2018a (MathWorks, Natick, MA, USA),
taking the starting point of (78, −10) as an example. In this picture, the dashed circles present
dynamic obstacles.

The traditional genetic algorithm does not achieve complete global convergence.
During the genetic variation process, each individual has the possibility of undergoing
crossover and mutation, resulting in changes in their sequence and original expression
type. This mechanism serves as the primary means for the genetic algorithm to converge.
However, this approach may cause individuals with excellent phenotypes to lose their
advantageous genes, thereby reducing the retrieval speed [31].

Many scholars have demonstrated that the genetic algorithm with Elitism Strategy
achieves global convergence [32]. After population initialization, the fitness function of
genetic individuals is evaluated, and the superior individuals are preserved in the elite
group. This prevents the alteration of advantageous phenotypes during the selection
process. In each generation, the individuals in the elite group will be replicated to the next
generation, continuously updating the set [33]. Typically, around 10% of the elite sequences
are retained. Incorporating this method helps improve the convergence speed of the genetic
algorithm and reduces the number of iterations.

Due to the requirements of rollover prevention caused by inappropriate heading and
large turns in the surface environment, we add dynamic metrics to the fitness function to
evaluate the performance of USVs. In cases where the generated path does not satisfy the
constraints of obstacle avoidance and dynamic metrics, the fitness function is assigned a
value of 0. By implementing the Elitism Strategy, individuals with superior genetic traits
are preserved, thus minimizing the impact of discarding individuals with undesirable traits



Sensors 2023, 23, 8075 11 of 25

on the overall population. In addition, the presence of defective individuals during the
evolutionary process consumes computational memory resources, resulting in reduced
computational efficiency and increased traversal time of the algorithm [34]. To address this
issue, this study proposes a novel strategy called the Strategy of Sacrifice and Intraspecific
Hybridization (SSIH), as shown in Figure 8. This strategy emulates natural processes
observed in biological populations, ensuring both the feasibility of the generated planning
path and improving the convergence rate.

Figure 8. The novel genetic manipulation.

Individuals with a fitness function of 0 are treated as individuals that have died after
the population iteration, and their memory is released when the algorithm is implemented.
Subsequently, a local initialization scheme is employed to allocate a new path planning to
the discarded genetic individuals, considering them as newly generated offspring within
the population. In the subsequent genetic mutation operation, these regenerated off-
spring are hybridized with other genes present in the population. Simulation experiments
demonstrate that this operation reduces the convergence time by approximately 10 s and
minimizes the number of iterations required, thereby endowing the genetic algorithm with
a notable real-time advantage in dynamic obstacle avoidance.

The genetic algorithm is designed to seek optimal solution outcomes. In the event that
the quality of the generated path fails to meet the threshold established by the program,
the iteration process will persist. In order to uphold real-time planning efficacy, we have
imposed a maximum iteration limit of 500. Through extensive simulations and empirical
observations, we have determined that this value significantly surpasses the number of
iterations necessary to yield results that align with the desired objectives. The pseudo code
is shown in Algorithm 1.

Using an ex ante method to analyze, the computational complexity of the proposed genetic
algorithm is O(N2). But the embedded do-while loop is used for population initialization,
which has a very small computational footprint. In practical recovery applications, the execution
time of the algorithm is about 2 s and the relevant results will be discussed in Section 2.

3.2.3. New Evaluation Mechanism for the Fitness Function

The implementation of a fitness function aims to enhance the initially subtle distinctions
among individuals in the population through calibration and dynamic mapping. This process
facilitates the clear manifestation of the variations in phenotypic excellence between different
individuals and enables a more effective selection of genetically qualified individuals.

