
Citation: Mangalampalli, S.; Karri,

G.R.; Gupta, A.; Chakrabarti, T.;

Nallamala, S.H.; Chakrabarti, P.;

Unhelkar, B.; Margala, M.

Fault-Tolerant Trust-Based Task

Scheduling Algorithm Using Harris

Hawks Optimization in Cloud

Computing. Sensors 2023, 23, 8009.

https://doi.org/10.3390/s23188009

Received: 29 July 2023

Revised: 21 August 2023

Accepted: 20 September 2023

Published: 21 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Fault-Tolerant Trust-Based Task Scheduling Algorithm Using
Harris Hawks Optimization in Cloud Computing
Sudheer Mangalampalli 1,* , Ganesh Reddy Karri 1 , Amit Gupta 2, Tulika Chakrabarti 3, Sri Hari Nallamala 4,
Prasun Chakrabarti 5, Bhuvan Unhelkar 6 and Martin Margala 7

1 School of Computer Science and Engineering, VIT-AP University, Amaravati 522237, India;
ganesh.reddy@vitap.ac.in

2 Department of ECE, Nalla Malla Reddy Engineering College, Hyderabad 500088, India;
amitgupta.ece@nmrec.edu.in

3 Department of Chemistry, Sir Padampat Singhania University, Udaipur 313601, India;
tulika.chakrabarti@spsu.ac.in

4 Vasireddy Venkatadri Institute of Technology, Nambur 522510, India; nallamala.srihari@gmail.com
5 Department of Computer Science and Engineering, Sir Padampat Singhania University,

Udaipur 313601, India; drprasun.cse@gmail.com
6 Muma School of Business, University of South Florida, Sarasota-Manatee, FL 33620, USA; bunhelkar@usf.edu
7 School of Computing and Informatics, University of Louisiana at Lafayette, Lafayette, LA 70504, USA;

martin.margala@louisiana.edu
* Correspondence: sudheerkietmtech@gmail.com

Abstract: Cloud computing is a distributed computing model which renders services for cloud users
around the world. These services need to be rendered to customers with high availability and fault
tolerance, but there are still chances of having single-point failures in the cloud paradigm, and one
challenge to cloud providers is effectively scheduling tasks to avoid failures and acquire the trust
of their cloud services by users. This research proposes a fault-tolerant trust-based task scheduling
algorithm in which we carefully schedule tasks within precise virtual machines by calculating
priorities for tasks and VMs. Harris hawks optimization was used as a methodology to design our
scheduler. We used Cloudsim as a simulating tool for our entire experiment. For the entire simulation,
we used synthetic fabricated data with different distributions and real-time supercomputer worklogs.
Finally, we evaluated the proposed approach (FTTATS) with state-of-the-art approaches, i.e., ACO,
PSO, and GA. From the simulation results, our proposed FTTATS greatly minimizes the makespan
for ACO, PSO and GA algorithms by 24.3%, 33.31%, and 29.03%, respectively. The rate of failures
for ACO, PSO, and GA were minimized by 65.31%, 65.4%, and 60.44%, respectively. Trust-based
SLA parameters improved, i.e., availability improved for ACO, PSO, and GA by 33.38%, 35.71%,
and 28.24%, respectively. The success rate improved for ACO, PSO, and GA by 52.69%, 39.41%, and
38.45%, respectively. Turnaround efficiency was minimized for ACO, PSO, and GA by 51.8%, 47.2%,
and 33.6%, respectively.

Keywords: availability; Harris hawks optimization; rate of failures; SLA-based trust parameters;
success rate

1. Introduction

Cloud computing is one of the rapidly growing technologies which impact the IT
industry, causing companies to migrate enterprise infrastructures onto cloud environments
as they deliver services to their customers around the world based on a pay-per-use basis,
which offers flexibility to customers to reduce operational and management overhead for
their enterprises [1]. This paradigm is also advantageous to the users in terms of flexibility
in using resources of the cloud environment, and it makes use of scaling techniques [2]
to increase or decrease resources based on the needs of customers and their usage in the
application environment. Therefore, the cloud computing paradigm is advantageous for the

Sensors 2023, 23, 8009. https://doi.org/10.3390/s23188009 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23188009
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-1485-8783
https://orcid.org/0000-0002-5177-8125
https://orcid.org/0000-0003-1118-3837
https://doi.org/10.3390/s23188009
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23188009?type=check_update&version=1

Sensors 2023, 23, 8009 2 of 33

users running their applications in a cloud environment, but to provide virtual resources
to users from the cloud provider according to the respective Service Level Agreements,
cloud providers need to use a task scheduler which provisions these resources based
on customer needs. Every cloud provider has users around the globe, and it is difficult
for the cloud provider to tackle user needs by provisioning virtual resources manually;
therefore, a task scheduler is needed, one which maps incoming tasks from various users
to the cloud interface, mapping them according to appropriate VMs. Therefore, a task-
scheduling algorithm is needed which maps a variable number of tasks to appropriate
virtual resources to benefit both cloud providers and users. In the cloud paradigm, task
scheduling is a challenging scenario, as incoming tasks placed onto the cloud platform
are variable as per their sizes and run-time processing capacities. We cannot specify a
number of tasks to be fixed in the cloud paradigm; moreover, the tackling and mapping
of these tasks to virtual resources by providing high availability and a fault-tolerance
system to users is a challenge from the cloud provider’s perspective, because single-point
failures [3] still occur in the cloud computing paradigm, which impacts the fault tolerance
of the system as well as trust in the cloud provider. This motivates us to perform the
present research from the perspective of fault tolerance and trust in the cloud computing
paradigm. Many of the earlier authors developed various task schedulers by using nature-
inspired, meta-heuristic approaches such as swarm intelligence algorithms and bio-inspired
algorithms, as task scheduling in cloud computing is an NP-hard problem, and it is difficult
to identify a solution in the specified polynomial amount of time. Many of the existing
authors used PSO [4], GA [5], and ACO [6], as well as their variants, but the question is not
limited to these approaches, and each of them has their advantages, while there are some
limitations manifest in their approaches. Existing authors have tackled various parameters,
i.e., makespan, execution cost, throughput, etc., but no author has tackled parameters
with fault-tolerance and trust-based parameters. In this research paper, we focused on
developing a task scheduler that considers tasks and VM priorities and schedules tasks
using Harris hawks optimization while addressing certain parameters, i.e., turnaround
efficiency, failure ratio, availability of VMs, and success rate.

Motivation and Contributions

The cloud-computing model delivers services on demand to all cloud users. All cloud
providers have wide varieties of services, and these services are delivered to customers
around the world based on the requirements of the users. In order to provide seamless
access to all users, an effective task-scheduling mechanism should be used by cloud
providers, while they also need to be concerned about high availability and fault tolerance
in cloud computing. In this model, single points of failure still persist, which impacts QoS
and violates the SLA, in turn ruining trust in the cloud provider. This motivates us to
conduct work in this direction to tackle the parameters, i.e., fault tolerance and SLA-based
trust parameters. We also identified a relationship between fault tolerance and trust in the
cloud provider, i.e., the presence of a minimal number of task failures increases trust as
well as the QoS of the cloud provider. To retain good quality of the services provided to
cloud users and to gain trust in the cloud provider by minimizing SLA-based parameters,
we decided to design a task scheduler that is modelled using Harris hawks optimization.
Highlights of this research are mentioned below.

• The aim is to design a fault-tolerant trust-based task scheduling algorithm by mapping
all incoming tasks to VMs using Harris hawks optimization.

• For an effective scheduling process, the carefully calculated priorities of all incoming
tasks should be accurately mapped to appropriate and low-electricity-unit-cost VMs
by calculating VM priorities. Task-level and VM-level priorities are calculated to
schedule tasks precisely onto respective VMs.

• We introduce a deadline constraint into our scheduler to carefully assign a single task
to a VM at a time, and after completion of that task within the stipulated time, the next
task can be assigned to that respective VM.

Sensors 2023, 23, 8009 3 of 33

• We conduct workload generation in two phases. In the first phase, we use random
generated workload employing different statistical distributions. In the second phase,
we use real-time computing cluster worklogs.

• In this research work, we address parameters such as failure rate, makespan, success
rate, availability and turnaround efficiency.

Our manuscript is organized as follows. Section 2 discusses related works, Section 3
describes fault-tolerant trust-based task scheduling and system architecture, Section 4
describes simulation and results, and Section 5 discusses conclusion and future works.

2. Related Works

Load balancing and resource utilization are crucial factors in the cloud paradigm; they
directly impact the makespan of tasks, but the balancing of tasks while utilizing resources
in a wise manner is a huge challenge in this paradigm. Therefore, the authors in [7]
formulated an adaptive task-scheduling mechanism which tackles the above-mentioned
problem. They used an LDIW technique in combination with a famous swarm intelligence
approach, i.e., PSO. The LDIW technique balances both local and global search, which
explore the search space in a rigorous manner. It was evaluated over various existing
techniques and from the extensive simulation results that LDIW improves makespan and
throughput compared to existing techniques by 10% and 12% respectively. In the cloud
paradigm, many researchers used metaheuristic or swarm intelligence algorithms to model
the scheduling algorithms as it is an NP-hard problem. The authors in [8] used a technique
that was added to PSO to schedule a longest task to a fastest processor in combination with
PSO, minimum-completion-time jobs to different processors by classifying tasks to address
the makespan, and total execution time. The method was compared with state-of-the-art
approaches. The results showed huge improvement in performance of various parameters
mentioned over the existing algorithms. Utilization of virtual resources and makespan
are primary metrices in task scheduling, and in that regard, the authors in [9] used a
hybridized approach to explore the search space and tackle the scheduling problem in the
cloud paradigm in a comprehensive manner. For this, they used GA and GELS algorithms
to model the scheduler. Extensive simulations were carried out using MATLAB2018a. The
model was evaluated over baseline approaches: GA, PSO and GELS. Simulation results
revealed that the hybrid model, i.e., GAGELS, improved the above-mentioned parameters
compare to the state-of-the-art algorithms. The authors in [10] developed a load balancing
technique to maximize utilization of virtual resources. This approach modelled the use
of a modified PSO by collecting all the tasks and VM information carefully to schedule
tasks onto VMs. Experiments were conducted on Cloudsim. The model was compared
against the existing algorithms, such as PSOBTS, L-PSO, DLBA. Results showed that MPSO
dominates all other approaches in the above-specified parameters. The above-mentioned
algorithms are mentioned [7–10] in regard to makespan and resource utilization, but these
are primary concerns for any task scheduler. In the next part of the paper, we discuss other
parameters including makespan and resource utilization.

The authors in [11] formulated a task-scheduling approach for scientific workflows
as it is difficult to identify dependencies in it. For the modelling of this approach, they
used two strategies, i.e., scheduling and data placement approaches. The main aim of this
approach is to precisely schedule workflows onto virtual resources while minimizing data
movements in-between datacentres. IT2FCM is a Fuzzy method used as a methodology
to design a scheduler. MATLAB2018a was used as a simulation tool for conduction of
extensive experiments. The model was compared with the existing state-of-the-art ap-
proaches. Results revealed that it shows dominance over existing scientific workflows for
minimization of data movements in-between datacentres. The authors in [12] formulated
a deadline-aware task-scheduling mechanism for computational intensive, independent
tasks, tackling multiple objectives by optimizing time and cost. This approach schedules
tasks dynamically based on resource capacity. It was modelled by modifying PSO. It was
evaluated over the existing variations of PSO. Results proved that PSO-RDAL dominates

Sensors 2023, 23, 8009 4 of 33

and improves parameter makespan, response time, deadline of tasks, and execution costs.
A multi-objective task scheduling model was developed in [13] to tackle makespan, process-
ing cost, and resource utilization. This approach was modelled by hybridization of PSO and
chaotic algorithms to avoid local optimum and to gain better convergence towards solution.
Therefore, PSO was enhanced using sinusoidal, Lorenz iterators by a chaotic algorithm
to map tasks to precise VMs. EPSOCHO uses standard benchmark worklogs to check
the efficacy of an algorithm, and the results showed impact on existing approaches for
mentioned parameters. The authors in [14] proposed a task-scheduling algorithm in IaaS
clouds for a large scale of tasks. In this approach, the authors used the modified symbiotic
search optimization technique by using a simplified mutualism process by using variations
in respective arithmetic and geometric means of mutual vectors in the process of generation
of next-generation solutions. The Cloudsim 3.0.3 simulator was used for experimentation,
and it generated tasks ranging from 100 to 1000 for 40 iterations. It was compared to
existing SOS and PSO-SA in regard to minimization of the makespan. Simulated results
proved that GSOS outperforms other variations for the makespan by minimizing it to 20%.
For the cloud provider, it is difficult to map a large number of exponential increase in
heterogeneous user tasks to various heterogeneous resources unless there is an intelligent
task scheduler. For this, the authors in [15] formulated a task-scheduling algorithm to cut
down costs and unnecessary usage of resources in the cloud environment. In this approach,
a binary operator was used to place particles at certain places to search the solution space.
The method was combined with neural networks to expedite the process. Cloudsim was
used as simulating environment by considering standard configuration settings. In [11–16],
the authors doscuss task scheduling with respect to the movement of data, task execution
cost, penalty and the deadline of tasks. These are also crucial factors while scheduling tasks
onto precise VMs so as to follow SLA accurately.

