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Abstract: Induction motors (IMs) are widely used in industrial applications due to their advantages
over other motor types. However, the efficiency and lifespan of IMs can be significantly impacted by
operating conditions, especially Unbalanced Supply Voltages (USV), which are common in industrial
plants. Detecting and accurately assessing the severity of USV in real-time is crucial to prevent major
breakdowns and enhance reliability and safety in industrial facilities. This paper presented a reliable
method for precise online detection of USV by monitoring a relevant indicator, denominated by
negative voltage factor (NVF), which, in turn, is obtained using the voltage symmetrical components.
On the other hand, impedance estimation proves to be fundamental to understand the behavior of
motors and identify possible problems. IM impedance affects its performance, namely torque, power
factor and efficiency. Furthermore, as the presence of faults or abnormalities is manifested by the
modification of the IM impedance, its estimation is particularly useful in this context. This paper
proposed two machine learning (ML) models, the first one estimated the IM stator phase impedance,
and the second one detected USV conditions. Therefore, the first ML model was capable of estimating
the IM phases impedances using just the phase currents with no need for extra sensors, as the currents
were used to control the IM. The second ML model required both phase currents and voltages to
estimate NVE. The proposed approach used a combination of a Regressor Decision Tree (DTR) model
with the Short Time Least Squares Prony (STLSP) technique. The STLSP algorithm was used to create
the datasets that will be used in the training and testing phase of the DTR model, being crucial in the
creation of both features and targets. After the training phase, the STLSP technique was again used
on completely new data to obtain the DTR model inputs, from which the ML models can estimate
desired physical quantities (phases impedance or NVF).

Keywords: three-phase IMs; unbalanced supply voltage (USV); voltage negative factor (VNF);
fortescue transform (FT); short time least square Prony’s method (STLSP); impedance estimation;
decision tree regressor (DTR) model

1. Introduction

In today’s industrial landscape, three-phase induction motors (IMs) dominate, ac-
counting for over 85% of all electric motors utilization [1-4]. Their widespread adoption
stems from their reliability, ease of design, high performance, and ability to handle heavy
loads, making them suitable for various applications across manufacturing, processing,
power systems, transportation, and more. Despite their benefits, IMs operate in challenging
mechanical and electrical environments, rendering them susceptible to multiple stator
and/or rotor faults.

One particularly common electrical issue encountered in industrial plants is unbal-
anced supply voltages (USV), which can disproportionately impact IMs compared to other

Sensors 2023, 23, 7989. https://doi.org/10.3390/s23187989 https:/ /www.mdpi.com/journal /sensors


https://doi.org/10.3390/s23187989
https://doi.org/10.3390/s23187989
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-7683-6897
https://orcid.org/0000-0001-8025-6898
https://orcid.org/0000-0002-8807-9782
https://orcid.org/0000-0001-8737-6999
https://doi.org/10.3390/s23187989
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23187989?type=check_update&version=1

Sensors 2023, 23, 7989

2 of 25

electrical equipment. Even minor USV can result in significant unbalanced currents due
to the relatively low negative sequence impedance, leading to various detrimental effects.
These effects include increased heating, elevated losses, vibrations, acoustic noises, reduced
torque output, and, ultimately, a shortened lifespan for IMs. Recognizing the potential
damages caused by USV, different standards have been established to define permissible
limits for this phenomenon. Notable standards include those set by NEMA [5], IEEE, and
IEC, each with its own set of considerations [6-8]. These standards aim to mitigate the
adverse impacts of USV on IMs and ensure their optimal operation.

Unbalanced supply voltages (USV) in industrial power systems can arise from various
factors, with some of the most common causes being highlighted in [9]. These include
malfunctioning power factor correction equipment, unevenly distributed single-phase
loads within the same power system, and open-circuits in the primary distribution system.
The investigation of USV has been extensively explored in research papers, focusing on
identifying its root causes and examining its impact on electrical machines to establish
acceptable tolerance levels.

The dynamics of induction motors are highly intricate, emphasizing the need for a
controller capable of robust control considering these dynamics. Induction motor con-
trollers play a vital role in ensuring the protection and supervision of electromechanical
systems [5,10]. To fulfill these functions effectively, it becomes imperative to comprehend
the dynamic physical model of induction motors. Accurate dynamics are obtained by
applying the fundamental principles of physics. These dynamic models rely on physical
parameters such as currents, voltages, speed, fluxes, inductances, and resistances, which are
directly or indirectly monitored through sensors or estimators. However, due to operational
conditions and the presence of noise, achieving precise measurements of some of these
values can be challenging. Estimating the impedance of induction motors is a crucial aspect
of motor analysis and control in the field of electrical engineering. Accurate knowledge
of the motor’s impedance helps in various applications, such as motor protection, fault
diagnosis, and control system design [11].

Several techniques and approaches have been developed for impedance estimation
of induction motors. One commonly used method is the Extended Kalman Filter (EKF)
approach, which combines the motor mathematical model with measured data to estimate
the motor parameters, including impedance [5,11]. This approach is discussed through
a comprehensive formulation of the EKF algorithm for impedance estimation, and its
effectiveness is validated through experimental results.

Signal processing techniques play a crucial role in reducing noise and extracting mean-
ingful features from raw data. In this field, various time domain feature methods [12-14],
such as Kernel Density Estimation (KDE), Root Mean Square (RMS), Crest Factor, Crest-
Crest Value, and Kurtosis, are commonly employed to quantify characteristics. Addi-
tionally, frequency domain features [15], obtained through Fourier transformation, and
time-frequency features derived from Wavelet Packet Transform (WPT) [16], are widely
utilized as indicators for subsequent analysis. Other signal processing methods, including
Empirical Mode Decomposition (EMD) [17,18], Intrinsic Mode Function (IMF), Discrete
Wavelet Transform (DWT), Hilbert Huang Transform (HHT) [18,19], Wavelet Transform
(WT) [20], and Principal Component Analysis (PCA) [21], are also employed for effective
signal processing.

