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Abstract: To improve the management of multispectral sensor systems on small reconnaissance
drones, this paper proposes an approach to predict the performance of a sensor band with respect to
its ability to expose camouflaged targets under a given environmental context. As a reference for
sensor performance, a new metric is introduced that quantifies the visibility of camouflaged targets
in a particular sensor band: the Target Visibility Index (TVI). For the sensor performance prediction,
several machine learning models are trained to learn the relationship between the TVI for a specific
sensor band and an environmental context state extracted from the visual band by multiple image
descriptors. Using a predicted measure of performance, the sensor bands are ranked according to
their significance. For the training and evaluation of the performance prediction approach, a dataset
featuring 853 multispectral captures and numerous camouflaged targets in different environments
was created and has been made publicly available for download. The results show that the proposed
approach can successfully determine the most informative sensor bands in most cases. Therefore, this
performance prediction approach has great potential to improve camouflage detection performance
in real-world reconnaissance scenarios by increasing the utility of each sensor band and reducing the
associated workload of complex multispectral sensor systems.

Keywords: multispectral; infrared; camouflage detection; target visibility; sensor performance; sensor
management; performance modelling

1. Introduction

Multispectral sensor systems have become quite popular for various remote sensing
applications, ranging from precision agriculture [1–3], land cover classification [4,5], de-
tection of weeds [6], and plant disease monitoring [7–9] to shoreline extraction [10], water
body detection [11], bathymetry [12], and disaster evaluation [13]. Their relatively low
cost, size, weight, and power consumption make them suitable for use even on small
reconnaissance drones, where the rich spectral information they provide can be utilized
to detect camouflaged targets [14]. However, compared to the visual or thermal infrared
sensors commonly used in reconnaissance scenarios, multispectral sensors provide a much
larger number of bands, including derivatives such as vegetation indices (e.g., NDVI and
NDRE). This additional information introduces a substantially heavier workload that must
be managed by a sensor operator and possibly by any subsequent computer-aided pro-
cessing system. For this reason, the Institute of Flight Systems at the University of the
Bundeswehr, Munich, Germany is actively researching the use of multispectral sensor
systems on small tactical drones in military reconnaissance scenarios.

Because each material has unique spectral characteristics, sensor bands that expose
camouflaged targets in one environment, such as grassland, may not expose camouflaged
targets in another environment, such as gravel. Knowing when to utilize which sensor
band under given environmental conditions is usually based on experience and empirical
experimentation. The large number of possible bands provided by multispectral sensor
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systems makes the selection of the most useful sensor bands an even more complex task,
especially in time-critical military reconnaissance scenarios. Therefore, this work presents
an approach to address this issue by predicting the performance of a sensor band with
respect to its ability to expose camouflaged targets. More specifically, each sensor band
is linked to a performance model that predicts its performance by assessing the current
environmental situation. Having a measure of performance for each sensor band of a
multispectral sensor system at flight time, the sensor bands can be ranked from those
providing the most performance to those providing the least performance. Moreover, the
sensor bands can be reduced to the most meaningful ones, leaving the sensor operator or
any subsequent processing instance with a mere subset of all sensor bands. This subset
is processed more quickly and is more likely to contain the information needed to detect
camouflaged targets.

In order to quantify the performance of a sensor band, this work introduces the Target
Visibility Index (TVI). The TVI is a metric that provides a measure of the extent to which a
given sensor band exposes a camouflaged target. Using the TVI as a reference for sensor
performance, machine learning models can be trained to learn the relationship between
the current environmental situation and the corresponding performance of a given sensor
band. After training, these machine learning models can be employed as performance
models for the sensor bands of a multispectral sensor system, where they dynamically
assess the environmental situation and predict the performance of their associated sensor
band. Here, the environmental situation is represented in an abstract way by a so-called
context state. The context state is a feature vector extracted by multiple feature descriptors
from a preselected sensor band of the multispectral sensor system. In conclusion, the
performance models technically learn the relationship between the context state and the
TVI of their associated sensor band.

For the training of the performance models and the evaluation of their predictions,
a custom dataset featuring 853 multispectral captures containing several different cam-
ouflaged targets in various environments at different seasons was compiled. To support
reproducibility and enable further research, the dataset has been made publicly available
for download (see the Data Availability Statement at the end of this manuscript).

In summary, this work makes the following scientific contributions:

• Proposition and evaluation of a method for predicting sensor performance with respect
to the exposure of camouflaged targets.

• Introduction of a metric for measuring sensor performance with respect to the exposure
of camouflaged targets.

• Provision of an extensive multispectral dataset containing multiple camouflaged
targets: the eXtended Multispectral Dataset for Camouflage Detection (MUDCAD-X).

1.1. Related Work

Although research related to sensor performance modeling and prediction is scarce,
there have been a number of recently conducted relevant studies. In [15], sensor perfor-
mance models were used to map selected environmental states to the detection performance
of object detection algorithms for flight trajectory optimization using an optimal control
approach. Incorporating these sensor performance models into the optimization procedure
allowed the computation of flight trajectories that maximized the detection performance of
the object detection algorithms. In [16], object detection models were used to support the
sensor scheduling algorithm by predicting the probability of successful object detections
given the current environmental and UAV conditions for UAV-based multi-object tracking
applications with limited sensor capabilities, leading to significantly improved object obser-
vation times. In other research, the most suitable detection algorithm has been dynamically
selected aboard a sensor-equipped UAV under given environmental conditions through
modelling and predicting the performance of several object detection algorithms using
Bayesian Networks [17] or artificial neural networks and fuzzy inference [18]. Both of
these approaches were able to substantially increase overall object detection performance.
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However, the prediction of sensor performance with respect to the exposure of camouflaged
targets has not yet been explored, motivating the work presented in this manuscript.

The measurement of visibility or exposure of targets in a dynamic environment is
a highly active field of research, especially in the automotive area, where traffic lights
and signs have to be designed in such way that they cannot be overlooked by any road
user. Visibility metrics based on luminance measurements and psychological behavior,
such as the target visibility level [19] and the relative visual performance [20], have been
proposed and evaluated in various scenarios [21–24]. The determination of visibility
in terms of the distance at which objects can be identified from visual [25,26] and near-
infrared [25] camera footage has been studied as well. For detecting the most salient
regions and objects in an image according to human perception, a number of approaches
have been introduced [27–29]. These methods generate a saliency map from an input
image, highlighting those regions that the human eye would naturally focus on first.
However, visibility metrics based on human perception in real-world scenes or laboratory
environments are not applicable to the use case considered in this work, nor are visibility
metrics in the form of viewing distances. Furthermore, saliency maps are expensive to
compute and difficult to translate into a single sensor performance score. Therefore, in
this paper we introduce a computationally inexpensive metric based on contrast [30] and
statistical properties that have already been used for other image metrics [31,32].