However, while penalty functions can be applied to constraints of any type (linear or
nonlinear), their performance is not always satisfactory. Achieving constraint optimality
through penalty functions relies on the discovery of appropriate penalty parameters. Even
so, determining these parameters often necessitates numerous experiments and has posed
a challenge for researchers [35]. Khan et al. proposes an algorithm that uses nature-inspired
optimization methods in 2020 to directly solve nonlinear optimization problems without
the need for any transformations in robot tracking methods [36].
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Algorithm 1 Optimized Genetic Algorithm

Input: (X0, Y0): start point; width, length:the size of map; (XUSV , YUSV , VUSV): the current
information of the USV;

Output: getPath(): the planning path which consists of waypoints;
1: set DL = Dbest, set popsize = Num, Fitnessvalue = FMax, Nmax;
2: Foundation(); //generate initial population
3: m = 0, k = 0;
4: while m < popsize; do
5: i = 1, n = 0;
6: while i < genePoint; do
7: if isCollision(Pointi,Pointi−1) == False then
8: put Pointi into the geneList;
9: else

10: restart point generating;
11: end if
12: i ++, n ++;
13: if n > Nmax then
14: break; //setting a threshold to prevent program crashes
15: end if
16: end while
17: m ++;
18: end while
19: Fitness_calculating(); //get the Fitnessmax;
20: while Fitnessmax < Fitnessvalue do
21: Elit_Strategy(); //implement the Elit Strategy
22: Tournament(); //select a portion of individuals with strong adaptability
23: TransferBinary(); //binary encoding conversion
24: Variation_binary(); //genetic variation
25: TransferDecimal(); //decimal encoding conversion
26: TimeReset();
27: FitnessReset(); //recalculate fitness function
28: Intraspecific();
29: k++;
30: if k >= 500 then
31: break; //set maximum convergence generation to prevent too much time cost
32: end if
33: end while
34: getPath();

We propose a set of adaptation functions that incorporate a penalty weight allocation
mechanism. A novel nonlinear fitness relation is established by penalizing the total distance,
time spent, degree of alignment, and amount of cornering in recovery planning. In addition,
this approach combines the constraints related to collision avoidance with those concerning
the dynamics of the USV. While we currently cannot overcome this limitation, our approach
simplifies this process by introducing various indicators.

Quantitative indicators and fitness can be calculated by the following equation:

Fitness(x) = GaccGvelGcol
A

a·Fitd+b·FitT+c·Fita+d·Fitm

Fitd =
∑ Dsegment,i√

(xend−xstart)
2+(yend−ystart)

2

FitT =
∑ ∆Tsegment,i

N−1

Fitmal =

N
∑

i=1
|yi |

N

Fitang =

N
∑

i=1
(π−θ)

π

(12)
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where Fitd, FitT , Fitmal , and Fitang denote the evaluation functions for distance, time
cost, malposition, and turning angle, respectively. And Gacc, Gvel , and Gcol present the
hard kinetic evaluation index of acceleration, velocity, and collision avoidance. a,b,c,d are
parameters set by the researcher.

The fitness function mechanism is the key to ensuring good convergence and screening
mechanism in the genetic algorithm. We restricted many variables relating to dynamics
in the fitness function. To control the motion attitude and smoothness of the vehicle, we
optimized the acceleration of each route segment and screened the randomly generated
waypoint velocities.

Due to the fact that all waypoint information is packaged through the communication
system to the USV end, which is controlled and processed by controllers to optimize path
details and tracking effects, optimizing variables such as turns and malposition in path planning
algorithms can not only reduce the computational burden of controllers such as LOS, but also
facilitate the effective control of the mechanical motion of the propeller by controllers such
as PID. The USV’s motion is based on controlling the left and right propellers, and smooth
propeller motion is conducive to dealing with ocean current disturbances.

3.3. Stable Navigation Trajectory Tracking Control for Stern Ramp Recovery

The trajectory tracking algorithm calculates the heading angle and velocity of the USV
based on its current position, velocity state, and desired trajectory curve. This algorithm
guides the USV to continuously approach the target trajectory, similar to missile guidance
principles. Notable guidance laws for trajectory tracking include LOS, Follow the Carrot
(FTC), Constant Bearing (CB), and Proportional Navigation (PN). Among these, the LOS
algorithm stands out for its ease of use, reliability, and robustness, which have been
extensively validated through research investigations [37]. Therefore, this study focuses on
investigating the trajectory tracking algorithm using the LOS method.