After employing signal processing and feature extraction methods, various classifica-
tion techniques are utilized to identify flaws based on the extracted characteristics. Support
Vector Machine (SVM), Artificial Neural Networks (ANN), Wavelet Neural Networks
(WNN) [19], dynamic neural networks, and fuzzy inference are commonly employed in
this context. Researchers have employed different approaches to leverage these classi-
fication techniques. For instance, Ref. [18] utilized Hilbert Huang Transform (HHT) to
extract features from marginal spectrum vibration signals, followed by SVM classification
using Window Marginal Spectrum Clustering (WMSC) for defect identification. In [22], the
statistical locally linear embedding approach was employed to obtain low-dimensional
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characteristics from high-dimensional data extracted through time domain, frequency
domain, and Empirical Mode Decomposition (EMD) techniques. The classifiers utilized in
that study were regression trees, the K-nearest-neighbor classifier, and SVM.

In their research, the authors in [23] utilized the Gaussian—-Bernoulli Deep Boltzmann
Machine (GDBM) to analyze and learn from statistical characteristics extracted from the
time domain, frequency domain, and time-frequency domain. The GDBM was also selected
as the classifier in their study. On the other hand, in [24], the reported work is focused
on optimizing the classifier’s performance by employing a multi-stage feature selection
technique to identify the most relevant set of characteristics. Both studies emphasize the
importance of feature extraction and selection phases in their respective approaches.

While defect identification techniques offer valuable insights, they do possess certain
limitations. Firstly, effectively applying noise reduction and feature extraction methods to
real-world challenges requires specialized knowledge in signal processing. Each unique
condition may necessitate the use of specific signal processing techniques that rely on
expertise in signal analysis and mathematics.

Secondly, the performance of classifiers heavily relies on the quality and relevance of
the features extracted from time series signals. While accurate and informative features
contribute to accurate identification and decision-making, the presence of confusing or
irrelevant features can lead the model astray.

Thirdly, it is important to acknowledge that feature extraction approaches inevitably
result in some loss of information. This loss may include the temporal coherence of time
series data, which is a significant aspect that should not be disregarded when interpreting
and analyzing the results.

This paper proposed two simple solutions with reduced computational cost, which
use ML algorithms to estimate the IM phases impedances and detect the USV condition.
It should be noted that the impedance estimation does not require the introduction of
extra sensors. On the other hand, the detection of the USV condition does not require the
computation of the voltage-symmetrical components, which makes the solution simpler
and computationally lighter.

2. The Proposed USV Fault Detection

The objective was to develop a dependable and measurable indicator that enables
quick and real-time detection of Unbalanced Supply Voltage (USV), facilitating prompt
actions to safeguard three-phase induction motors. The concept proposed takes inspiration
from the examination of voltage imbalances in power network analysis. Specifically, the
Voltage Unbalance Factor (VUF) is defined as the ratio between the negative and positive
symmetrical components of voltages [25,26]. To emphasize its derivation from the negative
sequence, it will be referred as the Negative Voltage Unbalance Factor (NVUE):

VN

NVE = NVUF = | X )
Vp

The symmetrical components of voltage are determined through the widely used
Fortescue Transform (FT). By applying the FT to the three-phase unbalanced supply volt-
ages (Va, Vb, Vc¢) of an induction motor, three symmetrical components are obtained:
positive (Vp or direct), negative (Vy or inverse), and zero (Vz or homopolar). These
symmetrical components can be expressed in matrix form as follows:

Vp 1 1 a a? V,
VN =3 % 1 a? x |V, ()
Vz 1 1 1 Ve

where a = ¢(2x7xj/3)

In the case of balanced supply voltages, only the positive symmetrical component is
present, while the negative and zero components remain zero. However, in the event of Un-
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Signal acquisition

Online acquisition of

the three phase stator

voltages/currents

f5=20 kHz

balanced Supply Voltage (USV), the negative symmetrical components emerge. Therefore,
the degree of USV can be assessed by utilizing the NVUF factor defined in Equation (1) [27].

As mentioned earlier, the presence of Unbalanced Supply Voltage (USV) in induction
motors results in an imbalance in the line currents, which, in turn, leads to an imbalance
in the stator winding impedances. Therefore, the proposed approach involves calculating
the symmetrical components associated with both the line stator currents and the stator
winding impedances. This allows for the determination of the phase impedances, Negative
Current Factor (NCF), and Negative Impedance Factor (NIF), according to the following
definitions [28,29]:

~ Vapc(1fs)
2456 = Tyuclifo) ©
NCF = IIL;] )
NIF = % )

The central aspect of the proposed concept is the precise estimation and monitoring of
the fundamental harmonics associated with voltages and currents. These harmonics are
utilized to compute the necessary symmetrical components, which, in turn, are employed
to determine various factors. Consequently, the proposed method can be outlined by the
following sequential steps, illustrated in Figure 1 for better clarity and organization:

[ Application of STLSP technique ] [ Dataset generation ] [ Model training ] [ Evaluation ]

U

Training and testing

[

Extraction of phases and

N A Vasc(lf)
magnitudes of the Zasc
fundamental harmonics

.

Mean absolute error

J A lipc(fs)

Iy

[ Application of Fortescue Transformation ]

A Vazc(lfs) —>
A Tape(1f) — 7

Elass et Mean squared error

Iy

[ Online calculation of voltages symmetrical components ]

=)

Vo _r
NVF ]
Vn

Figure 1. General scheme of the proposed strategy.

