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Abstract: Today, hyperspectral imaging plays an integral part in the remote sensing and precision
agriculture field. Identifying the matching key points between hyperspectral images is an important
step in tasks such as image registration, localization, object recognition, and object tracking. Low-
pixel resolution hyperspectral imaging is a recent introduction to the field, bringing benefits such
as lower cost and form factor compared to traditional systems. However, the use of limited pixel
resolution challenges even state-of-the-art feature detection and matching methods, leading to
difficulties in generating robust feature matches for images with repeated textures, low textures,
low sharpness, and low contrast. Moreover, the use of narrower optics in these cameras adds to
the challenges during the feature-matching stage, particularly for images captured during low-
altitude flight missions. In order to enhance the robustness of feature detection and matching in low
pixel resolution images, in this study we propose a novel approach utilizing 3D Convolution-based
Siamese networks. Compared to state-of-the-art methods, this approach takes advantage of all the
spectral information available in hyperspectral imaging in order to filter out incorrect matches and
produce a robust set of matches. The proposed method initially generates feature matches through a
combination of Phase Stretch Transformation-based edge detection and SIFT features. Subsequently, a
3D Convolution-based Siamese network is utilized to filter out inaccurate matches, producing a highly
accurate set of feature matches. Evaluation of the proposed method demonstrates its superiority
over state-of-the-art approaches in cases where they fail to produce feature matches. Additionally, it
competes effectively with the other evaluated methods when generating feature matches in low-pixel
resolution hyperspectral images. This research contributes to the advancement of low pixel resolution
hyperspectral imaging techniques, and we believe it can specifically aid in mosaic generation of low
pixel resolution hyperspectral images.

Keywords: hyperspectral imaging; feature matching; 3D convolution Siamese network

1. Introduction

Hyperspectral imaging is becoming one of the main technologies driving the remote
sensing research field thanks to its ability to see beyond the visible spectrum and provide
the information needed in decision-making. A hyperspectral image is a 3D representation
of the scene it captured, with two spatial dimensions and one spectral dimension. The
spectral dimension usually consists of bands both within and outside the visible spec-
trum. Typically, the total number of bands can range from tens to hundreds. Each band
contains information from a narrow region of the electromagnetic spectrum. In the aerial
hyperspectral domain, this is the information reflected by different materials in the terrain.
Because the electromagnetic spectrum reflected from each material is different, depending
on the material properties and material current status a unique spectrum can be captured

Sensors 2023, 23, 8004. https://doi.org/10.3390/s23188004 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23188004
https://doi.org/10.3390/s23188004
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-9177-6952
https://orcid.org/0000-0002-5775-5047
https://orcid.org/0009-0007-6601-9213
https://doi.org/10.3390/s23188004
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23188004?type=check_update&version=2


Sensors 2023, 23, 8004 2 of 20

using hyperspectral images. This unique spectrum, known as the spectral signature, serves
as the foundation for hyperspectral imaging in remote sensing. Two main image cap-
ture methods are associated with aerial hyperspectral imaging, namely, push-broom and
snapshot acquisition. In push-broom acquisition, the sensor consists of an array of single
pixels and the mounted platform is moved across the target area that needs to be captured.
In snapshot imaging, target areas are captured as a cube containing both spectral and
spatial information.

Feature detection and matching between hyperspectral images is recognized as a criti-
cal step in various application areas of hyperspectral imaging. One prominent application
is the image stitching process. By stitching the captured image into one composite image,
the user can interpret the captured data relative to the total captured area, rather than inter-
preting it on a per-image basis. This is particularly important in snapshot images. Due to
hardware and software limitations, these images are relatively small in terms of their pixel
dimensions when processing snapshot sensor data. Hence, a narrower field is captured
compared to push-broom methods. Change detection over a time period [1] is another
application in which feature matching is important. When there is a temporal difference
between the captured images, the images need to be aligned based on common features in
order to detect the change. Similar to change detection, object detection and tracking [2] is
another area in which feature matching is important. Apart from these, anomaly detection
can be identified as an area in which feature matching is currently being utilized.

The main entry barrier to the hyperspectral research field is the cost associated with
camera systems. However, recently introduced low-resolution hyperspectral cameras try
to address this drawback by bringing the cost down to a comparatively low price point.
Furthermore, the form factor of these cameras is being reduced to facilitate the process of
incorporating the cameras into low-cost aerial platforms. At the same time, this reduction in
cost and form factor comes with the main trade-off of lower pixel resolution. In this paper,
we focus on the problems associated with feature matching of these low pixel resolutions
and propose a novel feature matching method based on incorporating both the spectral
and spatial information that is present in hyperspectral images.

Feature matching is the process of identifying common features between images in
order to understand the relationship between images or areas of interest in images. These
matched features are used in different application areas, such as orthomosaic generation,
image-based localization, object recognition, and tracking. However, this step faces chal-
lenges in low-resolution hyperspectral image matching due to factors such as low contrast,
repeating patterns, and images with low texture. This problem becomes more challenging
when images are captured using low-altitude flying conditions.

