
Citation: Zhang, Z.; Mi, X.; Yang, J.;

Wei, X.; Liu, Y.; Yan, J.; Liu, P.; Gu, X.;

Yu, T. Remote Sensing Image Scene

Classification in Hybrid

Classical–Quantum Transferring

CNN with Small Samples. Sensors

2023, 23, 8010. https://doi.org/

10.3390/s23188010

Academic Editor: Alfred Stein

Received: 29 June 2023

Revised: 4 September 2023

Accepted: 7 September 2023

Published: 21 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Remote Sensing Image Scene Classification in Hybrid
Classical–Quantum Transferring CNN with Small Samples
Zhouwei Zhang 1,2, Xiaofei Mi 1,2 , Jian Yang 1,2,*, Xiangqin Wei 1,2 , Yan Liu 1,2 , Jian Yan 1,2, Peizhuo Liu 3,
Xingfa Gu 1,2 and Tao Yu 1,2

1 Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China;
zhangzw@aircas.ac.cn (Z.Z.); mixf@aircas.ac.cn (X.M.); weixq@aircas.ac.cn (X.W.); liuyan@aircas.ac.cn (Y.L.);
yanjian19@mails.ucas.ac.cn (J.Y.); yutao@aircas.ac.cn (T.Y.)

2 National Engineering Laboratory for Satellite Remote Sensing Applications, Beijing 100094, China
3 School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China;

liupeizhuo@buaa.edu.cn
* Correspondence: yangjian@aircas.ac.cn

Abstract: The scope of this research lies in the combination of pre-trained Convolutional Neural
Networks (CNNs) and Quantum Convolutional Neural Networks (QCNN) in application to Remote
Sensing Image Scene Classification(RSISC). Deep learning (RL) is improving by leaps and bounds
pretrained CNNs in Remote Sensing Image (RSI) analysis, and pre-trained CNNs have shown
remarkable performance in remote sensing image scene classification (RSISC). Nonetheless, CNNs
training require massive, annotated data as samples. When labeled samples are not sufficient,
the most common solution is using pre-trained CNNs with a great deal of natural image datasets
(e.g., ImageNet). However, these pre-trained CNNs require a large quantity of labelled data for
training, which is often not feasible in RSISC, especially when the target RSIs have different imaging
mechanisms from RGB natural images. In this paper, we proposed an improved hybrid classical–
quantum transfer learning CNNs composed of classical and quantum elements to classify open-source
RSI dataset. The classical part of the model is made up of a ResNet network which extracts useful
features from RSI datasets. To further refine the network performance, a tensor quantum circuit
is subsequently employed by tuning parameters on near-term quantum processors. We tested our
models on the open-source RSI dataset. In our comparative study, we have concluded that the
hybrid classical–quantum transferring CNN has achieved better performance than other pre-trained
CNNs based RSISC methods with small training samples. Moreover, it has been proven that the
proposed algorithm improves the classification accuracy while greatly decreasing the amount of
model parameters and the sum of training data.

Keywords: CNN; hybrid classical–quantum neural networks; transfer learning; variational quantum
circuit

1. Introduction

In recent times with the rocketing progress of the earth observation capability and the
artificial intelligent technology, the progression and innovation of remote sensing (RS) are
more important than ever. RSI data processing is now developing towards RSI the age of big
data, which relies on data model by data-driven intelligent analysis [1] (refer to Table 1 for
all acronyms that are used throughout the paper). Machine learning (ML) plays an essential
role in extracting underlying features or a probability distribution of patterns in RSI datasets,
such as damage prediction, target recognition or image classification in hitherto unknown
domains [2]. In particular, deep learning (DL) has proven to be a technological innovation
and a historic milestone in many fields [3]. It emphasizes neural networks (NNs) involving
multiple hidden layers, which use feature representations learned exclusively from the
data, instead of handcrafted features that are designed based mainly on domain-specific
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knowledge. DL has widely used in various research topics, for example, data analysis tasks,
including image segmentation, image target detection, and image classification.

Table 1. List of acronyms.

