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Abstract: The behavior of multicamera interference in 3D images (e.g., depth maps), which is based
on infrared (IR) light, is not well understood. In 3D images, when multicamera interference is present,
there is an increase in the amount of zero-value pixels, resulting in a loss of depth information. In
this work, we demonstrate a framework for synthetically generating direct and indirect multicamera
interference using a combination of a probabilistic model and ray tracing. Our mathematical model
predicts the locations and probabilities of zero-value pixels in depth maps that contain multicamera
interference. Our model accurately predicts where depth information may be lost in a depth map
when multicamera interference is present. We compare the proposed synthetic 3D interference images
with controlled 3D interference images captured in our laboratory. The proposed framework achieves
an average root mean square error (RMSE) of 0.0625, an average peak signal-to-noise ratio (PSNR) of
24.1277 dB, and an average structural similarity index measure (SSIM) of 0.9007 for predicting direct
multicamera interference, and an average RMSE of 0.0312, an average PSNR of 26.2280 dB, and an
average SSIM of 0.9064 for predicting indirect multicamera interference. The proposed framework can
be used to develop and test interference mitigation techniques that will be crucial for the successful
proliferation of these devices.
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1. Introduction

In the last decade, there has been in increase in the types of applications where 3D
sensors are used, such as 3D scanning [1–4], drone positioning [5–7], robotics [8–10], and
logistics [11–13]. In particular, there has been a rapid growth in the commoditization of
3D sensors and their integration into mobile smartphone devices. In such a situation,
there is an increasing likelihood of these sensors causing interference to each other during
regular operation in many practical settings, such as multiple cameras imaging the same
object or subject. There are only a limited number of previous works that quantify the
behavior of multicamera interference in 3D images (e.g., depth maps) that is captured
by a time-of-flight (ToF) sensor using infrared (IR) light [14–19]. Existing works describe
the behavior of multicamera interference using a simple mathematical model based on a
summation of modulated light signals that corresponds with the IR light that is emitted
from each ToF sensor [14–17]. These simple models characterize how the accuracy of a
depth measurement at a given pixel is affected by IR light that is contributed by other ToF
sensors. These models, however, do not predict the locations of zero-value pixels within
a depth map and do not consider the impact of the physical locations of the ToF sensors
with respect to each other. For example, existing models do not describe the effect that one
ToF sensor has on another ToF sensor based on an offset (e.g., a horizontal and/or vertical
offset) between the ToF sensors within the same image plane, or an offset (i.e., parallax)
between the image planes of the ToF sensors. The physical locations of other ToF sensors
have a significant impact on the amount of multicamera interference that is present. For
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example, ToF sensors that are physically closer to each other or facing towards each other
will experience more multicamera interference than other ToF sensor configurations.

In this work, we develop a framework for synthetically generating multicamera
interference within a depth map that mirrors real multicamera interference that is observed
by a primary ToF sensor in the presence of an interfering secondary ToF sensor. In this
framework, we introduce a probabilistic model that predicts the behavior of multicamera
interference in depth maps based on the relative physical locations of the ToF sensors and
any potential reflecting surface. Generally, when multicamera interference is present, there
is an increase in the amount of zero-value pixels in the depth map captured by the primary
ToF sensor. A zero-value pixel is an invalid pixel that carries no depth information. Hence,
an increase in the amount of zero-value pixels in a depth map corresponds to an increase
in the depth information that is lost. Our experiments show that non-zero-value pixels
(i.e., pixels with real depth values) experience negligible amounts of error, generally less
than 3 mm at operating distances of 1 m, due to multicamera interference. Thus, the focus of
this work is to predict the behavior of zero-value pixels in a depth map when multicamera
interference is present.

The ToF sensors considered in this work rely primarily on frequency hopping for
eliminating multicamera interference. This frequency-hopping approach generally operates
by only transmitting IR light at different frequencies that vary over time [20–23]. Due to
hardware constraints, a limited number of frequencies are typically available for a device
to use. As the number of devices imaging a scene increases, the likelihood of the same
frequencies being used simultaneously by more than one device increases. When multiple
devices transmit IR light at the same frequency, this situation results in multicamera
interference [24]. As such, existing frequency-hopping techniques alone are insufficient
for eliminating multicamera interference. Our framework and probabilistic model can
help to improve existing approaches for eliminating multicamera interference, since they
can be used to predict the locations and probabilities of zero-value pixels that are present
in a depth map when multicamera interference is present and compensate for loss in
depth information.

This work contributes to the state of the art in the following ways: (1) Developing
a framework for synthetically generating (a) direct multicamera interference in depth
maps using a probabilistic model and (b) indirect multicamera interference in depth maps
using ray tracing and the probabilistic model. The synthetically generated multicamera
interference accurately mimics what is observed by a primary ToF sensor in the presence of
an interfering secondary ToF sensor; (2) developing a mathematical model that predicts the
locations and probabilities of invalid or zero-value pixels being present in depth maps that
contain multicamera interference. The mathematical model uses a probabilistic approach
to predict the probability of a pixel being a zero-value pixel when direct multicamera
interference is present. Direct interference occurs when an IR light source, for example from
an interfering secondary ToF sensor, has a line-of-sight path with a primary ToF sensor.
In this model, probabilities are determined using a sigmoid function and the position
of a given pixel in an image sensor with respect to a pixel corresponding with a center
of an IR light source; (3) developing a ray-tracing approach that uses the geometry of a
scene in conjunction with the probabilistic model for predicting zero-value pixels in direct
multicamera interference to predict zero-value pixels associated with indirect multicamera
interference. Indirect multicamera interference occurs when the IR light from an interfering
IR light source is reflected off of a surface before being observed by the primary ToF sensor.
This ray-tracing approach virtually projects and diffuses the IR light from an IR light source
onto surfaces in a scene to predict the locations and probabilities of zero-value pixels that are
associated with indirect interference; and (4) quantifying the performance of the synthetic
depth interference images with controlled 3D interference images captured in our laboratory.
The proposed framework achieves an average root-mean-square-error (RMSE) of 0.0625, an
average peak signal-to-noise ratio (PSNR) of 24.1277 dB, and an average structural similarity
index measure (SSIM) of 0.9007 for predicting the locations and probabilities of zero-value
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pixels for direct multicamera interference, and an average RMSE of 0.0312, an average PSNR
of 26.2280 dB, and an average SSIM of 0.9064 for predicting the locations and probabilities of
zero-value pixels for indirect multicamera interference.