As shown in Figure 9a, the classical LOS algorithm operates by determining the
target heading for guiding the USV based on the forward viewpoint along the target path..
Initially, the forward way distance R is established. This is accomplished by considering
the current position of the USV as the circle’s center and setting the radius of the forward
way distance R. The intersection point between the circle and the desired path represents
the forward viewpoint. Subsequently, the target heading angle is derived from the line
connecting the current point to the forward way point. This approach transforms the
problem of tracking the desired path into a heading angle control problem. By utilizing
the line between the current point and the forward way point, the target heading angle is
obtained, thereby resolving the challenge of path tracking through heading angle control.
The selection of the forward way distance R significantly impacts the tracking performance.
If R is excessively large, rapid correction of track deviations becomes challenging, while an
excessively small R may induce track oscillation [38].

(a) (b)

Figure 9. (a) The theory of the traditional los. (b) The theory of Average Velocity Line of Sight (AV-LOS).
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The current LOS and its improved algorithms are limited to guidance in the spatial
domain only, which means that it can only derive a target heading from the forward viewpoint
and has a very limited ability to handle speed. This means that it can only derive a target
heading from the forward viewpoint, and has a very limited ability to handle speed. For this
purpose, we introduce an enhanced algorithm called Average Velocity Line of Sight (AV-LOS).

VAV−LOS =
R

∆T
(13)

where ∆T denotes the time lag between the current position and the forward viewpoint.
As shown in Figure 9b, the planned trajectory S is projected on the two-dimensional

plane (X, Y, Z) and contains the path points SK, SK+1, SK+2, and the actual trajectory of the
USV passes through the point PUSVA, PUSVB, PUSVC in turn, and the forward viewpoints
determined by the forward view distance R are PA1, PA2, PB1, PB2, PC1, PC2, and at the
beginning moment, two forward viewpoints PA1 and PA2 are solved by the forward view
circle and the segment SK − SK+1. At the beginning moment, two forward viewpoints PA1
and PA2 are solved from the forward view circle and the line segment SK − SK+1, and at this
time, PA2, which is closer to the point SK+1, is selected as the solution forward viewpoint. When
the USV moves to PUSVB, there is only one forward viewpoint on the track segment SK − SK+1,
and at this time, PB2 is obtained by incorporating SK+1 − SK+2 into the solution and is used as
the solution forward viewpoint. When the USV is located in PUSVC, SK is out of the team and
PC2 is selected as the solution forward viewpoint. When the unmanned boat is in PUSVC, SK is
out of the group and PC2 is chosen as the forward viewpoint of the solution.

In order to enhance the anti-interference capability of the tracking algorithm, we con-
ducted data tests on simulated ocean waves using the aforementioned methods. Wind and
wave data for various sea conditions, such as wave height, were obtained from the Interna-
tional Sea State Scale. Since it is not feasible to measure the level of interference caused by
waves during actual operation, we could only apply pre-set compensation measures against
such interference. Multiple experiments were conducted in the ship pool laboratory, revealing
a maximum deviation of 4.94° for the heading angle and 0.16 m for alignment.

After performing calculations based on the formula presented in Section 3.1, the
compensated acceleration is incorporated into the AV-LOS algorithm to enhance the anti-
interference capability of the recovery system.

4. Experiments

In this section, we will present the hardware model of the stern ramp recovery system
along with the underlying framework logic. Additionally, we will showcase the outcomes of
simulation and field experiments conducted using the platform. The results will be analyzed
using quantitative indicators and graphical representations for a comprehensive evaluation.

4.1. Experimental Conditions and Hardware System

At the mother ship’s end, a fixed steel transom chute is installed at the shore to replicate
the mother ship for simplicity. The steel transom chute features an upward-sloping U-
shaped opening with cylindrical rolling sheaves on the inside, as depicted in Figure 10.
The hardware system is constructed on a sturdy fixed steel transom chute structure, which
offers ample space and structural stability. Similarly, the hardware system at the mother
ship end can be categorized into three sub-modules: computation and control module,
sensor module, and power module.