For the calculation of efficiency of AINN-BPSO, the model was compared against
existing meta-heuristic approaches. Results revealed that AINN-BPSO surpasses baseline
approaches for metrices such as makespan, degree of imbalance, and cost. When task
scheduling is ineffective, it is challenging for the cloud provider to maintain quality of
service while rendering services to users. Therefore, to preserve the scheduling efficiency,
the authors in [16] devised a scheduling algorithm, QPSO, by modifying placement of
particles in a quadratic shape in the solution space for a better convergence towards
solutions. A Cloudsim toolkit was used as a platform to implement the scheduling process,
and it was evaluated against baseline PSO. Results revealed that QPSO improves scheduling
efficiency by 20%. Task transfer time is crucial in the cloud paradigm as the tasks are
scheduled and computed in the cloud network. If a scheduler maps tasks to an unsuitable
resource, the transfer time of tasks increases, which leads to a delay in task processing
and responding to user requests. Therefore, to tackle this situation, it is necessary to
generate a schedule to a precise resource. The authors in [17] used a multi-verse optimizer
by combining the model with GA which schedules tasks to appropriate resources, and
it also reschedules tasks if tasks are delayed or terminated based on weights assigned to
tasks with respect to resources in the cloud, i.e., task capacity, length, speed, processing
capacity of resources, and throughput. MATLAB2018a was used as a platform simulate the
algorithm. After simulation, the model was compared with different variants of GA, and
simulation results revealed that MVO-GA improves task transfer time significantly. The
authors in [18] devised a task-scheduling mechanism to map diversified tasks to available
resources in order to expedite the scheduling process while minimizing execution cost,
time, and power consumption. NSGAIII was used to model a scheduling algorithm by
modifying the population selection intensively and over a diversified space to obtain greater
convergence towards solutions. It was evaluated in comparison to the NSGAII approach
to test its efficacy, and the results proved that NSGAIII shows significant improvement in
regard to the above-mentioned parameters. Load balancing also plays a prominent role
in combination with the scheduling aspect in cloud computing, as it helps to improve the
quality of service of the cloud provider. For this reason, the authors in [19] developed a load

Sensors 2023, 23, 8009 5 of 33

balancing mechanism using a hybridized approach. For proper selection of tasks and their
precise mapping to VMs, a lion optimizer was used, and for the fine tuning of task selection
and mapping onto precise VMs, GA was used in a global search space. The model was
compared with baseline algorithms; hybrid lion–GA improves load balancing compared to
GA and lion optimization approaches. In [20], the authors proposed a task scheduler to
improve the efficiency of the task-scheduling process. The model was constructed by the
GSAGA algorithm where GSA was used in local search exploration and GA was used in
global search exploration. GSAGA was compared to different meta-heuristics, and finally,
the results showed a better impact on scheduling efficiency compared to that of existing
approaches by minimizing makespan to a larger extent. The authors in [21] proposed a task
scheduler approach to improve the accuracy of scheduling. The GBO algorithm was used
as a methodology to obtain greater convergence towards solutions for scheduling, and a
round-off value-based strategy was also employed. The Cloudsim toolkit was used as a
simulation platform and compared with existing GA and PSO approaches; results revealed
that GBO surpasses GA and PSO in regard to the above-mentioned parameters.

Makespan and cost are the primary concerns in task scheduling for the cloud comput-
ing paradigm. To tackle these aspects, the authors in [22] devised a multi-objective hybrid
scheduling model by modifying RDWOA with a mutation operator. This RDWOA was
hybridized with the MBA approach, and it was used for the scheduling process. The mode;
was compared with state-of-the-art algorithms like IWC, MALO, and MGGS. Simulation
results proved that HWOA-MBA surpassed other algorithms by minimizing the above
parameters. The authors in [23] also discussed the role of makespan and cost in the task-
scheduling process in the cloud paradigm. Whale optimization is improved by modifying
inertia weights according to the speed of whales to avoid premature convergence in local
search process; for global search process, it is combined with wild horse optimization to
expedite the process of scheduling. The model was simulated on the Cloudsim platform
and evaluated over standard whale and horse optimization techniques. IWHOLF-TSC dom-
inated the standard whale and horse optimizations in regard to minimization of makespan
and cost. In [24], the authors discussed the minimization of makespan and cost in the
task-scheduling process in the cloud paradigm. The authors modified standard ACO by
adding appropriate weights to ants to explore the search space and to avoid premature
convergence. An extensive set of experiments were conducted to assess makespan and cost,
and the results were evaluated against ACO, QANA, MTF-BPSO, MM, and FCFS algorithm
data. HWACOA minimized the above parameters over baseline approaches. Datacenter
processing time is one of the crucial aspects in a cloud model as it impacts QoS and oper-
ational costs of a cloud provider. In [17–24], the authors again discussed load balancing,
resource utilization, makespan, and cost, but the references mentioned previously, which
tackle makespan and cost, were based on single-nature-inspired approaches, whereas the
approaches mentioned in [17–24] are all hybridized approaches.

Generally, the scheduling of tasks is generated based on events, but it is only suitable
for single objectives. In tackling multiple objectives, which is a complex process, general-
ized meta-heuristics are not providing accurate results. Therefore, a neural network is to be
added to the existing ACO in [25] to explore the solution space for a recursive generation of
schedules while tuning the parameters, i.e., response time, cost, and datacenter processing
time. LBACO was compared to standard ACO, and it was found that it generated better
schedules than standard ACO while minimizing the above-mentioned parameters. Consis-
tency is an important criterion in task scheduling; many meta-heuristic approaches have
been developed to tackle this problem. But scheduling is an NP-hard problem. It is difficult
to identify solutions and converge towards solutions for any type of workload generated
through various users. Therefore, the authors in [26] formulated a scheduling mechanism
to address violations of SLA, resource utilization and makespan. A hybrid multi-objective
technique, i.e., QOGSHO, was used as a methodology in this approach. An extensive set of
simulations was carried out on the Cloudsim platform. QOGSHO revealed its efficacy of
consistency in the scheduling pattern while minimizing violations of SLA and makespan

Sensors 2023, 23, 8009 6 of 33

and improving resource utilization. A multi-objective task scheduling mechanism was
formulated to address schedule length and execution cost in [27]. To tackle scheduling in
this paradigm, HHO was modified by elite-based learning strategy, i.e., ELHHO, in which
opposition learning is used in the exploration phase. The model was compared to the base-
line approach, i.e., opposition learning and Harris hawks optimization, and results showed
that ELHHO outperforms existing mechanisms for the above-mentioned parameters to a
great extent. Reliability is an important facet in task scheduling because even if a scheduler
generates schedules over resources, if resource reliability is not preserved, then problems in
the cloud provider arise, with an increase in failure rate. Therefore, the authors in [28] devel-
oped a task-scheduling approach which preserves reliability, i.e., RATSA. The scheduling of
tasks onto resources was mapped using the frog-leaping algorithm to minimize makespan.
RATSA was implemented on Cloudsim and compared with baseline mechanisms. Results
proved that RATSA minimized the failure rate of tasks by 40%. Cost-effective scheduling
is the primary facet of task scheduling, but to tackle scheduling in a cloud computing
model with multiple objectives, it is necessary to use a nature-inspired algorithm as it is
an NP-hard problem. Therefore, the authors in [29] used seagull optimization to design
their scheduler. The Cloudsim tool was used for simulation. The model was compared
to ACO, GA, PSO, and WOA algorithms and SOATS was compared to CJS, MSDE, and
FUGE approaches, and it was observed that SOATS optimizes cost and energy by 10% and
25%, respectively. In [25–30], the authors concentrated mainly on datacenter processing
time, QoS parameters, and task processing time, and only one author in [28] discussed
failure rate as all the existing task-scheduling algorithms discussed various parameters. But
many of the authors did not tackle the relationship between fault tolerance and trust-based
parameters. Therefore, we reached a logical conclusion that we need to focus on tackling
fault-tolerance and trust-based parameters.

From Table 1, we can observe that many authors used various nature-inspired al-
gorithms and addressed various parameters, i.e., makespan, cost, execution time, and
throughput, but a very limited number of authors discussed fault-tolerance and SLA-based
trust-based parameters in the scheduling process in cloud computing. Therefore, we chose
these parameters as evaluation criteria in the scheduling process. In this research work, we
introduced a fault-tolerant trust-aware scheduling mechanism by capturing priorities of
tasks and VMs carefully at different levels and addressed parameter failure rate, success
rate, availability, and turnaround efficiency. This scheduling model was developed using
Harris hawks optimization.

Table 1. Summary of task-scheduling algorithms in the cloud paradigm.

Authors Technique Used Addressed Parameters

[7] APSO Makespan, throughput
[8] LJ-PSO, M-PSO makespan, total execution time, degree of imbalance
[9] GAGELS makespan, resource utilization
[10] MPSO Makespan, resource utilization
[11] IT2FCM Data movements, data placement, makespan
[12] PSO-RDAL Response time, task deadline, penalty cost
[13] EPSOCHO Makespan, processing cost, resource utilization
[14] GSOS Makespan, cost
[15] AINN-BPSO makespan, cost, degree of imbalance
[16] QPSO Scheduling efficiency
[17] MVO-GA Task transfer time
[18] NSGAIII runtime, cost, power consumption
[19] Hybrid Lion-GA Load balancing
[20] GSAGA Makespan
[21] GBO Makespan, accuracy of scheduling
[22] HWOA-MBA Makespan, cost
[23] IWHOLF-TSC Makespan, cost
[24] HWACOA Makespan, cost

Sensors 2023, 23, 8009 7 of 33

Table 1. Cont.

Authors Technique Used Addressed Parameters

[25] LBACO Datacenter processing time, response time, cost

[26] QOGSHO Makespan, resource utilization, consistency,
SLA violations

[27] ELHHO Schedule length, execution cost, resource utilization
[28] RATSA Failure rate
[29] SOATS Cost, energy consumption
[30] HunterPlus Energy consumption, job completion rate
[31] IQSSA QOS parameters
[32] RAO Makespan
[33] HFSGA Makespan, cost
[34] DRL Makespan, throughput
[35] IMOMVO Execution time, throughput

[36] HBSFD Task processing time, turnaround
time

[37] Wale Disk space
[38] Docker Containers Disk space

3. Fault-Tolerant Trust-Based Task Scheduling
3.1. FTTATS Problem Definition and System Architecture

In this subsection, we clearly formulated problem definition by considering the number
of tasks as tk =

{
t1, t2, t3,tk

}
, the number of VMs as vmn =

{
vm1, vm2, vm3, . . . vmn},

the number of physical hosts as hp =
{

h1, h2, h3, . . . hp}, the number of datacenters

as dcq =
{

dc1, dc2, dc3 . . . dcq
}

. Therefore, we formulated definition by assuming that

these tk tasks are to be scheduled on to vmns which are placed in hp physical hosts. They
reside in dcq datacenters by tackling success rate, failure rate, turnaround efficiency, and
availability. Figure 1 below represents system architecture. Initially, various cloud users
submit requests to the cloud interface. These requests are submitted to the task manager.
After the submission of tasks, priority of tasks is evaluated. Priorities are carefully evaluated
based on the size of task and the respective processing capacity of a VM to which it needs
to be scheduled. After calculation of these priorities at the first level, VM priorities are
calculated using electricity price at which that VM is located. These priorities need to be fed
to the FTTA scheduler, which checks the priorities of both VMs and map high-prioritized
tasks with high-prioritized VMs, i.e., VM residing in the low electricity cost region. While
scheduling tasks to precise VMs, the task manager interacts with the resource manager
in order to track resource utilization and updates resource status to the scheduler for
every task assignment. In this research work, for evaluating and analyzing SLA-based
trust parameters and failure rate, we added an event logger and captured the feedback to
evaluate fault tolerance and trust parameters. Notations used in mathematical modelling
and in the proposed system architecture are presented in Table 2 below.

Table 2. Notations used in System Architecture.

Notation Meaning

ldvmn
Workload on all considered VMs

ldn Workload on each VM
ldhp Workload on all considered physical hosts
povm Capacity of a VM
tovm

po Total capacity of all VMs
tk
len Length of all considered tasks

tk
pri Priorities of all considered tasks

vmj
pri

Priorities of all considered VMs based on electricity cost

Sensors 2023, 23, 8009 8 of 33

Table 2. Cont.