This work uses Kinect V2 sensors as both a primary ToF sensor and an interfering
secondary ToF sensor for experiments due to its popularity and widespread use in research
and engineering applications. Since other ToF sensors operate using the same principles,
which involves emitting and capturing reflected IR light, our framework for synthetically
generating multicamera interference within a depth map can therefore be generally applied
to other types of ToF sensors.

This paper is organized as follows. Section 2 discusses the proposed method to
synthetically generate multicamera interference within a depth map. Section 3 discusses
the experimental setup and the numerical results. Section 4 provides concluding remarks.

2. Methodology

Multicamera interference primarily appears in depth maps as an increase in the
number of zero-value or invalid pixels within a scene. ToF sensors operate by determining
depth values based on the amount of time it takes for an IR light that is emitted from the
ToF sensor to return to the ToF sensor, after reflecting off of a surface within a scene. When
a different IR source, such as another ToF sensor, emits IR light onto the same scene as
that being imaged by a primary ToF sensor, it causes the primary ToF sensor to receive
additional and unexpected IR light from the interference source. The additional emitted
IR light may appear as direct interference and/or indirect interference in the depth maps
that are captured by the primary ToF sensor. The additional IR light results in a loss
of depth information that does not accurately represent the object in the scene. In this
work, we propose an approach for synthetically generating the presence of multicamera
interference within a depth map. The resulting synthetically generated depth map mimics
the appearance and behavior of a depth map that would be observed if an interference
source was emitting IR light onto a scene while a ToF sensor is collecting data from the scene.
Figure 1 provides an overview of our methodology, and the frequently used notations are
provided in Table 1.

Sensors 2023, 23, x FOR PEER REVIEW 3 of 25 
 

 

(RMSE) of 0.0625, an average peak signal-to-noise ratio (PSNR) of 24.1277 dB, and an av-
erage structural similarity index measure (SSIM) of 0.9007 for predicting the locations and 
probabilities of zero-value pixels for direct multicamera interference, and an average 
RMSE of 0.0312, an average PSNR of 26.2280 dB, and an average SSIM of 0.9064 for pre-
dicting the locations and probabilities of zero-value pixels for indirect multicamera inter-
ference. 

This work uses Kinect V2 sensors as both a primary ToF sensor and an interfering 
secondary ToF sensor for experiments due to its popularity and widespread use in re-
search and engineering applications. Since other ToF sensors operate using the same prin-
ciples, which involves emitting and capturing reflected IR light, our framework for syn-
thetically generating multicamera interference within a depth map can therefore be gen-
erally applied to other types of ToF sensors. 

This paper is organized as follows. Section 2 discusses the proposed method to syn-
thetically generate multicamera interference within a depth map. Section 3 discusses the 
experimental setup and the numerical results. Section 4 provides concluding remarks. 

2. Methodology 
Multicamera interference primarily appears in depth maps as an increase in the num-

ber of zero-value or invalid pixels within a scene. ToF sensors operate by determining 
depth values based on the amount of time it takes for an IR light that is emitted from the 
ToF sensor to return to the ToF sensor, after reflecting off of a surface within a scene. When 
a different IR source, such as another ToF sensor, emits IR light onto the same scene as 
that being imaged by a primary ToF sensor, it causes the primary ToF sensor to receive 
additional and unexpected IR light from the interference source. The additional emitted 
IR light may appear as direct interference and/or indirect interference in the depth maps 
that are captured by the primary ToF sensor. The additional IR light results in a loss of 
depth information that does not accurately represent the object in the scene. In this work, 
we propose an approach for synthetically generating the presence of multicamera inter-
ference within a depth map. The resulting synthetically generated depth map mimics the 
appearance and behavior of a depth map that would be observed if an interference source 
was emitting IR light onto a scene while a ToF sensor is collecting data from the scene. 
Figure 1 provides an overview of our methodology, and the frequently used notations are 
provided in Table 1. 

 
Figure 1. Process for generating synthetic multicamera interference. (A) Input depth map from a 
ToF sensor without multicamera interference; (B) Initial prediction map for the input depth map 
from ToF sensor without multicamera interference; (C) Prediction map after applying synthetic di-
rect interference. The added synthetic direct interference is shown within the red bounding box; (D) 

Figure 1. Process for generating synthetic multicamera interference. (A) Input depth map from a
ToF sensor without multicamera interference; (B) Initial prediction map for the input depth map
from ToF sensor without multicamera interference; (C) Prediction map after applying synthetic
direct interference. The added synthetic direct interference is shown within the red bounding box;
(D) Prediction map after applying synthetic indirect interference. The added synthetic indirect
interference is shown within the green bounding box.
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Table 1. Frequently used notations in this paper.

Symbol Description

D The depth map in 2D matrix of pixels with dimensions M× N

I The prediction map in 2D matrix of pixels with dimensions M× N

P The probability map in 2D matrix of pixels with dimensions M× N

S(x, y) The sigmoid function probability of a pixel being a zero-value pixel

A The peak probability value for the sigmoid function

B The slope of the sigmoid function

C The location of the midpoint of the sigmoid function in pixels

Vcamorigin(x, y, z) The origin and physical location of the primary ToF sensor

Vpixel(x, y, z) The virtual physical location of a pixel of the primary ToF sensor

Vcam(x, y, z) The vector associated with a pixel of the ToF sensor

Vintorigin(x, y, z) The physical location of the interfering secondary ToF sensor

Vmatrix(x, y, z) The virtual physical location of a pixel of the interfering secondary
ToF sensor

Vint(x, y, z) The vector associated with a pixel of the interfering secondary ToF sensor

t1
The parametric distance between the interfering secondary ToF sensor and
an intersection point on a target surface

g1(X, Y, Z) The physical location of an intersection point on a target surface for a pixel
vector from the interfering secondary ToF sensor

t2
The parametric distance between the primary ToF sensor and an
intersection point on a target surface

g2(X, Y, Z) The physical location of an intersection point on a target surface for a pixel
vector from the primary ToF sensor

P(x, y) The modified probability value for a pixel from the Phong model for
specular reflection and diffusion

kd, ks, ϕ
The Phong model diffusion, specular reflection, and specular
exponential coefficients