As shown in Figure 11, the boat-side controller described in this paper uses the
STM32F103ZET6, and the controller has a wealth of interface resources. We assembled the
hardware system, where the hardware system was structured as shown in Figure 12a. The
USV used in the experiment with its information is shown in Figure 12b.

To streamline the development process, we opted for Visual Studio 2022 (Microsoft, SEA,
Redmond, WA, USA) and utilized the C# language to create a Windows application. The
upper computer was developed using the C# language, and its software interface is illustrated
in Figure 13.
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Figure 10. The actual situation of the experimental platform. (a) The photo of our platform, which
acts as a model of stern ramp. (b) The picture records the moment when our USV finishes the recovery
process. (c) The satellite map of our platform and the directions given are relevant to the coordinate
system in the following pictures that we show to describe our experimental results.

Figure 11. The layout of MCU. Equipment (Guangzhou YuanziDianzi Electronic Technology Co., Ltd,
Guangzhou, China) has been modified.
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(a) (b)
Figure 12. (a) The framework of the hardware system of our USV. (b) The main parameters of our
USV. (Shell from Shanghai Huace Navigation Technology Ltd., Shanghai, China).

Figure 13. Operation interface of the upper computer.

After constructing the hardware/software system for the recovery system as outlined
in the preceding section, a series of tests were conducted in lake waters. The primary
objective was to validate the fundamental functionalities of the recovery system. Upon
successfully debugging the system’s hardware and software components, a dedicated
recovery scenario was devised to facilitate a series of recovery tests. These tests aimed to
evaluate the effectiveness of the improved genetic algorithm (IGA) path planning algorithm
and the AV-LOS tracking algorithm.

4.2. The Simulation of IGA and AV-LOS

By distinguishing between the length of the route plan, the size of the corners, and
the number of surrounding obstacles, we designed four arithmetic examples with different
starting points, as shown in Table 1.

By incorporating control variables, we have formulated these computational scenarios.
The simulation outcomes will be depicted in Figure 14, where EG1 denotes the absence of
population initialization enhancement, EG2 signifies the absence of SSIH, EG3 employs a
simplistic linear penalty function, and EG4 indicates the lack of an Elitism Strategy.
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Table 1. Specific information of planning examples for recovery .

Case Start Point End Point

1 (85, 10) (0, 0)
2 (55, −15) (0, 0)
3 (43, 6) (0, 0)
4 (92, 20) (0, 0)

(a) (b)

(c) (d)
Figure 14. The comparative results of simulation outcomes of four examples. The blue triangle
represents the approximate orientation of the starting point towards the USV.(a) Case 1; (b) Case 2;
(c) Case 3; (d) Case 4.

After generating each set of operating algorithms, we applied curve fitting using β-spline
curves to all pathways and conducted a comparative analysis. It is evident that the IGA item dis-
plays a relatively strong performance of malposition across all four sets of examples, particularly
in terms of proximity to the end of the central axis of the stern ramp, denoted by (0, 0).

Moreover, the deficiency of a multidimensional evaluation system has contributed to
the notably poor performance of the EG3 item across all four algorithms. It is apparent
that there are numerous challenging corners in practical implementation, resulting in
compromised path smoothness. In conjunction with the previously mentioned evaluation
metrics formulas, we conducted a comprehensive comparison of the evaluation metric
values for malposition and large angles in the IGA and EG3 samples across the four
examples. The results have been carefully tabulated and are presented in Table 2. Based on
the table, it is evident that the smoothing metrics of the IGA and EG3 in all cases exhibit
a significant difference of approximately two-fold. This observation suggests that the
unimproved fitness function lacks efficacy in terms of path smoothing selection.
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Table 2. Scalar analysis of smoothing indicators for modified fitness functions.