1.2. Outline

In the following section (Section 2), the dataset, Target Visibility Index, and sensor
performance prediction approach are introduced and explained in detail. The next section
(Section 3) covers the evaluation and comparison of the machine learning models and their
different training procedures with respect to their ability to determine the most informative
bands given the context state. Finally, the results and their significance are discussed in
Section 4, and summarized conclusions are drawn in Section 5.

2. Methods and Materials

This section introduces the dataset used to train and evaluate the proposed sensor
performance prediction method in Section 2.1, the metric for target visibility in Section 2.2,
and the proposed method itself in Section 2.3.

2.1. Dataset

The data used to train and evaluate the proposed sensor performance prediction
approach were collected in two different areas of the test site at the University of the
Bundeswehr, Munich. The areas shown in Figure 1 provided a variety of different envi-
ronments, such as grassland, gravel and graveled soil, various bushes and trees, and both
concrete and asphalt roads. This diversity constitutes an excellent foundation for a rich and
comprehensive dataset. For the camouflaged targets, thirteen different objects were placed
in visually similar environments in each of these areas: a piece of artificial turf, an artificial
hedge, a green tarp, a green 2D camouflage net, a green 3D camouflage net, a gray tarp, an
anthracite fleece, a gray 3D camouflage net, a yellow 3D camouflage net, and four persons,
two wearing green uniforms and two wearing yellow uniforms. All targets are listed in
Table 1 along with the corresponding target group indicating the type of environment in
which the target was placed (i.e., green targets in green environments). In addition, the
table shows the percentage distribution of the targets and target groups. As can be seen, the
green targets dominate the data, making up almost two thirds, while the gray and yellow
targets occupy about one and two ninths, respectively. This is due to the greater number of
green targets compared to the number of yellow and gray targets as well as to the nature
of the captured areas, which are dominated by green environments. Figure 2 shows the
artificial hedge, the green 2D camouflage net, the gray 3D camouflage net, the green 3D
camouflage net, the yellow 3D camouflage net, and the artificial turf in their corresponding
environments from the ground perspective. Note that 3D camouflage nets have a more
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irregularly structured surface than 2D camouflage nets, which are mostly flat and similar
to a tarp.

(a) (b)
Figure 1. The two areas of the test site at the University of the Bundeswehr Munich (in May) where
the camouflaged targets were placed: (a) area A; (b) area B.

(a) (b) (c)

(d) (e) (f)
Figure 2. Multiple different camouflaged targets of the dataset from the ground perspective; all
targets were placed in environments where they easily integrate: (a) artificial hedge, (b) green 2D
camouflage net, (c) gray 3D camouflage net, (d) green 3D camouflage net, (e) yellow 3D camouflage
net, (f) artificial turf.

For acquisition of the multispectral data, the camouflaged targets were placed in one
of the areas and captured from the nadir perspective by an unmanned aerial vehicle (UAV).
The UAV was equipped with a multispectral sensor system providing the bands described
in Table 2. After each capture flight, the objects were placed in a different environment of the
same area and captured again, resulting in seven different locations for each target in both
areas (the battery life of the UAV limited the number of capture flights per area to seven).
When the first area had been captured seven times, the same process was repeated for the
second area. The entire capture process was conducted on three different days in three
different seasons: spring in May, summer in August, and autumn in November. This was
done to provide variety in the data in order to make the results as meaningful as possible.
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Consequently, all camouflaged targets were captured in fourteen different environments
(seven locations in two areas) in three different seasons, with only a few exceptions:

• The yellow 3D camouflage net was not used in area A in summer or autumn, as the
environment was all green and no appropriate spot could be found for it.

• Only four capture flights over area B were conducted in summer, as the UAV broke
during the experiments and could not be repaired in time.

• The yellow 3D camouflage net was left in the same place on all four summer cap-
ture flights in area B, as it had been overlooked when the camouflaged targets
were rearranged.

Table 1. All thirteen camouflaged targets and their corresponding target group captured in the
dataset. The percentages show the proportion of each target or target group among the annotations
in the dataset.

Camouflaged Target Group

artificial turf 9.3%

green 65.8%

artificial hedge 9.4%
green tarp 9.2%

green 2D camouflage net 9.9%
green 3D camouflage net 9.6%

2 persons in green uniforms 18.4%

gray tarp 3.1%
gray 11.4%anthracite fleece 2.2%

gray 3D camouflage net 6.2%

yellow 3D camouflage net 5.9% yellow 22.8%
2 persons in yellow uniforms 16.9%

Table 2. The bands and their associated properties provided by each capture of the dataset.

Band Center Wavelength Bandwidth

visual (VIS) - -
blue 475 nm 32 nm

green 560 nm 27 nm
red 668 nm 14 nm

edge-infrared (EIR) 717 nm 12 nm
near-infrared (NIR) 842 nm 57 nm

long-wave infrared (LWIR) 10.5 µm 6 µm

The final dataset, called eXtended Multispectral Dataset for Camouflage Detection
(MUDCAD-X), was not derived directly from the acquired data, instead being derived from
orthophotos generated separately for each sensor band. Two of these orthophotos, com-
puted from the visual band images, have already been shown in Figure 1. The orthophotos
were generated with a ground sample distance (GSD) of 10 cm

px using the command line
toolkit Open Drone Map [33]. Using a sliding window with a resolution of 512 by 512 pix-
els, the captures of the final dataset were cropped from the orthophotos to ensure that
each capture contained at least a single camouflaged target. In addition, the individual
sensor bands of each capture were pixel-aligned using Enhanced Correlation Coefficient
Maximization [34] provided by the computer vision library OpenCV [35]. Figure 3 shows a
sample capture of the dataset with all bands from VIS to LWIR (Figure 3a–g) and multiple
different camouflaged targets in the scene that are identified by the ground truth mask in
Figure 3h. In total, the final dataset contained 853 annotated and pixel aligned multispectral
captures, each with a resolution of 512 by 512 pixels, a GSD of 10 cm

px , and containing at least
a single camouflaged target. The ground truth masks were created using the Computer
Vision Annotation Tool v2.3.0 [36].
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(a) VIS (b) blue (c) green (d) red

(e) EIR (f) NIR (g) LWIR (h) label
Figure 3. Sample capture of the dataset, with bands from VIS (a) to LWIR (g) and a ground truth
mask (h) identifying all captured camouflaged targets. Note that each camouflaged target is denoted
in a different color, making for five different targets in the scene.