Notation Meaning

dtk Deadline constraint

exetk Execution time of all considered tasks

f intimek Finish time for a task
mk Makespan of a task
RF Rate of failures

a(vmn) Availability of considered VMs
SR(vmn) Success rate of considered VMs
tt(vmn) Turnaround time of considered VMs

trCP Trust in cloud provider

Sensors 2023, 23, x FOR PEER REVIEW 8 of 34

submitted to the task manager. After the submission of tasks, priority of tasks is evaluated.
Priorities are carefully evaluated based on the size of task and the respective processing
capacity of a VM to which it needs to be scheduled. After calculation of these priorities at
the first level, VM priorities are calculated using electricity price at which that VM is lo-
cated. These priorities need to be fed to the FTTA scheduler, which checks the priorities
of both VMs and map high-prioritized tasks with high-prioritized VMs, i.e., VM residing
in the low electricity cost region. While scheduling tasks to precise VMs, the task manager
interacts with the resource manager in order to track resource utilization and updates re-
source status to the scheduler for every task assignment. In this research work, for evalu-
ating and analyzing SLA-based trust parameters and failure rate, we added an event log-
ger and captured the feedback to evaluate fault tolerance and trust parameters. Notations
used in mathematical modelling and in the proposed system architecture are presented in
Table 2 below.

Figure 1. Proposed System Architecture.

Table 2. Notations used in System Architecture.

Notation Meaning 𝑙𝑑 𝑙𝑑
Workload on all considered VMs

Workload on each VM 𝑙𝑑 Workload on all considered physical hosts 𝑝𝑜 Capacity of a VM 𝑡𝑜 Total capacity of all VMs 𝑡 Length of all considered tasks 𝑡 Priorities of all considered tasks 𝑣𝑚 Priorities of all considered VMs based on elec-
tricity cost 𝑑 Deadline constraint 𝑒𝑥𝑒 Execution time of all considered tasks 𝑓𝑖𝑛 Finish time for a task 𝑚 Makespan of a task 𝑅𝐹 Rate of failures 𝑎(𝑣𝑚) Availability of considered VMs 𝑆𝑅(𝑣𝑚) Success rate of considered VMs 𝑡𝑡(𝑣𝑚) Turnaround time of considered VMs 𝑡𝑟 Trust in cloud provider

Figure 1. Proposed System Architecture.

3.2. FTTATS Mathematical Modelling

In this subsection, we precisely formulated mathematical modelling for our FTTATS
scheduler. Initially, we identified and evaluated priorities of tasks to determine present
workload on each virtual instance. Using Equation (1) below, present workload on all
virtual instances was calculated.

ldvmn
= ∑ ldn, (1)

where ldvmn is workload on all n VMs, ldn indicates load on each VM. All these VMs reside
in physical hosts. Workload on all p physical hosts was evaluated using Equation (2) below.

ldhp
=

ldvmn

∑ hp , (2)

where ldhp
is workload on all physical hosts. For the calculation of priorities, one of the

important steps is to identify the processing capacity of vm, the length of a task. The
processing capacity of VM was evaluated using Equation (3).

povm = pono ∗ poMIPS, (3)

Initiallym we calculated the processing capacity of a single VM. Then, the entire
processing capacity of all VMs was evaluated using Equation (4).

tovm
po = ∑ povmj

. (4)

Sensors 2023, 23, 8009 9 of 33

After calculating the processing capacity of a VM, the length of a task was identified
using Equation (5).

tk
len = tk

MIPS ∗ tk
po. (5)

The processing capacity of VMs and task length were evaluated using Equations (4) and (5)
respectively. Priorities of all heterogeneous tasks from various users were evaluated using
Equation (6) below.

tk
pri =

tk
len

povmj . (6)

In this work, after calculating priorities of tasks, VM priorities were calculated us-
ing electricity cost captured at various datacenters considered in our work. They were
calculated using Equation (7) below.

vmj
pri =

ecosthigh

ecostdcq . (7)

From Equations (6) and (7), we calculated priorities of tasks, VMs and highly pri-
oritized tasks based on VM processing capacity. Task lengths and tasks were mapped
according to priorities calculated using Equations (6) and (7), maping a task with the high-
est priority and mapping onto a VM with a high priority, i.e., with low electricity cost. If a
VM with high priority is not available for high priority, then that task is mapped to the next
prioritized VM. In our work, we included a deadline-aware constraint through which we
precisely scheduled a task on a corresponding VM. Other tasks are not allowed execution
on that VM until the pending task completes its execution, and deadline constraint in
our work is indicated as dtk. The primary objective of any task scheduler is to minimize
makespan. In our research, we identified that in order to calculate makespan, it is necessary
to calculate the execution time of thetask on a corresponding VM. Therefore, we calculated
execution time of a task on a VM using Equation (8) below.

exetk
=

exet

povm . (8)

After the calculation of execution time in Equation (8), we identified the finish time
of the task using Equation (9). For task tk, when it enters the execution queue, it may
immediately receive a VM, or it should wait for the other task to finish its execution.
Therefore, the finish time of a task plays a key role in this aspect, and it is mentioned in
Equation (9).

f intimek
= ∑ vmn + exetk

. (9)

After identifying the finishing time for a task, we need to emphasize that finishing
time should be shorter than the deadline of that corresponding task, and it is evaluated
using Equation (10).

f intimek ≤ dtk
, (10)

Then, we evaluated various parameters. Primarily, we evaluated the makespan. It was
measured based on the time of execution of a task on a chosen VM. If the execution time in-
creases and makespan increases, scheduler performance degrades. For effective scheduling
of tasks, makespan needs to be minimized. It is calculated using Equations (11) and (12).

mk = max
(

f intimevmn
)

, (11)

min f intime
(

tkvmn
)
= ∑k

r=1 ∑n
s=1 δrs f intime

(
tkvmn

)
. (12)

From Equation (12), we can observe that δ is assigned to a value of zero or one based
on task assignment to a VM. If task tk is assigned to VM vmn, then the value is set to one,
otherwise it is to be considered zero. After calculating the makespan identifying the rate

Sensors 2023, 23, 8009 10 of 33

of failures of tasks, our aim is to develop a fault-tolerant trust-based scheduler. Failure
rate can be defined as a ratio of the number of failed tasks in the proposed approach to the
number of failed tasks with existing approaches. It is calculated using Equation (13) below.

RF =
∑b

0 No.o f f ailures f or FTTA

∑b
0 No.o f f ailures f or existing approaches

. (13)

After identifying the rate of failures from Equation (13), we focused on identifying
SLA-based trust parameters as the failure rate is related with trust, because whenever the
rate of failures decreases, the trust of cloud provider improves because of the improvement
in SLA-based trust parameter availability of VM, success rate of a VM, and turnaround
efficiency. Availability of VM is an important parameter related to trust in a cloud provider,
because if a user requests a resource and it is provisioned seamlessly to the user without
any problems, then the availability of a resource chosen by the user is high in the respective
cloud provider. Automatically, the trust in the cloud provider increases with respect to
availability. Availability of VM is defined as the ratio of the number of tasks accepted by
VM to the total number of tasks. Equation (14) below indicates the availability of VMs.

a(vmn) =
ak

tk . (14)

After deduction of the availability of a VM, another trust-based parameter is the
success rate of a VM. It is calculated as the ratio of the number of successful requests
executed to submitted requests on a corresponding VM according to SLA. It is calculated
using Equation (15).

SR(vmn) =
suctk

subtk . (15)

Another important parameter that plays a key role in maintaining trust in a cloud
provider is turnaround efficiency. It is defined as the ratio of estimated turnaround time of
a task which is mentioned in SLA to the actual turnaround time for executing a task on a
respective virtual resource. It is shown here in Equation (16).

tt(vmn) =
estk

acttk . (16)

Then, after evaluating availability, success rate, and turnaround efficiency of a VM,
we calculated trust in a cloud provider and it is calculated using Equation (17) below.

trCP = S1 ∗ a(vmn) + S2 ∗ SR(vmn) + S3 ∗ tt(vmn), (17)

In Equation (17) above, S = {S1, S2, S3} are positive weights, and based on these
values, trust value is evaluated. These values are taken from [39]. These are positive weights,
and the range of values lies in-between zero and one, and these values are calculated using
the co-variance technique. From [39], we assumed the weights for availability as S1 = 0.5,
success rate as S2 = 0.2, turnaround efficiency as S3 = 0.1. From Equation (17), trust in the
cloud provider was calculated using the above-mentioned weights.

3.3. Fitness Function for FTTATS

After mathematical modelling of FTTATS, we carefully model the fitness function for
FTTATS to optimize the parameters addressed in our research. It is calculated using the
following Equation (18).

f (x) = α1 ∗mk + α2 ∗ RF + α3 ∗ a(vmn) + α4 ∗ SR(vmn) + α5 ∗ tt(vmn), (18)

Sensors 2023, 23, 8009 11 of 33

α1 + α2 + α3 + α4 + α5 = 1. (19)

From Equations (18) and (19), fitness function is calculated for the optimization of
parameter makespan, rate of failures, success rate, availability, turnaround efficiency to gain
trust in the cloud provider and to improve fault tolerance. In the next subsection, we model
a fault-tolerant trust-aware task scheduler (FTTATS) using Harris hawks optimization in a
detailed manner.

3.4. Fault-Tolerant Trust-Aware Task Scheduler (FTTATS) Using Harris Hawks Optimization

This subsection briefly discusses the methodology used in the FTTATS schedulerl i.e.,
Harris hawks optimization, which is a nature-inspired algorithm based on the catching
and hunting behaviour of hawks for rabbits as presented in [40]. This algorithm consists
of different phases to catch and hunt prey, i.e., exploration, exploitation, and transition.
Initially, in this algorithm, hawks keenly wait to catch their prey based on its location, i.e.,
prey lies in a group or it is away from group. Therefore, to identify the position of prey, i.e.,
rabbit, in this case, the data is calculated using Equation (20) below.

X(T + 1) =
{

Q ≥ 0.5 XRAND(T)− P1
∣∣XRAND(T)− 2P2X(T)

∣∣
Q < 0.5

(
XRAB(T)− Xm(T)

)
− P3(LB + P4(UB− LB))

, (20)

where X(T + 1) is hawk position in the next iteration, XRAB(T) is the current position of
the rabbit, P1, P2, P3, P4 are current position vectors of hawks. Q is a random number which
lies inside the range of 0,1. UB and LB are upper and lower bounds of variables, XRAND(T)
is a randomly selected hawk bird from a population, Xm(T) is the average position of a
hawk bird among the population.

The average hawk position is calculated using the following Equation (21):

Xm(T) =
1
U ∑U

c=1 Xm
c (T). (21)

After the evaluation of a hawk bird’s position, the energy of prey, i.e., rabbit’s energy,
is evaluated using Equation (22) below.

EN = 2EN0

(
1− T

R

)
, (22)

where R is the maximum number of iterations, EN is the required escaping energy for a
rabbit, i.e., prey, EN0 is the initial energy required for the prey to escape from a hawk bird.
The range of energy for prey lies in-between [–1,1]. When the initial energy of prey, i.e.,
EN0, decreases from 0 to −1, then it can be easily hunted by a hawk bird, and when the
initial energy of prey, i.e., EN0, increases from 0 to 1, then the chances of escaping from a
hawk bird increases before the exploitation phase. The transition of prey from exploration
to exploitation mainly depends on two parameters, (1) required energy for prey to escape
from hunting and (2) probability of chance to escape from a hawk bird. In our research,
the probability of escaping from a hawk bird is denoted as P. In the first case, if P < 0.5,
there is an escaping chance for prey from a hawk bird, and in the second case, if P ≥ 0.5,
then there is no chance of escaping for prey from a hawk bird. Generally, in Harris hawks
optimization, exploitation is categorized into several types: soft besiege, hard besiege,
soft besiege with incremental steps, and hard besiege with incremental steps [40]. Soft
besiege occurs based on two conditions: if P ≥ 0.5 and |EN|≥ 0.5, and it is evaluated
using = Equations (23) and (24).

X(T + 1) = ψX(T)− EN |WXRAB(T)− X(T)|, (23)

ψX(T) = XRAB(T)− X(T), (24)

Sensors 2023, 23, 8009 12 of 33

ΨX(T) is the difference between the position vector of the rabbit and the current iteration
at T.

After the calculation of soft besiege, hard besiege occurs based on two conditions: if
P ≥ 0.5 and |EN|≤ 0.5, and it is evaluated using Equation (25).