Case Fitang,IGA Fitang,EG3 Fitmal,IGA Fitmal,EG3

1 0.48 1.22 1.30 2.40
2 0.42 0.86 2.57 3.86
3 0.37 0.69 2.17 3.00
4 1.44 2.75 4.55 5.82

This is because the convergence and screening mechanism of the genetic algorithm is
closely related to the design of the fitness function. The fitness function of IGA strictly limits
the recovery attitude requirements for stern ramp recovery to moderate and heading. In
addition, EG3 also lacks constraints on the path smoothness parameter indicators, resulting
in uneven speed and frequent sharp turns.

To validate the effectiveness of the preheating process in improving the genotype qual-
ity of the initial population and consequently reducing the number of iterative generations
required, we conducted 100 experiments utilizing an arithmetic case sample with a starting
point of (85, 10). These experiments were carried out both with and without the preheating
operation. We set the number of elite groups for the experiments to 10. Moreover, to ensure
better visual interpretation of the results, we enforced a fixed number of iterations per
dataset at 500, which significantly exceeds the number of iterations typically needed for
path planning. By recording the average fitness function values for the elite group in each
generation, we analyzed and presented the results in Figure 15.

(a) (b)

Figure 15. (a) The actual fitness function values. (b) The growth rate of fitness.

Based on the experimental results, it is evident that the example utilizing the preheat-
ing process exhibits a higher fitness function value in the initial stage of the algorithm,
indicating its effectiveness in improving the genotype quality. As depicted in Figure 15,
although the algorithm without the preheating process demonstrates a higher growth rate
of fitness values, the fitness function value of the offspring progeny is still constrained by
the parent population. This indicates that the parent genes that underwent population
initialization optimization have good phenotypes. Conversely, the algorithm incorporating
the preheating process tends to reach a saturation point in its growth rate within approxi-
mately 20 generations. In our extensive simulations, we have observed that this is indeed
the number of iterations required for the IGA to successfully accomplish path planning.

The Elite Strategy and SSIH contribute to an accelerated convergence rate primarily
by enhancing genetic manipulation techniques, as evidenced by the time taken for compu-
tational planning displayed in Table 3. Additionally, they exhibit some positive impact on
path smoothness. Table 4 presents the comparative metrics illustrating these effects.



Sensors 2023, 23, 8075 19 of 25

Table 3. Comparison of the time consumption for iterations.

Case TimeIGA TimeEG2 TimeEG4

1 2.067 11.392 12.769
2 2.683 8.430 8.319
3 1.556 7.436 6.366
4 3.792 15.985 62.00

Table 4. Comparison of evaluation metrics for the planning results of Improved Genetic Algorithm
(IGA), EG2, and EG4 algorithms.

Case Fitang,IGA Fitang,EG2 Fitang,EG4 Fitmal,IGA Fitmal,EG2 Fitmal,EG4 Fitd,IGA Fitd,EG2 Fitd,EG4 FitT ,IGA FitT ,EG2 FitT ,EG4

1 0.48 0.59 0.60 1.30 2.00 2.00 1.05 1.14 1.15 5.18 5.40 5.34
2 0.42 0.83 0.63 2.57 3.14 2.71 1.08 1.13 1.15 5.17 5.68 4.80
3 0.37 0.76 0.75 2.17 2.17 2.33 1.02 1.11 1.09 4.95 5.60 5.60
4 1.44 1.44 3.44 4.55 4.55 3.73 1.19 1.19 1.17 5.09 5.00 5.74

It is evident that the incorporation of the Elite Strategy or SSIH yields advantages in
enhancing the convergence rate. As the planning difficulty increases, there is a notable in-
crease in computation time. However, these methods operate through distinct mechanisms.
The former safeguards the retention of high-quality individuals during the genetic process
by preserving their genotypes in each generation. On the other hand, the latter facilitates
genetic diversity by releasing redundant memory and generating novel samples.