Vre f lect
The reflection vector for a vector, Vcam, associated with the primary
ToF sensor

To The physical location of a point on a target surface

n The surface normal of a target surface

The key steps to the synthetic multicamera interference generation methodology are
as follows. Consider a primary ToF sensor that is used to capture a depth map of a scene
without any interference from an interference source. The captured depth map may be
formed from a composite of one or more depth map images that are captured over some
period of time to improve the signal-to-noise ratio. An initial prediction map is then
generated based on the interference-free depth map. In the initial prediction map, each
pixel is associated with a probability that corresponds with how often a pixel had a zero-
value within the series of collected depth map images that are collected over the period of
time. This initial prediction map is provided as an input to the synthetic data generator.
Now also consider an interfering secondary ToF sensor that is located in the field-of-view
(FOV) of the primary ToF sensor and has its orientation such that a portion of its emitted
light is reflected off of the scene onto the primary ToF sensor. This generalized configuration
captures the possibility that (1) the interfering secondary ToF sensor does not lie in the
primary ToF sensor’s FOV but still causes interference and (2) the interfering secondary
ToF sensor lies in the primary ToF sensor’s FOV but causes only direct interference and no
reflected interference. Positional information about the primary ToF sensor, the interfering
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secondary ToF sensor, and the reflective surface (which for simplicity is modeled as a 2D
plane with a certain orientation) in the scene is given.

The primary objective of this work is to compute an accurate interference image that
integrates both the direct and indirect interference components. The proposed method
uses probabilistic modeling with the positional information for the interference source
to generate a probability map. The probability map associates each pixel within a depth
map with a probability of the pixel being a zero-value pixel as a result of multicamera
interference. In the case of direct interference, we map the probabilities from the probability
map onto an initial prediction map for the depth map of the scene without multicamera
interference. Optionally, if positional information is known for other objects or surfaces in
the scene, then ray tracing is used to project the probability map to the other objects and
surfaces in the scene to generate indirect interference within the initial prediction map for
the depth map of the scene without multicamera interference. This process is discussed in
detail in the following section.

2.1. Multicamera Interference

Multicamera interference can manifest as either direct multicamera interference or
indirect multicamera interference within a depth map. Direct multicamera interference
occurs when a primary ToF sensor has line of sight to the IR light from an interfering IR light
source (e.g., an interfering secondary ToF sensor). An example of real direct multicamera
interference is shown in Figure 2. In this example, the IR light source is located at a central
portion of the FOV of an interfering secondary ToF sensor. Indirect interference occurs
when the IR light from an interfering IR light source is reflected off of a surface before being
observed by the primary ToF sensor. An example of real indirect multicamera interference
is shown in Figure 3. In this example, IR light from the interfering secondary ToF sensor is
being reflected off of a planar surface (e.g., a wall) before being observed by the primary
ToF sensor.
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Figure 2. Depth map of an interfering secondary ToF sensor without multicamera interference in
millimeter units (left). Prediction map of the interfering secondary ToF sensor without multicamera
interference (middle) and with real direct multicamera interference (right).
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In some circumstances, both direct multicamera interference and indirect multicamera
interference may be present within a depth map. This situation occurs when the primary
ToF sensor has a line of sight with an IR light source and a portion of the IR light from
the IR light source is reflected off of a surface before being observed by the primary ToF
sensor. An example of real combined direct and indirect multicamera interference is shown
in Figure 4. In this example, the primary ToF sensor has line of sight with the IR light
source of an interfering secondary ToF sensor. The primary ToF sensor is also able to view
a portion of the IR light that is reflected off of a planar target surface.
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In the following prediction maps, the probabilities of pixels being a zero-value pixel
when multicamera interference is present are normalized based on how often a pixel had
a zero-value within a series of depth maps that are collected over a period of time. For
example, a pixel that had a zero-value for the entire data sample is associated with a
probability of 100% or a value of 1; a pixel that had a zero-value for half of the data samples
is associated with a probability of 50% or a value of 0.5. The color bar adjacent to each
figure below indicates the mapping between a pixel color and its corresponding probability
value. As such, the color of a pixel is used to indicate the probability that is associated
with the pixel. A brighter color (e.g., yellow) pixel indicates the pixel is associated with a
higher probability of being a zero-value pixel when a multicamera is present, whereas a
darker color (e.g., dark blue) pixel indicates the pixel is associated with a lower probability
of being a zero-value pixel when multicamera interference is present.

Note that in the figures without multicamera interference, zero-value pixels are still
present at the depth discontinuities (e.g., edges) in both the depth maps and their corre-
sponding probability maps due to object boundary ambiguity [25].

2.2. Probability Model

In the case of direct interference, a probability map is used to associate each pixel of a
depth map with a probability that a pixel is a zero-value pixel when direct multicamera
interference is present.

Let D ∈ RM×N represent the depth maps obtained from a primary ToF sensor with the
dimensions M × N. Each pixel within the depth map is identified using a 2D index (x, y).
The prediction map that corresponds with the depth maps from the primary ToF sensor is
also a 2D matrix, I ∈ RM×N, with the same dimensions M × N. Each pixel in the prediction
map corresponds with a pixel in the depth map. In the prediction map, each pixel (x, y) is
associated with an initial probability, I(x, y), of the pixel being a zero-value pixel. As noted
before, this initial probability is determined based on how often a pixel had a zero-value
within a series of depth maps that are collected over a period of time.

The probability map is also a 2D matrix, P ∈ RM×N, that is generated with the same
dimensions M × N. Each pixel in the probability map corresponds with a pixel in the depth
map. Each pixel in the probability map is assigned a predicted probability, P(x, y), that the
pixel is a zero-value pixel when direct multicamera interference is present.
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Based on our experiments, the probability of a zero-value pixel being present for direct
multicamera interference is highest at the center of an IR light source and then gradually
tapers off as the distance between a pixel and the center of the IR light source increases.
Based on this observed behavior, the sigmoid function was chosen as the basis for our
probability map to mimic the behavior of direct interference. Figure 5 shows an example of
a sigmoid function overlaid with the probabilities of a pixel being a zero-value pixel as a
function of the distance between a pixel and the center of the IR light source. While there
are numerous other functional choices that can be used, we selected the sigmoid function
for the relatively small number of tunable parameters that need to be defined and the high
level of accuracy that it offers, as will become evident in the numerical results.
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The sigmoid function, S(x, y), is defined as follows:

S(x, y) =
A

1 + e−B∗(d−C)
(1)

where d is the Euclidian distance between pixel (x, y) and the center pixel (xc, yc) of an IR
light source, S(x, y) is the probability of the pixel (x, y) being a zero-value pixel, A is the
peak probability value for the sigmoid function, B is the slope of the sigmoid function, and
C is the location of the midpoint of the sigmoid function in pixels [26].