X(T + 1) = XRAB(T)− EN | ψX(T) | . (25)

After the calculation of hard besiege, there are other categories of besieges: for example,
soft besiege with incremental steps, and it is based on previous movements of the hawk
bird. It is calculated as follows, using Equation (26):

Y = XRAB(T)− EN |WXRAB(T)− X(T). (26)

In the above besiege, hawk movement is based on the previous step of the hawk bird,
and if the steps of the hawk bird are not constructive, then the hawk bird abruptly encircles
the prey. It is evaluated using Equation (27).

Z = Y + b ∗ LF(di), (27)

where di is the dimension of the problem, and LF is the levy flight function.

LF(Y) = 0.01 ∗ λ ∗ κ
| ζ |

1
η

, (28)

κ =

(
κ(1 + η) ∗ sin

(πη
2
)

κ
(1+η)

2 ∗ η ∗ 2
η−1

2

)1/η

, (29)

where λ, ζ are random values that lay in-between 0, 1. The η value is set to 1.5 as per [40].
For soft besiege with constructive or incremental steps, updation is performed by

using the following Equation (30):

X(T + 1) =
{

Y f (Y) < f (X(T))
Z f (Z) < f (X(T))

. (30)

In the above equation, Y, Z are calculated in Equations (26) and (27) respectively. For
hard besiege with constructive or incremental steps, updation is performed by using the
following Equation (31):

X(T + 1) =
{

Y f (Y) < f (X(T))
Z f (Z) < f (X(T))

. (31)

In the above equations, Y, Z are calculated in Equations (32) and (27) respectively.

Y = Xrab(T)− EN |WXrab(T)− Xm(T). (32)

Xm(T) is calculated from Equation (21).

3.5. Proposed FTTA Task-Scheduling Algorithm

The proposed fault-tolerant trust-aware task-scheduling algorithm using Harris hawks
optimization in cloud computing is presented below as Algorithm 1.

Sensors 2023, 23, 8009 13 of 33

Algorithm 1. Fault-tolerant trust-aware task scheduling algorithm using Harris hawks
optimization.

Input:tk =
{

t1, t2, t3,tk
}

, vmn =
{

vm1, vm2, vm3, . . . vmn}, hp =
{

h1, h2, h3, . . . hp},

dcq =
{

dc1, dc2, dc3 . . . dcq
}

.
Output: Efficient generation of schedules for tasks by mapping them to precise VMs while
minimizing mk, RF, and improving a(VM)n, SR(vm)n, tt(vm)n, trCP.

Start
Initialization of Hawk birds population in a random manner.
Initialization of fitness function.
Calculation of task priorities by Equation (6).
Calculation of VM priorities by Equation (7).
Calculate fitness function by Equation (18).
i f |EN ≥ 1| then
Update position vectors using Equation (20).
else
i f |EN < 1|
It is in exploitation.
i f (P ≥ 0.5)&&(|EN|≥ 0.5) then
Soft besiege begins, position vectors updation by Equation (23).
elsei f (P ≥ 0.5)&&(|EN| < 0.5) then
Hard besiege begins, position vectors updation by Equation (25).
elsei f (P < 0.5)&&(|EN| ≥ 0.5) then
Soft besiege by constructive steps begin, position vectors updation by Equation (30).
elsei f (P < 0.5)&&(|EN| < 0.5) then
Hard besiege by constructive steps begin, position vectors updation by Equation (31).
Identify best mapped tasks to VMs using above Hawks and calculate

mk(x), RF(x), a(VM)n(x), SR(vm)n(x), tt(vm)n(x).
i f current trust is increased then add current trust value to existing trust value of cloud

provider.
else
Trust value of cloud provider exponentially decreases
end i f
end i f
end i f
Repeat process until all iterations completed.
End

Figure 2 above represents the flow of the proposed FTTA task scheduler in which a
random hawk population is initially generated. In the next step, priorities of tasks and
VMs are calculated using Equations (6) and (7). After calculating priorities, fitness function
is evaluated by Equation (18). There are two phases in Harris hawks optimization, i.e.,
exploration and exploitation, as mentioned in [40]. In the exploration phase, if |EN ≥ 1|,
then the hawk bird searches for prey until it is discovered, and position vectors can be
updated using Equation (20). Otherwise, the exploitation phase begins to catch the prey,
but in this phase, there are other two cases, i.e., soft besiege occurs when the probability of
escaping for the prey≥ 0.5, the energy of prey is≥ 0.5, and if the probability of escaping for
the prey ≥ 0.5, the energy for the prey is ≤ 0.5, then hard besiege occurs. When soft besiege
occurs, the position vectors are updated using Equation (23), and for hard besiege, position
vectors are updated using Equation (25). In this exploitation phase, there is another case
when the probability of escaping for the prey is less than 0.5, energy ≥ to 0.5; then, soft
besiege occurs in prey with constructive steps, and if not, then hard besiege in prey with
constructive steps is applied. For soft besiege with constructive steps, position vectors are
updated using Equation (30), and for hard besiege with constructive steps, position vectors
are updated using Equation (31). After these steps, the values for makespan are identified,
as well as the rate of failures, availability, the success rate of VMs, the turnaround efficiency

Sensors 2023, 23, 8009 14 of 33

through which trust in the cloud provider is evaluated. Thereafter, trust in the cloud
provider is identified, and if it is increased over the existing trust value, it is updated as the
current trust value, and if it is not increased, it isexponentially decreased. The same process
is repeated until all iterations are completed in the FTTA task-scheduling mechanism.

Sensors 2023, 23, x FOR PEER REVIEW 15 of 34

Figure 2. Flow of Proposed FTTA task scheduler.

4. Simulation and Results
This section mainly represents extensive simulations carried out for FTTATS using

random generated workload, statistical dispersion of tasks using various fabricated da-
tasets by different distributions and realtime worklogs from [41,42]. This extensive set of
experiments conducted using the Cloudsim [43] simulator to evaluate the performance of
the FTTATS scheduler. Initially, to evaluate all parameters, we used various statistical data
distributions by fabricating the datasets, i.e., represented as D01, D02, D03, D04, i.e., uni-
form, normal, left skewed, and right skewed, respectively. After the calculation of
makespan with these, we chose real-time worklogs from [41,42], and they were repre-
sented as D05 and D06 throughout the research. We chose these dataset for fabrication in
this simulation because generally, many existing authors used random generated work-
loads, but using a random generated workload for this type of scheduling problem does
not provide precise schedules. Therefore, we fabricated different distributions of datasets,
D01–D04, and to check the efficacy of the approach, we chose real-time worklogs from the
HPC2N computing cluster and NASA worklogs. This section consists of various subsec-
tions including configuration settings required for simulation, calculation of makespan,

Figure 2. Flow of Proposed FTTA task scheduler.

4. Simulation and Results

This section mainly represents extensive simulations carried out for FTTATS using ran-
dom generated workload, statistical dispersion of tasks using various fabricated datasets
by different distributions and realtime worklogs from [41,42]. This extensive set of exper-
iments conducted using the Cloudsim [43] simulator to evaluate the performance of the
FTTATS scheduler. Initially, to evaluate all parameters, we used various statistical data dis-
tributions by fabricating the datasets, i.e., represented as D01, D02, D03, D04, i.e., uniform,
normal, left skewed, and right skewed, respectively. After the calculation of makespan
with these, we chose real-time worklogs from [41,42], and they were represented as D05
and D06 throughout the research. We chose these dataset for fabrication in this simulation
because generally, many existing authors used random generated workloads, but using a
random generated workload for this type of scheduling problem does not provide precise
schedules. Therefore, we fabricated different distributions of datasets, D01–D04, and to
check the efficacy of the approach, we chose real-time worklogs from the HPC2N comput-
ing cluster and NASA worklogs. This section consists of various subsections including
configuration settings required for simulation, calculation of makespan, rate of failures,

Sensors 2023, 23, 8009 15 of 33

availability, success rate, and turnaround efficiency of VMs. A precise discussion on the
generated results and analysis is represented in another subsection.

4.1. Simulation Setup and Configuration Settings

This subsection clearly represents simulation setup and standard configuration set-
tings used in our simulation. To evaluate the proposed FTTATS, we compared the proposed
FTTATS with the existing state-of-the-art approaches, ACO, GA, and PSO. We used con-
figuration settings required for simulation captured from [42]. Table 3 below represents
configuration settings used in the simulation for the proposed FTTATS.

Table 3. Simulation Configuration Settings.

Name Quantity

No. tasks 1000
Length of tasks 900,000

Memory of virtual host 2048 MB
Bandwidth of virtual resources 15 Mbps

Processing elements 1200 MIPS
Physical host memory 32 GB

Physical host hard disk capacity 2 TB
Bandwidth capacity of physical host 100 Mbps

Hypervisor type Monolithic
Name of the hypervisor Xen

OS of physical host MAC
Operating system of virtual host Linux

No. of datacenters 10

4.2. Evaluation of Makespan

In this subsection, the makespan of all tasks submitted to the scheduler is calculated.
Here, at first, we calculated the makespan as it is an important perspective in the scheduling
process of the cloud paradigm. The effectiveness of the scheduling process in the cloud
model depends on the minimization of the makespan. Therefore, we chose this parameter
as the primary concern for our research; to showcase the efficacy of the proposed FTTATS,
it was compared against the existing ACO, GA, and PSO algorithms. Table 4 below and
Figures 3–8 show the generated makespan for different distributions of data, i.e., D01,
D02, D03, D04, and real-time worklogs, i.e., D05 and D06. From the generated makespan,
it is evident that the proposed FTTATS outperformed the existing approaches in regard
to makespan.

Sensors 2023, 23, x FOR PEER REVIEW 17 of 34

No. of Tasks ACO GA PSO FTTATS
100 (D04) 624.98 711.28 624.78 509.32
500 (D04) 761.67 823.78 724.37 646.31

1000 (D04) 1412.76 1498.32 1331.27 1202.62
No. of Tasks ACO GA PSO FTTATS

100 (D05) 1472.1 1408.72 1873.16 821.37
500 (D05) 1784.6 2621.35 2187.23 1409.11

1000 (D05) 2653.98 3432.78 2821.11 1812.46
No. of Tasks ACO GA PSO FTTATS

100 (D06) 821.77 722.99 687.67 603.45
500 (D06) 931.45 1098.21 902.32 802.19

1000 (D06) 1421.76 1921.46 1902.32 1056.34

Figure 3. Makespan calculation by D01.

Figure 4. Makespan calculation by D02.

Figure 3. Makespan calculation by D01.

Sensors 2023, 23, 8009 16 of 33

Table 4. Calculation of makespan using FTTATS.

No. of Tasks ACO GA PSO FTTATS

100 (D01) 708.12 715.43 692.34 612.43

500 (D01) 925.17 1338.26 1114.8 812.43

1000 (D01) 1412.45 1697.31 1824.6 921.37

No. of Tasks ACO GA PSO FTTATS

100 (D02) 952.18 921.39 830.17 727.5

500 (D02) 1323.71 1308.34 1419.18 931.26

1000 (D02) 1628.92 1698.13 1822.57 1308.21

No. of Tasks ACO GA PSO FTTATS

100 (D03) 872.43 742.56 837.28 621.53

500 (D03) 924.53 1298.21 1098.22 702.78

1000 (D03) 1413.7 1502.56 1267.87 953.12

No. of Tasks ACO GA PSO FTTATS

100 (D04) 624.98 711.28 624.78 509.32

500 (D04) 761.67 823.78 724.37 646.31

1000 (D04) 1412.76 1498.32 1331.27 1202.62

No. of Tasks ACO GA PSO FTTATS

100 (D05) 1472.1 1408.72 1873.16 821.37

500 (D05) 1784.6 2621.35 2187.23 1409.11

1000 (D05) 2653.98 3432.78 2821.11 1812.46

No. of Tasks ACO GA PSO FTTATS

100 (D06) 821.77 722.99 687.67 603.45

500 (D06) 931.45 1098.21 902.32 802.19

1000 (D06) 1421.76 1921.46 1902.32 1056.34

Sensors 2023, 23, x FOR PEER REVIEW 17 of 34

No. of Tasks ACO GA PSO FTTATS
100 (D04) 624.98 711.28 624.78 509.32
500 (D04) 761.67 823.78 724.37 646.31

1000 (D04) 1412.76 1498.32 1331.27 1202.62
No. of Tasks ACO GA PSO FTTATS

100 (D05) 1472.1 1408.72 1873.16 821.37
500 (D05) 1784.6 2621.35 2187.23 1409.11

1000 (D05) 2653.98 3432.78 2821.11 1812.46
No. of Tasks ACO GA PSO FTTATS

100 (D06) 821.77 722.99 687.67 603.45
500 (D06) 931.45 1098.21 902.32 802.19

1000 (D06) 1421.76 1921.46 1902.32 1056.34

Figure 3. Makespan calculation by D01.

Figure 4. Makespan calculation by D02. Figure 4. Makespan calculation by D02.

Sensors 2023, 23, 8009 17 of 33

Sensors 2023, 23, x FOR PEER REVIEW 18 of 34

Figure 5. Makespan calculation by D03.