Our previous research introduced this feature matching problem and elaborated on the
low performance of traditional feature matching methods using selected image samples [3].
Furthermore, we proposed the recently introduced LoFTR, a detector-free transformer-
based feature matching method, as a solution to be used with low-resolution hyperspectral
images [4]. However, even though the proposed adaptation of the LoFTR method was
successful at identifying feature matches needed in the transformation calculation process,
our experiments revealed cases of image pairs that produced a low number of feature
matches or inaccurate feature matches. Traditional feature matching in hyperspectral
imaging is mostly performed by selecting a specific spectral band from the images, then
performing feature detection and matching with respect to the selected spectral band.
Almost no methods have used the information present in different spectral bands in the
feature matching process. Therefore, we hypothesize that the use of both spatial and spectral
information from hyperspectral image pairs will result in highly accurate feature matches.

In this research paper, we propose a novel method to increase the robustness of feature
match detection by incorporating both spectral and spatial information. In order to achieve
this, Phase Stretch Transformation is used to generate a set of initial feature matches from
the matched image pairs, then a Siamese network based on a 3D Convolution Neural
Network is utilized to filter out inaccurate filter matches by thresholding the Euclidean
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distance of the network output embeddings. The main contributions of this research paper
are as follows:

• A feature match generation method using phase stretch transformation-based edge maps.
• Training, evaluation, and application of a Siamese network based on a 3D convolution

neural network for feature filtering.
• Evaluation of the proposed method with the state-of-the-art methods.

The results of the proposed method suggest its ability to generate similar outcomes to
traditional methods in cases where these have been successful in producing high quality
matches. In the instances where traditional methods fail or produce less accurate feature
matches, the proposed method shows improved performance. In the forthcoming sections
of this paper, we discuss the approaches followed, the experiments performed, and the
results obtained. Specifically, the next section discusses the related work in the areas
that this research focuses on. Section 2 presents the methodology that we followed to
generate the feature matches and filter them out in order to obtain a set of filtered feature
matches with high accuracy. Section 3 discusses the experiments performed to evaluate
the proposed method and discusses the obtained results. Finally, Section 4 concludes
the research and discusses future work that we suggest to increase the robustness of the
proposed framework.

2. Related Work
2.1. Hyperspectral Imaging in Remote Sensing

The hyperspectral imaging technique was first introduced in the 1980s; Goetz et al.
published the first paper on hyperspectral imaging, titled “Imaging Spectrometry for Earth
Remote Sensing” [5], describing the process as acquiring images simultaneously in 100 to
200 contiguous spectral bands. It was first developed as airborne and spaceborne sensors by
the National Aeronautics and Space Administration (NASA) to observe the earth’s surface.
With recent advancements in technology, sensors have become smaller, making them more
accessible and mountable on different platforms, including manned aircraft, Unmanned
Aerial Vehicles (UAVs), and laboratory-based acquisition systems. In the remote sensing
domain, being able to mount these acquisition systems on UAVs has opened up whole
new streams of research, in the agriculture remote sensing domain [6–9] as well as in
such application areas forestry [10,11], environmental monitoring [12,13], security [14],
and geology [15].

From the literature, it can be identified that most of the hyperspectral cameras used
in UAV-mounted hyperspectral image acquisition systems involve either line scanning
technology or snapshot acquisition technology [16]. Line scanning sensors are equipped
with an array of pixels; each pixel captures a spectral signature, and the acquisition platform
needs to be moved in order to capture the target area. These cameras require advanced
postprocessing to remove the geometric distortions that occur when the line-by-line image
is stitched into a single image. Snapshot cameras, on the other hand, capture information
from the available field of view in a single instance. A recent addition to the field is
low-resolution snapshot sensors, which attempt to address the high entry cost barrier of
hyperspectral imaging. Imaging cameras such as the Cubert Ultris 5 [17], with a spatial
resolution of 275 × 290 pixels, and the Ximea snapshot cameras [18], with a resolution of
approximately 409 × 217 pixels, are two such systems. However, their low pixel resolution
poses a new set of challenges to overcome if the users are to successfully adapt these
systems into the decision-making process. One such challenge involves the difficulty of
detecting a robust set of feature matches from overlapping regions in image pairs.

2.2. Dimensionality Reduction of Hyperspectral Images

Dimensionality reduction is a critical step in the neural network training process. It
makes the feature extraction process more efficient for the neural network by allowing it to
focus on relevant features and discard less valuable features. In addition, it increases com-
putational efficiency in both training and inference. Regularization to prevent overfitting is
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another advantage of dimensional reduction. This is critically important in hyperspectral
imaging due to the high number of spectral bands. Dimensionality reduction can be di-
vided into two main methods, namely, linear and nonlinear. Principal Component Analysis
(PCA) [19] is one of the most commonly used linear methods, while Linear Discriminant
Analysis (LDA) [20] and Independent Component Analysis (ICA) [21] are among the other
commonly used linear methods of dimensionality reduction. Nonlinear dimensionality
reduction methods include Kernal PCA [19], Local Linear Embedding (LLE) [22], and
Laplacian Eigenmaps [23].

With advancements in machine learning, autoencoder-based dimensionality reduction
methods are being used successfully in hyperspectral image processing tasks [24–27].
Autoencoders are a nonlinear dimensionality reduction technique that can represent the
data in a lower dimensional space while preserving the important features. This involves
an unsupervised learning neural network consisting of an encoder that maps the higher
dimensions into a lower dimensional space and a decoder that reconstructs the input
data from the lower dimensional space data created by the encoder. With an appropriate
amount of training data, the literature indicates that autoencoders demonstrate superior
performance in comparison with other methods such as PCA, kernel PCA, nonlinear PCA,
and ICA [28,29].