2.2. Measuring Sensor Performance

In order to train a machine learning model to predict the extent to which camouflaged
targets are exposed in a given sensor band, a metric describing that extent is first required.
Because the prediction is made for the entire sensor band as a single unit, this metric must
consider the entire sensor band. For this purpose, in this paper we introduce the Target
Visibility Index (TVI), provided in Equation (1), where µT is the mean over all pixel values
belonging to the camouflaged target, µB is the mean over all pixel values belonging to the
background, σT is the standard deviation of all pixel values belonging to the camouflaged
target, and σB is the standard deviation of all pixel values belonging to the background. The
mean and standard deviation are computationally efficient and commonly used statistical
properties in well-established image metrics for a wide range of problems [31,32]. As such,
they were employed for the TVI.

TVI = (µT − µB)
2(1− 2σT)

2(1− 2σB)
2 (1)

In general, the TVI is based on the idea that an ideal sensor band exposes a camou-
flaged target as much as possible, which is illustrated in Figure 4. The visual image in
Figure 4a shows a scene containing a single camouflaged target, the green 3D camouflage
net. According to the TVI, the corresponding ideal sensor band for that exact same scene
is depicted in Figure 4b. All pixel values belonging to the camouflaged target differ as
much as possible from all pixel values belonging to the background, resulting in the highest
possible value of the TVI (1.0). The first factor of the TVI ((µT − µB)

2) serves as an approxi-
mate measure of fulfillment of that property. It is zero when the difference between the
camouflaged target pixel values and the background pixel values is zero and one when the
difference between the camouflaged target pixel values and the background pixel values is
maximal. Thus, it can be interpreted as a measure of contrast [30] between the target and
the background. However, the difference between the mean values does not sufficiently
describe the extent to which the target is exposed, as can be seen in Figure 4c,d. In both
bands, the respective means over all pixel values belonging to the camouflaged target are
identical, as are the respective means over all pixel values belonging to the background.
Consequently, the first factor of the TVI ((µT − µB)

2) yields the same result (0.04) in both
cases. However, the difference in means in Figure 4d results from two different distributions
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of two pixel values, while in Figure 4c it results from a difference of two constant pixel
values. Considering the exemplary case that the difference of mean values is already at its
maximum, a band such as that in Figure 4c would most likely be preferable over the one in
Figure 4d in an actual reconnaissance scenario. Therefore, the metric must take into account
the distribution of the pixel values belonging to the background and the distribution of
the pixel values belonging to the camouflaged target. To ensure that small spreads in the
pixel value distributions are preferable over large spreads, the TVI implements the second
((1− 2σT)

2) and third ((1− 2σB)
2) factors, which penalize large spreads of pixel values and

favor small spreads. In essence, the greater the TVI, the closer the camouflaged target pixel
values and the background pixel values are to each other, respectively. Each factor equals
zero if the spread of the respective pixel values is maximal and one if there is no spread
at all. Because there is no spread in both distributions in Figure 4c, both factors are one
and the first factor determines the final TVI. In contrast, the spread in both distributions
in Figure 4d is close to the maximum, resulting in a TVI close to zero. However, there
are limits, as shown in Figure 4e. Although the standard deviations for the target and
background pixels are zero, their means are equal. As a result, the first factor of the TVI
equals zero, leading to a TVI of zero as well. Eventually, the TVI can only be maximal when
there is minimal spread in both camouflaged target pixel values and background pixel
values, and when the difference between their mean values is maximal.

(a) VIS (b) ideal (1.0) (c) good (0.04) (d) bad (≈0.0) (e) bad (0.0)
Figure 4. Demonstration of camouflaged target visibility, where (b) corresponds to an ideal band for
the scene depicted in (a). Likewise, (c) corresponds to a band with good visibility of the target, while
(d,e) correspond to a band with poor or no visibility of the target. The associated TVIs are shown
in parentheses.

The TVI is designed for single-channel images and a range of values from zero to
one. Other ranges must be normalized, or the TVI will produce inconclusive results. Each
individual factor of the TVI ranges between zero and one. If one of the means is zero
and the other is one, then the first factor of the TVI is one. If the means are equal, then
the first factor is zero regardless of their actual values. Because the theoretical maximum
of the standard deviation is 0.5 for a range of values from zero to one [37], the second
and third factors of the TVI are zero for the maximum standard deviation and one for
zero standard deviation. With all factors ranging between one and zero, the TVI range
is between zero and one. The factors are multiplicatively combined to prevent a strong
individual factor from outweighing a weak individual factor, which would be possible
in an additive combination, for instance. Additionally, each factor is squared to avoid
negative values and retain the differentiability of the TVI, which might be useful if the TVI
is used for numerical optimization problems.

Figure 5 shows real-world examples of the TVI. As can be observed, the TVI is very
low for the blue band (Figure 5a) and relatively high for the EIR band (Figure 5b) and NIR
band (Figure 5c). This is consistent with the expected behavior of the metric, as the target
appears to be much more exposed in the EIR and NIR bands than in the blue band. It can
be seen that the TVI generally produces relatively low values for real-world images, even
when the camouflaged target is easily distinguishable from its surroundings. At this point,
it is important to note that the design of the TVI is based on those edge cases where it is
equal to either one, as shown in Figure 4b, or zero, as shown in Figure 4d,e. The closer
the sensor band is to one of these edge cases, the closer the TVI is to zero or one, where
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closer is mathematically defined by the factors provided in Equation (1). For any TVI value
in between these edge cases, its true meaning in terms of target visibility is difficult to
determine and does not necessarily correspond to human perception. For example, if the
target in Figure 5c were placed in the shadows of the tree line immediately next to it, it
would be much less visible to the human eye; however, in terms of the TVI, the visibility of
the target would be roughly the same in both cases, as the change in the mean and standard
deviation of the background pixels would be negligible. Notably, actual human perception
of visibility is currently the subject of active research, which is beyond the scope of this
work except for those trivial edge cases in which the TVI generates predefined values of
zero and one. The TVI quantifies target visibility as a single value in a computationally
efficient and comparable way, which naturally involves approximation; ultimately, this
is necessary in order to measure and compare the extent to which a target is exposed in
different sensor bands.

(a) blue (≈0.0) (b) EIR (0.013) (c) NIR (0.025) (d) ideal (1.0)
Figure 5. Demonstration of the Target Visibility Index (TVI), producing relatively low values for bad
visibility of the target in (a) and relatively high values for good target visibility in (b,c). The ideal
band in (d) results in a TVI of 1.