Step 01: Acquisition of the three-phase currents and voltages (V, V3, Ve, Lo, Iy, I );

Step 02: Extraction of fundamental harmonics (magnitudes and phase angles) asso-
ciated with three-phase voltages and currents ( Vaafs Voags: Veafss laafs Inags, Lea fs) . This
can be achieved using the STLSP method. This method is a high-resolution signal pro-
cessing technique that accurately estimates and tracks all attributes (frequency, amplitude,
phase, and damping factor) of any harmonics from a short data record signal. This ca-
pability allows for the consideration of the non-stationary nature of the problem [30]. To
enhance the results and mitigate the influence of certain features, a preprocessing step is
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necessary for the acquired signals. This involves adjusting data acquisition parameters, ap-
plying filters, removing DC components, and down-sampling [30,31]. The linear prediction
parameters, represented as i, are determined to best fit the observed data. Subsequently,
these linear prediction parameters are utilized to create a characteristic polynomial with
roots, represented as my, using the following approach:

P

flm) = Y (e x mP0) (6)

k=0
Consequently, the damping factor and frequency can be obtained directly from the
roots, my, of Equation (6):

In|my| 1 Im(m) 7\
pr— = 7
o= s ad i = S B Re(my) @
Finally, the roots my, are utilized to write the P equations of (6) in a matrix form as:
1 1 e 1
x| il =1: ®)
qu m12571 . i méfl wp y(P)

The complex parameters my can be obtained by solving Equation (8), which allows
for the determination of the exponential amplitudes Ay and phase angles ¢, using the
following relationships:

A = oy and g = (ran | 3 ) B ©)

On the practical side, the number of available data samples typically exceeds the
number of unknown parameters (N > 2P). In the case of an over-determined dataset, the
linear difference can be expressed as follows [30]:

P

Y (ax x y[n —K]) = e[n] (10)

k=0
The available N data samples are used to rewrite (10) in a matrix form:
ylPl oyl a y[P+1]
Coo x| = an
y[N-1] ... y[N-P] ap y(N)
The unknown parameter vector 4y is chosen to minimize the total squared error of
linear prediction. This minimization task can be effectively solved using the least square

method. Similarly, the estimation of the complex parameters wy can be transformed into a
linear least square procedure.

Mx W =C (12)
with:
o w, y(1)
M = W= ], C=] ¢
m{\zifl mllglfl wp y(N)

Step 03: Calculation of the symmetrical components related to the supply voltages
and stator currents (Vll}s, Vﬁs, Vﬁfs, Iffs, I{\}S, Ilzfs);

Step 04: Calculation of the symmetrical components related to the stator winding
voltage;

Step 05: Calculation of the Negative Voltage Unbalance Factor (NVUF).



Sensors 2023, 23, 7989

6 of 25

3. Experimental Configuration

In order to generate the necessary data set for the training and validation stages of
the ML models, it was necessary to build the experimental configuration represented in
Figure 2. This configuration guarantees the reproduction of different operating conditions.

Fault detection algorithm

-
Tl

i

A

i

Figure 2. (a) Experimental test bench; (b) the fault detection algorithm; (c) the acquisition system;
(d) AC programmable power supply; (e) AC power supply platform.

The experimental setup employed for this purpose primarily comprised a three-phase
400 V-50 Hz power supply and a Y-connected, four-pole squirrel-cage induction motor (refer

to Table 1 for motor specifications). To facilitate measurements, current transducers utilizing
hall-effect technology were utilized, along with a data-acquisition system. Additionally, a
remote station was employed to generate voltage unbalance (see Figure 2). By subjecting
the unbalance factors to different USV levels and diverse operating conditions, this analysis
aimed to provide insights into the performance of ML algorithms.

Table 1. Induction motor technical parameters.

Power [KW] 2.2
Speed [rpm] 1435
Frequency [Hz] 50

Torque [Nm] 14.6
General Voltage [V] 400, Start Connection
Current [A] 4.6, Start Connection

Number of poles 4
Cooling Closed Motor with external ventilation-IC 411
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To create dataset for training and testing the ML models, an algorithm was initially
developed to generate the NVUF using Matlab code. Subsequently, the algorithm was
integrated into the Lab-VIEW software using the Matlab script mode. The remaining
steps of the proposed method, including filtering, down-sampling, and offset removal,
were directly performed using Lab-VIEW palettes. For data acquisition, IM voltage and
current signals were captured using a NI USB-6366 Series data acquisition card, operating
at a sampling frequency of 20 kHz. These steps are executed continuously, enabling real-
time monitoring of the target indicators and various motor parameters, such as voltages,
currents, impedances, and symmetrical components.

4. Machine Learning Algorithm for Estimating Phase Degradation Level

As mentioned in the previous sections, the Voltage Unbalance Condition (VUC) affects
the performance of the Induction Motor (IM), causing heating, oscillating torque, and
mechanical stresses, which, in turn, can lead to a short circuit between turns and, thus,
reduce the IM useful life. Therefore, it is of paramount importance the estimation of the
phase impedance (Zp,) to assess its level of degradation.

This section presents a solution that is able to estimate the Z}, values without adding
extra sensors, so that it is possible to optimize the fault detection scheme. Hence, the main
functional requirement for the design of this solution is to use physical quantities that make
Z,, estimation possible while simultaneously not requiring the use of extra sensors. The
physical quantities that meet the above requirements are the phase currents (I) since they
are required for the voltage source inverter control (VSIC).

In order to estimate Z}, using just L, without resorting to phase voltages (Vpp), it is
necessary to use machine learning (ML) algorithms. ML algorithms can be subdivided into
three types: supervised learning (SML), unsupervised learning (UML), and reinforcement
learning (RML). The ML algorithms that will be used to estimate Zpy, fall into the first
category (SML), as the training data covers not only the inputs but also the outputs. SML
algorithms learn to identify patterns between inputs (features) and outputs (target), which
gives them the ability to make predictions on new data. Therefore, a model capable of pre-
dicting the system’s response is generated. Equation (13) represents a generic SML model.

y =f(Xi, Kj) +E (13)
where:

e  yrepresents the dependent variable, target or output. In the problem under analysis,
th represent the dependent variable;

e Xirepresent theiindependent variable, feature or input. In the problem under analysis,
L represent the independent variable;

e  Kjrepresent the model’s parameters. The model’s parameters are estimated during
the training phase;

e jstands for the number of parameters, and represents one of the model’s hyper
parameters that can be configured to improve the final response. The model’s hyper
parameters can be adjusted through a process denominated by ML model tuning;

e E symbolizes the error between the model predictions and the actual response.