2.3. Siamese Networks

Siamese networks were first introduced in 1993 in the paper titled “Signature verifica-
tion using a Siamese time delay neural network” [30]. The basic architecture of a Siamese
network consists of two or three identical neural networks that share the same weights.
The networks are trained with matching and non-matching image pairs, resulting in a
meaningful representation of the input data being learned in such a way that similar inputs
are mapped more closely than the dissimilar inputs in the learned feature space. This
allows Siamese networks to be used in tasks such as similarity-based classification and
verification [31]. A twin Siamese network is trained with similar and dissimilar image
pairs, while a triplet network is trained with an anchor image, a similar image, and a
dissimilar image. In the training process, these two types of networks use two different
loss functions: a contrastive loss function in the twin network architecture, and a triplet
loss function in the triplet architecture. Applications of Siamese networks include object
tracking [32], face recognition [33], and signature verification [34]. In the hyperspectral
image domain, research can be found in the application areas of image classification [35]
and object/target detection [36,37]. However, our literature survey did not unveil any
research articles which have investigated the possibility of using a Siamese network for
feature matching in hyperspectral imaging, which opens up space for new research.

2.4. Feature Matching for Hyperspectral Imaging

The traditional approach to detecting and matching features in hyperspectral images is
to select a specific band from the available band set and then apply normal feature matching
methods designed for grayscale images. These feature matching methods can be divided
into two main subsections based on their feature detection method, namely, learning-based
feature detection methods and methods which do not incorporate learning. Traditional
methods, such as frequency domain methods [38], spatial domain methods [39], optical
flow methods [40], Scale-Invariant Feature Transform (SIFT) [39], Speeded-Up Robust
Features (SURF) [41], Harris corner detection [42], Features from Accelerated Segment Test
(FAST) [43], Binary Robust Invariant Scalable Keypoints (BRISK) [44] and Oriented FAST
and Rotated BRIEF (ORB) [45], fall under the heading of non-learning-based methods.
With the progress of deep learning technologies, more sophisticated methods of feature
detection and matching have been introduced to address drawbacks in non-learning-based
methods. These drawbacks include poor performance on low texture images, image pairs
with varying illumination, images with repetitive patterns, and images with motion blur.
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Learning-based feature detection and matching methods have been proposed in
multiple different research articles, and include Learned Invariant Feature Transform
(LIFT) [46], MagicPoint [47], SuperPoint [48], SuperGlue [49], NcNet [50], sparse NcNet [51],
and DualRC-Net [52]. Here, we focus only on the most recent additions to the feature
detection and matching space and algorithms that are readily available for public use; local
Feature matching with TRansformers (LoFTR) [4], introduced in 2021 and local feature
matching at light speed (LightGlue) [53], introduced in 2023, are two of the latest methods
available in the public domain for feature detection and matching. The LoFTR method
proposes a transformer-based architecture with self- and cross-attention layers to obtain
feature matches; the authors’ performance evaluation stated that the proposed method
outperforms state-of-the-art methods by a considerable margin. LightGlue is a feature
matcher that can be used with a variety of keypoint detectors. It uses a transformer-
based backbone similar to LoFTR, with self- and cross-attention layers in the LightGlue
detector and matcher. However, the authors proposed a different strategy to derive the
exact matches from initial predictions using a pruning layer and matching layer. Their
evaluation stated that this method achieves a relatively high level of accuracy compared to
state-of-the-art methods while being far more efficient in terms of speed.

Moving on to the literature on hyperspectral feature matching, in image stitching
research Yi et al. [54] and Peng et al. [55] have discussed using SIFT as a feature matcher.
Mo et al. [56] and Zhang [57] discussed using SuperPoint [48] and SuperGlue [49] for
the feature detection and matching step. Fang et al. [58] discussed the use of the Spline
Sparse Bundle Adjustment (SSBA) method for image registration tasks. KAZE features,
a multiscale 2D feature detection and description algorithm [59], were incorporated by
Ordonex et al. [60] for the task of aligning hyperspectral images. Another new approach
called the Unified Model of Spectral value and Gradient Change Information SIFT (UMSGC
SIFT) was proposed by Li et al. [61], consisting of a spatial and spectral SIFT algorithm
for hyperspectral image matching tasks. However, none of these papers has discusses
low-resolution hyperspectral images or addressed the associated challenges.

3. Methodology

Figure 1 presents an overview of the proposed method. Four main steps are performed
in order to generate a set of highly accurate filter matches from a given image pair IA and IB.
The first step of the proposed method involves selecting a spectral band, extracting edges
from each image pair, and generating a binary edge map using Phase Stretch Transformation
(EA and EB). In the next step, SIFT feature detection is carried out for each edge map and a
brute force matcher is used to obtain a set of matches from the two edge map images. In the
next step, 32 by 32 patches around the identified matched keypoints are extracted from each
selected patch ({PA1, PA2, . . ., PAi} and {PB1, PB2, . . ., PBi}) along with all of the spectral band
information. In the final step, a 3D convolution-based Siamese network is utilized to filter
out inaccurate feature matches from the detected list of feature matches. The following
subsections discuss each of these processes in detail.

3.1. Data Acquisition and Preprocessing

All of the hyperspectral images used in this experiment were acquired using the
Cubert Ultris 5 hyperspectral camera [17]. It has a resolution of 290 pixels by 275 pixels,
51 spectral bands sampled from 450 nm to 850 nm, and a spectral resolution of 8 nm.
With dimensions of 29 mm by 29 mm by 40 mm and a weight of 120 g, it represents an ideal
solution for mounting on a wide range of UAVs. Together with the provided single-board
computer, triggering circuit, and wiring-mounting hardware, the total acquisition system
weighs under 800 g. A DJI M600 pro drone was used for the data acquisition sessions, and
the provided SDK was used to convert the captured irradiance images to radiance. Figure 2
depicts the data acquisition platform. More information about the setup and the initial data
conversion process can be found in the paper [62].
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Figure 1. Overview of the proposed method.