Due to the geometry of the interfering ToF sensor, the sigmoid function parameters
[A, B, C] are determined based on the angle, θ, between the pixel (x, y) and the center pixel
(xc, yc) of an IR light source as follows:

r(θ) =
{
[A1, B1, C1], α < θ < β | α + 180◦ < θ < β + 180◦

[A2, B2, C2], β < θ < α + 180◦ | β + 180◦ < θ < α
(2)

where α and β demarcate different regions within the probability map.
In our experiments the A, B, and C parameters of the sigmoid function are determined

by first computing the probabilities of each pixel along radiuses projecting away from the
IR light source. The empirical results suggest that these rates of decrease vary along a radial
manner due to the geometry of the sensors. For simplicity, we only consider two different
regions and choose different parameters for the sigmoid function in these two regions.
Region 1 corresponds with radiuses between 45◦ and 135◦ and radiuses between 225◦ and
315◦. Region 2 corresponds with radiuses between 315◦ and 45◦ and radiuses between 135◦
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and 225◦. Figure 6 illustrates Region 1 (shown as R1) and Region 2 (shown as R2). The
probability values within each region were then averaged together based on the distance
between the pixel and the center of the IR source. A non-linear least squares fitting of a
sigmoid function is then performed on the average probability values within each region to
determine the sigmoid function parameters A, B, and C for each region. A further constraint
is that the sigmoid parameter A should be no larger than one, which corresponds with a
maximum probability of 100% that a pixel is a zero-value pixel. This process results in a
set of sigmoid parameters for each region. The determined sigmoid parameters A, B, and
C depend on the relative physical locations of the primary ToF sensor and the interfering
secondary ToF sensor with respect to each other. This relationship means that previously
determined sigmoid parameters can be based on the physical locations of the primary ToF
sensor and the interfering secondary ToF sensor.
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Figure 6. Regions used for determining the A, B, and C parameters for the sigmoid function. Region 1
(shown as R1) corresponds with radiuses along a vertical axis and Region 2 (shown as R2) corresponds
with radiuses along a horizontal axis.

For a given configuration of the ToF sensors, the sigmoid function parameters A, B,
and C for each region are applied to the probability map to generate the pixel probabilities
for a synthetic interference image. The pixel location of the center of the IR light source is
first identified in a depth map containing the IR light source. The corresponding pixel for
the center of the IR light source is then identified in the probability map. For each pixel in
the probability map, a distance between the pixel and the pixel for the center of the IR light
source, is determined. The sigmoid function from Equation (1) is then applied to determine
a probability, S(x, y), for the pixel based on the determined distance and the sigmoid
parameters corresponding with the region where the pixel is located with respect to the
IR light source. After determining probabilities for each pixel in the probability map, the
probability of a pixel in the original depth map being a zero-value pixel when multicamera
interference is present can be determined by identifying the probability associated with the
corresponding pixel in the probability map.

2.3. Masking

After generating the probability map, the probability map can then be applied to a
prediction map for a depth map without multicamera interference to synthetically generate
direct multicamera interference in the depth map. Figure 7 shows an example of a prediction
map for a depth map without multicamera interference. For each pixel, (x, y), in the
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prediction map, I, the new probability associated with the pixel when direct multicamera
interference is present can be determined as follows.

I(x, y) =
{

I(x, y) + S(x, y), I(x, y) + S(x, y) ≤ 1
1, I(x, y) + S(x, y) > 1

(3)
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Figure 7. Example of prediction map for a depth map without multicamera interference.

Figure 8 shows an example of the prediction map for a depth map with synthetically
generated direct multicamera interference after masking with the probability map.
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Figure 8. Example of a prediction for a depth map with synthetic direct multicamera interference
after masking with the probability map.

2.4. Ray Tracing

In the case of indirect multicamera interference, a ray-tracing approach based on the
geometry of the scene is used in conjunction with the probabilistic model discussed in
Section 2.2 to predict zero-value pixels associated with indirect multicamera interference.
This ray-tracing approach operates by virtually projecting and diffusing the IR light from
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an IR light source onto surfaces in a scene to predict the locations and probabilities of
zero-value pixels that are associated with indirect interference.

Our ray-tracing approach is based on traditional vector-based 3D rendering techniques
and uses a combination of forward ray tracing and reverse ray tracing [27–31]. Reverse
ray tracing is first used to project the probabilities from the probability map onto surfaces
within a scene. Forward ray tracing is then used to identify the probability values that are
observed by each pixel in the primary ToF sensor. Figure 9 illustrates an example of forward
ray tracing (shown in red) and reverse ray tracing (shown in green). We implemented
our ray-tracing process, as described in detail below, using code that we developed in
MATLAB. We developed our ray-tracing code based on the mathematical process described
in references [28,29]. No other software or external libraries were used to implement
this process.
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Figure 9. Perspective view of a primary ToF sensor configured to capture a depth map of a scene
with a target surface and an interfering secondary ToF sensor that is also emitting IR light on the
target surface.