Based on the comparison of dimensionless evaluation metrics, it is observed that the
planning results achieved by IGA exhibit superior performance in terms of smoothness,
path distance, and time consumption compared to the other two algorithms. However,
it should be noted that there are instances where the differences in metrics for some data
are not particularly significant. To improve the overall quality of the planned path, our
fitness function adopts a weighting strategy. Even if the fitness function values of the final
screening are significantly different, some qualitative indicators may be similar.

The AV-LOS algorithm simulation is implemented using MATLAB. As an illustrative
example, the desired trajectory S in (X, Y, T) space is composed of three motion segments
concatenated together. The segments consist of P1(0, 0, 0), P2(0, 20, 8), P3(30, 20, 14), and
P4(30, 0, 22). These segments collectively form an inverted ’U’ shape in the X/Y plane,
effectively simulating tracking scenarios involving acceleration, deceleration, and right-
angle turns typical for unmanned boats. The simulation control period is denoted as
T = 0.2, and the algorithm utilizes a forward-looking distance of R = 3, and the following
assumptions are made:

• The USV utilizes a fixed control period T for speed and heading control. At the start
of each period, the desired heading and desired speed are determined by solving the
guidance law.

• The hysteresis effect in heading control is disregarded, and changes in speed are
treated as linear transformations that either increase or decrease over time.

The simulation results are shown in Figure 16.
The formula for trajectory deviation B(t) can be expressed as follows:

B(t) =
√
(Xt(t)− Xr(t))

2 + (Yt(t)−Yr(t))
2 (14)

where Xt(t) and Yt(t) denote the coordinates of the desired trajectory and Xr(t) and Yr(t)
represent the coordinates of the real trajectory.

It is evident that the deviation of the 2D trajectory is minimal. Nonetheless, owing
to the inclusion of the forward view distance, the actual trajectory undergoes smooth
transitions with certain curvature during right-angle turns. Consequently, a deviation
emerges at the termination point of the 3D trajectory. The LOS trajectory deviation takes
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the form of a three-step staircase since it directly adopts the isochronous target speed as the
desired speed. Employing a random function, generate 50 sets of initial coordinates and
repeat the simulation 10 times for each set. Calculating the average trajectory deviation for
each algorithm, the resulting average deviation for the LOS algorithm is determined to be
2.0402 m, whereas, for the AV-LOS algorithm, it is found to be 0.8161 m.

(a)

(b)

(c)

Figure 16. The simulation result of AV-LOS. (a) Two-dimensional projection for trajectory tracking.
(b) Three-dimensional projection for trajectory tracking. (c) Tracking simulation with starting point (2, 0, 0).

4.3. The Field Tests of IGA Incorporating AV-LOS

We selected the initial three samples, which demonstrate significant variations in their
planning characteristics, for conducting field experiments. In order to investigate the trajectory
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tracking performance of AV-LOS under various wind and wave interference scenarios, we
recorded the first set of field-tested waypoint planning data and replicated the experiment
twice at different times. The resulting actual paths of each experiment are denoted as Real
path1, Real path2, and Real path3, respectively. The real GPS coordinates obtained from these
experiments are visualized using a β-spline plot, as depicted in Figure 17.

(a) (b) (c)

Figure 17. The result of field tests using IGA incorporating AV-LOS. (a) Case 1; (b) Case 2; (c) Case 3.

It is evident that the actual planning results closely resemble the simulation results,
with a slight deviation observed during larger corners. This discrepancy can be attributed
to varying disturbance conditions, which result in different magnitudes of translation for
the USV during the cornering process. This phenomenon is closely associated with the
tracking radius R set in the AV-LOS algorithm. As depicted in Figure 18, setting a tracking
radius R that is too large causes an arc offset in the waypoints during tracking, while setting
it too small hinders the upper computer’s ability to assist the USV in tracking the next
waypoint, leading to the USV making a turn with the current waypoint as the center.

(a) (b)

Figure 18. (a) The example when the USV is unable to meet the demand for malposition because
the tracking radius R is too big. After the position in the third picture, the USV will hit the steel plate
when heading to the next waypoint. (b) When the tracking radius R is too small, the USV made a
turn at the current waypoint.