RSI Remote Sensing Image

CNN Convolutional neural network
RSISC Remote sensing image scene classification

RS Remote sensing
DL Deep learning
NN Neural network

HHL Harrow Hassidim Lloyd
VQE Variational quantum eigensolver

QAOA Quantum approximate optimization algorithm
PQC Parameterized quantum circuit
NISQ Noisy intermediate-scale quantum
VQC Variational quantum circuit
QNN Quantum neural network
MBS Many-body system
CQ Classical–quantum
QC Quantum–classical
QQ Quantum–quantum
CC Classical–classical
QE Quantum encoding
IQP Instantaneous quantum polynomial

ILSRC ImageNet Large Scale Visual Recognition Challenge
AID Aerial Image dataset
OA Overall accuracy

BoVW Bag-of-Visual-Words
SIFT Scale-invariant feature transform
SVM Support vector machine

Various deep learning models have been developed with outstanding performance
for image classification on RSI datasets in multiple applications. Recently, significant
progress has been made in the methods of RSISC. Early studies involving RSISC in CNN
were transplanted from natural image data, which led to the increasing of the difficulty
of the RSISC task in complex RSIs [4]. Since then, researchers havededicated to replace
hand-engineered features with trainable multilayer networks, and several deep learning
models have demonstrated impressive feature representation capability, applicable across
a wide range of domains, including RSISC [5]. Deep learning algorithms have opened
up an entirely novel frontier of learning algorithms including CNN techniques that have
been adopted in the RSISC [6]. CNNs can extract hierarchical and insightful features
automatically from the massive size of image data [7].

In recent years, there has been significant progress in RSISC methods using
CNNs [2,3,8]. Despite the extraordinary achievement that CNN-based methods have
enabled in RSISC, the models of the network construction remain a huge challenge, which
is significant for the efficiency of the CNN models [7]. CNN architecture construction re-
quires skill in both DL methodology and professional expertise [9]. In practice, handmade
architecture design is complicated and fallible; moreover, the requirement of number of
expertise and professionals in both DL and the investigated domain is often unrealistic in
practical applications.

In this context, most studies on CNN-based RSISC have utilized networks that are
pre-trained on different networks, for instance AlexNet [10], VGGNet [11], GoogleNet [12],
and ResNet [13], standing out among numerous DL-based methods due to closely related
powerful features extraction performance. Since both assignments involving RSIs data
and the pre-trained networks can easily be operated for transferring in RSISC. Although,
RSIs differ significantly in terms of spectral resolution, spatial resolution, and radiometric
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resolution, etc. [14]. Researchers have used pre-trained CNN models as features extractors
to extract high semantic features. These methods have limitation: It has no advantage if
significant domain differences exist between source and target datasets.

Fine-tuning CNN-based models is an effective tool for RSISC. However, such ap-
proaches still have limitations in three perspectives related to datasets, models, and labels.
These limitations are discussed below.

Firstly, the dataset plays an important role in advancing RSISC. The Size-Similarity
Matrix of dataset determines the choices of the pre-trained model. This matrix classifies
the strategies based on the size of the dataset and its similarity to the dataset in which
the pre-trained model was trained. Due to the matrix transformation conducted in the
fully connected layers, the dataset must be transformed into a certain fixed size. The
most common approach is to crop and interpolate the original image, which inevitably
results in a loss of fine information from the original RSIs. Unfortunately, either of these
approaches can be detrimental to the performance of RSISI. Therefore, the selection of the
pre-trained models depends on the dataset’s size and size-similarity. The RSIs dataset must
be transformed into a special fixed size [15].

Secondly, from a modeling perspective, most pre-trained models can achieve excellent
classification performance. However, these models also have some limitations. The learned
feature may be not entirely satisfactory for the properties of target datasets, and pre-trained
treatments applied between heterogeneous networks require manual manipulations of
layer combinations, depending on type of task. The RSISC task, in particular, requires a
massive tuning procedure to achieve optimal classification performance.