Figure 6. Makespan calculation by D04.

Figure 7. Makespan calculation by D05.

Figure 5. Makespan calculation by D03.

Sensors 2023, 23, x FOR PEER REVIEW 18 of 34

Figure 5. Makespan calculation by D03.

Figure 6. Makespan calculation by D04.

Figure 7. Makespan calculation by D05.

Figure 6. Makespan calculation by D04.

Sensors 2023, 23, x FOR PEER REVIEW 18 of 34

Figure 5. Makespan calculation by D03.

Figure 6. Makespan calculation by D04.

Figure 7. Makespan calculation by D05. Figure 7. Makespan calculation by D05.

Sensors 2023, 23, 8009 18 of 33

Sensors 2023, 23, x FOR PEER REVIEW 19 of 34

Figure 8. Makespan calculation by D06.

4.3. Evaluation of Rate of Failures
In this subsection, after calculating the makespan, our next objective is to calculate

the rate of failures, as in this research our model needs to generate schedules precisely
while minimizing the rate of failures. We chose rate of failures as a parameter in this re-
search because a single point of failures frequently occurs in the cloud environment, and
it is the responsibility of the cloud provider to choose the backup model to sustain appli-
cations in the cloud paradigm and to gain the trust over their cloud environment from the
customers. Therefore, the rate of failures is calculated in this research using Equation (13).
Initially, fabricated datasets with different distributions are used, i.e., D01, D02, D03, and
D04, and after that, D05 and D06 are used to calculate the rate of failures. The proposed
FTTATS was compared to the existing ACO, GA, and PSO. Table 5 below and Figures 9–
14 show the generated rate of failures for different distributions of data, i.e., D01, D02,
D03, D04, and real-time worklogs, i.e., D05 and D06. From the generated rate of failures,
it is evident that the proposed FTTATS outperformed the existing approaches in regard to
rate of failures.

Table 5. Calculation of Rate of failures using FTTATS.

No. of Tasks ACO GA PSO FTTATS
100 (D01) 54.32 51.13 50.11 18.11
500 (D01) 63.52 60.29 59.37 22.13

1000 (D01) 45.14 47.14 48.22 17.11
No. of Tasks ACO GA PSO FTTATS

100 (D02) 51.67 48.43 46.78 21.15
500 (D02) 60.32 57.17 35.33 19.28

1000 (D02) 53.24 42.43 49.15 17.31
No. of Tasks ACO GA PSO FTTATS

100 (D03) 62.76 51.88 32.17 16.22
500 (D03) 45.17 48.37 27.32 24.37

1000 (D03) 56.18 38.21 20.17 14.29
No. of Tasks ACO GA PSO FTTATS

100 (D04) 45.31 63.88 71.56 18.13
500 (D04) 32.12 54.16 69.88 21.35

1000 (D04) 36.76 37.44 41.26 16.38
No. of Tasks ACO GA PSO FTTATS

Figure 8. Makespan calculation by D06.

4.3. Evaluation of Rate of Failures

In this subsection, after calculating the makespan, our next objective is to calculate the
rate of failures, as in this research our model needs to generate schedules precisely while
minimizing the rate of failures. We chose rate of failures as a parameter in this research
because a single point of failures frequently occurs in the cloud environment, and it is the
responsibility of the cloud provider to choose the backup model to sustain applications in
the cloud paradigm and to gain the trust over their cloud environment from the customers.
Therefore, the rate of failures is calculated in this research using Equation (13). Initially,
fabricated datasets with different distributions are used, i.e., D01, D02, D03, and D04, and
after that, D05 and D06 are used to calculate the rate of failures. The proposed FTTATS was
compared to the existing ACO, GA, and PSO. Table 5 below and Figures 9–14 show the
generated rate of failures for different distributions of data, i.e., D01, D02, D03, D04, and
real-time worklogs, i.e., D05 and D06. From the generated rate of failures, it is evident that
the proposed FTTATS outperformed the existing approaches in regard to rate of failures.

Sensors 2023, 23, x FOR PEER REVIEW 20 of 34

100 (D05) 77.37 68.56 66.09 21.29
500 (D05) 69.87 71.22 71.43 18.98

1000 (D05) 71.23 75.32 61.33 24.17
No. of Tasks ACO GA PSO FTTATS

100 (D06) 56.34 68.32 56.87 19.72
500 (D06) 64.87 58.32 65.47 18.35

1000 (D06) 71.82 64.32 78.34 12.34

Figure 9. Rate of Failures calculation by D01.

Figure 10. Rate of Failures calculation by D02.

Figure 9. Rate of Failures calculation by D01.

Sensors 2023, 23, 8009 19 of 33

Table 5. Calculation of Rate of failures using FTTATS.

No. of Tasks ACO GA PSO FTTATS

100 (D01) 54.32 51.13 50.11 18.11

500 (D01) 63.52 60.29 59.37 22.13

1000 (D01) 45.14 47.14 48.22 17.11

No. of Tasks ACO GA PSO FTTATS

100 (D02) 51.67 48.43 46.78 21.15

500 (D02) 60.32 57.17 35.33 19.28

1000 (D02) 53.24 42.43 49.15 17.31

No. of Tasks ACO GA PSO FTTATS

100 (D03) 62.76 51.88 32.17 16.22

500 (D03) 45.17 48.37 27.32 24.37

1000 (D03) 56.18 38.21 20.17 14.29

No. of Tasks ACO GA PSO FTTATS

100 (D04) 45.31 63.88 71.56 18.13

500 (D04) 32.12 54.16 69.88 21.35

1000 (D04) 36.76 37.44 41.26 16.38

No. of Tasks ACO GA PSO FTTATS

100 (D05) 77.37 68.56 66.09 21.29

500 (D05) 69.87 71.22 71.43 18.98

1000 (D05) 71.23 75.32 61.33 24.17

No. of Tasks ACO GA PSO FTTATS

100 (D06) 56.34 68.32 56.87 19.72

500 (D06) 64.87 58.32 65.47 18.35

1000 (D06) 71.82 64.32 78.34 12.34

Sensors 2023, 23, x FOR PEER REVIEW 20 of 34

100 (D05) 77.37 68.56 66.09 21.29
500 (D05) 69.87 71.22 71.43 18.98

1000 (D05) 71.23 75.32 61.33 24.17
No. of Tasks ACO GA PSO FTTATS

100 (D06) 56.34 68.32 56.87 19.72
500 (D06) 64.87 58.32 65.47 18.35

1000 (D06) 71.82 64.32 78.34 12.34

Figure 9. Rate of Failures calculation by D01.

Figure 10. Rate of Failures calculation by D02. Figure 10. Rate of Failures calculation by D02.

Sensors 2023, 23, 8009 20 of 33

Sensors 2023, 23, x FOR PEER REVIEW 21 of 34

Figure 11. Rate of Failures calculation by D03.

Figure 12. Rate of Failures calculation by D04.

Figure 13. Rate of Failures calculation by D05.

Figure 11. Rate of Failures calculation by D03.

Sensors 2023, 23, x FOR PEER REVIEW 21 of 34

Figure 11. Rate of Failures calculation by D03.

Figure 12. Rate of Failures calculation by D04.

Figure 13. Rate of Failures calculation by D05.

Figure 12. Rate of Failures calculation by D04.

Sensors 2023, 23, x FOR PEER REVIEW 21 of 34

Figure 11. Rate of Failures calculation by D03.

Figure 12. Rate of Failures calculation by D04.

Figure 13. Rate of Failures calculation by D05. Figure 13. Rate of Failures calculation by D05.

Sensors 2023, 23, 8009 21 of 33

Sensors 2023, 23, x FOR PEER REVIEW 22 of 34

Figure 14. Rate of Failures calculation by D06.

4.4. Evaluation of Availability of VMs
In this subsection, we calculated our next parameter, i.e., availability of VMs. Availa-

bility plays a key role in the cloud paradigm as it is one of the factors to gain trust over
the cloud provider. For this calculation, we used data distributions, i.e., D01, D02, D03,
and D04, and real-time work logs, i.e., D05 and D06, as mentioned in the simulation setup.
This simulation is needed to calculate availability. the proposed FTTATS was compared
to state-of-the-art algorithms, i.e., ACO, PSO, and GA. Table 6 below and Figures 15–20
show generated availability for different distributions of data, i.e., D01, D02, D03, and
D04, and real-time worklogs, i.e., D05 and D06. From the generated availability, it is evi-
dent that the proposed FTTATS outperformed the existing approaches in regard to the
availability of VMs.

Table 6. Calculation of Availability of VMs using FTTATS.

No. of Tasks ACO GA PSO FTTATS
100(D01) 65.21 67.88 71.24 86.87
500(D01) 71.36 62.75 69.37 87.36
1000(D01) 78.47 71.37 75.87 89.99

No. of Tasks ACO GA PSO FTTATS
100(D02) 69.89 65.12 72.37 88.91
500(D02) 72.77 59.88 67.17 82.99
1000(D02) 65.44 61.17 74.88 90.37

No. of Tasks ACO GA PSO FTTATS
100(D03) 77.32 58.47 68.09 85.44
500(D03) 66.19 63.67 78.67 89.23
1000(D03) 79.35 71.98 69.11 91.56

No. of Tasks ACO GA PSO FTTATS
100(D04) 67.99 79.34 78.61 89.93
500(D04) 72.43 82.11 62.19 91.65
1000(D04) 76.97 69.14 79.98 94.35

No. of Tasks ACO GA PSO FTTATS
100(D05) 52.47 59.45 54.12 82.56
500(D05) 67.18 62.08 62.18 89.17
1000(D05) 74.86 67.44 69.23 90.12

No. of Tasks ACO GA PSO FTTATS

Figure 14. Rate of Failures calculation by D06.

4.4. Evaluation of Availability of VMs

In this subsection, we calculated our next parameter, i.e., availability of VMs. Avail-
ability plays a key role in the cloud paradigm as it is one of the factors to gain trust over
the cloud provider. For this calculation, we used data distributions, i.e., D01, D02, D03,
and D04, and real-time work logs, i.e., D05 and D06, as mentioned in the simulation setup.
This simulation is needed to calculate availability. the proposed FTTATS was compared
to state-of-the-art algorithms, i.e., ACO, PSO, and GA. Table 6 below and Figures 15–20
show generated availability for different distributions of data, i.e., D01, D02, D03, and
D04, and real-time worklogs, i.e., D05 and D06. From the generated availability, it is
evident that the proposed FTTATS outperformed the existing approaches in regard to the
availability of VMs.

Table 6. Calculation of Availability of VMs using FTTATS.

No. of Tasks ACO GA PSO FTTATS

100 (D01) 65.21 67.88 71.24 86.87

500 (D01) 71.36 62.75 69.37 87.36

1000 (D01) 78.47 71.37 75.87 89.99

No. of Tasks ACO GA PSO FTTATS

100 (D02) 69.89 65.12 72.37 88.91

500 (D02) 72.77 59.88 67.17 82.99

1000 (D02) 65.44 61.17 74.88 90.37

No. of Tasks ACO GA PSO FTTATS

100 (D03) 77.32 58.47 68.09 85.44

500 (D03) 66.19 63.67 78.67 89.23

1000 (D03) 79.35 71.98 69.11 91.56

No. of Tasks ACO GA PSO FTTATS

100 (D04) 67.99 79.34 78.61 89.93

500 (D04) 72.43 82.11 62.19 91.65

1000 (D04) 76.97 69.14 79.98 94.35

No. of Tasks ACO GA PSO FTTATS

100 (D05) 52.47 59.45 54.12 82.56

Sensors 2023, 23, 8009 22 of 33

Table 6. Cont.

No. of Tasks ACO GA PSO FTTATS

500 (D05) 67.18 62.08 62.18 89.17

1000 (D05) 74.86 67.44 69.23 90.12

No. of Tasks ACO GA PSO FTTATS

100 (D06) 42.37 54.32 62.21 87.42

500 (D06) 54.65 61.12 71.88 91.26

1000 (D06) 63.18 69.98 67.10 94.31

Sensors 2023, 23, x FOR PEER REVIEW 23 of 34

100(D06) 42.37 54.32 62.21 87.42
500(D06) 54.65 61.12 71.88 91.26
1000(D06) 63.18 69.98 67.10 94.31

Figure 15. Availability of VMs calculation by D01.

Figure 16. Availability of VMs calculation by D02.

Figure 17. Availability of VMs calculation by D03.

Figure 15. Availability of VMs calculation by D01.

Sensors 2023, 23, x FOR PEER REVIEW 23 of 34

100(D06) 42.37 54.32 62.21 87.42
500(D06) 54.65 61.12 71.88 91.26
1000(D06) 63.18 69.98 67.10 94.31

Figure 15. Availability of VMs calculation by D01.