Image acquisition was carried out using DJI Ground Station Pro software v2.0.17, with
“hover and shoot” mode used to trigger the hyperspectral camera. Front and side overlaps
between images of 80% were selected due to the accuracy limitations of the traditional
GPS systems in order to ensure a sufficient common area between two images, as a high
overlap percentage allows for better detection of feature matches. The selected fields for
data acquisition contained a mix of the following: freshly ploughed soil, a mix of weeds
and soil, watered paddy fields, asphalt roads, fully grown weeds, and orange plants. These
image scenes were selected in order to demonstrate the feature detection limitations that
occur in the agriculture plots, such as vegetation in its early stages when a large percentage
of soil remains visible.

Figure 2. The DJI M600 Pro drone with mounted camera.

3.2. PST-Based Feature Match Generation

Training a Siamese network to distinguish matches from non-matches using a set
of potential feature matches is the primary approach used in this paper to obtain a set
of robust filter matches. The most rudimentary approach is to select a region of pixels



Sensors 2023, 23, 8004 7 of 20

from the first image and then obtain all the possible combinations from the second image
with the same region size. This is repeated until the full image area in the first image is
covered. However, this is a resource-intensive task; another approach is to convert the
image into a different domain and then find features from it. After investigating several
approaches, such as hyperspectral band fusion and image enhancement, we determined
that generating edge maps from the hyperspectral image and then finding features in the
edge map resulted in a dataset that was sufficiently accurate to be adequately filtered by
the Siamese network.

Phase Stretch Transformation (PST) is a computationally efficient edge and texture
detection method that promises exceptional performance on visually impaired images. It
was first introduced by Asghari et al. in the papers [63,64] based on the concept of photonic
time stretch [65]. In the search for a suitable edge map creator, [66] evaluated phase stretch
transformation-based edge detection in comparison to several different popular edge
detection algorithms (canny edge detection [67], Sobel edge detection [68], and Laplacian
of Gaussian (LoG) edge detection [69]), finding that edge detection with PST resulted in
superior performance. We did not investigate learning-based edge detection methods,
which was due to several reasons, including the trained algorithm not being available, the
trained data size being different from the size of the low-resolution hyperspectral images,
and the high computational burden.

At first, one band from each hyperspectral image was selected to apply the PST edge
detector. Then, each image was passed through the PST algorithm using the Python
library [66]. There are five parameters in the algorithm, which the user is able to tune:
the phase strength, warp strength, standard deviation (sigma) of the Gaussian low-pass
filter, lower and upper thresholds, and a boolean for binary/analog edge detection. Phase
strength and warp strength were selected as 0.2 and 50, respectively, while the sigma
of the low pass filter was selected as 0.15. The threshold range was from 0 to 0.65, and
the binary mask was taken out as the edge map. Next, the converted edge image was
processed through the SIFT feature detector and KNN matcher, using opencv to obtain a
list of matches for the image pair. The sensitivity of the SIFT detector was increased by
changing the contrast threshold, sigma, and noctaveLayers parameters. In our experiment,
the minimum contrast required for keypoint detection was set to zero and the sigma of the
Gaussian smoothing kernel was set to 1. The number of octaves used to detect keypoints
was set to 8.

By adjusting the SIFT detector’s sensitivity, more than 10,000 feature matches were
generated, providing ample data for the Siamese network to utilize. The selection of the
spectral band used to perform edge detection was partially important when generating the
feature matches in this step. Even though the generated feature matches remained high
no matter the selected band, and each band produced enough correct feature matches to
calculate the homography in the majority of cases, we identified that selecting a spectral
band from 600 nm to 800 nm resulted in highly accurate matches. Further investigation
into the specific results is presented in the Section 4.1. Figure 3a depicts the original images,
Figure 3b the edge map created using the PST method, and Figure 3c 100 of the randomly
selected feature matches of the selected image pair. This process was followed by extracting
patches with a pixel size of 32 × 32 while keeping the matched keypoints as the center of
the patch. Each patch was extracted along with all the spectral information in the patch
area, which resulted in two 32 × 32 × 51 image patches for each matched keypoint shown
in the first and second images.
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Figure 3. Intermediate results of feature match generation method: (a) selected image pair from the
750 nm band, (b) PST edge map, (c) random sample 100 detected matches.

3.3. Dimensionality Reduction Using Autoencoder

Training a neural network with the obtained 32 × 32 pixel patches extracted with the
51 bands is not a recommended procedure to follow due to the challenges associated with
high dimensionality, such as the curse of dimensionality [70]. Hence, a simple autoencoder-
based dimensionality reduction network was implemented in this research to reduce
the dimensions of the hyperspectral image from 51 bands to 16 bands. The decision to
use autoencoder-based dimensionality reduction was based on the execution time. Even
though training the autoencoder is computationally expensive, the time to reach inference
with the trained model is much faster than more traditional methods such as Principal
Component Analysis.