Thirdly, many scene images with identical exteriors have different but correlated scene
contents, which can lead to the label paradox. Because an RSI contains various objects, such
as water, mountains, bare land, buildings, etc., which may be covered in a residential scene
as shown in Figure 1, the variance and complex spatial distributions of the scene contents
cause the diversity of RSISC. Because of the different varieties in the exteriors of ground
objects within the similar semantic information, traditional methods of RSISC often fail to
achieve satisfactory classification accuracy. In addition, low scene category separability has
been caused by the presence of the same scene contents within different scene categories or
high semantic superimposition between different scene types. Another important difficulty
of RSISC is the large variance of object scales caused by sensor imaging altitude variation.
Furthermore, the label distribution of ground objects in datasets is irregular and often
unavailable in the original training dataset, which is typically caused by resembling the
sample dataset that has different but correlated labels, as can be seen in Figure 1 [16].
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Figure 1. Limitations of RSISC, which include (a) low type separability, (b) complex variance of 
scene scales, (c) coexistence of multiple objects. The sources are from Eurosat dataset [17]. 
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Both RSISC and quantum computing are emergent techniques that have the potential
to transform the research and application of RS. Quantum computing can provide signifi-
cant advantages in terms of improving the performance of classification techniques. The
great potential of quantum computing in ML has been actively investigated. In specific
cases, traditional machine learning tasks can be improved with exponential acceleration
when it operates on a quantum computer [18,19]. The Harrow–Hassidim–Lloyd (HHL)
algorithm is a quantum computing that has been successfully implanted in conventional
ML theories and topics, such as data mining, artificial neural networks, computational
learning theory, etc., as shown in [20–24]. HHL-based algorithms are based on the quantum
phase estimation algorithm, which operates in a high-depth quantum circuit [25]. To bypass
this strict requirement of hardware, classical–quantum hybrid algorithms containing a
low–depth quantum circuit, for instance, the variational quantum eigensolver (VQE) and
the quantum approximate optimization algorithm (QAOA) have been suggested [26,27].
The idea of a hybrid algorithm is to divide the problem into two components, either of
which can be operated on a quantum and a classical computer separately. Cai verified the
feasibility of a K-means algorithm on a quantum computer [28]. Otgonbaatar proposed a
parameterized quantum circuit (PQC) with only 17 quantum bits for classifying a two-label
Sentinel RSI dataset. Quantum-based pseudo-labelling for hyperspectral imagery classifi-
cation is demonstrated by Shaik [22]. Noisy intermediate-scale quantum (NISQ) devices
are an advanced quantum computing technology providing solutions for large-scale and
complex practical quantum computation, such as solving high-complexity problems or
supporting ML algorithms. An NISQ device is termed a variational quantum circuit (VQC)
when it has parameterized quantum gates and parameterized quantum circuit. Sometimes,
the VQC is a supervised learning algorithm in which quantum neural networks (QNNs)
are trained to perform a classification mission.

A transformer-based model is one of the successful approaches of DL and more
efficient than other traditional CNN models in a variety of downstream applications.
Transformer-based concepts in in the context of quantum machine learning consist mainly
of three variants: classical–quantum (CQ), quantum–classical (QC), and quantum–quantum
(QQ) [23]. The CQ concept can achieve better result in comparison with other transformer-
based concept tests and classical–classical concept tests. Therefore, the CQ concept has
potential with currently available quantum computers.

The purpose of this paper is to investigate the feasibility and the efficiency of the hybrid
classical–quantum transferring CNN model for RSISC. Our study aims to demonstrate
that hybrid classical–quantum transferring CNN models can significantly enhance the
efficiency and performance of RSISC with small training samples. We focus on the hybrid
models scenario, where tensor quantum circuits and CNNs can be jointly trained to achieve
RSISC. With the advent of NISQ devices, CQ transfer learning has become particularly
attractive, since, with the application of a classical–quantum neural network with large
input images, it is possible to efficiently extract highly informative features with a VQC.
It is advantageous, since it makes the application of the potential of quantum physics
theory–superposition and entanglement, coordinated with the mature methods of classical
ML—possible. Accordingly, tensor quantum circuits can be regarded as common quantum
feature extractors, which can mimic famous classical networks that are often used as
pre-trained networks.

The transfer learning approach in the quantum domain has been largely unexplored,
with only very few applications, such as modeling quantum Many-Body Systems (MBSs),
associated with classical autoencoders to a quantum Boltzmann machine, and initializing
variational quantum networks. In this paper, an innovative, self-designed, and systematic
theory, through a concept of tensor quantum circuits and pre-trained networks, is proposed.

We present a model-theoretic approach and provide proof-of-principle examples for
practical implementation through numerical simulations. Additionally, we test our model
experimentally on physical quantum processors, successfully conducting RSISC with a
hybrid CQ system.
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The remaining sections of this work are introduced as follows: Section 2 introduces
some notations about hybrid classical–quantum networks. Section 3 outlines the architec-
ture of the hybrid classical–quantum transferring CNN. Section 4 reports the evaluation
and results of our model. Finally, this paper is concluded in Section 5.