To implement ray tracing, a set of vectors is first defined for each pixel in the prediction
map which corresponds with a pixel in the primary ToF sensor [28]. Each pixel (x, y) is first
converted from the raster space to a normalized device coordinate space as follows.

pNDC(x) =
(x + 0.5)

N
(4)

pNDC(y) =
(y + 0.5)

M
(5)

In the normalized device space, the pixel values are normalized with respect to the
dimensions of the image plane. The pixels are then converted from the normalized device
space to a screen space as follows.

pSS(x) = 2 ∗ pNDC(x)− 1 (6)

pSS(y) = 1− 2 ∗ pNDC(y) (7)



Sensors 2023, 23, 8047 11 of 24

In the screen space, the origin is redefined as the center of the image plane. The pixels
are then compensated for the aspect ratio, a, of the image plane as follows.

a =
N
M

(8)

pCAR(x) = a ∗ pSS(x) (9)

pCAR(y) = pSS(y) (10)

The pixels are then adjusted to account for the FOV with respect to each axis of the
image plane as follows:

pFA(x) = pCAR(x) ∗ tan
(

fx

2

)
(11)

pFA(y) = pCAR(y) ∗ tan
(

fy

2

)
(12)

where fx and fy correspond, respectively, to the FOV of the primary ToF sensor with respect
to the image width N and the image height M. Vectors for each pixel in the image plane
are then generated as follows:

Vcamorigin(x, y, z) = [0, 0, 0] (13)

Vpixel(x, y, z) = [pFA(x), pFA(y),−1] (14)

Vcam(x, y, z) =
[
Vpixel −Vcamorigin

]
(15)

where Vcam(x, y, z) is a vector associated with a pixel (x, y), Vcamorigin(x, y, z) is the origin
and physical location of the primary ToF sensor within a scene, and Vpixel(x, y, z) is the
virtual physical location of each pixel of the image sensor within the scene.

A similar process is performed with respect to the interfering secondary ToF sensor
and its associated probability map, S(x, y) [28]. Vectors for each pixel in the probability
map are generated as follows:

Vintorigin(x, y, z) = [xint, yint, zint] (16)

Vmatrix(x, y, z) =
[
Vintx, Vinty,−1

]
(17)

Vint(x, y, z) =
[
Vmatrix −Vintorigin

]
(18)

where Vint(x, y, z) is a vector associated with a pixel (x, y), Vintorigin(x, y, z) is the physical
location of the interfering secondary ToF sensor within the scene, and Vmatrix(x, y, z) is the
virtual physical location of each pixel of the probability map within the scene.

After generating vectors for the image plane and the probability map, the vectors
associated with the probability map are then projected onto the scene [29]. For each vector
in Vint, the parametric distance, t1, between the interfering secondary ToF sensor and an
intersection point on a target surface in the scene can be determined as follows:

t1 =

(
To −Vintorigin

)
n·Vmatrix(x, y, z)

(19)

where To is any real-world point (X, Y, Z) on the target surface and n is the normal of the
target surface. The physical location of the intersection point, g1(X, Y, Z), in the scene is
then determined as follows.

g1(X, Y, Z) = Vintorigin + Vmatrix(x, y, z) ∗ t1 (20)
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After projecting the vectors associated with the probability map, a similar process is
performed with respect to the vectors of the primary ToF sensor [29]. For each vector in
Vcam, the parametric distance, t2, between the primary ToF sensor and an intersection point
of the target surface in the scene can be computed as:

t2 =

(
To −Vcamorigin

)
n·Vpixel(x, y, z)

(21)

The physical location of the intersection point, g2(X, Y, Z), is then given by:

g2(X, Y, Z) = Vcamorigin + Vpixel(x, y, z) ∗ t2 (22)

After identifying the intersection points for vectors in Vcam, the following process is then
used to map a projected probability from the probability map to each pixel in the prediction
map. For each intersection point, g2, that is associated with a vector in Vcam, the nearest
corresponding intersection point, g1, that is associated with a vector Vint is determined. After
identifying the nearest corresponding intersection point g1, the projected probability from the
probability map can then be determined by identifying its corresponding vector Vint and its
associated probability value, S(x, y), in the probability map.

To account for the specular reflection and diffusion from surfaces in the scene, the
Phong model, which is a commonly used technique in 3D image rendering, is applied to the
projected probability before mapping the probability value to the prediction map [30,31].
Using the Phong model, a modified probability value, P(x, y), is determined as follows:

P(x, y) = FD + FS (23)

where FD corresponds with the diffusion component of the Phong model and FS cor-
responds with the specular reflection component of the Phong model. The diffusion
component of the Phong model is determined as follows:

FD = kd ∗
(

n·Vre f lect

)
∗ S(x, y) (24)

where kd is a user-defined diffusion coefficient and Vre f lect is the reflection vector for the
vector, Vcam, off of the target surface. Vre f lect is defined as follows.

Vre f lect = Vcam − 2 ∗ (Vcam·n) ∗ n (25)

The specular reflection component of the Phong model is determined as follows:

FS = ks ∗
(

Vre f lect·Vcam

)ϕ
∗ S(x, y) (26)

where ks is a user-defined specular reflection coefficient and ϕ is a user-defined specular
exponential coefficient. In our experiments, the values of kd, ks, and ϕ were selected based
on the texture and reflectivity of our target surface [30].

After obtaining the modified probability value, P(x, y), the pixel (x, y) in the prediction
map corresponding with the vector Vcam is then masked with the modified probability
value as follows.

I(x, y) =
{

I(x, y) + P(x, y), I(x, y) + P(x, y) ≤ 1
1, I(x, y) + P(x, y) > 1

(27)

Figure 10 shows an example of the prediction map for a depth map with synthetically
generated direct multicamera interference and indirect multicamera interference after
applying the modified probability values to the prediction map.
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and indirect multicamera interference after performing ray tracing.

2.5. Generating Depth Map with Synthetic Multicamera Interference

The updated prediction map is then applied to the depth map without multicamera
interference to synthetically generate multicamera interference in the depth map. For
each pixel in the depth map, D, the probability that a pixel is a zero-value pixel when
multicamera interference is present can be applied as follows:

D(x, y) =
{

D(x, y), I(x, y) < t
0, I(x, y) ≥ t

(28)

where t is a user-defined probability threshold value.

3. Experiments
3.1. Hardware Configuration

In our experiments, we used Kinect v2 sensors [32] as both the primary data collect-
ing ToF sensor and the interfering source. The Kinect v2 ToF sensor has a resolution of
512 × 424 pixels and a framerate of 30 frames per second [33]. For capturing depth images,
we used the OpenKinect libraries [34]. In our experiments, we disabled both the Bilateral
filter and the Edge-aware filter within the OpenKinect libraries to ensure raw depth infor-
mation is captured [35]. In order to implement our multicamera interference model and
process, we used MATLAB R2020b software [36].

For each experiment configuration, the primary ToF sensor collected depth images
of the scene in front of the primary ToF sensor over a thirty-minute time period. During
this data collection period, an average of 13,634 depths images were collected. This process
was repeated multiple times for each combination of position angle and distance. The test
data for our experiments was then generated by computing the probabilities for each pixel
being a zero-value pixel within each set of depth images for each combination of position
angle and distance.