SML models can be subdivided into parametric and non-parametric ones. The para-
metric SML models (PSMLM) use a predefined function to map the input variables into the
output variable. One commonly used PSMLM is the linear regression (LR), which assumes
a linear relationship between the features and the target. The non-parametric SML models
(NPSMLM) does not make any assumptions about the function that maps the features into
the target; therefore, these models do not have a priori a fixed number of parameters before
the training phase. One commonly used NPSMLM is decision tree regression (DTR), whose
number of parameters varies significantly depending on the size and complexity of the
training data set.
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It should be noted that the problem under analysis requires the estimation of a contin-
uous value and not the estimation of discrete one as in the solutions proposed in [18,19,22],
which is why ML classification models will not be addressed.

In order to design a suitable model for the problem under analysis, the following steps
were performed:

1.  Dataset creation and feature selection;
2. ML selection;
3. Testing and final evaluation of ML models.

4.1. Dataset Creation and Feature Selection

The data set used in training and validation stages of the ML models required the
construction of the experimental configuration described in Section 3. This configuration
assures the reproduction of different operating conditions, which, in this article, correspond
to the different scenarios described in Table 2.

Table 2. Scenarios used in ML models training and testing stages.

Scenarios Faulty Phase Load vucC
; - 1001;1\;:; No fault
3-5 A,Band C 0 Nm 5V
6-8 A,Band C 0 Nm 15V
9-11 A,Band C 10 Nm 5V
12-14 A,Band C 10 Nm 15V

After implementing the previous configuration, the currents and voltages in the three
phases of IM were acquired for different scenarios. Afterward, the maximum possible
attributes were extracted from both phase voltages (V1) and currents (Ip,) using the STLSP
algorithm, namely:

1.  The amplitude of Iph (A_IA, A_IBand A_IC) and Vph (A_VA, A_VBand A_VC) at the
converter switching frequency (1f;);

2. The damping factor (DampF) of I, and Vp, at 1f;;

3. The phase angle (phasA) of I, and Vp, at 1f;;

4. The estimated 1f; of I, and V.

4.1.1. Feature Selection

The following step was the identification of the attributes provided by the STLSP
algorithm that would be effectively important in the construction of the final dataset.
Therefore, regarding the target (Zpy), it can be computed as follows:

_AVA _  AVB _, ANC
AT AIA BT AR 7T AIC

where ZA, ZB, and ZC represent the Zon of phases A, B, and C, respectively.

As for the features, and considering the functional requirements presented above, it
can be concluded that just attributes associated with I, should be used. On the other hand,
as the performance of ML models depends considerably on the features, it is fundamental
to choose the most adequate ones that contribute to a better performance of the ML models.
In this regard, it is important to mention that the use of irrelevant features increases
the complexity of the ML model and the computation time [32]. Furthermore, it can
introduce noise, which can lead to overfitting [33]. In this way, the best features were
selected, taking into account those that had a high correlation with the target. For this
purpose, Pearson’s correlation coefficient was used. The Pearson correlation (r) between
two variables X (feature) and Y (target) can be computed using (15) where n represents the
number of samples:

(14)
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= an(XXY)_(ZX)X(ZY) (15)

Vnx EX2—(EX)? x \/n x LY2—(ZY)?

After computing r, it was possible to conclude that just A_IA, A_IB, and A_IC present
a strong correlation with ZA, ZB, and ZC, as can be seen in Figure 3.

1.00

0.75

A B

0.50

-0.25

- 0.00

AlC

-—=0.25
—0.50
—-0.75

—=1.00

ZB

zc

AA AIB AIC ZA ZB

Figure 3. Correlation matrix between the most relevant features (A_IA, A_IB, and A_IC) and the
targets (ZA, ZB, and ZC).
4.1.2. Dataset for ML Model Training and Testing

Finally, it was possible to concatenate all the scenarios described in Table 1 into a single
dataset with all relevant features and the targets, as can be seen in Figure 4.

5.0 5.0
5.0
r 2
4.5 4.5
— h H _ 45 _ HH
= = [ <
4.0 4.0
g| E| 4.0 gl
E E E
3 3.5
3.3 3.5 1
3.0 FH 3.0 3.0 =
0 50000 100000 150000 0 50000 100000 150000 0 50000 100000 150000
Sample [N2] Sample [N2] Sample [N2]
110
110 . 110
100
100 H 100
£ gg £ 90 L| £ 99 H
< [es] ]
T ““ N T n
e -
e N 70 N
70 L 70
H k { { i
0 50000 100000 150000 0 50000 100000 150000 0 50000 100000 150000
Sample [N2] Sample [N2] Sample [N2]

Figure 4. Dataset used for ML models training and testing stages. The features represent the
amplitudes of the phase currents at the converter switching frequency (A_IA, A_IB, and A_IC) and
the targets represent the phase impedances (ZA, ZB, and ZC).
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4.2. ML Selection

In order to conceive a model that adequately responds to the problem under analysis,
two SML models will be evaluated: the LR model and the DTR model.

4.2.1. ML Models

The linear regression (LR) model, as it is a parametric model, imposes a linear function.
In this problem, three functions were imposed, one for each target, which are represented
in (16).

ZA =Kp1 X A_JA +Kpy X A_IB+Kpz x A_IC + ‘BA
ZB = Kp; x A_IA +Kpy x A_IB+Kp3z x A_IC + Bp (16)
ZC = Kcr X A_TA + K X A_IB 4 Kz X A_IC + ,BC

where Kjj and (3; represent the weight of feature j and the bias of target i, respectively.