2. Hybrid Classical–Quantum Networks
2.1. Quantum Encoding

The first step is the transformation of the classical image dataset into quantum state;
the process denotes the quantum encoding (QE). Most QE methods can be seen as param-
eterized circuits acting on initial states; the parameters in the parameterized circuits are
determined via classical image data. Generally, QE methods can be divided into basis
encoding, amplitude encoding, angle encoding, instantaneous quantum polynomial(IQP)
encoding, and Hamiltonian evolution ansatz encoding [29–32]. IQP encoding can be
achieved more easily than the other QE methods, so it is applied to our proposed algorithm.
Then, IQP quantum encoding describes the following quantum state as Equation (1). RY(•)
denotes Pauli rotation Y gate.(

⊗4
i=1RY(πxi)

)
|0〉⊗4 =

[cos(πx1)
sin(πx1)

]
⊗
[cos(πx2)

sin(πx2)

]
⊗
[cos(πx3)

sin(πx3)

]
⊗
[cos(πx4)

sin(πx4)

]
(1)

2.2. Variational Quantum Circuits

VQCs usually can define a subcircuit, which is a basic circuit architecture where
complex VQCs can be constructed through repeating layers. Circuits consists of multiple
rotating gates as well as CNOT gates that entangle each qubit with its neighboring qubit.
We also need a circuit to encode the classical data onto the quantum state, so that the output
of the measurement is related to the input. In this case, we encode the binary input onto
the qubits of the corresponding order.

VQCs can define a quantum layer like the classical neural network. Furthermore,
arbitrary VQCs can be demonstrated as below:

L = U(w)| x〉 (2)

where w denotes variational parameters, a unitary operation is achieved, acting on the
input state |x> of nq quantum subsystems.

The depth d of a VQC is a superposition of different quantum circuits and matches
the product of various parameterized unitary operations with different weights:

L = Ld ◦ . . .L2 ◦L1 (3)

On other hand, we can measure the expectation values of nq local observables ẑ = [ẑ1,
ẑ2, . . . ẑn] for the extraction of a classical output y. The process is known as a measurement
layer, which maps a quantum state to a classical dataset:

M := 〈x|ẑ|x〉 (4)

The initial quantum layers and the final measurement state in the quantum circuits
can be globally written as follows:

Q = M × L × ε (5)

2.3. Tensor Quantum Circuits

The VQC algorithm is limited to parameters adjustment, using the quantum computer
as feedback circuits to adjust the parameters in the parameterized circuits to optimal values.
It can only optimize the structure of the fixed circuit; it cannot change its own structure,
nor increase the number of entanglement operations, nor change the entanglement charac-
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teristics expressed, so the algorithm still means the quantum chip entanglement operation.
For complex Hamiltonian encoding, such as correlated systems, this common method does
not performs well.

Tensor quantum circuits adopt the classical quantum hybrid algorithm. The classical
part adopts the form of the tensor network to process the higher order tensor into the
form of multiple lower order tensor compressors. The quantum part adopts VQC to adjust
the parameters. Tensor quantum circuits consist of n qubits and consisting of k layers.
Parameterized eiθX⊗X gates are between each neighboring qubit in each layer, followed by
a series of single-qubit parameterized Z and X rotations, as can be seen in Figure 2.
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3. Hybrid Classical–Quantum Transferring CNN

In the following section, we introduce the concept of transferring prior “knowledge”
from classical to quantum. A hybrid classical–quantum transferring CNN for RSISC
proposal on the basis of two networks A and B is defined in Figure 3.
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A hybrid classical–quantum transferring CNN for RSISC proposal (as shown in Fig-
ure 3). The pre-trained network A on a dataset DA for a task CA is CNN’. Then, the final
layers are removed. The reduced network A’ can be taken as feature extractor. A new
trainable network B can integrate closely the pre-trained network A’. The parameters of
network B can adjust finely on the specific dataset.
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DA = ImageNet: ImageNet Large Sclae Visual Recognition Challenge (ILSRC) with
many classes [33].