2.3. Predicting Sensor Performance

To predict sensor performance, in this paper we introduce the concept illustrated
in Figure 6. Considering a multispectral sensor system with multiple different bands, a
preselected context band is used to extract a context state that provides abstract information
about the current environment and scenery. From the context state, the individual perfor-
mance models predict the performance of their associated sensor bands. In the illustrated
example, the predicted performance is high for band D, medium for bands A and C, and
low for band B. Finally, the sensor bands are ranked by their performance predictions
in order to obtain the subset of sensor bands that is most likely to provide the highest
visibility of camouflaged targets. This greatly reduces the amount of information that must
be processed in any subsequent evaluation instance.

In this work, the context state is extracted from the gray-level converted visual band
using 16 bit rotation-invariant uniform local binary patterns (LBPriu2

16 operator) [38] and
the fourteen Haralick features [39]. Both are computationally inexpensive and common
choices for feature extractors in image classification problems [40–42], where an abstract
representation of the scene to be classified is required as well. Table 3 shows the final
composition of the context state. The LBPs were extracted with a radius of 2 px and a
resolution of 16 using the implementation of the ImageFeatures.jl package of the Julia
Programming Language [43]. To obtain the first eighteen values of the context state, the
histogram over the extracted rotation-invariant uniform patterns was computed. Each
value of the histogram represents the number of occurrences of each individual pattern.
Because there are exactly seventeen rotation-invariant uniform patterns for a bit size of
16, the resulting histogram holds eighteen values, where the last one accounts for the
occurrences of all non-uniform patterns. In the last step, the histogram is normalized to
ensure that the values of the histogram sum to one. The remaining Haralick features of the
context state were computed using the Python package Mahotas [44]. Each value of the
first fourteen Haralick features is an average of four individual features values produced
by four different gray-level co-occurrence matrices, each generated for a radius of 1 px and
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the directions left, right, up, and down. The second fourteen Haralick features contain
the differences between the maximum and minimum values generated by each of the
four individual gray-level co-occurrence matrices. In total, the context state consists of
46 features that abstractly describe the environmental situation based on the preselected
context band.

Performance
Model

Performance
Model

Performance
Model

Performance
Model

Predict Performance (Target Visibility)

Band C Band DBand BBand A D-A-C-B

Feature Extraction

Context Band

Context State

Most Informative Band Order

Figure 6. Conceptual basis of sensor performance prediction (target visibility). First, the context state
is extracted by image descriptors from a preselected context band. Based on the context state, each
performance model then predicts the target visibility for its associated band. The bands can be sorted
after the predictions are made, allowing them to be ordered from the most informative to the least
informative band. The green, yellow, and red prediction arrows indicate good, medium, and bad
performance, respectively.

Table 3. The structure of the context state extracted from the context band (VIS) using local binary
patterns and Haralick features. The numbers correspond to the feature value positions of the
context state.

LBP Haralick

uniform non-uniform mean min-max
1–17 18 19–32 33–46

For the performance models that predict the sensor band performance from the context
state, three machine learning methods for regression tasks were applied: ε-Support Vector
Regression (ε-SVR), Random Forests (RFs), and Gradient Boosted Trees (GBTs). All are
based on different concepts, have been thoroughly studied, and are commonly used for
complex regression tasks. In addition, their training is efficient and a robust implementation
is usually available for the most popular programming languages. Therefore, they were
chosen for the regression task in this work. The ε-SVR, RFs, and GBTs were trained and
evaluated using the common interface of the Machine Learning Framework for Julia [45],
where the models relied on the LIBSVM [46], DecisionTree.jl [47], and XGBoost [48] back-
ends, respectively. The parameter selections used to train the models are introduced in
Section 3.1.

3. Experiments and Results

This section first introduces the parameters and data used to train the machine learn-
ing models (i.e., performance models) in Section 3.1. Afterwards, the evaluation of the
prediction performances of all models is presented in Section 3.2.

3.1. Training

In order to divide the dataset introduced in Section 2.1 into training and test data,
80% of the captures were randomly selected as training data and the remaining 20% were
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used to evaluate the models. In each capture, for each band except VIS the context state
was extracted from the gray-level converted visual band as described in Section 2.3 and
mapped to a single TVI. Because there are six bands (blue, green, red, EIR, NIR and
LWIR), each context state maps to six different TVIs per capture. In the case of multiple
camouflaged targets in the capture, the resulting TVIs had to be reduced to a single value.
This was achieved by averaging all of the individual TVIs calculated separately for each
camouflaged target. Thus, a camouflaged target belongs to the background of every other
camouflaged target in the scene. Although averaging could dilute the mappings from the
context state to the TVI, it is able to consider all targets in the scene equally for the single
sensor performance value. The context states were additionally z-normalized, leading to a
mean value of zero and a standard deviation of one for each feature value over all context
states. The means and standard deviations required for the normalization were calculated
for the training data only, then applied to both the training and test data.

Considering a reconnaissance scenario in which a priori knowledge on the camou-
flaged targets is available, it could be beneficial to employ performance models that are
able to account for this additional knowledge. For example, if the camouflaged targets
are known to be located in green environments such as woods, bushes, and grass, a
performance model trained only on targets commonly used in these environments may
outperform a model trained on additional kinds of targets. Therefore, the models were
additionally trained on data for which the resulting TVI for each sensor band was not
calculated over all camouflaged targets in the scene, only over those belonging to specific
target group, as has been already introduced above in Table 1. This reduces the potential
dilution caused by averaging over the TVIs of targets in different target groups. Because
not every capture in the dataset contains a camouflaged target of each target group,
the training and testing splits and feature normalization for the specialized models
were performed only on the number of captures that actually contained a target of the
respective target group. With three different target groups, the models were trained on
a total of four different data variations: one for each of the target groups, and one in
which the target groups were ignored. With six bands for each capture, three different
machine learning models, and four different data variations, a total of 72 models were
trained. After training, the models use a normalized feature vector extracted from a
gray-level converted visual band to predict the TVI for their associated sensor band.
For the models trained on data where the TVI was calculated only for a specific target
group, their predictions consider only the targets belonging to that specific target group.
In contrast, the predictions of the models trained on data containing all camouflaged
targets consider all target groups.