The LR model estimates both Kj; and B; by fitting (16) to the training dataset, and, for
this purpose, minimizes the squares of the residuals. The great advantage of LR model is
that it is easily interpretable, computationally light, and it is not common to suffer from
overfitting. However, the simplicity of the LR model can be a disadvantage, making it less
flexible; therefore, its response is more prone to errors, leading to under fitting. For this
reason, the performance of a non-parametric model was also evaluated.

The selected non-parametric model was the DTR, due to its characteristics, namely: it
does not require an extremely large number of data, the data are noisy and the output is
disjoint. Figure 4 easily corroborates the first two characteristics. In order to show that the
dataset output was disjointed, a scatterplot regarding targets is presented below (Figure 5).

5.0
5.0

4.5
4.5

= -
40 ¥ hs
< 40 g
35 <
3.5
3.0
3.0
4.0 A%
4.0 35 \ib\
A kay, 45 4.0 35
L4, x
7 55 3.0 g, 45 30
5.0
ZA[Ohms]
ZB[Ohms]
5.0 110
45 - ZA[Ohms]
&
4.0 9‘ 100
<
3.5
30 90 ZB[Ohms]
80
ZC[Ohms]
=
3.5 \‘}* 70

4.0 35

4
gy 48 - 3.0

ZC[Ohms]

Figure 5. Scatterplots that relate the features (A_IA, A_IB, and A_IC) with the Targets (ZA, ZB, and ZC).
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The intelligence of the DTR model resides in a set of if-then-else rules that continuously
split the data by creating a series of branches, and so, the input data are continuously
subdivided into smaller subsets based on the features values until a desired level is reached.
The maximum number of levels of DTR model is denominated by the maximum depth tree.

The DTR model Is composed of a root node, branches, internal nodes, and leaf nodes.
The root node, which represents the first node at the top of the tree, has no input branches,
but it has output branches that feed subsequent nodes. Internal nodes have input branches
and output branches. The first ones come from previous nodes and the second ones feed
subsequent nodes. The internal nodes decide how the subdivision of the input data is
carried out, and for that, they take into account the threshold value of a specific attribute.
The {attribute-“threshold value”} pairs are determined during the training stage. Finally,
the leaf nodes, which have no output branches, reproduce the final output, which, in this
case, will be the Z, value.

During the training stage, at each decision node (root and internal nodes), all possible
divisions were tested considering all features. For each possible solution, the sum of squares
of the residuals was computed. At the end of this process, the division that guarantees the
smallest sum of squares of the residues was selected, which defines the best solution, that
is the best {attribute-“threshold value”} pair for that specific decision node.

4.2.2. ML Evaluation Metrics

In order to evaluate the performance of both models, two of the most commonly used
metrics to evaluate the performance of ML regression models were used: mean absolute
error (MAE) and mean squared error (MSE).

N

1
MAE =— % Y |yi — Pred;] (17)
N i=1
1 N
MSE = % ) (¥; = Preai)” (18)

Il
—_

1

where yj, predi, and N represent the actual or true value, the predictions, and the total
number of samples.

4.2.3. ML Models Comparison

In order to compare the performance of both models, 100 different training and testing
datasets were created from a parent dataset. The parent dataset is shown in Figure 4, and
each of the training and testing subsets contains random samples of the parent one. For each
of the 100 training datasets, an LR and DTR model was generated, which was subsequently
evaluated in the corresponding test dataset. Each of the different training datasets contains
just 1% of all the data and the remaining 99% is assigned to the corresponding test datasets.

Figure 6 shows the mean absolute error (MAE) and mean squared error (MSE) gener-
ated during the test phase, for both ML models, with regard to the ZA estimation.

The mean of all MAE and all MSE for the LR model was 1.381 and 5.827, respectively.
As for the DTR model, the means were 0.049 and 0.124, respectively.

Figure 7 shows the mean absolute error (MAE) and mean squared error (MSE) gener-
ated during the test phase, for both ML models, with regard to the ZB estimation.

The mean of all MAE and all MSE for the LR model was 1.307 and 5.181, respectively.
As for the DTR model, the means were 0.046 and 0.114, respectively.

Figure 8 shows the mean absolute error (MAE) and mean squared error (MSE) gener-
ated during the test phase, for both ML models, with regard to the ZC estimation.

The mean of all MAE and all MSE for the LR model was 1.435 and 5.786, respectively.
As for the DTR model, the means were 0.048 and 0.118, respectively.
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Figure 6. MAE and MSE generated during the ML test phase in relation to the ZA estimation: (a) LR
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Figure 7. MAE and MSE generated during the ML test phase in relation to the ZB estimation: (a) LR

model and (b) DTR model.
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Figure 8. MAE and MSE generated during the ML test phase in relation to the ZC estimation: (a) LR
model and (b) DTR model.



Sensors 2023, 23, 7989

13 of 25

As expected, it turned out that for both models, and regarding the estimation of the
three impedances, the MSE was greater than the MAE. This can be explained by the fact
that the MSE calculates the squared differences between the predicted and actual values;
therefore, it tends to amplify the impact of larger errors. The MAE considers only the
absolute difference, which results in a more balanced measure.

The greater amplification of larger errors in the MSE also explains why its value in DTR
model oscillates so much between the different tests. This phenomenon results from the
fact that the DTR model is more sensitive to the training data, as it has a greater tendency
to overfitting. In this regard, it is important to mention that the hyper-parameters of the
DTR models used in this analysis were not optimized, that is, no limit was imposed on the
maximum depth of the tree, which contributes to the described phenomenon.

In any case, the behavior of the DTR model seems to be more appropriate to the prob-
lem under analysis since the average errors related to the MAE and MSE are considerably
smaller when compared to those of the LR model.