The interfering secondary ToF sensor is mounted on a tripod using a Benro 3-Way
Geared Head [37], which allows for precise control of the yaw, pitch, and roll. The configu-
ration of the interfering secondary ToF sensor is shown in Figure 11. We used a dual-axis
digital protractor [38] to ensure the interfering secondary ToF sensor is level with the
primary ToF sensor. We also used laser range finders to measure the distances between the
interfering secondary ToF sensor, the primary ToF sensor, and the reflected surface.
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a portion of the IR light from the interfering secondary ToF sensor is emitted directly to-
wards the primary ToF sensor. In this configuration, two ToF sensors are also positioned 
such that another portion of the IR light from the interfering secondary ToF sensor is re-
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Figure 11. Interfering secondary ToF sensor mounted to a tripod using the Benro 3-Way Geared Head.

Figure 12 illustrates a top view of the hardware configuration that was used for our
direct multicamera interference experiments. In this configuration, the primary ToF sensor
and the interfering secondary ToF sensor are positioned such that the IR light from the
interfering secondary ToF sensor is emitted directly towards the primary ToF sensor. For
these experiments, the interfering secondary ToF sensor was positioned facing angles of
180◦, 170◦, and 160◦ with respect to the image plane of the primary ToF sensor. At each
of these position angles, the interfering secondary ToF sensor was positioned at distances
(shown as distance D) of 1.0 m, 1.2 m, 1.4 m, and 1.6 m away from the primary ToF sensor.
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Figure 12. Top view of hardware configuration for direct interference experiments.

Figure 13 illustrates a top view of the hardware configuration that was used for our
combined direct and indirect multicamera interference experiments. In this configuration,
the primary ToF sensor and the interfering secondary ToF sensor are positioned such that a
portion of the IR light from the interfering secondary ToF sensor is emitted directly towards
the primary ToF sensor. In this configuration, two ToF sensors are also positioned such that
another portion of the IR light from the interfering secondary ToF sensor is reflected off of
a target surface before being captured by the primary ToF sensor. In this experiment, the
target surface was a matte white foamboard. Both the interfering secondary ToF sensor and
the target surface were within the FOV of the primary ToF sensor.
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Figure 13. Top view of hardware configuration for combined direct and indirect interference experiments.

For these experiments, the physical locations of the primary ToF sensor, the interfering
secondary ToF sensor, and the target surface remained fixed. The distance between the
primary ToF sensor and the target surface (shown as D1) was 1.15m. The distance between
the primary ToF sensor and the interfering secondary ToF sensor (shown as D3) was 1.6m.
The distance between the target surface and the interfering secondary ToF sensor (shown as
D2) was 1.03m. The primary ToF sensor was configured with a position angle (shown as A)
of 40◦ between the interfering secondary ToF sensor and the target surface. The interfering
secondary ToF sensor was configured with a position angle (shown as B) of 46◦ between
the primary ToF sensor and the target surface. The target surface was configured with a
position angle (shown as C) of 94◦ between the primary ToF sensor and the interfering
secondary ToF sensor. For these experiments, the interfering secondary ToF sensor was
configured with pivot angles (shown as PS) of 145◦, 140◦, 135◦, and 130◦ degrees with
respect to the image plane of the primary ToF sensor. The pivot angle of the target surface
(shown as PT) remained fixed at 205◦ with respect to the image plane of the primary ToF
sensor. These angles were selected to ensure that both direct and indirect interference can
be observed in all cases to ensure efficiency in our experimental process.

3.2. Performance Metrics

To evaluate the performance of the zero-value pixel predictions from the probabilistic
model described in Section 2.2, we used the following commonly used metrics for com-
paring images [39,40]: the root mean square error (RMSE) [41], peak signal-to-noise ratio
(PSNR) [42,43], and structural similarity index measure (SSIM) [44,45]. These metrics were
used to compare the prediction maps with synthetic multicamera interference and the
prediction maps with real multicamera interference.

Our process for evaluating synthetic multicamera interference performance involved
first capturing a series of depth maps with multicamera interference where the position and
orientation of the primary ToF sensor and the interfering secondary ToF sensor remained
fixed during the data collection. In our experiments, the primary ToF sensor collected the
series of depth maps over a thirty-minute time period to ensure statistical consistency. Our
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experiments showed that a thirty-minute time period was a sufficient amount of time for
the Kinect sensor to cycle though one period of its frequency-hopping patterns.

We then generated a prediction map with real multicamera interference where each
pixel was associated with a probability of being a zero-value pixel based on the number
of instances that the pixel was a zero-value pixel within the collected data sample. For
example, a pixel that had a zero-value for the entire data sample was associated with a
probability of 100%, a pixel that had a zero-value for half of the data sample was associated
with a probability of 50%, and so on.

Next, we generated a prediction map with synthetic multicamera interference that cor-
responded with the position and orientation of the primary ToF sensor and the interfering
secondary ToF sensor. Similar to the prediction map with real multicamera interference,
the pixels in the prediction map with synthetic multicamera interference were configured
such that each pixel was associated with a probability of being a zero-value pixel based
on our probabilistic model and framework. The prediction map with real multicamera
interference and the prediction map with synthetic multicamera interference were then
directly compared pixel-by-pixel to determine the RMSE, PSNR, and SSIM.

3.3. Direct Interference Experimental Results

Figure 14 illustrates examples of prediction maps from our direct interference experi-
ments that show the locations and probabilities of zero-value pixels. Figure 14 corresponds
to the results when the interfering secondary ToF sensor is located with a position angle of
180◦ with respect to the primary ToF sensor. In this configuration, the interfering secondary
ToF sensor and the primary ToF sensor are aligned and directly facing each other.
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Figure 14. Interfering ToF sensor with a position angle of 180◦ with respect to the primary ToF
sensor initial depth map in millimeter units (first row), prediction map without direct multicamera
interference (second row), prediction map with synthetic direct multicamera interference (third row),
and prediction map with real direct multicamera interference (fourth row) at distances of 1.0 m,
1.2 m, 1.4 m, and 1.6 m (left–right) between the interfering ToF sensor and the primary ToF sensor.
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In each figure, the first row shows prediction maps of the interfering secondary ToF
sensor without direct multicamera interference, the middle row shows prediction maps
with synthetic direct multicamera interference, and the bottom row shows prediction maps
with real direct multicamera interference at different distances between the interfering
secondary ToF sensor and the primary ToF sensor.