The optimal parameters for each model were searched by a simple grid scan based on
cross-validation over the training data with five folds and utilizing the root mean square
error (RSME). The four-part Table 4 shows the final training parameter configurations for
the models considering all target groups, only targets belonging to the green target group,
only targets belonging to the gray target group, and only targets belonging to the yellow
target group, respectively. Note that the predictions of the individual models were not
evaluated further; instead, the evaluation of the models is based on comparisons of the
predicted most informative band orders with the actual most informative band orders,
which is explained in detail in Section 3.2.
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Table 4. The final training parameter configurations for each machine learning model (i.e., perfor-
mance model), including the models that considered targets of any target group and the models that
considering only targets belonging to one of the green, gray, or yellow target group. Unmentioned
parameters were retained at the default values provided by their respective implementations. The
trees, leaves, split, features, and fraction parameters of the Random Forest model specify the number
of trees, minimum number of samples belonging to a single leaf node, minimum number of samples
required for further splitting, number of random subfeatures for each tree, and fraction of random
training samples for each tree, respectively. The rounds and depth parameters of the XGBoost model
represent the maximum depth of each tree and the number of boosting rounds, respectively.

ε-SVR Random Forest XGBoost

ε C Trees Leaves Split Features Fraction Rounds η Depth λ

any target models

blue 0.00412 0.044 46 3 15
√

46 1.0 200 0.05 6 2.5
green 0.00162 0.06 46 3 7

√
46 1.0 400 0.025 2 0.001

red 0.0041 0.041 28 2 16
√

46 0.8 450 0.1 2 30
EIR 0.0018 0.022 14 1 8

√
46 0.9 275 0.04 6 0.1

NIR 0.00112 0.026 28 1 4
√

46 1.0 125 0.05 4 0.001
LWIR 0.00747 0.1 23 1 3

√
46 0.8 475 0.1 2 25

green target models

blue 0.00068 0.038 41 3 5
√

46 1.0 125 0.065 4 0.1
green 0.00202 0.038 14 1 5

√
46 0.8 100 0.075 4 0.25

red 0.00163 0.1 28 1 2 46 1.0 150 0.06 4 0.001
EIR 0.00538 0.041 23 2 16

√
46 0.6 75 0.08 2 0.001

NIR 0.00748 0.014 10 13 19 46 0.5 75 0.095 2 0.001
LWIR 0.00835 0.089 10 4 11

√
46 0.8 300 0.1 2 27.5

gray target models

blue 0.01 0.093 32 5 8 46 0.9 200 0.1 2 1.0
green 0.00689 0.03 23 4 6

√
46 1.0 150 0.05 4 0.5

red 0.00996 0.018 19 11 2 46 0.5 100 0.095 2 50
EIR 0.00989 0.086 23 2 2 46 0.6 100 0.06 2 5.0
NIR 0.00985 0.028 19 9 11

√
46 0.9 125 0.045 2 0.5

LWIR 0.00428 0.021 10 14 7 46 0.5 375 0.1 2 27.5

yellow target models

blue 0.00144 0.08 14 5 9
√

46 1.0 100 0.1 6 0.1
green 0.00705 0.081 14 4 14

√
46 0.5 225 0.075 8 0.25

red 0.00847 0.096 41 3 2
√

46 0.8 75 0.095 6 0.1
EIR 0.00299 0.006 10 1 7 46 1.0 125 0.06 4 0.1
NIR 0.00138 0.001 28 2 2

√
46 0.6 125 0.095 2 50

LWIR 0.00668 0.1 37 4 12 46 1.0 200 0.09 12 0.1

3.2. Evaluation

With the models were already trained on 80% randomly selected data, their evaluation
was performed on the remaining 20%. For each capture of the test data, the models had
to predict the TVI for their associated sensor band. Afterwards, the bands were sorted
from the band with the highest TVI prediction to the band with the lowest TVI prediction.
The result of this sorting is called the predicted most informative band order. Because the
targets in the test data were known, the actual TVI for each sensor band could be calculated,
as was done for the training data during the training procedure. From the calculated TVIs
for each sensor band, the bands were then sorted from the band with the highest calculated
TVI to the band with the lowest calculated TVI. The result of this sorting is called the actual
most informative band order. With the actual and predicted most informative band for
each capture in the dataset, the band orders could then be compared for accuracy. For
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example, the Top-1 accuracy is the proportion of captures in the test data where the first
band of the predicted most informative band order is the same as the first band of the
actual most informative band order. The same principle applies to the Top-3 accuracy,
which is the proportion of captures in the test data in which the first band of the predicted
most informative band order is one of the first three bands of the actual most informative
band order.

Tp compare the predicted most informative band orders generated by the perfor-
mance models using a static approach, a static baseline was introduced. The static baseline
provides only the single most informative band order over all captures (the static most in-
formative band order). It is motivated by the idea that it is not worth utilizing performance
models if a simple static most informative band order already performs better than the
predicted most informative band orders over all captures in the test data. The static most
informative band order was obtained by penalizing each band using its position in the
actual most informative band order over all captures in the training data. For example, as
there are six bands, the most informative band is penalized by one and the least informative
band is penalized by six. By accumulating the penalties of each band over all captures, the
bands can be sorted from the band with the lowest accumulated penalty to the band with
the highest accumulated penalty. This sorting results in the static most informative band
order. Because the models were trained on four different sets of training data (one with all
target groups, one with only green targets, one with only gray targets, and one with only
yellow targets), there are four separate static most informative band orders:

• LWIR, NIR, EIR, red, blue, and green for any camouflaged target.
• NIR, LWIR, EIR, green, blue, and red for green camouflaged targets.
• NIR, blue, EIR, red, green, and LWIR for gray camouflaged targets.
• Red, blue, LWIR, green, EIR, and NIR for yellow camouflaged targets.

Table 5 shows the prediction accuracies of each model as a percentage. The individual
quarters of the table contain the results of the general models trained on any camouflaged
target and the specialized models trained only on green, gray, and yellow camouflaged
targets, respectively. Each individual quarter provides four tables showing the prediction
accuracies of the different machine learning models along with the prediction accuracies of
the static baselines. Here, each cell contains the proportion of captures in the test data where
the <row number> predicted most informative bands were among the <column number>
actual most informative bands. For example, the value of the second column in the first
row is the proportion of captures in which the first band of the predicted most informative
band order was among the first two bands of the actual most informative band order
(Top-2 accuracy). Likewise, the value of the third column and the second row represents
the proportion of captures in which the first two bands of the predicted most informative
band order were among the first three bands of the actual most informative band order.
Therefore, the value of the first column and first row stands for the proportion in which the
predicted most informative band was the actual most informative band (Top-1 accuracy).
Although there are six different bands, the individual tables consist of only five columns
and rows. This is for better clarity, as the last column would contain ones for each model
and for the baseline. In all of the results for the different training procedures, the best
predictions for each accuracy category are shown in bold.