4.3. Testing and Final Evaluation of ML Models

In this section, two models were trained and evaluated. The first model used the linear
regression model (LRM) described in the previous section and the second one used the
decision tree regression model (DTRM) also discussed above.

Thus, at first, it is essential to train both models and for that, it is necessary to create a
training dataset (TRDS). The TRDS comprises only 1% of the samples in the parent dataset
(PADS). The selected samples were randomly chosen, as can be seen in the TRDS that is
represented in Figure 9. The test phase of the ML models took into account all data, that is,
the PADS (Figure 4).
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Figure 9. Training dataset (TRDS).

4.3.1. Linear Regression Model (LRM)

After training the LRM with the TRDS, the functions that relate the targets (ZA, ZB,
and ZC) to the features (A_IA, A_IB, and A_IC) were obtained.

Thus, regarding ZA, function (19) was obtained during training stage, and its response
regarding PADS can be observed in Figure 10.

ZA = (=227) x A_TA+(1.9) x A_IB+(—0.9) x A_IC + 169.8 (19)
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Figure 10. LRM response (function 19) to the PADS: {Features = [A_IA, A_IB, A_IC]; Target = ZA}.

The MAE was 1.34 and the MSE was 5.84, which is close to the values obtained in the
previous section.

Regarding ZB, function (20) was obtained during training stage, and its response
regarding PADS can be seen in Figure 11.

ZB = (—13) x A_IA+(—20.3) x A_IB+(1.7) x A_IC + 162.3 (20)
110 —— Prediction 104
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Figure 11. LRM response (function 20) to the PADS: {Features = [A_IA, A_IB, A_IC]; Target = ZB}.

The MAE was 1.27 and the MSE was 5.18, which is close to the values obtained in the
previous section.

Finally, regarding ZC, function (21) was obtained during training stage, and its re-
sponse regarding PADS can be seen in Figure 12.

ZC = (23) x A_IA+(—1.6) X A_IB+(—21.9) x A_IC + 166.9 (1)

The MAE was 1.38 and the MSE was 5.80, which is close to the values obtained in the
previous section.

The three LRMs showed a good behavior with an MAE of 1.3 that corresponded to
1.5% of the Z,, mean value and 2% of the lowest Z,. In the subsequent section, the DTRM
was trained and evaluated.
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Figure 12. LRM response (function 21) to the PADS: {Features = [A_IA, A_IB, A_IC]; Target = ZC}.

4.3.2. Decision Tree Regression Model (DTRM)

As mentioned in Section 4.2.3, the DTRM is sensitive to training data because of its
greater tendency to overfitting. Thus, in order to reduce MAE and MSE values, it was
initially decided to optimize one of the most important hyper-parameters of the DTRM:
the maximum tree depth (MTD). Therefore, after creating the TRDS with only 1% of the
samples of PADS, a test dataset (TEDS) was created with the remaining 99% of the samples.
The TEDS will be fundamental to apply the pre-pruning technique that optimizes the MTD
hyper-parameter.

The pre-pruning technique consists of identifying the MTD value that produces a
DTRM whose response to the TEDS generates the smallest possible errors (MAE and MSE).
For this purpose, it is necessary to calculate the error values of different DTRMs, such
that each DTRM will have a different MDT value. Thus, at first, it is necessary to train
the different DTRMs and simultaneously calculate both MAE and MSE. Subsequently, the
response of the trained DTRMs must be evaluated within TEDS and both MAE and MSE
must be calculated. Figure 13 shows the application of the pre-pruning technique to the
DTRM of ZA.
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S S S
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Figure 13. Results of the pre-pruning technique applied to the DTRM of ZA.

The previous figure clearly shows that the best MDT was equal to 21, with the MAE
and MSE values being lower than the average value obtained in Section 4.2.3. The previous
finding demonstrates that this new pre-pruned DTRM showed an improvement. Figure 14
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presents the decision tree {Target = ZA and MDT = 21} resulting from the training stage up
to a depth of two.

A A<=40
SE = 158.1
NS = 1669
(ZAy = 87.8

/\

A_IA<=31 A IA<=46
SE =239 SE=9.0
NS = 1025 NS = 644
(ZA) =971 (ZAy=172.8
A_IB<=35 A_IB<=33 A IA:{ h: 49
SE=0.7 SE =5.0 SE=14 SE=54
NS =107 NS =918 NS =515 NS =129
(ZA) =110.0 (ZA)=956 (ZA) = 74.1 (ZA) = 67.6

Figure 14. Decision tree resulting from the training phase up to a depth of two (hyper-parameter
MDT = 21 and Target = ZA).

Where:

A_IA represents the amplitude of phase A current at 1f;;

A_IB represents the amplitude of phase B current at 1f;;

SE represents squared error of that specific decision node;

NS represents the number of samples of that specific decision node;

(ZA) represents the mean value of ZA for all samples of that specific decision node.

The pre-pruning technique was also applied to the DTRM of ZB and ZC, and it was
found that the best MDT was 21 and 23, respectively. In both cases, the MAE and MSE
values were lower than the average value obtained in Section 4.2.3, which demonstrates

that both pre-pruned models have improved their behavior.

Figure 15 presents the decision tree {Target = ZB and MDT = 21} resulting from the
training stage up to a depth of two.
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SE=117.0
NS = 1669
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/\
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N

(-]

(-]
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NS = 516

(ZB) =726

SE=53
NS =121

AIC<=47

(ZB)=65.7

[.]

]

Figure 15. Decision tree resulting from the training phase up to a depth of two (hyper-parameter
MDT = 21 and Target = ZB).
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Where:

A_IC represents the amplitude of phase C current at 1f;;
(ZB) represents the mean value of ZB for all samples of that specific decision node.

Figure 16 presents the decision tree {Target = ZC and MDT = 23} resulting from the
training stage up to a depth of two.