Dimensionality reduction was achieved using a feed-forward neural network-based
encoder and decoder, with three hidden layers in each. Instead of representing the whole
patch in a lower-dimensional space, a 1D autoencoder was trained to reduce the dimensions
of each spectral signature at each pixel; hence, the size of the input to the autoencoder
is (1, 51). Each hidden layer is followed by a batch normalizing layer and a leaky ReLU
layer. After the training process, the encoder portion of the autoencoder reduces the
51 dimensions to 16 at each pixel of the 32 × 32 patches. The regenerated pixel spectra from
the autoencoder showed a high correlation with the original data, solidifying the selection
of the autoencoder approach.

3.4. Feature Filtering Using a 3D Convolutional Siamese Network

The generated feature matches consisted of two subsets, correct matches, and incorrect
matches, with the Siamese network used to distinguish matches from non-matches. In order
to utilize both the spectral information and spatial information during the filtering process,
a 3D convolution-based Siamese network is proposed in this research. Figure 4 depicts the
architecture of the proposed Siamese model. The network was trained on matched and
non-matched features, with an input size of 32 × 32 × 16 in each patch.
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3.4.1. Network Architecture

The network consists of three 3D convolution layers, with 3D convolution kernel sizes
of 3 × 3 × 3 for the first two layers and 1 × 3 × 3 for each successive layer. After each
convolution layer, batch normalization is carried out and a LeakyReLU function with a
negative slope set to 0.2 is used as the activation function. After each activation layer, three
maxpooling layers are used in the size of 2 × 2 × 2 for the first two layers and 1 × 2 × 2 for
the final maxpooling layer. After this, the output is flattened and input to a dense network
with two layers having sizes of 256 and 128, respectively. Finally, the Euclidian distance is
calculated from the output of each network. In order to increase the distance of the output
embeddings for non-matched images and decrease the distance of output embeddings
for matched images, a contrastive loss function is adopted during the training process.
The contrastive loss function is designed to penalize the network when the two inputs
are the same and reward it when they are different. This proposed network shape was
obtained after experimenting with several shapes and sizes to find the one that provided
the best accuracy.

Figure 4. Proposed network architecture.

The contrastive loss function is calculated as follows. Considering that z1 and z2 are
embeddings of two patches in an embedding space, y is the binary label indicating whether
or not the pair of patches is a match, and margin represents a hyperparameter that defines
the minimum desired separation between similar and dissimilar points in the embedding
space, the calculation of the contrastive loss function is performed as follows.

First, compute the Euclidean distance (L2 distance) between the two embeddings by
calculating the element-wise difference between z1 and z2. Then, calculate the squared L2
distance for each pair of embeddings. Finally, calculate the Euclidean distance by taking
the square root of the squared distances represented in Equations (1) and (2).

di f f erence = z1 − z2 (1)

Euclidean_Distance =

√
n

∑
i=1

(differencei)2 (2)

Then, calculate the difference between the margin and the calculated distance. The
negative values are clamped to ensure that negative values are set to zero, as indicated in
Equation (3). This ensures that dissimilar points are only penalized if they are closer than
the desired margin. Finally, the loss for both patches is calculated using Equation (4).



Sensors 2023, 23, 8004 10 of 20

negative_distance = min(max((margin − Euclidean_Distance), 0.0), max_valuei) (3)

loss =
y · distance_squared + (1 − y) · negative_distance2

2.0
(4)

The training process was carried out using a dataset created by moving a 32 × 32 pixel
window along one image. As Figure 5a demonstrates, matches in the dataset were created
by duplicating the same image patch while moving the Pr window with a stride of 5 pixels.
This 32 × 32 window was then moved until the entire image was covered, and duplicated
patches were saved as matches. For non-matches, the Pr window was kept stationary
while moving the Py window by 5 pixel strides to cover the entire image. Each non-match
consisted of a patch Pr and patch Py. When the Py window covered the whole image, the Pr
window was moved by a 5 pixel stride; this movement of Py was repeated in such a way
that duplicates were avoided. This combination of movements resulted in 2548 matches and
1,685,502 non-matches from one image. However, non-matches were randomly dropped,
and only 5000 non-matches were recorded from one image. In all, 300 hyperspectral images
were selected from different acquisition sessions to create the data samples for training
and validation.

Figure 5. Training data creation process: red square = Pr window, yellow square = Py window.
(a) matches and (b) non-matches.

3.4.2. Training Dataset Creation and Training Process

Out of the created dataset, 7,000,000 matches and non-matches from each class
were randomly selected for the training, validation, and test process. Figure 6a depicts
two matched samples from the dataset and Figure 6b depicts non-matched samples. Se-
lected data were divided into training, validation, and testing sets in a ratio of 0.8, 0.1,
and 0.1. Model training was stopped at epoch 18 under the criteria that five consecutive
validation losses did not show any improvement. The model was trained at a learning rate
of 0.0001 using Adam optimization [71]. Furthermore, dynamic mini-batch sizing was used
in the training process, where the batch size was increased over the first five epochs from
256 to 2048. Studies suggest that incorporating this approach in large-scale models provides
the advantages of fast convergence and a regularization effect while saving memory and
computational resources [72,73]. Although the proposed model has only 202,568 tunable
parameters, which is relatively small compared to many other models, we believe that this
aids in its fast convergence. Figure 7a presents the training and validation loss values for
the model.
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Figure 6. Four samples from the created dataset: (a) matches and (b) non-matches.