Table 2 shows the sigmoid parameter values that were determined based on our
probabilistic model for the direct interference experiments. Axis 1 corresponds with a
vertical axis corresponding with Region 1 and Axis 2 corresponds with a horizontal axis
corresponding with Region 2. Parameters A, B, and C correspond to the sigmoid parameters
discussed in Section 2.2.

Table 2. Sigmoid parameter values for direct multicamera interference.

Position Angle = 180◦ Axis 1 Axis 2
Distance: A B C A B C

1.0 m 1 −0.3516 10.020 1 −0.1912 13.870
1.2 m 1 −0.2312 9.382 1 −0.2217 11.640
1.4 m 1 −0.1931 9.003 1 −0.2249 9.961
1.6 m 1 −0.3300 7.328 1 −0.2912 8.608

Position Angle = 170◦ Axis 1 Axis 2
Distance: A B C A B C

1.0 m 1 −0.2504 9.672 1 −0.2004 12.170
1.2 m 1 −0.2489 8.188 1 −0.2812 10.410
1.4 m 1 −0.3560 7.063 1 −0.2869 9.596
1.6 m 1 −0.3691 6.824 1 −0.2548 9.378

Position Angle = 160◦ Axis 1 Axis 2
Distance: A B C A B C

1.0 m 1 −0.2093 10.010 1 −0.2081 14.190
1.2 m 1 −0.2560 8.302 1 −0.2099 12.230
1.4 m 1 −0.3097 7.346 1 −0.2649 10.370
1.6 m 1 −0.2288 7.103 1 −0.1845 10.700

Our results show that at each position angle, the midpoint of the sigmoid function
(i.e., parameter C) generally changes monotonically and is inversely proportional to the
distance between the primary ToF sensor and the interfering ToF sensor. This behavior
translates to the size (e.g., radius) of the direct multicamera interference increasing when
the distance between the primary ToF sensor and the interfering ToF sensor is reduced
and decreasing when the distance between the primary ToF sensor and the interfering ToF
sensor increases. Due to the physical configuration of the Kinect V2 sensor’s IR emitters,
which are positioned horizontally along the body of the Kinect, at a given position angle
and distance, the midpoint of the sigmoid function tends to be slightly larger along the
horizontal directions (i.e., Axis 2) compared to the vertical directions (i.e., Axis 1). In our
experiments, the midpoint of the sigmoid function generally ranged from 6.8 to 10 pixels in
the vertical directions and ranged from 8.6 to 14.19 pixels in the horizontal directions. The
slope of the sigmoid function (i.e., parameter B) typically varied between −0.19 and −0.36
with an average value of −0.2564 across all position angles and distances. The peak value
of the sigmoid function (i.e., parameter A) was one for all position angles and distances.
A peak value of one corresponds with a probability of 100% for a zero-value pixel being
present in a depth map. As shown in Figure 14, these peak values typically correspond with
the center of the IR source of the interfering ToF sensor. Figure 15 shows the corresponding
direct multicamera interference error maps for the results shown in Figure 14.
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Figure 15. Direct multicamera interference error maps showing absolute difference between real
multicamera interference and synthetic multicamera interference prediction maps at distances of
1.0 m, 1.2 m, 1.4 m, and 1.6 m (left–right).

Table 3 shows the performance of the proposed synthetically generated direct mul-
ticamera interference process. For each position angle and distance, we compared the
prediction maps of the interfering ToF sensor with synthetic direct multicamera interfer-
ence and real direct multicamera interference. Table 3 shows that the proposed framework
for synthetically generating direct multicamera interference achieves an average RMSE
of 0.0625, an average PSNR of 24.1277 dB, and an average SSIM of 0.9007 for position
angles between 180 and 160◦. Our results show that a similar level of performance can
be achieved across all tested position angles and distances. In general, our results show
that the locations and probabilities associated with zero-value pixels can be accurately
predicted for direct multicamera interference, which translates to the accurate synthetic
representation of direct multicamera interference.

Table 3. Synthetic direct multicamera interference performance.

Position Angle = 180◦

Distance: RMSE PSNR (dB) SSIM

1.0 m 0.0668 23.4984 0.8733
1.2 m 0.0695 23.1541 0.9037
1.4 m 0.0637 23.9189 0.8920
1.6 m 0.0584 24.6660 0.9286

Position Angle = 170◦

Distance:

1.0 m 0.0564 24.9814 0.9079
1.2 m 0.0534 25.4517 0.9084
1.4 m 0.0547 25.2334 0.9147
1.6 m 0.0672 23.4590 0.9084

Position Angle = 160◦

Distance:

1.0 m 0.0582 24.7000 0.9044
1.2 m 0.0618 24.1834 0.8964
1.4 m 0.0616 24.2029 0.9061
1.6 m 0.0787 22.0837 0.8642

3.4. Indirect Interference Experiment Results

Figure 16 illustrates prediction maps from our indirect interference experiments that
show the locations and probabilities of zero-value pixels. Figure 16 corresponds to the
results when the interfering ToF sensor remains at a fixed position and sweeps its pivot
angle with respect to a target surface. In Figure 16, the first row shows prediction maps of
the target without indirect multicamera interference, the middle row shows prediction maps
with synthetic indirect multicamera interference, and the bottom row shows prediction
maps with real indirect multicamera interference at different pivot angles between the
interfering secondary ToF sensor and the target surface.
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Figure 16. Indirect multicamera interference initial depth map in millimeter units (first row), predic-
tion map without multicamera interference (second row), prediction map with synthetic multicamera
interference (third row), and prediction map with real multicamera interference (fourth row) at pivot
angles of 15◦, 20◦, 25◦, and 30◦ (left–right) for the interfering ToF sensor with respect to the image
plane of the primary ToF sensor.

Our results show that through ray tracing, the effect of the zero-value pixels associated
with direct multicamera interference can be successfully projected and diffused onto other
surfaces within a scene to mimic the behavior of indirect multicamera interference. Figure 17
shows the corresponding indirect multicamera interference error maps for the results shown
in Figure 16.
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Figure 17. Indirect multicamera interference error maps showing absolute difference between real
multicamera interference and synthetic multicamera interference prediction maps at pivot angles of
15◦, 20◦, 25◦, and 30◦ (left–right).