AIC<=4.0
SE=128.4
NS = 1669
(ZC)=86.6
A_IC <= 3.1 \m2= 46
SE = 19.1 SE=124
NS = 1033 NS = 636
(ZC)=94.9 (ZC)=73.1
A IB<=36 A 1A <=3.1 A |C‘<{ hi: 4.7
SE=0.7 SE=6.0 SE=40 SE=56
NS =61 NS =972 NS =517 NS =119
(ZC)=109.5 (ZC)=94.0 (ZC)=745 (ZC)=67.2

Y Y y y

[.] [ L.] [.]

Figure 16. Decision tree resulting from the training phase up to a depth of two (hyper-parameter
MDT = 23 and Target = ZC).

Where (ZC) represents the mean value of ZC for all samples of that specific decision
node.

Afterward, the responses of the three DTRMs to the PADS are presented. Therefore,
Figures 17-19 show the DTRM of ZA, ZB, and ZC responses, respectively.
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Figure 17. DTRM of ZA (Figure 14) response to the PADS: {Features = [A_IA, A_IB, A_IC], MDT = 21;
Target = ZA}.
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Figure 18. DTRM of ZB (Figure 15) response to the PADS: {Features = [A_IA, A_IB, A_IC], MDT = 21;
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Figure 19. DTRM of ZC (Figure 16) response to the PADS: {Features = [A_IA, A_IB, A_IC], MDT = 23;
Target = ZC}.
4.3.3. Models Comparison

To establish a performance comparison between the two models (DTRM and LRM),
Table 3 presents a summary of the errors (MAE and MSE) generated by the models when
tested within the PADS.

Table 3. Performance comparison between DTRM and LRM.

Model Faulty Phase MAE MSE
A 1.34 5.84

LRM B 1.27 5.18
C 1.38 5.80

A 0.041 0.098

DTRM B 0.038 0.052
C 0.041 0.073
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When comparing the LRM errors of Table 3 with the mean errors (MAE and MSE)
presented in Section 4.2.3, it can be seen that they are substantially the same. This observa-
tion can be explained by the fact that the LRM model does not have hyper-parameters to
adjust and, therefore, cannot improve its performance. With regard to the DTRM, there was
an improvement in the model performance for all three phases as MTD hyper-parameter
was optimized.

The performance of the LRM was good, and Figures 10-12 do not seem to show
overfitting which can be explained by the simplicity of the linear models. The LRM
output (Z,p) represents a simple weighted sum of just three features (A_IA, A_IB, and
A_IC). However, despite its simplicity, the model did not seem to show under fitting as it
presented similar errors when the training data set was much larger.

Decision tree-based models, on the other hand, tend to overfitting, especially when the
data are noisy. However, the results presented in Figures 17-19 do not show this problem.
The DTRM performed better than the LRM, which can be corroborated by the results in
Table 3, which show that the DTRM MAE is thirty times smaller than the LRM MAE, and
the DTRM MSE is fifty times smaller than the LRM MSE. It should be noted that the errors
presented by the DTRM can be substantially reduced as the training dataset increases
in size. However, as the objective is to reduce the probability of overfitting as much as
possible, it was decided to train the model on a dataset with only 1% of all data.

Linear and tree-based models are easier to interpret. Through these models, some con-
clusions can be drawn about the data. For instance, in linear regression, the equation coeffi-
cients define the contribution of each feature to the target. Observing Equations (19)-(21),
it is possible to conclude that the amplitude of the current corresponding to the phase to be
estimated has the greatest contribution. A similar conclusion can be drawn by observing
Figures 14-16, namely regarding the root node condition.

5. Machine Learning Algorithm for Estimating Negative Voltage Factor

As previously mentioned, IMs can be significantly affected by operating conditions,
namely by USV, which are quite common in industrial installations. Therefore, it is of
paramount importance the development of fault diagnosis techniques that detect and
evaluate the USV degree of severity in real time. In this way, more serious failures can be
avoided and the reliability and safety of industrial facilities can be increased. Section 2
presents a very reliable indicator that allows the quantification of the degree of severity of
the USV, the negative voltage factor (NVF), which requires the calculation of the negative
and positive symmetrical components of the stator windings voltage.

The solution presented in this section calculates the value of the NVF without the
need to compute the positive and negative symmetric components of the stator winding
voltage, it just uses the amplitudes of L, and Vp, at fs. For this purpose, it was neces-
sary to properly train an ML algorithm. For this, the same steps described in Section 4
were performed.

5.1. Dataset Creation

The dataset used in the training and validation stages of the ML models requires the
extraction of a high number of attributes from the I, and V,, and for this purpose, the
experimental configuration described in Section 3 was used. With the help of the STLSP
algorithm, it was possible to extract the amplitudes, damping factor, and phase angle of
both currents and voltages. To build the dataset, it is necessary to identify the independent
variables and the dependent one. The target, which corresponds to the known dependent
variable, is the NVF value. Therefore, it is necessary to identify which features are most
suitable for the problem under analysis. Hence, Pearson’s correlation coefficient was used,
and Figure 20 shows the correlation matrix with the most relevant features.

The previous figure seems to show that the current amplitudes do not turn out to be
relevant features because the value of r is relatively small. However, when calculating
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mutual information between the I, amplitudes and NVF, it is possible to perceive their
relevance (Figure 21).
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Figure 20. Correlation matrix between the most relevant features (A_VA, A_VB, A_VC, A_IA, A_IB,
and A_IC) and the target (NVF).
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Figure 21. Mutual information between the most relevant features (A_VA, A_VB, A_VC, A_IA, A_IB,
and A_IC) and the target (NVF).

The mutual information between two random variables evaluates the degree of de-
pendence between the two variables, with higher values meaning greater dependence.
Therefore, using both feature selection techniques, it is possible to conclude that the most
relevant independent variables are the A_VA, A_VB, A_VC, A_IA, A_IB,and A_IC.