As can be seen for the general models, the ε-SVR and Random Forest models are
superior to the XGBoost models in terms of prediction accuracy. The ε-SVR models provide
slightly higher prediction accuracy than the Random Forest models, with eight top results
compared to six top results. While the XGBoost model achieves only two top results, the
static baseline is inferior to all machine learning models, without a single top result. In
addition, all models reach over 50% Top-1 accuracy and over 80% Top-3 accuracy. This
means that the predicted most informative band is the actual most informative band more
than half of the time, while most of the time the predicted most informative band is at
least one of the three actual most informative bands. Similar results are shown by the
models specializing in targets belonging to the green target group. However, the ε-SVR
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model significantly outperforms all other models, achieving ten of the top fifteen results.
In addition, the prediction accuracies are generally slightly higher than for the general
case. The same applies to the results of the specialized gray target models, where only the
number of top results is evenly split between the ε-SVR and the Random Forest models.
In contrast, the specialized yellow target models are inferior to the static baseline in terms
of the number of best results. Nonetheless, the first row, which represents the prediction
accuracy of the single most informative band, is dominated by the top results of the ε-SVR
model. Overall, the ε-SVR models perform the best, with the Random Forest and XGBoost
models performing only slightly worse.

Table 5. The prediction accuracies of all models (in percentages). The upper left quarter contains the
results of the general models, while the others contain the results of the specialized models. Each
individual table shows the prediction accuracy of the respective model, where first row of the table
corresponds to the Top-1 accuracy in the first column and the Top-5 accuracy in last column. In
the second row, the value in the second column represents the accuracy of predicting the two most
informative bands, regardless of their order. Similarly, the third column represents the accuracy of
predicting two bands out of the three actual most informative bands. The same pattern applies to all
other cells as well. The best results within each target group are shown in bold.

Any Target Models Green Target Models

ε-SVR Random Forest ε-SVR Random Forest

56.1 71.9 83.6 88.9 95.3 51.5 67.8 84.2 88.3 97.1 57.3 74.5 86.0 93.0 98.7 58.0 72.6 84.7 91.7 97.5
35.7 59.1 71.3 88.9 33.3 59.6 70.8 87.7 42.7 73.2 84.7 93.0 36.9 67.5 79.6 91.1

37.4 53.8 72.5 35.7 53.2 75.4 47.8 68.2 86.0 49.7 69.4 84.7
23.4 55.0 22.2 59.6 47.1 71.3 38.9 68.8

34.5 35.7 38.9 42.0

XGBoost Baseline XGBoost Baseline

50.9 68.4 83.6 92.4 97.7 47.4 56.1 69.6 75.4 82.5 58.6 70.1 86.6 91.7 96.8 31.2 68.2 81.5 89.2 96.8
29.8 57.9 70.8 87.1 24.6 48.0 57.9 71.9 35.7 68.8 82.8 90.4 28.7 60.5 73.2 83.4

31.0 46.8 68.4 33.9 46.2 60.2 51.0 68.8 83.4 47.8 65.0 80.3
18.1 53.8 19.9 48.5 44.6 65.6 35.0 54.1

34.5 28.7 39.5 25.5

Gray Target Models Yellow Target Models

ε-SVR Random Forest ε-SVR Random Forest

57.4 77.0 86.9 93.4 98.4 59.0 77.0 86.9 91.8 98.4 49.5 75.7 91.3 95.1 99.0 47.6 74.8 85.4 94.2 100.0
34.4 59.0 82.0 93.4 44.3 72.1 77.0 90.2 35.9 66.0 82.5 93.2 37.9 66.0 83.5 93.2

24.6 57.4 72.1 29.5 52.5 78.7 39.8 74.8 90.3 34.0 72.8 90.3
34.4 62.3 24.6 63.9 51.5 84.5 54.4 80.6

29.5 34.4 74.8 72.8

XGBoost Baseline XGBoost Baseline

50.8 77.0 85.2 88.5 96.7 24.6 63.9 83.6 91.8 98.4 43.7 69.9 83.5 91.3 99.0 31.1 71.8 92.2 94.2 96.1
36.1 65.6 77.0 88.5 24.6 44.3 70.5 88.5 36.9 69.9 84.5 96.1 31.1 75.7 89.3 95.1

34.4 60.7 82.0 18.0 41.0 59.0 45.6 71.8 90.3 38.8 65.0 92.2
26.2 62.3 24.6 47.5 57.3 84.5 53.4 84.5

39.3 34.4 74.8 75.7

To highlight the effectiveness of the performance models, Table 6 shows the relative
accuracy improvements of each model compared to the static baseline, for which the
prediction results are shown in the lower right of each quarter in Table 5. Apart from
this, Table 6 has the same structure as Table 5. As can be seen, the general models achieve
significant improvements over the static baseline, peaking at 45.2%, 35.7%, and 22.5% for
the ε-SVR, Random Forest, and XGBoost models, respectively. Although the XGBoost
model is slightly worse in one of the accuracy categories, it generally achieves much higher
accuracy than the static baseline. Nonetheless, its improvements are not as great as those of
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the ε-SVR and Random Forest models. The green target models achieve similar, though
slightly lower overall improvements over the static baseline, with a notable very high
increase in Top-1 accuracy. Likewise, the gray target models significantly outperform the
static baseline, especially in Top-1 accuracy, where the prediction accuracy is more than
doubled with improvements of up to 140%. Despite strong improvements in Top-1 accuracy,
the yellow target models fail to improve in many of the accuracy categories. However, as
noted above, the single most informative band is predicted the best by the ε-SVR model.
In general, when considering both general and specialized models, all of the models are
superior to the static baseline.

Table 7 shows the benefits of the performance models trained only on camouflaged
targets belonging to a specific target group. Again, the structure of the table is the same
as Table 5. The cells show the relative improvements in each accuracy category of the
specialized models compared to the general models for only that target group on which
the models were specialized. For example, the improvement of the green target models
was obtained by comparing their prediction accuracy with that of the general models,
while, the prediction accuracy of the general models was obtained by considering only
green targets rather than of all targets. The same approach was applied to obtain the
improvements of the gray and yellow target models. In this way, the benefits of the
specialized models were quantified in an objective manner. As can be seen for the green
target models, specialization leads to an overall improvement in prediction accuracy. The
ε-SVR model achieves the most significant improvements, peaking at nearly three times
the accuracy, a 191.9% improvement. The improvements are even greater for the gray
target models, with the Random Forest model achieving nine top improvements and a
270% increase in Top-1 accuracy. Similar improvements can be observed for the yellow
target models, with the XGBoost model showing the greatest improvements (a maximum
increase in accuracy of 767.4%). Overall, the specialized models clearly outperform the
general models within their respective target groups.