Table 4 shows the performance of the proposed synthetically generated indirect multicam-
era interference process. For each pivot angle, we compare the prediction maps of the target
with synthetic indirect multicamera interference and real indirect multicamera interference.
Table 4 shows that the proposed framework for synthetically generating indirect multicamera
interference achieves an average RMSE of 0.0312, an average PSNR of 26.2280 dB, and an
average SSIM of 0.9064 for pivot angles between 15 and 30◦. Similar to the case of direct
multicamera interference, our results show that the locations and probabilities associated with
zero-value pixels can be accurately predicted for indirect multicamera interference, which
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translates to the accurate synthetic representation of indirect multicamera interference, and
ultimately combined direct and indirect multicamera interference.

Table 4. Synthetic indirect multicamera interference performance.

Pivot Angle: RMSE PSNR (dB) SSIM

15◦ 0.0496 26.0831 0.9440
20◦ 0.0397 28.0190 0.9456
25◦ 0.0227 32.8678 0.9462
30◦ 0.0127 17.9422 0.7897

3.5. Combined Direct and Indirect Interference Experiment Results

Figure 18 illustrates prediction maps from our combined direct and indirect interfer-
ence experiments that show the locations and probabilities of zero-value pixels. Figure 16
combines the individual components of direct multicamera interference and indirect multi-
camera interference from Figures 14 and 16 above to illustrate a composite prediction map
that includes both direct and indirect multicamera interference. Similar to above, Figure 18
corresponds to the results when the interfering ToF sensor remains at a fixed position and
sweeps its pivot angle with respect to a target surface. In Figure 18, the first row shows
prediction maps of the interfering ToF sensor and the target without multicamera inter-
ference, the middle row shows prediction maps with synthetic multicamera interference,
and the bottom row shows prediction maps with real multicamera interference at different
pivot angles between the interfering secondary ToF sensor and the target surface. Figure 19
shows the corresponding combined direct and indirect multicamera interference error
maps for the results shown in Figure 18.
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as D1). The interfering secondary ToF sensor was configured such that the IR light from 
the interfering secondary ToF sensor is reflected off of the target surface before being cap-
tured by the primary ToF sensor. For these experiments, the interfering secondary ToF 
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Figure 18. Combined direct and indirect multicamera interference configuration initial depth map
in millimeter units (first row), prediction maps without multicamera interference (second row),
prediction maps with synthetic multicamera interference (third row), and prediction maps with real
multicamera interference (fourth row) at pivot angles of 15◦, 20◦, 25◦, and 30◦ (left–right) for the
interfering ToF sensor with respect to the image plane of the primary ToF sensor.
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3.6. Non-Zero-Value Pixel Experiment Results

Figure 20 illustrates a top view of the hardware configuration that was used in our
experiments for determining the amount of error that is experienced by non-zero-value
pixels due to multicamera interference. In these experiments, the primary ToF sensor was
positioned fronto-parallel with a target planar surface at a fixed distance of 1.0 m (shown
as D1). The interfering secondary ToF sensor was configured such that the IR light from the
interfering secondary ToF sensor is reflected off of the target surface before being captured
by the primary ToF sensor. For these experiments, the interfering secondary ToF sensor
was positioned at angles of 30◦, 45◦, and 60◦ with respect to the image plane of the primary
ToF sensor. At each of these position angles, the interfering secondary ToF sensor was
positioned at distances (shown as distance D2) of 0.8 m, 1.0 m, 1.2 m, and 1.4 m away from
the target surface.
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Table 5 shows experimental results for the amount of error that is experienced by
non-zero-value pixels due to multicamera interference. Table 5 shows that non-zero-value
pixels experienced an average error of 0.52 mm across angles between 30 and 60◦ and
distances between 0.8 and 1.4 m between the interference source and the target surface.
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Table 5. Non-zero-value pixel depth errors due to multicamera interference.

Position Angle = 30◦

Distance: 0.8 m 1.0 m 1.2 m 1.4 m

Error: 1.50 mm 1.10 mm 0.09 mm 0.08 mm

Position Angle = 45◦

Distance: 0.8 m 1.0 m 1.2 m 1.4 m

Error: 0.09 mm 0.06 mm 0.06 mm 0.04 mm

Position Angle = 60◦

Distance: 0.8 m 1.0 m 1.2 m 1.4 m

Error: 3.00 mm 0.07 mm 0.06 mm 0.05 mm

4. Conclusions

In this work, we presented a framework for synthetically generating multicamera
interference in depth maps that mirrors the behavior of real multicamera interference that
is observed using a ToF sensor. This work introduced a framework and probabilistic model
that can predict the locations and probabilities of zero-value pixels that are present when
multicamera interference is present based on the physical locations of ToF sensors with
respect to each other. This work also introduced a process for synthetically generating both
direct multicamera interference and indirect multicamera interference.

Our results show that direct multicamera interference increases when the position
angle between the primary ToF sensor and the interfering secondary ToF sensor approaches
180◦ (i.e., the ToF sensors are directly facing each other), and when the distance between
the ToF sensors decreases. Conversely, direct multicamera interference decreases when
the position angle between the primary ToF sensor and the interfering secondary ToF
sensor approaches 90◦ (i.e., the ToF sensors are perpendicular with each other), and when
the distance between the ToF sensors increases. For indirect multicamera interference,
multicamera interference increases when the position angle between the primary ToF
sensor and the interfering secondary ToF sensor approaches 0◦ (i.e., the ToF sensors are
parallel with each other), and when the distance between the interfering secondary ToF
sensor and a target surface decreases. Indirect multicamera interference decreases when the
position angle between the primary ToF sensor and the interfering secondary ToF sensor
approaches 90◦ and when the distance between the interfering secondary ToF sensor and a
target surface increases.

The work can also be extended to include interference from multiple ToF sensors and
from non-planar reflectors. Future works can use our framework and model as the basis for
developing techniques and algorithms for mitigating the effects of multicamera interference
in depth maps that are observed using a ToF sensor. Future works may also consider ways
to predict sigmoid parameters to be used in other geometrical configurations.
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