A = ResNet34: a pre-trained residual neural network [13].
CA = Image classification.
A’ = ResNet34 a residual neural network without the final layer.
DB = RSI datasets
B = Q = L4→2 × Q × L512→4: i.e., 4-qubit tensor quantum circuits and outputs.
CB = RSISC.
The strategy of feature extraction is much more general than what we needed in this

work. In the context for transfer learning, the reduced pre-trained network A’ is interpreted
as a feature extractor, after removing the final layer of A. A’ can produce features that are
not problem-specific. In a hybrid structure, network A is classical, and the network B is
quantum.

Nowadays, classical hybrid transfer learning is perhaps composed of the efficient and
mature tools of DL in the current technological era of ML. It is commonly validated through
the successful ML algorithms, especially for RSISC.

The quantum circuit model in Equation (6) demonstrates the concept. We assume
quantum circuits of 4 qubits and utilize the following model:

∼
Q = L4→2 ×Q× L2→4 (6)

where L2→4 implies residual networks using the activation function, tanh ϕ = tanh, Q is
VQC, and L4→2 denotes residual networks without activation function. The strategy of
quantum encoding establishes links between the image dataset input x and its quantum
state |x>. The chosen embedding map from the classical image dataset input vector can be
written as Equation (8):

ε(x) =
4⊗

i=1

(
Ry(πxi)H

)
|0 〉

⊗
4 =

[cos(πx1)

sin(πx1)

]⊗ [cos(πx2)

sin(πx2)

]⊗ [cos(πx3)

sin(πx3)

]⊗ [cos(πx4)

sin(πx4)

]
(7)

L(x) : |x 〉 → |y 〉 = K
⊗4

i=1
Ry(πxi) |x 〉 (8)

where H denotes a single Hadamard gate. The quantum circuits consist of 4 variational
circuits. And K indicates an entangling unitary operation of 3 CNOT gates. The model in
the red frame demonstrates CNOT gates and 3 rotation gates RX, RY, RZ. The CNOT gates
force quantum entanglement between 2 quantum circuits, allowing the qubits from the
circuits to be entangled.

Then, the measurement operators should be projected by measuring the expectation
values of 4 observables, locally estimated for each qubit:

ẑ = [ẑ1, ẑ2, ẑ3, ẑn] (9)

M : z = 〈x|ẑ|x〉 (10)

In the final classification stage, the cost function was used as cross entropy and
via a LogSoftMax layer. The flowchart of our proposed method is shown in Figure 4,
and numerical simulations were conducted using the PyTorch interface and PennyLane
software.
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Figure 4. (Top): general scheme for the hybrid classical–quantum transferring CNN for RSISC.
(Middle): detailed scheme for classifying the scene image dataset. (Bottom): architecture of the
tensor quantum circuit with inputs of 4 qubits. Rx(•), Ry(•) and Rz(•) separately denote Pauli rotation
X, Y, Z gates.

4. Evaluation an Results

In this section, we assess the hybrid classical–quantum transferring CNN in terms of
performance gains for RSISC.

4.1. Data Profile

Our proposed method was evaluated using two challenging RSI datasets: the EuroSat
dataset and the Aerial Image dataset (AID) [17,34]. The EuroSat dataset contains images
taken from the Sentinel-2 satellite, categorizing the ground objects into 10 distinct land
cover categories. The collection includes approximately 27,000 images divided across
10 classes, with patches measuring 64 × 64 pixels. The data were originally hyperspectral
images captured with 13 spectral bands, but we used only RGB channels. The AID dataset
includes 10,000 images of size 600× 600 pixels, classified into 30 scene classes, with varying
numbers of images for each label ranging from 220 to 420. The ground resolution also
varies from approximately 8 m to 0.5 m per pixel. Figure 5 show examples of the EuroSAT
dataset and Figure 6 shows examples of the AID dataset.
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Figure 5. This outline shows all sample images of all 10 categories covered in the EuroSAT dataset.
The image size has 64 × 64 pixels. Each category contains 2000 to 3000 images. In sum, the dataset
has 27,000 geo-referenced images [17].
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Figure 6. This outline shows all sample images of all 30 categories covered in the AID dataset. The
image size has 600 × 600 pixels. Each category contains 220 to 420 images. In all, the dataset has
10,000 georefenced images [34].