After the training process, inference was carried out to obtain the prediction by calcu-
lating the same Euclidian distance and then thresholding the distance. Figure 7b presents
the Matthews Correlation Coefficient curve for the test dataset. The Matthews Correlation
Coefficient (MCC) is a performance metric for binary classification tasks that takes into
account true positives, true negatives, false positives, and false negatives. The score falls
between [−1, 1], where 1 represents a perfect prediction, 0 represents a random prediction,
and −1 represents total disagreement between prediction and observation. The MCC
curve is obtained by changing the threshold value and calculating the respective MCC
value. In Figure 7b, the x-axis represents the threshold values considered from 0 to 3 and
the y-axis presents the MCC value obtained at each threshold. The curve indicates that
threshold values less than 0.9 produce near-perfect results for the test set. However, when
the trained model was applied to adjacent image pairs, thresholds above 0.6 indicate a
considerable number of incorrect matches. This is due to the slight difference between
the trained data and real data. The trained data were identical matches from the same
images; however, when the trained algorithm was applied to adjacent images, slight illumi-
nation and perspective changes occurred due to changes in the image acquisition location.
The incorporated method for the generation of the data set completely removes the labor
intensity required if the dataset is generated with adjacent images with manual labeling.
We believe that the features learned from the dataset created with the proposed method
were successful at teaching relevant features to the CNN, which we demonstrate in the
results section.

Figure 7. (a) Training and validation loss curve and (b) Matthews Correlation Coefficient curve.

3.5. Evaluation Procedure

In order to evaluate the proposed method, several hyperspectral image pairs were
selected, demonstrating the superior performance of the proposed model as well as in-
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stances in which it does not perform well. The 762 nm (38th) spectral band was selected
from each of the image pairs, then the edge image was created as described in Section 3.2.
Next, a set of feature matches was obtained using SIFT detectors, as described in the same
section. Patches with a size of 32 × 32 were extracted in pairs for each match, and the
dimensions were reduced from 51 to 16 using the encoder. Each pair of patches were then
processed through the Siamese network to obtain the Euclidian distance. A threshold value
was selected for binary classification. Then, the set of filtered feature matches was used to
evaluate the proposed method with both traditional methods and state-of-the-art methods.
Several evaluation metrics were used to compare the methods. The inlier percentage was
obtained by calculating the homography with RANSAC. Furthermore, after extracting
a common region from the two overlapping regions following the homography transfor-
mation, the Structural Similarity Index Metric (SSIM) [74] and correlation coefficient for the
two regions were calculated. The SSIM is derived by calculating the three subcomponents
of luminance, contrast, and structure; hence, the SSIM is correlated with the accuracy of
the identified feature matches. On the other hand, the correlation coefficient measures the
linear relationship between image pixels in the two regions. Coefficient values range from
−1 to 1, with −1 indicating a perfect negative linear correlation and 1 indicating a perfect
positive correlation. However, this metric does not consider the perceptual qualities of the
two regions.

In order to compare the proposed method, the aforementioned LoFTR and LightGlue
methods were selected. LightGlue was utilized along with the DISK feature detector [75]
during the experiments based on the superior performance observed for this combination
of feature detector and matcher. In addition, a combination of the Good Features to
Track (GFTT) detector [76] + OpenGlue [77] and a combination of the KeyNet keypoint
detector [78] + OpenGlue were utilized as state-of-the-art methods with which to compare
the performance of our proposed method. A second-nearest neighbor matcher (SNN) was
utilized to filter the non-matches from the matches in each of the aforementioned detectors
and descriptors. OpenGlue uses a convolutional neural network to produce descriptors
for keypoints identified using GFTT and KeyNet. The methods used for comparison were
selected after an initial evaluation in which they produced comparable results with the
LoFTR and LightGlue algorithms.

4. Results and Discussion

Our results and the associated discussion are presented in two subsections. First,
we discuss the use of the spectral band in PST-based feature match generation and how
selecting a particular band affects the performance of the proposed method. Next, the per-
formance of the proposed method is evaluated using selected image pairs from several
different datasets captured in different locations.

4.1. Selection of the Spectral Band

As mentioned in Section 3.2, we identified that the performance in the 600–800 nm
range (band 18 to band 42) was comparatively better than that in the other spectral bands.
Figure 8 presents graphs obtained to evaluate this statement. Ten image pairs were ran-
domly selected and feature matching was carried out for each band of the hyperspectral
image pair. Figure 8a presents all of the matches obtained for each image pair at each
spectral band, while Figure 8b presents the filtered features obtained from the proposed
Siamese model. The derived feature matches were then used to calculate the homography
between the two images at each band, and the inlier ratio and mean reprojection ratio were
calculated for each band. Figure 8c,d presents the respective plots. These graphs highlight
that a high number of matches identified in the initial few bands does not necessarily
translate into accurate match predictions. This is due to the fact that the contrast between
pixels in the initial bands is lower, which produces noise rather than accurate matches
when the image is subjected to PST-based edge detection. Bands 32 and 33 suffer from the
same situation, with a drop in the filtered features. In terms of inliers, most of the bands
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from all image pairs were able to produce more than 80% inliers; however, image pair G
had fluctuating performance, producing a respectable inlier ratio and a reprojection error
between bands 20 and 30 (618–706 nm). These results suggest that in order to obtain the
maximum performance with the proposed method it is necessary to consider the contrast
between the pixels within each band. Notably, when incorporating edge-based feature
detection in an application area other than agricultural plots, such as biomedical hyperspec-
tral imaging it is necessary to consider the most band suitable for the specific application.