Figure 16. Availability of VMs calculation by D02.

Figure 17. Availability of VMs calculation by D03.

Figure 16. Availability of VMs calculation by D02.

Sensors 2023, 23, 8009 23 of 33

Sensors 2023, 23, x FOR PEER REVIEW 23 of 34

100(D06) 42.37 54.32 62.21 87.42
500(D06) 54.65 61.12 71.88 91.26
1000(D06) 63.18 69.98 67.10 94.31

Figure 15. Availability of VMs calculation by D01.

Figure 16. Availability of VMs calculation by D02.

Figure 17. Availability of VMs calculation by D03. Figure 17. Availability of VMs calculation by D03.

Sensors 2023, 23, x FOR PEER REVIEW 24 of 34

Figure 18. Availability of VMs calculation by D04.

Figure 19. Availability of VMs calculation by D05.

Figure 20. Availability of VMs calculation by D06.

4.5. Evaluation of Success Rate of VMs
In this subsection, the success rate of VMs is evaluated by considering configuration

settings mentioned in Table 3. We chose success rate of VM as a parameter because when
a task is successfully executed on a VM, based on that, the success rate of a VM is

Figure 18. Availability of VMs calculation by D04.

Sensors 2023, 23, x FOR PEER REVIEW 24 of 34

Figure 18. Availability of VMs calculation by D04.

Figure 19. Availability of VMs calculation by D05.

Figure 20. Availability of VMs calculation by D06.

4.5. Evaluation of Success Rate of VMs
In this subsection, the success rate of VMs is evaluated by considering configuration

settings mentioned in Table 3. We chose success rate of VM as a parameter because when
a task is successfully executed on a VM, based on that, the success rate of a VM is

Figure 19. Availability of VMs calculation by D05.

Sensors 2023, 23, 8009 24 of 33

Sensors 2023, 23, x FOR PEER REVIEW 24 of 34

Figure 18. Availability of VMs calculation by D04.

Figure 19. Availability of VMs calculation by D05.

Figure 20. Availability of VMs calculation by D06.

4.5. Evaluation of Success Rate of VMs
In this subsection, the success rate of VMs is evaluated by considering configuration

settings mentioned in Table 3. We chose success rate of VM as a parameter because when
a task is successfully executed on a VM, based on that, the success rate of a VM is

Figure 20. Availability of VMs calculation by D06.

4.5. Evaluation of Success Rate of VMs

In this subsection, the success rate of VMs is evaluated by considering configuration
settings mentioned in Table 3. We chose success rate of VM as a parameter because when a
task is successfully executed on a VM, based on that, the success rate of a VM is evaluated,
which is indirectly related to trust in the cloud provider. Therefore, to evaluate the success
rate of VMs, we considered fabricated data distributions, i.e., D01, D02, D03, and D04, and
real-time worklogs, i.e., D05 and D06. This simulation is used to calculate success rate. The
proposed FTTATS was compared to state-of-the-art algorithms, i.e., ACO, PSO, and GA.
Table 7 below and Figures 21–26 show generated success rate for different distributions
of data, i.e., D01, D02, D03, and D04, and real-time worklogs, i.e., D05 and D06. From the
generated success rate, it is evident that the proposed FTTATS outperformed the existing
approaches in regard to the success rate of VMs.

Table 7. Calculation of Success rate of VMs using FTTATS.

No. of Tasks ACO GA PSO FTTATS

100 (D01) 72.17 69.21 71.24 87.19

500 (D01) 62.34 75.32 62.17 91.35

1000 (D01) 49.36 79.21 59.61 96.36

No. of Tasks ACO GA PSO FTTATS

100 (D02) 54.61 59.57 74.88 87.38

500 (D02) 61.37 64.32 80.19 90.14

1000 (D02) 69.57 71.37 82.17 94.66

No. of Tasks ACO GA PSO FTTATS

100 (D03) 64.89 55.31 73.16 89.09

500 (D03) 72.61 61.16 80.11 93.46

1000 (D03) 65.15 69.16 84.57 96.17

No. of Tasks ACO GA PSO FTTATS

100 (D04) 56.39 58.81 75.20 84.16

500 (D04) 60.47 68.16 62.11 91.98

1000 (D04) 70.12 72.39 59.26 97.15

No. of Tasks ACO GA PSO FTTATS

100 (D05) 48.15 62.26 57.87 90.29

Sensors 2023, 23, 8009 25 of 33

Table 7. Cont.

No. of Tasks ACO GA PSO FTTATS

500 (D05) 55.06 68.67 67.31 94.37

1000 (D05) 61.02 73.22 74.36 98.51

No. of Tasks ACO GA PSO FTTATS

100 (D06) 46.44 52.21 66.43 88.21

500 (D06) 59.11 63.76 76.06 95.18

1000 (D06) 66.29 74.07 84.01 98.29

Sensors 2023, 23, x FOR PEER REVIEW 25 of 34

evaluated, which is indirectly related to trust in the cloud provider. Therefore, to evaluate
the success rate of VMs, we considered fabricated data distributions, i.e., D01, D02, D03,
and D04, and real-time worklogs, i.e., D05 and D06. This simulation is used to calculate
success rate. The proposed FTTATS was compared to state-of-the-art algorithms, i.e.,
ACO, PSO, and GA. Table 7 below and Figures 21–26 show generated success rate for
different distributions of data, i.e., D01, D02, D03, and D04, and real-time worklogs, i.e.,
D05 and D06. From the generated success rate, it is evident that the proposed FTTATS
outperformed the existing approaches in regard to the success rate of VMs.

Table 7. Calculation of Success rate of VMs using FTTATS.

No. of Tasks ACO GA PSO FTTATS
100 (D01) 72.17 69.21 71.24 87.19
500 (D01) 62.34 75.32 62.17 91.35

1000 (D01) 49.36 79.21 59.61 96.36
No. of Tasks ACO GA PSO FTTATS

100 (D02) 54.61 59.57 74.88 87.38
500 (D02) 61.37 64.32 80.19 90.14

1000 (D02) 69.57 71.37 82.17 94.66
No. of Tasks ACO GA PSO FTTATS

100 (D03) 64.89 55.31 73.16 89.09
500 (D03) 72.61 61.16 80.11 93.46

1000 (D03) 65.15 69.16 84.57 96.17
No. of Tasks ACO GA PSO FTTATS

100 (D04) 56.39 58.81 75.20 84.16
500 (D04) 60.47 68.16 62.11 91.98

1000 (D04) 70.12 72.39 59.26 97.15
No. of Tasks ACO GA PSO FTTATS

100 (D05) 48.15 62.26 57.87 90.29
500 (D05) 55.06 68.67 67.31 94.37

1000 (D05) 61.02 73.22 74.36 98.51
No. of Tasks ACO GA PSO FTTATS

100 (D06) 46.44 52.21 66.43 88.21
500 (D06) 59.11 63.76 76.06 95.18

1000 (D06) 66.29 74.07 84.01 98.29

Figure 21. Success rate of VMs calculated by D01. Figure 21. Success rate of VMs calculated by D01.

Sensors 2023, 23, x FOR PEER REVIEW 26 of 34

Figure 22. Success rate of VMs calculated by D02.

Figure 23. Success rate of VMs calculated by D03.

Figure 24. Success rate of VMs calculated by D04.

Figure 22. Success rate of VMs calculated by D02.

Sensors 2023, 23, 8009 26 of 33

Sensors 2023, 23, x FOR PEER REVIEW 26 of 34

Figure 22. Success rate of VMs calculated by D02.

Figure 23. Success rate of VMs calculated by D03.

Figure 24. Success rate of VMs calculated by D04.

Figure 23. Success rate of VMs calculated by D03.

Sensors 2023, 23, x FOR PEER REVIEW 26 of 34

Figure 22. Success rate of VMs calculated by D02.

Figure 23. Success rate of VMs calculated by D03.

Figure 24. Success rate of VMs calculated by D04. Figure 24. Success rate of VMs calculated by D04.

Sensors 2023, 23, x FOR PEER REVIEW 27 of 34

Figure 25. Success rate of VMs calculated by D05.

Figure 26. Success rate of VMs calculated by D06.

4.6. Evaluation of Turnaround Efficiency
In this subsection, turnaround efficiency is evaluated by considering configuration

settings mentioned in Table 3. We chose turnaround efficiency as an evaluation parameter
as it is related to the quality of service and time taken for a VM to take the submitted
request of a user to respond to that request from the cloud provider. Therefore, to evaluate
turnaround efficiency of VMs, we considered fabricated data distributions i.e., D01, D02,
D03, and D04, and real-time worklogs, i.e., D05 and D06. This simulation is used to calcu-
late turnaround efficiency. The proposed FTTATS was compared to state-of-the-art algo-
rithms, i.e., ACO, PSO, and GA. Table 8 below and Figures 27–32 show generated turna-
round efficiency for different distributions of data, i.e., D01, D02, D03, and D04, and real-
time worklogs, i.e., D05 and D06. From the generated turnaround efficiency, it is evident
that the proposed FTTATS outperformed the existing approaches in regard to turnaround
efficiency of VMs.

Table 8. Calculation of turnaround efficiency using FTTATS.

No. of Tasks ACO GA PSO FTTATS
100 (D01) 64.28 53.12 53.19 88.36
500 (D01) 69.96 61.27 65.28 90.94

1000 (D01) 51.02 67.16 60.37 97.54

Figure 25. Success rate of VMs calculated by D05.

Sensors 2023, 23, 8009 27 of 33

Sensors 2023, 23, x FOR PEER REVIEW 27 of 34

Figure 25. Success rate of VMs calculated by D05.

Figure 26. Success rate of VMs calculated by D06.

4.6. Evaluation of Turnaround Efficiency
In this subsection, turnaround efficiency is evaluated by considering configuration

settings mentioned in Table 3. We chose turnaround efficiency as an evaluation parameter
as it is related to the quality of service and time taken for a VM to take the submitted
request of a user to respond to that request from the cloud provider. Therefore, to evaluate
turnaround efficiency of VMs, we considered fabricated data distributions i.e., D01, D02,
D03, and D04, and real-time worklogs, i.e., D05 and D06. This simulation is used to calcu-
late turnaround efficiency. The proposed FTTATS was compared to state-of-the-art algo-
rithms, i.e., ACO, PSO, and GA. Table 8 below and Figures 27–32 show generated turna-
round efficiency for different distributions of data, i.e., D01, D02, D03, and D04, and real-
time worklogs, i.e., D05 and D06. From the generated turnaround efficiency, it is evident
that the proposed FTTATS outperformed the existing approaches in regard to turnaround
efficiency of VMs.

Table 8. Calculation of turnaround efficiency using FTTATS.

No. of Tasks ACO GA PSO FTTATS
100 (D01) 64.28 53.12 53.19 88.36
500 (D01) 69.96 61.27 65.28 90.94

1000 (D01) 51.02 67.16 60.37 97.54

Figure 26. Success rate of VMs calculated by D06.

4.6. Evaluation of Turnaround Efficiency

In this subsection, turnaround efficiency is evaluated by considering configuration
settings mentioned in Table 3. We chose turnaround efficiency as an evaluation parameter
as it is related to the quality of service and time taken for a VM to take the submitted
request of a user to respond to that request from the cloud provider. Therefore, to evaluate
turnaround efficiency of VMs, we considered fabricated data distributions i.e., D01, D02,
D03, and D04, and real-time worklogs, i.e., D05 and D06. This simulation is used to calculate
turnaround efficiency. The proposed FTTATS was compared to state-of-the-art algorithms,
i.e., ACO, PSO, and GA. Table 8 below and Figures 27–32 show generated turnaround
efficiency for different distributions of data, i.e., D01, D02, D03, and D04, and real-time
worklogs, i.e., D05 and D06. From the generated turnaround efficiency, it is evident that the
proposed FTTATS outperformed the existing approaches in regard to turnaround efficiency
of VMs.

Table 8. Calculation of turnaround efficiency using FTTATS.

No. of Tasks ACO GA PSO FTTATS

100 (D01) 64.28 53.12 53.19 88.36

500 (D01) 69.96 61.27 65.28 90.94

1000 (D01) 51.02 67.16 60.37 97.54

No. of Tasks ACO GA PSO FTTATS

100 (D02) 57.37 58.66 62.18 85.87

500 (D02) 62.49 60.97 71.19 91.27

1000 (D02) 70.17 73.59 75.37 96.29

No. of Tasks ACO GA PSO FTTATS

100 (D03) 61.33 58.13 61.18 87.11

500 (D03) 64.19 65.10 77.26 94.48

1000 (D03) 69.26 74.16 69.19 97.28

No. of Tasks ACO GA PSO FTTATS

100 (D04) 56.57 53.27 71.51 86.16

500 (D04) 65.36 62.03 82.27 95.12

1000 (D04) 72.43 69.18 83.68 97.38

Sensors 2023, 23, 8009 28 of 33

Table 8. Cont.