4.2. Evaluation Criteria

There are two extensively used evaluation criteria in RSISC: overall accuracy (OA)
and confusion matrix. OA is an evaluating indicator of the classifier’s performance on the
whole test data set and is defined as the sum of accurately classified samples divided by
the sum of tested samples. It is a commonly used to evaluate the performance of RSISC.
The confusion matrix is an informative table used to analyze all the errors and confusions
between different classes, generated by comparing the performance of correct and incorrect
classification of each single classifier.
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The definition of the calculation of OA can be expressed as follows:

OA =
∑n

i=1 ∑k
j=1 Pij

T
(11)

where Pij is the correct prediction of each single label, and n, k represents the sum of each
label and the sum of labels. T is the sum of test dataset.

4.3. Experimental Setup

We split two different RSI datasets in different training/test ratios (10/90 ratio and
20/80 ratio) class-wise. The RGB images vast majority of all aerial and RSI datasets. For
performance measurement, we compare with the performance of the proposed algorithm,
the Bag-of-Visual-Words (BoVW) approach with scale-invariant feature transform (SIFT)
features, a trained support vector machine (SVM) and other deep learning algorithms
for accuracy evaluation. Furthermore, we trained a shallow CNN, a ResNet50, and a
GoogleNet model on the training dataset [33,35–37]. In addition to the comparison with
our proposed model, it is also compared with existing CQ models available in the literature,
namely: CNN-QNN end-to-end model [24] and QCNN [38].

In our proposed method, we trained a ResNet34 model and the tensor quantum circuit
with the model for 60 epochs over the training dataset, with a quantum depth of 6 and an
initial learning rate of η = 0.0006. The model was validated with respect to the test dataset
after each epoch, and overall classification on the datasets was calculated.

We used many commonly used RSISC algorithms for instance, ResNet50 [13], DC-
NNs [39], AlexNet [40], and VGG-VD16 [10], as criteria to assess the performance improve-
ment of our proposed method. These models were pre-trained on the ImageNet dataset
and then fine-tuned to adapt them to the RSIs. For the open-source AID dataset [34], the
training:test ratios were set to 20%/80% and 50%/50%.

4.4. Performance Comparison

Furthermore, in order to further verify the efficiency and feasibility of the proposed
algorithm in this paper, the proposed algorithm was also compared with other RSISC
algorithms for experimental analysis and validated on the validation set. The results
show that the proposed algorithm achieved the best classification result (%), as shown in
following Algorithm 1 procedures.

Algorithm 1. Comparation with other RSISC algorithms.

1. INPUT: RSI dataset as training data, rest RSI dataset as test data.
2. OUTPUT: Generate the predicted category labels.
3. Prepare a ResNet 34 network with the autoencoder.
4. Encode the RSI dataset.
5. Traning: a 4 qubit tensor quantum circuit.
6. Feed the RSI dataset to the tensor quantum circuit.
7. Testing:
8. Feed the rest RSI dataset to the tensor quantum circuit.
9. STOP ALGORITHM.

As can be seen in Table 2, we can analysis the performance of different approaches on
the EuroSAT RGB dataset using various training:test splits. We evaluated four frequently
used methods, including BovW, CNN, ResNet50, and GoogleNet, as baselines to assess the
performance improvement of the hybrid classical–quantum transferring CNN. We used
these pre-trained models on the ImageNet dataset and fine-tuned them on the EuroSAT
dataset. For ResNet50 and GoogleNet, we replaced the flattened layer, maintaining the
original image sizes. The proposed method exhibited better classification accuracy than
other methods and significantly reduced model complexity.
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Table 2. Overall accuracy (%) of different training:test ratios on the EuroSAT dataset classification
(training ratio = 10% and 20%).

Method (%) 10/90 20/80 Number of
Parameters

BoVW (SVM, SIFT, k = 10) 54.54 56.13 _
BoVW (SVM, SIFT, k = 100) 63.07 64.80 _
BoVW (SVM, SIFT, k = 500) 65.62 67.26 _

CNN (two layers) 75.88 79.84 50.5 K
ResNet-50 75.06 88.53 25.6 M
GoogleNet 77.37 90.97 6.8 M

QCNN 93.65 94.72 18 M
CNN-QNN 94.23 95.07 17 M

Ours 95.81 96.62 21.28 M

To quantitatively evaluate the performance of our proposed method, we adopted
the OA and confusion matrix as the evaluation metrics. OA is recorded as the number of
correctly classified samples divided by the total number of samples. In the confusion matrix,
each column denotes the predicted results, and each row denotes the actual ground objects
of the class data. It can display the distribution of each class and can be recommended for
the analysis of misclassification results between different classes.