Figure 8. Evaluation of band selection for initial feature matching for ten image pairs: (a) total
matches produced for each band, (b) total matches produced by the proposed method, (c) inlier ratio
for each band, (d) mean reprojection error for each band.

4.2. Evaluation of the Proposed Method

In order to evaluate the proposed method, four state-of-the-art feature detectors and
matches used in Simultaneous Localization and Mapping (SLAM) and other visual tracking
tasks were selected, along with the traditional SIFT method. Eighteen image pairs were
selected from three data sets taken on different dates and at different locations. The flight
altitudes of the three missions were 100 m, 110 m, and 80 m. Samples from each data set
are presented in Figure 9, where the main number indicates the dataset number and the
subscript indicates the image pair. These image pairs were selected in order to highlight
the strengths and weaknesses of the proposed method and compare its results with the
state-of-the-art methods. Each image pair was processed through the proposed method
as described in Section 3.5 to obtain the SSIM and correlation coefficient. If the identified
matches are accurate, they should reflect higher SSIM and correlation values, indicating that
the two overlapping regions are similar and that the method successfully produced high-
quality feature matches. In addition to the SSIM and correlation coefficient, we obtained
the inlier percentage, which falls into the calculated homography.
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Figure 9. Selected samples from the datasets. Each figure name refers to the corresponding dataset
and image pair in Table 1. The dataset number is represented in the base number and subscript
presents the image pair.

The obtained results from the evaluation experiments are listed in Table 1. When
the match number is present and the rest of the columns indicate “Fail”, this indicates
that while the algorithm produced matches, it was unable to calculate a homography
using the identified matches or the calculated homography did not produce meaningful
results. When the term “Fail” is present without indicating any matches, this implies
that the algorithm was not able to produce any matches for the respective image pairs.
Overall, the proposed method, LoFTR method, and LightGlue with DISK descriptor–
matcher produced far superior performance in terms of the number of matches produced
and number of inliers that fell under the calculated homography. With the first dataset, all
of the methods were able to produce respectable metrics for the identified feature matches,
with the exception of the matches obtained by LoFTR for image pair f , which failed to
produce any usable homography from the detected matches. In terms of the number of
feature matches, traditional SIFT, GFTT + OpenGlue, and KeyNet + OpenGlue produced
fewer results compared to the other three methods. This poor performance was far more
evident on the second and third datasets; the results when using the above three methods
were subpar.

It was observed that most of the evaluated methods performed acceptably when
scenes were complex and contained a variety of shapes and pixel intensities, with the
exception of the LoFTR method in 2u, shown in Figure 9. These include scenes such as the
ones depicted in 2u and 2w, where complex vegetation is present, or those depicted in 1b
and 1d, where the radiometric characteristics of the scene create contrastive pixel regions.
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This again emphasizes the necessity of developing methods for use in agricultural plots
which do not contain such characteristics.

Of the evaluated methods, LightGlue produced the highest number of feature matches
in most instances. LoFTR was able to produce comparable results with LightGlue; however,
it did not perform well for certain image pairs, such as i and r from the second and third
datasets, as shown in Figure 9. The performance of the proposed method in terms of the
number of feature matches was between that of LightGlue and LoFTR. Figure 10 presents
the SSIM values in graph format. Overall, the proposed method provided the highest SSIM
values for the datasets, with the exception of seven instances out of eighteen, five on which
SIFT provided the highest SSIM and one each on which LightGlure and GFTT + OpenGlue
did so. It should be noted that even though LoFTR provided good results in terms of the
number of matches, its results were not as accurate as those of the proposed method or
the LightGlue method in terms of SSIM values. Among the feature matches we obtained,
the proposed method produced nine of the top eighteen inlier ratios. Additionally, out of
the remaining nine cases where our method did not achieve the highest inlier ratio, seven
instances were within 10% of the highest value. This solidifies the highly accurate nature of
the proposed method. Notably, the proposed method did not perform well on image pair o,
as depicted in Figure 11. We believe that this is due to two main reasons: first, there is a
difference in illumination between the two images, causing the Siamese network to classify
the correct matches as non-matches due to the training data mostly consisting of identical
pairs from the same image; second, the initial edge-based feature detection method was
not able to correctly detect the match because of the low contrast of the image. Finally, it
can be observed from the results for each algorithm that the correlation coefficient values
are correlated with the SSIM values throughout.

Figure 10. Line graphs showing the SSIM values obtained for each image pair from a to r.

Figure 11. (a) Image pair o in Dataset 3 and (b) the same image pair after the PST edge detection.
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Table 1. Results obtained with the proposed method.

Proposed Method LoFTR LightGlue + DISK

DS IP Matches SSIM Corr Inliers Matches SSIM Corr Inliers Matches SSIM Corr Inliers