Finally, it was possible to build the PADS (Figure 22), which will be used, later, to
generate the TRDS and the TEDS.
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Figure 22. Dataset used for ML models training and testing stages. The features represent the
amplitudes of the phase currents and phase voltages at the converter switching frequency (A_IA,
A_IB, A_IC, A_VA, A_VB, and A_VC) and the target represent the Negative Voltage Factor (NVEF).

5.2. ML Selection

In this section, two ML models will be evaluated: one parametric, the LRM, and the
other non-parametric, the DTRM.

The evaluation of the model’s performance will be carried out using a very common
metric: mean absolute error (MAE). It should be noted that as the NVF value is very small,
the mean squared error (MSE) will not be used. In addition, MAE will be calculated in
percentage, MAE [%], using the mean NVF value, (NVF), as a reference:

N
% X Zi:1|.1/i - predi|

MAE[%] = NV

(22)

ML Models Comparison
The LRM is a parametric model; therefore, it imposes a linear function that is repre-
sented by Equation (23).

NVF = CA_I+CA_V+8
CA_I =K; xA_TA+Ky x A_IB+K3 xA_IC
CA_V =Ky xA_VA+KsxA_VB+Kg xA_VC

(23)

where Kj and {3 represent the weight of feature j and the bias, respectively.

The selected non-parametric model was the DTRM due to the characteristics men-
tioned in Section 4.2.1.

To compare the performance of both models, 100 different training and testing datasets
were created from a parent dataset (Figure 22). For each of the 100 training datasets, an LRM
and a DTRM were generated, which were subsequently evaluated on the corresponding
test dataset. Each of the different training datasets contained only 1% of all data and the
remaining 99% was assigned to the corresponding test datasets.

Figure 23 shows the mean absolute error computed in percentage (MAE [%]) for the
LR and DTR models.
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Figure 23. MAE [%] generated during the ML (LR and DTR) models test phase in relation to the
NVF estimation.

The previous figure clearly shows that LRM is not suitable for the problem under
analysis. DTRM, on the other hand, revealed a very good performance, which is why it
was selected.

5.3. Testing and Final Evaluation of the Decision Tree Regression Model

In this section, the DTRM that estimates the NVF value will be presented. How-
ever, before presenting the model, it is important to reduce the problems associated with
overfitting. For this purpose, two solutions were proposed:

The TRDS (Figure 24) contains just 1% of the PADS (Figure 22);

The hyper-parameter MTD was optimized using the pre-pruning technique described

in Section 4.3.2. The MDT value that guarantees the smallest MAE [%] in the TEDS
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Figure 24. Training dataset (TRDS).

After training the DTRM (MDT = 18) using the TRDS, represented in the previous
figure, the model in Figure 25 was obtained.
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Figure 25. Decision tree resulting from the training phase up to a depth of two (hyper-parameter
MDT = 18 and Target = NVF).

In the next step, the model (Figure 25) was asked to predict the NVF value in the PADS,
with 99% of the PADS data being completely new. The results of the DTRM predictions can
be seen in Figure 26, where the true values can also be seen.
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(a)
Figure 26. DTRM of NVF (Figure 26) response to the PADS: {Features = [A_IA, A_IB, A_IC, A_VA,
A_VBand A_VC], MDT = 18; Target = NVF}: (a) without a low pass-filter and (b) with low pass-filter.

Figure 26a shows that the DTRM can predict the NVF value quite well, having pre-
sented a MAE [%] of 1.173.

The noise that appears in the DTRM predictions (Figure 26a) occurs in the absence
of a fault (NVF = 0.0025) and is, therefore, not critical. However, as it is a high-frequency
noise, it can be easily reduced by applying a low-pass filter (Figure 26b).

6. Conclusions

The accurate and timely diagnosis of unbalanced supply voltage (USV) conditions
plays a crucial role in enabling proactive maintenance and corrective measures, ensuring
the reliable operation and safety of industrial applications. It also helps prevent equip-
ment failures, minimize downtime, optimize energy consumption, and enhance overall
system performance.

This paper introduced a non-invasive fault diagnosis technique (NIFDT) for induction
motors (IMs) that combines the short-time least square Prony’s (STLSP) algorithm with a
machine learning (ML) model. The STLSP algorithm processes one of the key attributes
of the ML model, which is the amplitudes of the machine’s output voltages and currents
at the fundamental frequency. Unsuitable attributes produced by the STLSP model were
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evaluated using unsupervised feature selection methods and deemed irrelevant. The ML
model utilized the remaining attributes, specifically the amplitudes of the voltages and
currents. Two ML algorithms were evaluated in this study, and it was demonstrated
that the decision tree regressor (DTR) was the most suitable algorithm for the proposed
diagnostic technique. The experimental results showed that the DTRM presented a mean
absolute error (MAE) of less than 1.2%, which demonstrates the practical applicability
of the proposed model. It is noteworthy that the proposed solution did not require the
application of the Fortescue Transform, being, therefore, computationally lighter.

The online estimation of the stator impedance holds significance for various objectives,
including thermal monitoring, upholding control performance, and facilitating fault detec-
tion. Hence, two ML models were proposed for online estimation of the stator impedance
using just the phase currents and, therefore, did not require extra sensors. The first ap-
proach used the combination of a linear regression model (LRM) with the STLSP technique
and the experimental results showed an MAE close to 2%. The second approach used the
combination of a DTRM with the STLSP technique, and it showed a better performance
with a MAE of less than 0.1%. The proposed approaches demonstrated a notable advantage
in terms of reduced sensitivity to parameter deviations when contrasted with alternative
methods. This particular advantage becomes more pronounced within a controlled system,
especially when confronted with diverse operating conditions such as Inter-Turn Short
Circuits (ITSC) and Open Circuit Faults (OCF).
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