No. of Tasks ACO GA PSO FTTATS

100 (D05) 45.15 60.19 59.36 91.17

500 (D05) 52.46 63.46 63.39 95.29

1000 (D05) 59.15 71.58 76.12 98.09

No. of Tasks ACO GA PSO FTTATS

100 (D06) 56.17 55.39 72.19 90.06

500 (D06) 64.38 60.35 79.25 94.22

1000 (D06) 68.87 70.78 82.27 98.78

Sensors 2023, 23, x FOR PEER REVIEW 28 of 34

No. of Tasks ACO GA PSO FTTATS
100 (D02) 57.37 58.66 62.18 85.87
500 (D02) 62.49 60.97 71.19 91.27

1000 (D02) 70.17 73.59 75.37 96.29
No. of Tasks ACO GA PSO FTTATS

100 (D03) 61.33 58.13 61.18 87.11
500 (D03) 64.19 65.10 77.26 94.48

1000 (D03) 69.26 74.16 69.19 97.28
No. of Tasks ACO GA PSO FTTATS

100 (D04) 56.57 53.27 71.51 86.16
500 (D04) 65.36 62.03 82.27 95.12

1000 (D04) 72.43 69.18 83.68 97.38
No. of Tasks ACO GA PSO FTTATS

100 (D05) 45.15 60.19 59.36 91.17
500 (D05) 52.46 63.46 63.39 95.29

1000 (D05) 59.15 71.58 76.12 98.09
No. of Tasks ACO GA PSO FTTATS

100 (D06) 56.17 55.39 72.19 90.06
500 (D06) 64.38 60.35 79.25 94.22

1000 (D06) 68.87 70.78 82.27 98.78

Figure 27. Turnaround efficiency of VMs calculated by D01. Figure 27. Turnaround efficiency of VMs calculated by D01.

Sensors 2023, 23, x FOR PEER REVIEW 29 of 34

Figure 28. Turnaround efficiency of VMs calculated by D02.

Figure 29. Turnaround efficiency of VMs calculated by D03.

Figure 30. Turnaround efficiency of VMs calculated by D04.

Figure 28. Turnaround efficiency of VMs calculated by D02.

Sensors 2023, 23, 8009 29 of 33

Sensors 2023, 23, x FOR PEER REVIEW 29 of 34

Figure 28. Turnaround efficiency of VMs calculated by D02.

Figure 29. Turnaround efficiency of VMs calculated by D03.

Figure 30. Turnaround efficiency of VMs calculated by D04.

Figure 29. Turnaround efficiency of VMs calculated by D03.

Sensors 2023, 23, x FOR PEER REVIEW 29 of 34

Figure 28. Turnaround efficiency of VMs calculated by D02.

Figure 29. Turnaround efficiency of VMs calculated by D03.

Figure 30. Turnaround efficiency of VMs calculated by D04. Figure 30. Turnaround efficiency of VMs calculated by D04.

Sensors 2023, 23, x FOR PEER REVIEW 30 of 34

Figure 31. Turnaround efficiency of VMs calculated by D05.

Figure 32. Turnaround efficiency of VMs calculated by D06.

4.7. Analysis and Result Discussion
This subsection clearly presents analysis of results and discusses the ways in which

the proposed FTTATS improves scheduling while addressing parameter makespan, rate
of failures, success rate of VMs, availability, and turnaround efficiency. We conducted an
extensive set of simulations on Cloudsim [43]. Initially, we fabricated datasets with differ-
ent statistical distributions, and they are represented as D01, D02, D03, and D04, respec-
tively. After evaluating FTTATS with statistical distributions, we used real-time worklogs,
i.e., HPC2N [41] and NASA [42]. They are represented as D05, D06. The proposed FTTATS
approach was evaluated in comparison to the existing state-of-the-art approaches, ACO,
GA, and PSO. Table 9 represents the improvement of makespan for FTTATS over that of
the existing approaches. Table 10 indicates improvement of rate of failures for FTTATS
over that of the existing approaches. Table 11 indicates improvement of availability of VMs
for FTTATS over that of the existing approaches. Table 12 indicates improvement of suc-
cess rate of VMs for FTTATS over that of the existing approaches. Table 13 indicates im-
provement of turnaround efficiency of VMs for FTTATS over that of the existing ap-
proaches. From all these results, it was observed that the proposed FTTATS showed sig-
nificant impact on generating schedules by minimizing makespan and rate of failures and
improving SLA-based trust metrics mentioned above, leading to improvement of quality
of service which, in turn, facilitates trust in the cloud provider. The main difference

Figure 31. Turnaround efficiency of VMs calculated by D05.

Sensors 2023, 23, 8009 30 of 33

Sensors 2023, 23, x FOR PEER REVIEW 30 of 34

Figure 31. Turnaround efficiency of VMs calculated by D05.

Figure 32. Turnaround efficiency of VMs calculated by D06.

4.7. Analysis and Result Discussion
This subsection clearly presents analysis of results and discusses the ways in which

the proposed FTTATS improves scheduling while addressing parameter makespan, rate
of failures, success rate of VMs, availability, and turnaround efficiency. We conducted an
extensive set of simulations on Cloudsim [43]. Initially, we fabricated datasets with differ-
ent statistical distributions, and they are represented as D01, D02, D03, and D04, respec-
tively. After evaluating FTTATS with statistical distributions, we used real-time worklogs,
i.e., HPC2N [41] and NASA [42]. They are represented as D05, D06. The proposed FTTATS
approach was evaluated in comparison to the existing state-of-the-art approaches, ACO,
GA, and PSO. Table 9 represents the improvement of makespan for FTTATS over that of
the existing approaches. Table 10 indicates improvement of rate of failures for FTTATS
over that of the existing approaches. Table 11 indicates improvement of availability of VMs
for FTTATS over that of the existing approaches. Table 12 indicates improvement of suc-
cess rate of VMs for FTTATS over that of the existing approaches. Table 13 indicates im-
provement of turnaround efficiency of VMs for FTTATS over that of the existing ap-
proaches. From all these results, it was observed that the proposed FTTATS showed sig-
nificant impact on generating schedules by minimizing makespan and rate of failures and
improving SLA-based trust metrics mentioned above, leading to improvement of quality
of service which, in turn, facilitates trust in the cloud provider. The main difference

Figure 32. Turnaround efficiency of VMs calculated by D06.

4.7. Analysis and Result Discussion

This subsection clearly presents analysis of results and discusses the ways in which
the proposed FTTATS improves scheduling while addressing parameter makespan, rate
of failures, success rate of VMs, availability, and turnaround efficiency. We conducted an
extensive set of simulations on Cloudsim [43]. Initially, we fabricated datasets with different
statistical distributions, and they are represented as D01, D02, D03, and D04, respectively.
After evaluating FTTATS with statistical distributions, we used real-time worklogs, i.e.,
HPC2N [41] and NASA [42]. They are represented as D05, D06. The proposed FTTATS
approach was evaluated in comparison to the existing state-of-the-art approaches, ACO,
GA, and PSO. Table 9 represents the improvement of makespan for FTTATS over that of
the existing approaches. Table 10 indicates improvement of rate of failures for FTTATS over
that of the existing approaches. Table 11 indicates improvement of availability of VMs for
FTTATS over that of the existing approaches. Table 12 indicates improvement of success rate
of VMs for FTTATS over that of the existing approaches. Table 13 indicates improvement
of turnaround efficiency of VMs for FTTATS over that of the existing approaches. From
all these results, it was observed that the proposed FTTATS showed significant impact on
generating schedules by minimizing makespan and rate of failures and improving SLA-
based trust metrics mentioned above, leading to improvement of quality of service which, in
turn, facilitates trust in the cloud provider. The main difference between other approaches
and our proposed FTTATS is that the existing task schedulers are not considering priorities
of tasks and VMs. Our proposed FTTATS improves rate of failures, makespan, availability,
success rate and turnaround efficiency compared to those of the existing approaches, as
mentioned in tables below.

Table 9. Improvement of makespan for FTTATS over existing algorithms.

Dataset ACO GA PSO

D01 22.96 37.45 35.39
D02 24.01 24.45 27.13
D03 29.06 35.72 28.9
D04 15.75 22.25 12.01
D05 31.6 45.82 41.25
D06 22.45 34.21 29.5

Sensors 2023, 23, 8009 31 of 33

Table 10. Minimization of Rate of Failures for FTTATS over existing algorithms.

Dataset ACO GA PSO

D01 64.81 63.84 63.64
D02 65.06 61.01 56.02
D03 66.56 60.36 31.11
D04 51.07 64.06 69.42
D05 70.5 70.04 67.59
D06 73.88 73.6 74.88

Table 11. Improvement of Availability of VMs for FTTATS over existing algorithms.

Dataset ACO GA PSO

D01 22.86 30.80 22.04
D02 26.03 40.88 22.31
D03 19.46 37.15 23.33
D04 26.92 19.65 24.97
D05 34.62 38.56 41.13
D06 70.39 47.23 35.68

Table 12. Improvement of Success rate of VMs for FTTATS over existing algorithms.

Dataset ACO GA PSO

D01 49.5 22.86 42.41
D02 46.67 39.46 14.71
D03 37.52 50.15 17.17
D04 46.16 37.08 39.02
D05 72.43 38.7 41.91
D06 63.91 48.23 75.5

Table 13. Improvement of turnaround efficiency of VMs for FTTATS over existing algorithms.

Dataset ACO GA PSO

D01 49.44 52.4 54.80
D02 43.89 41.52 30.98
D03 43.17 41.28 34.3
D04 43.37 51.04 17.34
D05 81.53 45.76 43.08
D06 49.42 51.76 21.11

5. Conclusions and Future Works

Task scheduling is the biggest challenge in cloud paradigm, as there is a wide variety of
tasks generated from heterogeneous resources. These are to be scheduled onto precise VMs.
Ineffective scheduling process leads to poor quality of service and leads to a large number
of failures, which decreases trust in a cloud provider. Therefore, for preserving trust in the
cloud provider while minimizing the rate of failures in the cloud paradigm, we proposed
a fault-tolerant trust-aware task-scheduling algorithm (FTTATS). This approach initially
considers the priorities of all tasks and VMs, and based on the collected priorities, the
scheduler maps tasks to precise VMs. For the modelling of our proposed scheduler, we used
Harris hawks optimization as a methodology which solves the task scheduling problem
in a better way by not being trapped into a local optimum. FTTATS was implemented
on Cloudsim and input for the algorithm was generated in two ways, i.e., by fabricating
datasets with different distributions and indicated as D01, D02, D03, D04, and using
real-time worklogs from HPC2N and NASA. Finally, the algorithm was compafred to state-
of-the-art approaches, i.e., ACO, GA, and PSO. Results proved that FTTATS outperforms the
existing approaches while minimizing makespan and rate of failures, as well as improving

Sensors 2023, 23, 8009 32 of 33

SLA-based trust parameters. The main limitation we observed in this research is the
inability to predict the upcoming type of tasks, and therefore the scheduler is unable to
identify and classify the tasks accurately. Therefore, in the future, a machine learning model
can be employed in the scheduler to predict tasks upcoming onto the cloud console for an
effective scheduling process in the cloud paradigm.

Author Contributions: Conceptualization, Writing and Methodology, S.M., G.R.K. and S.H.N.;
Software, Validation, P.C., A.G. and T.C.; Supervision, review, M.M. and B.U. All authors have read
and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Authors are not interested in disclosing the data.

Conflicts of Interest: Authors declare no conflict of interest.

References
1. Rahimikhanghah, A.; Tajkey, M.; Rezazadeh, B.; Rahmani, A.M. Resource scheduling methods in cloud and fog computing

environments: A systematic literature review. Clust. Comput. 2022, 25, 911–945. [CrossRef]
2. Mangalampalli, S.; Sree, P.K.; Swain, S.K.; Karri, G.R. Cloud Computing and Virtualization. In Convergence of Cloud with AI for Big

Data Analytics: Foundations and Innovation; Scrivener Publishing LLC: Beverly, MA, USA, 2023; pp. 13–40.
3. Chakraborty, A.; Kumar, M.; Chaurasia, N.; Gill, S.S. Journey from cloud of things to fog of things: Survey, new trends, and

research directions. Softw. Pract. Exp. 2023, 53, 496–551. [CrossRef]
4. Shao, K.; Song, Y.; Wang, B. PGA: A New Hybrid PSO and GA Method for Task Scheduling with Deadline Constraints in

Distributed Computing. Mathematics 2023, 11, 1548. [CrossRef]
5. Yin, L.; Liu, J.; Zhou, F.; Gao, M.; Li, M. Cost-based hierarchy genetic algorithm for service scheduling in robot cloud platform.