1

a 282 0.973 0.935 94.68 13 0.867 0.851 92.30 677 0.971 0.999 93.83

b 254 0.980 0.992 91.73 719 0.942 0.978 80.80 834 0.980 0.992 84.77

c 412 0.989 0.997 95.63 499 0.870 0.964 77.35 838 0.989 0.997 98.56

d 394 0.982 0.998 96.70 63 0.907 0.979 85.71 873 0.981 0.998 96.44

e 132 0.959 0.974 77.20 42 0.902 0.926 92.85 334 0.960 0.974 84.43

f 231 0.975 0.980 81.38 5 Fail 438 0.973 0.977 98.18

2

i 74 0.929 0.622 89.18 240 0.909 0.717 87.08 97 0.793 −0.025 82.47

j 88 0.967 0.896 87.50 287 0.922 0.833 75.95 387 0.954 0.943 76.74

k 36 0.971 0.941 72.22 91 0.932 0.925 69.23 Fail

l 107 0.946 0.983 85.04 7 0.640 0.578 85.71 241 0.853 0.911 68.87

m 215 0.983 0.968 86.04 143 0.899 0.880 74.12 212 0.982 0.965 88.21

u 753 0.958 0.978 92.69 58 0.605 0.712 93.10 960 0.955 0.976 98.43

w 1057 0.959 0.980 99.81 841 0.862 0.929 93.10 1042 0.954 0.977 91.26

3

n 14 0.887 0.874 100.0 410 0.782 0.747 71.21 6 Fail

o 52 0.600 0.693 94.23 234 0.687 0.931 75.21 285 0.710 0.958 92.63

p 131 0.940 0.947 94.02 32 0.780 0.514 65.62 507 0.937 0.819 81.65

q 36 0.969 0.980 75.00 45 0.720 0.805 66.66 118 0.660 0.497 33.89

r 23 0.790 0.761 91.30 Fail 41 0.750 0.657 60.97

DS IP GFTTAffNetHardNet + snn KeyNetAffNetHardNet + snn SIFT

Matches SSIM Corr Inlirs Matches SSIM Corr Inliers Matches SSIM Corr Inliers

1

a 51 0.971 0.927 98.11 125 0.975 0.982 83.20 38 0.977 0.956 13.47

b 52 0.979 0.992 100.0 126 0.981 0.992 88.09 29 0.981 0.993 11.41

c 87 0.988 0.997 87.35 143 0.989 0.997 95.10 44 0.989 0.997 10.67

d 88 0.981 0.998 95.45 150 0.981 0.998 86.66 38 0.981 0.998 8.12

e 23 0.960 0.974 86.95 88 0.958 0.974 96.59 33 0.961 0.974 18.18

f 41 0.976 0.970 97.56 58 0.970 0.967 89.65 16 0.975 0.980 6.49

2

i Fail Fail 34 Fail

j Fail Fail Fail

k 7 0.957 0.932 100 10 0.801 0.774 80.00 Fail

l 4 0.927 0.971 100 18 0.922 0.968 88.88 12 Fail

m 27 0.973 0.958 92.59 73 0.981 0.964 84.93 66 0.981 0.963 8.37

u 192 0.955 0.976 24.70 131 0.958 0.978 87.78 357 0.957 0.977 83.75

w 259 0.958 0.980 24.50 131 0.957 0.979 83.21 456 0.958 0.979 96.49

3

n Fail 5 Fail 26 Fail

o 8 Fail 8 Fail Fail

p 14 0.814 0.510 78.57 41 0.742 0.452 75.60 19 Fail

q 1 Fail 26 0.932 0.956 69.23 7 0.970 0.978 19.44

r 1 Fail 6 Fail Fail

DS: Dataset. IP: Image Pair. SSIM: Structural Similarity Index Metric. Corr: Correlation Coefficient. Inliers: Values
represent percentages.
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One drawback of the proposed method that needs to be highlighted is its performance
speed. Due to the large number of feature matches that need to be filtered out, the proposed
algorithm is slower by a factor of ten when compared with the other methods. However, it
is important to note that we conducted the experiments while allowing room for further
optimization of the code for parallel processing and GPU processing. We propose using the
current model as a supplementary feature detection method for use with state-of-the-art
methods. For example, in an image mosaicing task the user could incorporate an evaluation
metric such as the SSIM to decide whether the detected matches are within a threshold
value; if they are not, the proposed method could be utilized to detect the feature matches.

5. Conclusions

In this research paper, we propose a novel feature matching method for hyperspectral
images. Specifically, we highlight the limitations posed by existing feature detection meth-
ods when used with low-resolution hyperspectral images and propose a method involving
a 3D convolution-based Siamese network. In the proposed method, a set of feature matches
are first generated by performing SIFT feature matching with edge images generated via
Phase Stretch Transformation-based edge detection. Then, a Siamese network based on a
3D convolution neural network is used to filter out inaccurate matches, producing a robust
set of feature matches. The proposed method factors in all of the information available in
every hyperspectral image band, which traditional methods do not take into consideration,
in order to produce robust feature matches.

Evaluations carried out using sixteen hyperspectral image pairs revealed that the
proposed method can produce highly accurate feature matches, as reflected in high values
of the Structural Similarity Index Metric. Although there were a few image pairs for
which the proposed method did not produce the highest SSIM results, it was nonetheless
competitive with state-of-the-art methods. We believe that the proposed method can aid
in the generation of high-quality image mosaics in the remote sensing domain using low
pixel resolution hyperspectral images. The same methodology could be used for tasks such
as hyperspectral image stitching in other applications as well, such as biomedical research.

A major bottleneck of the proposed method was identified as the initial feature genera-
tion step. As part of our future research, we intend to explore ways of refining this method
by adopting a different approach to identifying the initial set of feature matches. This alter-
native strategy is expected to reduce the initial feature set and enhance the performance
speed of the proposed method. Furthermore, additional tuning of the Siamese model will
be considered in the future to compensate for changes in illumination that might occur
due to differences in flight time. We believe that the proposed methodology can aid the
advancement of the low-resolution hyperspectral imaging field, thereby making remote
sensing accessible for many more researchers.
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