Figure 7 present the evaluation of the proposed method on the EuroSAT dataset in a
training and a test set (10/90 ratio). The images of river, highway and herbaceous vegetation
misclassified easily as others. As can be seen in Table 2, all CNN algorithms surpassed
the BoVW method and the classification results of whole deep CNNs performed better
than the classificatfigureion results of shallow CNNs. Nevertheless, the proposed method
achieved a classification result of up to 95.81% in a training and a test set (10/90 ratio) for
the EuroSAT RSISC. The optimization process is demonstrated in Figure 8. As can be seen
in Figure 9, the images of two scene labels are alike, resulting in imperfect classification
results compared with other labels.

Table 3 shows the resulting classification accuracies for the best performing DL models
CNN models, GoogLeNet, ResNet50, and the proposed method. In experiments with
the GoogLeNet, ResNet50, CNN models, and the proposed method, all models were pre-
trained on the EuroSAT dataset. For a better comparison of performance of all fine-tuning
models, we trained the last layer with a learning rate between 0.01 and 0.0001. Using the
proposed method, we achieved a classification accuracy about 17% better than the other
pre-trained model, GoogleNet, which had been trained on the EuroSAT dataset in the same
training:test dataset ratio setting.

Furthermore, we compared the proposed algorithm with other pre-trained CNN-
based classification methods for different training:test ratios on the RSI dataset. As shown
in the table below, the most traditional pre-trained CNN models can achieve under 95%
for the training ratios of 20%. The hybrid classical–quantum transferring CNN achieved
higher accuracy than other pre-trained CNN-based classification methods. In Table 3, the
traditional pre-trained models which achieved high classification accuracy use million
RSIs from satellite and aerial platforms and cover a huge amount of scenes and objects
around the world, for instance, RingMo [41]. The proposed algorithm can also enhance
the classification result for the large scale of input images and performs better than all
the other algorithms under the training ratio of 20% and 50%, and “*” indicates the best
result among all methods. The best classification results can be obtained with the algorithm
that achieves 97.33% and 98.82% for the training ratios of 20% and 50%, respectively. Our
proposed approach exhibits the performance of the most advanced methods, * indicates
the best result among all methods.
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Table 3. Contrast of the classification accuracies (%) of different training-test ratios on the AID dataset
(training ratio = 20% and 50%).

Method 20/80 50/50

VGG-VD16 [34] 86.59 89.64
GoogLeNet [34] 83.44 86.39

AlexNet + MSCP [42] 88.99 92.36
VGG-VD16 + MSCP [42] 91.52 94.42

AlexNet + SPP [43] 87.44 91.45
RADCNet [44] 88.12 92.53

AlexNet + SAFF [45] 87.51 91.83
VGG-VD16 + SAFF [45] 90.25 93.83

AlexNet + RIR [46] 91.95 94.56
VGG-VD16 + RIR [46] 93.34 95.57
ResNet50 + RIR [46] 94.95 96.48

DCNN [40] 90.82 96.89
CBAM [47] 94.66 96.90

Two-Stream Fusion [48] 92.32 94.58
RTN [49] 92.44 _

GCFs + LOFs [50] 92.48 96.85
CapsNet [51] 91.63 94.74
ARCNet [52] 88.75 93.1
SCCov [53] 93.12 96.1
KFBNet [54] 95.50 97.40
GBNet [55] 92.20 95.48

MG-CAP [56] 93.34 96.12
EAM [57] 94.26 97.06
EAM [57] 93.64 96.62

F2BRBM [58] 96.05 96.97
MBLANet [59] 95.60 97.14
GRMANet [60] 95.43 97.39

IDCCP [61] 94.80 96.95
MSANet [62] 93.53 96.01
CTNet [63] 96.25 97.70
LSENet [64] 94.41 96.36

DFAGCN [65] _ 94.88
MGML-FENet [66] 96.45 98.60

ESD-MBENet-v1 [67] 96.20 98.85 *
ESD-MBENet-v2 [67] 96.39 98.40
SeCo-ResNet-50 [68] 93.47 95.99
RSP-ViTAEv2-S [69] 96.91 98.22