Table 6. The relative prediction accuracy improvements in each category of all models compared to
their respective statically computed baselines (in percentages). The best results are shown in bold,
even if all models predicted worse than the static baseline. This table follows the same structure as
Table 5.

Any Target Models Green Target Models

ε-SVR Random Forest ε-SVR Random Forest

18.5 28.1 20.2 17.8 15.6 8.6 20.8 21.0 17.1 17.7 83.7 9.3 5.5 4.3 2.0 85.7 6.5 3.9 2.9 0.7
45.2 23.2 23.2 23.6 35.7 24.4 22.2 22.0 48.9 21.1 15.7 11.5 28.9 11.6 8.7 9.2

10.3 16.5 20.4 5.2 15.2 25.2 0.0 4.9 7.1 4.0 6.9 5.6
17.6 13.3 11.8 22.9 34.5 31.8 10.9 27.1

20.4 24.5 52.5 65.0

XGBoost XGBoost

7.4 21.9 20.2 22.5 18.4 87.8 2.8 6.3 2.9 0.0
21.4 20.7 22.2 21.1 24.4 13.7 13.0 8.4

−8.6 1.3 13.6 6.7 5.9 4.0
−8.8 10.8 27.3 21.2

20.4 55.0
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Table 6. Cont.

Gray Target Models Yellow Target Models

ε-SVR Random Forest ε-SVR Random Forest

133.3 20.5 3.9 1.8 0.0 140.0 20.5 3.9 0.0 0.0 59.4 5.4 −1.1 1.0 3.0 53.1 4.1 −7.4 0.0 4.0
40.0 33.3 16.3 5.6 80.0 63.0 9.3 1.9 15.6 −12.8 −7.6 −2.0 21.9 −12.8 −6.5 −2.0

36.4 40.0 22.2 63.6 28.0 33.3 2.5 14.9 −2.1 −12.5 11.9 −2.1
40.0 31.0 0.0 34.5 −3.6 0.0 1.8 −4.6

−14.3 0.0 −1.3 −3.8

XGBoost XGBoost

106.7 20.5 2.0 −3.6 −1.7 40.6 −2.7 −9.5 −3.1 3.0
46.7 48.1 9.3 0.0 18.8 −7.7 −5.4 1.0

90.9 48.0 38.9 17.5 10.4 −2.1
6.7 31.0 7.3 0.0

14.3 −1.3

Table 7. The relative prediction accuracy improvements of the specialized models compared to the
general models. Note that the improvements are based on the prediction accuracy of the general
models that results when considering only those targets considered for the prediction accuracy of
the respective specialized model, and not on the prediction accuracy of the general models shown in
Table 5. This table follows the same structure as Table 5.

Green Target Models

ε-SVR Random Forest

−0.8 1.7 1.8 3.3 3.9 4.9 −0.9 1.0 4.0 2.5
22.7 35.6 20.7 9.3 8.1 23.5 14.5 9.4

47.9 35.5 28.2 50.9 34.7 20.7
191.9 57.3 172.0 38.4

69.1 50.4

XGBoost

7.2 −3.6 2.5 2.5 3.2
4.4 21.7 14.9 7.9

54.8 33.4 16.8
111.1 32.0

44.5

Gray Target Models Yellow Target Models

ε-SVR Random Forest ε-SVR Random Forest

182.8 77.2 53.7 40.2 19.1 270.2 112.7 71.3 54.5 19.1 38.1 63.8 72.7 36.3 19.3 48.3 65.1 48.5 21.7 10.4
13.1 40.4 66.3 21.7 45.4 55.5 47.7 24.4 246.2 133.3 98.8 62.0 301.4 191.6 96.7 47.5

−0.2 80.0 42.2 45.4 72.4 59.7 122.1 147.6 108.1 260.2 175.7 117.5
375.1 79.1 112.1 76.5 319.6 198.4 343.3 205.1

85.1 137.5 366.1 328.8

XGBoost XGBoost

150.5 96.9 59.0 35.7 15.1 25.2 57.7 50.0 19.4 16.6
38.3 46.0 51.9 17.5 334.5 208.7 108.2 61.7

58.4 109.3 52.9 706.1 231.1 139.3
158.5 71.9 767.4 258.1

146.8 560.4

4. Discussion

This section first discusses the possible implications of the proposed sensor prediction
approach in Section 4.1, followed by a discussion of its limitations in Section 4.2. Finally,
future research prospects are reviewed in Section 4.3.
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4.1. Implications

Altogether, our results demonstrate the effectiveness of the sensor performance pre-
diction approach presented in this paper, with the ε-SVR models showing the most robust
performance. While not perfect, the performance models were able to learn a meaningful
relationship between the context state and the corresponding TVI, which supports the
utility of the extracted features and the expressiveness of the TVI. In the general case,
when only the three predicted most informative bands were considered, the actual most
informative band was most likely among them (around 84%), while the associated work-
load was reduced by a half compared to processing all six bands. Although a reduction
from six to three sensor bands may seem small in absolute terms, the sensor performance
prediction approach is adaptable to any number of bands. For the sake of simplicity and
clarity, however, our evaluation of the proposed performance prediction approach focuses
on the raw bands of the multispectral sensor system employed in this study. While not
explicitly explored here, the nature of the proposed methodology suggests similar results
for a smaller or larger number of bands. Therefore, the proposed method could significantly
increase the utility of multispectral sensor systems in real-world applications. For exam-
ple, reconnaissance drones could be equipped with much more powerful multispectral
sensor systems, as the increased number of sensor bands would not result in an equally
increased workload. In this case, the sensor performance prediction approach would de-
termine the most informative bands and ignore the least informative bands. The resulting
increased meaningfulness of each sensor band and the additional spectral information due
to the larger number of bands could greatly improve camouflage detection performance in
reconnaissance scenarios.

In addition, our evaluation shows that specializing the performance models for certain
target groups can significantly increase prediction performance. This could potentially
increase reconnaissance performance for scenarios in which camouflaged targets are known
to be present in a specific kind of environment, as the specialized models are able to focus on
the environment associated with their specific target group even when the reconnaissance
area consists of different kinds of environments. In contrast, the general models consider
all relevant environments even when camouflaged targets are known to be present in only
one environment. Thus, the predictions of the specialized models are more closely tailored
to the environment in which the camouflaged targets are located, resulting in greater
camouflage detection performance. Naturally, the specialized models cannot generalize to
environments that are not associated with their specific target group. For this reason, they
can only be of use if this specific kind of prior knowledge is available.