J. Cloud Comput. 2023, 12, 35. [CrossRef]
6. Elcock, J.; Edward, N. An efficient ACO-based algorithm for task scheduling in heterogeneous multiprocessing environments.

Array 2023, 17, 100280. [CrossRef]
7. Nabi, S.; Ahmad, M.; Ibrahim, M.; Hamam, H. AdPSO: Adaptive PSO-based task scheduling approach for cloud computing.

Sensors 2022, 22, 920. [CrossRef] [PubMed]
8. Alsaidy, S.A.; Abbood, A.D.; Sahib, M.A. Heuristic initialization of PSO task scheduling algorithm in cloud computing. J. King

Saud Univ. Comput. Inf. Sci. 2022, 34, 2370–2382. [CrossRef]
9. Praveen, S.P.; Ghasempoor, H.; Shahabi, N.; Izanloo, F. A hybrid gravitational emulation local search-based algorithm for task

scheduling in cloud computing. Math. Probl. Eng. 2023, 2023, 6516482. [CrossRef]
10. Pradhan, A.; Bisoy, S.K. A novel load balancing technique for cloud computing platform based on PSO. J. King Saud Univ. Comput.

Inf. Sci. 2022, 34, 3988–3995. [CrossRef]
11. Kchaou, H.; Zied, K.; Adel, M.A. A PSO task scheduling and IT2FCM fuzzy data placement strategy for scientific cloud workflows.

J. Comput. Sci. 2022, 64, 101840. [CrossRef]
12. Nabi, S.; Masroor, A. PSO-RDAL: Particle swarm optimization-based resource-and deadline-aware dynamic load balancer for

deadline constrained cloud tasks. J. Supercomput. 2022, 78, 4624–4654. [CrossRef]
13. Zeedan, M.; Attiya, G.; El-Fishawy, N. A Hybrid Approach for Task Scheduling Based Particle Swarm and Chaotic Strategies in

Cloud Computing Environment. Parallel Process. Lett. 2022, 32, 2250001. [CrossRef]
14. Zubair, A.A.; Razak, S.A.; Ngadi, M.A.; Al-Dhaqm, A.; Yafooz, W.M.; Emara, A.H.M.; Saad, A.; Al-Aqrabi, H. A Cloud

Computing-Based Modified Symbiotic Organisms Search Algorithm (AI) for Optimal Task Scheduling. Sensors 2022, 22, 1674.
[CrossRef]

15. Alghamdi, M.I. Optimization of Load Balancing and Task Scheduling in Cloud Computing Environments Using Artificial Neural
Networks-Based Binary Particle Swarm Optimization (BPSO). Sustainability 2022, 14, 11982. [CrossRef]

16. Wei, G. Quadratic Particle Swarm Optimisation Algorithm for Task Scheduling Based on Cloud Computing Server. J. Inf. Knowl.
Manag. 2022, 22, 2250067. [CrossRef]

17. Abualigah, L.; Alkhrabsheh, M. Amended hybrid multi-verse optimizer with genetic algorithm for solving task scheduling
problem in cloud computing. J. Supercomput. 2022, 78, 740–765. [CrossRef]

18. Imene, L.; Sihem, S.; Okba, K.; Mohamed, B. A third generation genetic algorithm NSGAIII for task scheduling in cloud computing.
J. King Saud Univ. Comput. Inf. Sci. 2022, 34, 7515–7529. [CrossRef]

19. Malathi, K.; Priyadarsini, K. Hybrid lion–GA optimization algorithm-based task scheduling approach in cloud computing. Appl.
Nanosci. 2022, 13, 2601–2610. [CrossRef]

https://doi.org/10.1007/s10586-021-03467-1
https://doi.org/10.1002/spe.3157
https://doi.org/10.3390/math11061548
https://doi.org/10.1186/s13677-023-00395-w
https://doi.org/10.1016/j.array.2023.100280
https://doi.org/10.3390/s22030920
https://www.ncbi.nlm.nih.gov/pubmed/35161665
https://doi.org/10.1016/j.jksuci.2020.11.002
https://doi.org/10.1155/2023/6516482
https://doi.org/10.1016/j.jksuci.2020.10.016
https://doi.org/10.1016/j.jocs.2022.101840
https://doi.org/10.1007/s11227-021-04062-2
https://doi.org/10.1142/S0129626422500013
https://doi.org/10.3390/s22041674
https://doi.org/10.3390/su141911982
https://doi.org/10.1142/S0219649222500678
https://doi.org/10.1007/s11227-021-03915-0
https://doi.org/10.1016/j.jksuci.2022.03.017
https://doi.org/10.1007/s13204-021-02336-y

Sensors 2023, 23, 8009 33 of 33

20. Pirozmand, P.; Javadpour, A.; Nazarian, H.; Pinto, P.; Mirkamali, S.; Ja’fari, F. GSAGA: A hybrid algorithm for task scheduling in
cloud infrastructure. J. Supercomput. 2022, 78, 17423–17449. [CrossRef]

21. Huang, X.; Lin, Y.; Zhang, Z.; Guo, X.; Su, S. A gradient-based optimization approach for task scheduling problem in cloud
computing. Clust. Comput. 2022, 25, 3481–3497. [CrossRef]

22. Manikandan, N.; Gobalakrishnan, N.; Pradeep, K. Bee optimization based random double adaptive whale optimization model
for task scheduling in cloud computing environment. Comput. Commun. 2022, 187, 35–44. [CrossRef]

23. Saravanan, G.; Neelakandan, S.; Ezhumalai, P.; Maurya, S. Improved wild horse optimization with levy flight algorithm for
effective task scheduling in cloud computing. J. Cloud Comput. 2023, 12, 24. [CrossRef]

24. Chandrashekar, C.; Krishnadoss, P.; Kedalu Poornachary, V.; Ananthakrishnan, B.; Rangasamy, K. HWACOA Scheduler: Hybrid
Weighted Ant Colony Optimization Algorithm for Task Scheduling in Cloud Computing. Appl. Sci. 2023, 13, 3433. [CrossRef]

25. Sharma, N.; Garg, P. Ant colony based optimization model for QoS-Based task scheduling in cloud computing environment.
Meas. Sens. 2022, 24, 100531.

26. Natesan, G.; Ali, J.; Krishnadoss, P.; Chidambaram, R.; Nanjappan, M. Optimization techniques for task scheduling criteria in
IaaS cloud computing atmosphere using nature inspired hybrid spotted hyena optimization algorithm. Concurr. Comput. Pract.
Exp. 2022, 34, e7228. [CrossRef]

27. Amer, D.A.; Attiya, G.; Zeidan, I.; Nasr, A.A. Elite learning Harris hawks optimizer for multi-objective task scheduling in cloud
computing. J. Supercomput. 2022, 78, 2793–2818. [CrossRef]

28. Amini Motlagh, A.; Movaghar, A.; Rahmani, A.M. A new reliability-based task scheduling algorithm in cloud computing. Int. J.
Commun. Syst. 2022, 35, e5022. [CrossRef]

29. Mansouri, N. An Efficient Task Scheduling Based on Seagull Optimization Algorithm for Heterogeneous Cloud Computing
Platforms. Int. J. Eng. 2022, 35, 433–450.

30. Iftikhar, S.; Ahmad, M.M.M.; Tuli, S.; Chowdhury, D.; Xu, M.; Gill, S.S.; Uhlig, S. HunterPlus: AI based energy-efficient task
scheduling for cloud–fog computing environments. Internet Things 2023, 21, 100667. [CrossRef]

31. Jain, R.; Sharma, N. A quantum inspired hybrid SSA–GWO algorithm for SLA based task scheduling to improve QoS parameter
in cloud computing. Clust. Comput. 2022, 1–24. [CrossRef]

32. Younes, A.; Elnahary, M.K.; Alkinani, M.H.; El-Sayed, H.H. Task Scheduling Optimization in Cloud Computing by Rao Algorithm.
Comput. Mater. Contin. 2022, 72, 4339–4356. [CrossRef]

33. Hussain, S.M.; Begh, G.R. Hybrid heuristic algorithm for cost-efficient QoS aware task scheduling in fog–cloud environment.
J. Comput. Sci. 2022, 64, 101828. [CrossRef]

34. Siddesha, K.; Jayaramaiah, G.V.; Singh, C. A novel deep reinforcement learning scheme for task scheduling in cloud computing.
Clust. Comput. 2022, 25, 4171–4188. [CrossRef]

35. Otair, M.; Alhmoud, A.; Jia, H.; Altalhi, M.; Hussein, A.M.; Abualigah, L. Optimized task scheduling in cloud computing using
improved multi-verse optimizer. Clust. Comput. 2022, 25, 4221–4232. [CrossRef]

36. Manikandan, N.; Gobalakrishnan, N.; Pradeep, K. An Efficient Task Scheduling Based on Hybrid Bird Swarm Flow Directional
Model in Cloud Computing Environment. IETE J. Res. 2022, 1–12. [CrossRef]

37. Singh, A.; Chatterjee, K. A multi-dimensional trust and reputation calculation model for cloud computing environments. In
Proceedings of the 2017 ISEA Asia Security and Privacy (ISEASP), Surat, India, 29 January–1 February 2017; IEEE: Piscataway
Township, NJ, USA, 2017.

38. Heidari, A.A.; Mirjalili, S.; Faris, H.; Aljarah, I.; Mafarja, M.; Chen, H. Harris hawks optimization: Algorithm and applications.
Future Gener. Comput. Syst. 2019, 97, 849–872. [CrossRef]

39. Mangalampalli, S.; Karri, G.R.; Elngar, A.A. An Efficient Trust-Aware Task Scheduling Algorithm in Cloud Computing Using
Firefly Optimization. Sensors 2023, 23, 1384. [CrossRef]

40. Mangalampalli, S.; Karri, G.R.; Kose, U. Multi Objective Trust aware task scheduling algorithm in cloud computing using Whale
Optimization. J. King Saud Univ.-Comput. Inf. Sci. 2023, 35, 791–809. [CrossRef]

41. Calheiros, R.N.; Ranjan, R.; Beloglazov, A.; De Rose, C.A.; Buyya, R. CloudSim: A toolkit for modeling and simulation of cloud
computing environments and evaluation of resource provisioning algorithms. Softw. Pract. Exp. 2011, 41, 23–50. [CrossRef]

42. Santoro, C.; Messina, F.; D’Urso, F.; Santoro, F.F. Wale: A dockerfile-based approach to deduplicate shared libraries in docker
containers. In Proceedings of the 2018 IEEE 16th Intl Conf on Dependable, Autonomic and Secure Computing, 16th Intl Conf
on Pervasive Intelligence and Computing, 4th Intl Conf on Big Data Intelligence and Computing and Cyber Science and
Technology Congress (DASC/PiCom/DataCom/CyberSciTech), Athens, Greece, 12–15 August 2018; IEEE: Piscataway Township,
NJ, USA, 2018.

43. D’Urso, F.; Santoro, C.; Santoro, F.F. Wale: A solution to share libraries in Docker containers. Future Gener. Comput. Syst. 2019, 100,
513–522. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1007/s11227-022-04539-8
https://doi.org/10.1007/s10586-022-03580-9
https://doi.org/10.1016/j.comcom.2022.01.016
https://doi.org/10.1186/s13677-023-00401-1
https://doi.org/10.3390/app13063433
https://doi.org/10.1002/cpe.7228
https://doi.org/10.1007/s11227-021-03977-0
https://doi.org/10.1002/dac.5022
https://doi.org/10.1016/j.iot.2022.100667
https://doi.org/10.1007/s10586-022-03740-x
https://doi.org/10.32604/cmc.2022.022824
https://doi.org/10.1016/j.jocs.2022.101828
https://doi.org/10.1007/s10586-022-03630-2
https://doi.org/10.1007/s10586-022-03650-y
https://doi.org/10.1080/03772063.2022.2108919
https://doi.org/10.1016/j.future.2019.02.028
https://doi.org/10.3390/s23031384
https://doi.org/10.1016/j.jksuci.2023.01.016
https://doi.org/10.1002/spe.995
https://doi.org/10.1016/j.future.2019.03.049

	Introduction
	Related Works
	Fault-Tolerant Trust-Based Task Scheduling
	FTTATS Problem Definition and System Architecture
	FTTATS Mathematical Modelling
	Fitness Function for FTTATS
	Fault-Tolerant Trust-Aware Task Scheduler (FTTATS) Using Harris Hawks Optimization
	Proposed FTTA Task-Scheduling Algorithm

	Simulation and Results
	Simulation Setup and Configuration Settings
	Evaluation of Makespan
	Evaluation of Rate of Failures
	Evaluation of Availability of VMs
	Evaluation of Success Rate of VMs
	Evaluation of Turnaround Efficiency
	Analysis and Result Discussion

	Conclusions and Future Works
	References