ISP (ViT) [70] 96.24 97.95
ISSP (ViT) [41] 95.82 97.98

RingMo (ViT-200 W-200 E) [71] 96.54 98.38
ISP (Swin) [70] 96.24 98.03

ISSP (Swin) [72] 96.54 97.95
RingMo (Swin-200 W-200 E) [71] 96.90 98.34

Ours 97.33 * 98.82

We have implemented these networks using a neural network library named Pytorch
and a cross-platform Python library for quantum computing named PennyLane [39,73].
The experiments have been operated on a computer graphics workstation equipped with
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a single AMD Ryzen Threadripper PRO 3945WX 12-Cores CPU and a single NVIDIA
GeForce NVIDIA RTX A5000 24GB GPU.

In this section, we detail various limitations and challenges of this study and how they
could potentially be avoided.

1. Lack of access to high-quality, standardized quantum datasets. More work is needed
to develop such datasets to properly benchmark our proposed model.

2. Limited types and amount of remote sensing image (RSI) samples currently used.
More RSI data from different satellite sources should be collected.

3. More methods for tensor network-based feature extraction should be explored to
improve the interpretability and performance.

4. Further research into CQ transferring CNN architectures with sharp priors is needed,
as these can help avoid issues like barren plateaus. Architectures like quantum graph
neural networks and quantum recurrent neural networks show promise [74].

5. A theory of “quantum geometric deep learning” could help systematically design ar-
chitectures suited for different quantum datasets, by encoding appropriate symmetries
and physical principles.

In summary, the main limitations involve access to high-quality quantum data, lim-
ited diversity of current RSI datasets, and the need for better QCNN architectures. Key
future work involves developing standardized quantum datasets, collecting more RSI
data, exploring tensor network feature extraction, and establishing a theory of quantum
geometric DL.

5. Conclusions

Over the past decade, rapid development has provided us with massive remote sensing
datasets for intelligent earth observation using RSIs. Nevertheless, the lack of publicly
available “big data” of RSIs seriously limits the development of innovative methods,
especially traditional DL methods. This work first presents the background of VQC and
tensor quantum circuits, and a hybrid classical–quantum transferring CNN applied to
RSISC has been proposed. The main advantage of the method in this work is that it allows
the input images to be of various shapes and sizes and dispense with the resizing of such
images prior to processing. It can hold most key features in RSIs, which is mostly beneficial
to conclusively achieving better classification results. In comparison to other deep learning
methods with the same number of training samples, the proposed method has achieved
amazing scene classification results. Data annotation must be done manually by skilled
professionals in the area of RSISC. When a RSI dataset is massive, data annotation can
become more complicated because of the huge diversities and variations in RSIs. Most
of these models require a large-scale labeled dataset and numerous iterations to train
their parameter sets. The experimental results show that our innovative method can
achieve satisfied classification results with fewer training samples. This means that in the
application of RSISC, the increased workload of data annotation can be reduced manually
by skilled professionals. In order to improve classification accuracy, the sum of the CNNs
layer has expanded from few layers to hundred layers. Usually, the vast majority of models
have huge parameters; moreover, the operation of the CNN models requires an enormity of
labeled datasets for model training and powerful equipment with high-performance GPUs
for notable performance improvements in operation, which severely limits the development
of RSISC methods. However, in comparison with huge CNNs, the proposed method is a
compact, lightweight, and efficient RSISC model with fewer parameters. On the other side,
the proposed method is extremely expensive and time-consuming, due to the limitations
of cross-platform libraries for the differentiable programming of quantum computers. In
the future, the method should be improved in quantum circuit simulators with support for
automatic differentiation, just-in-time compiling, hardware acceleration, and vectorized
parallelism. Especially when the quantum circuit size or the batch dimension is large, the
new platform can enable acceleration in quantum circuit simulation.
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We should note, however, that our proposed method should be viewed as a new
research idea for RSISC, and not be viewed as a replacement for classical pre-trained
CNN models. More importantly, a hybrid classical–quantum transferring CNN provides
invaluable intuition for constructing a quantum-physics-based DL method. Finally, in terms
of future work, we will study process suitability and efficiency assessment in cross-domain
RSISC.
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