Comparing the performance models to a static baseline further highlights the benefits
of their application. Although the use of static most informative band orders is computa-
tionally less expensive than the use of performance models, the former approach is not
able to achieve the same level of prediction accuracy. Therefore, the comparatively low
computational overhead of the performance models is preferable to the lower performance
of the static baselines. However, it should be noted that the yellow target models did
not significantly outperform their associated static baselines. This could be due to the
relatively small amount of training data, as yellow targets were not as common as green
targets in our dataset. A lack of training data may have prevented the performance models
from sufficiently learning the complex relationship between the context state and the TVI,
resulting in more limited generalization capabilities. On the other hand, even though the
dominance of gray targets in the dataset was even lower than that of yellow targets, the
performance models for gray targets were far superior to the static baseline. This could
be due to the relationship between the context state and the TVI being less complex for
the gray target models than for the yellow target models. Unfortunately, the causes of the
relatively poor performance of the yellow target models could not be further explored in
this study.

Because the idea behind the performance prediction approach is not strictly bound
to the camouflage detection task, it can be generalized and applied to other multispectral
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sensing problems. In the present work, sensor performance corresponds to the TVI; how-
ever, this particular metric could be replaced with any other metric that fits the problem
at hand. For example, such a metric could describe the ability of a sensor band to detect
invasive species. In this case, the performance models simply had to learn the relationship
between the context state and the new metric instead of the TVI. Even the context state is not
specifically tailored to camouflage detection, as it is generated by general image descriptors.
Therefore, it could be of equal utility in other use cases. Considering the positive results we
obtained when applying the proposed concept to multispectral camouflage detection, it
could be equally successful when applied to other tasks.

4.2. Limitations

Although the value of the proposed performance prediction approach has been con-
firmed, it should be noted that all of our results are based on the Target Visibility Index
metric introduced in this paper. As has already been discussed in Section 2.2, the TVI
defines visibility using its mathematical formula, which does not necessarily correspond to
human perception. Therefore, certain targets that may actually have poor visibility to the
human eye can result in a relatively high TVI, and vice versa. This behavior may have led
to predictions of the performance models that were correct with respect to the TVI and in-
correct with respect to the human eye. As a result, the benefits of the proposed performance
prediction approach may be limited in a real-world application involving humans.

Furthermore, because each camouflaged target possesses unique spectral character-
istics, the mappings from the context state to the TVI may have been diluted in the data.
This may have limited the achieved prediction accuracy of the performance models. For
example, while a target in one environment will result in a different TVI than another
target in the same environment, the context state will not have changed in either case, as
the context state is mainly determined by the scenery and not by the targets. This leads
to mappings from one context state being applied to different TVIs for the same sensor
band, which could have confused the training of the performance models. The averaging
of all TVIs in the same capture could have further amplified this potential issue, as already
mentioned in Section 3.1. However, the environment, and consequently the context state,
already provide an indication of the properties of the camouflaged targets, as green targets,
for example, are usually found in green environments. Therefore, the TVI may follow
a certain distribution for a given environment, which could have limited the potential
negative effects on the training of the performance models.

In addition, it is important to note that the performance models were not evaluated for
their ability to generalize to unknown camouflaged targets. Although the data were split
into training and test data, all of the camouflaged targets were part of both datasets. How-
ever, the test data contained captures that were completely unknown to the performance
models, on which they showed high prediction accuracy. This suggests that the proposed
sensor prediction approach has great potential for generalization.

Another limiting factor on the prediction accuracy could have been the meaningfulness
of the context state extracted from the visual band. Because the context state results from
relatively simple feature extractors, the performance models may not have learned every
aspect of the complex relationship between the environmental situation and the TVI.
More sophisticated and computationally expensive feature extraction methods, such as
convolutional neural networks, might have provided even more meaningful context states.
With more information about the environmental situation available in the context state, the
performance models may have achieved even higher prediction accuracy. However, the
computational resources on a small reconnaissance drone in a real-world application are
usually limited. This requires computationally inexpensive methods for both the feature
extraction process and the performance models, which have been successfully implemented
and demonstrated in this paper.
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4.3. Future Research

Our future research will primarily focus on predicting sensor performance for mul-
tispectral sensor systems with an even higher number of bands. In addition, the sensor
performance prediction approach proposed in this paper will be included in a larger frame-
work in which the most informative bands will be incorporated into a computer-aided
camouflage detection system. As noted above, richer features in the context state may
improve the prediction accuracy of the performance models, which will be another subject
of future research.

5. Conclusions

The sensor performance prediction approach presented in this paper has been shown
to be a successful method for obtaining those sensor bands that best expose camouflaged
targets. This increases the meaningfulness of each individual sensor band, allowing for
the use of more powerful multispectral sensor systems. As a result, camouflage detection
performance may be significantly increased in real-world reconnaissance scenarios.

In addition, specialized training of the performance models showed promising im-
provements in prediction accuracy. This may further increase camouflage detection perfor-
mance in real-world reconnaissance scenarios, provided that the necessary prior knowledge
of the camouflaged targets to be exposed is available.

Moreover, it has been shown that the performance models are superior to the statically
computed most informative band order. This indicates the existence of a complex relation-
ship between the environmental situation and the TVI that can be successfully exploited
and learned by performance models. Therefore, the benefits of the proposed performance
prediction approach outweigh its computational overhead compared to a static baseline
and motivate its application in real-world reconnaissance scenarios.

However, it should be noted that all results are based on the TVI, which is an ex-
perimental metric of sensor performance in the context of camouflaged target detection.
Because the TVI does not necessarily correspond to human perception and is difficult to
apply to multiple targets in the same scene, the range of applications of the proposed sensor
performance prediction approach may be limited. In addition, the context state may not be
as informative as it might have been with more sophisticated feature extraction methods,
which in turn may have limited the prediction accuracy of the performance models.

Future research will address the integration of the proposed sensor prediction ap-
proach into an automated camouflaged target detection system and the generation of a
richer context state.
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Abbreviations
The following abbreviations are used in this manuscript:

EIR Edge Infra-red/Red-edge
GBT Gradient Boosted Tree
LBP Local Binary Pattern
LWIR Long-Wave Infra-Red
MUDCAD-X eXtendend Multispectral Dataset for Camouflage Detection
NDRE Normalized Difference Red-Edge index
NDVI Normalized Difference Vegetation Index
NIR Near Infra-Red
RF Random Forest
RMSE Root Mean Square Error
TVI Target Visibility Index
UAV Unmanned Aerial Vehicle
UniBwM University of the Bundeswehr Munich
VIS Visual
XGBoost eXtreme Gradient Boosting
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