Additionally, it is observed that the actual trajectory tends to have larger corners
compared to the planning path. This is due to the necessity for the USV to undergo a



Sensors 2023, 23, 8075 22 of 25

dynamics adjustment process while making turns in a water environment. However, it is
crucial for path planning to avoid sharp corners, as they can render the waypoint tracking
ineffective during the dynamics adjustment process and result in a significant deviation
from the intended course. Although the simulation results demonstrate that AV-LOS
exhibits a small tracking error, a strategy solely focused on speed-oriented tracking is not
an optimal solution for this issue.

To provide a more comprehensive analysis of the system’s actual planning effective-
ness, we conducted a thorough examination of the collected heading and speed data, as
shown in Figures 19 and 20.

(a) (b) (c)

Figure 19. The result of field tests using IGA incorporating AV-LOS. (a) Case 1; (b) Case 2; (c) Case 3.

(a) (b) (c)

Figure 20. The result of field tests using IGA incorporating AV-LOS. (a) Case 1; (b) Case 2; (c) Case 3.

From Figure 19, we can see that the heading of the USV in water tends to be basically
stable without significant fluctuations. Due to the influence of water flow, there are slight
differences in the headings of the three path instances. It can be observed that as the x
coordinate decreases, the heading gradually converges to 180°. This is due to the alignment
of the USV to the centerline of the stern ramp during the recovery process and preparation
for pitch correction. The difference between the heading angle and 180° does not exceed
60° in any of the examples, indicating that there were few sharp turns.

We removed the process of rapid speed changes during the start and end phases and
analyzed the speed changes of the USV during the driving phase. It can be observed from
Figure 20 that when the planning start point is far from the target, the planning path of the
USV is longer and the speed uniformity is better. However, when the planning path is short
and the longitudinal distance between the start and end points is large, the speed stability
is not as good as the former. However, the difference between the maximum speed and the
minimum speed usually does not exceed 1 m/s, which indicates that the anti-interference
ability of the AV-LOS algorithm has a certain effect. This also indicates that there are still
many areas for improvement in our work in the future.

5. Discussion

This paper presents an improved genetic algorithm for a stern ramp recovery system of
the USV. The genetic algorithm, known for its global planning capabilities and retrieval effi-
ciency, has proven to be highly practical. However, traditional two-dimensional modeling
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approaches and single fitness evaluation systems significantly increase the time required
for path planning.

In the realm of algorithm optimization, we validated the viability of a genetic algo-
rithm utilizing 3D modeling alongside a novel coding mechanism. By enhancing genetic
operations to boost progeny diversity, we achieved a substantial improvement in the con-
vergence rate. Furthermore, the multifactor screening of the fitness function enhances
efficiency, albeit placing higher demands on the formulation of linear coefficients. By in-
corporating the forces exerted on the USV in real water environments through accurate
modeling, we have integrated them into the enhanced AV-LOS algorithm. Furthermore, a
method diagram for the AV-LOS algorithm is provided. Through simulation experiments,
it has been demonstrated that the AV-LOS algorithm outperforms the traditional LOS
algorithm in terms of tracking performance.

We have built a USV experimental platform and designed a hardware system. In
practice, the optimized genetic algorithm demonstrates adaptability when dealing with
longer distances that involve larger detours. However, due to surface disturbances, the
actual path generated using the IGA might experience partial shifts, potentially resulting
in less favorable detours. Nonetheless, it possesses an advantage in terms of malposition
and being able to return to the original route promptly with the assistance of AV-LOS.

However, our system still has several shortcomings. One is that the movement of
the obstacles set up in the experiment follows a regular pattern, which may not fully
reflect real-world scenarios. The second is that the attitude adjustment of the USV during
navigation may occasionally widen the turning path segment, even though the disturbance
of the water surface environment is taken into account. And finally, when planning paths
with larger turns and smaller total lengths, minor speed fluctuations may occur. In future
efforts, we aim to further optimize the hardware system and the structure of the algorithm,
while proposing reasonable solutions to deal with these limitations.
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