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Abstract: Based on the dynamic characteristics of the axle box front cover of high-speed trains in the
subharmonic resonance state, the nonlinear single-degree-of-freedom (SDOF) model was proved to be
reasonable, and reasons for the ineffectiveness of the common prevention methods for preventing bolt
failure were analyzed firstly. Then, dynamic stress of the bolt was simulated by innovatively adopting
the linear method based on frequency response analysis. The stress simulation method was verified
to be practical under the subharmonic resonance state by analyzing and comparing the experimental
and numerical results of the bolted front cover. It was proved that the linear method was accurate
enough to simulate the dynamic stress of bolts, which is of great engineering significance. In addition
to the transverse resonance stress of bolts caused by drastic vertical vibration of the front cover,
the tensile resonance stress at the root of the first engaged thread was too large to be neglected on
account of the first-order bending modes of bolts. Next, equivalent stress amplitude of the multiaxial
stresses was obtained by means of the octahedral shear stress criterion. Finally, fatigue life of bolts
was predicted in terms of S-N curve suitable for bolt fatigue life analysis. It argued that the bolts
were prone to multiaxial fatigue failure when the front cover was in subharmonic resonance for more
than 26.8 h, and the fatigue life of bolts could be greatly improved when the wheel polygonization
was eliminated by shortening the wheel reprofiling interval.

Keywords: dynamic stress; bolted joint; multiaxial fatigue; nonlinear vibration; axle box; high-speed train

1. Introduction
1.1. Literature Survey

Since bolted joints are widely used in high-speed trains, their reliability is of great
significance for the safety operation of vehicles. Loosening and fatigue failure of bolted
joints are the two most important problems for vehicles that are subjected to vibration
loading [1]. Abundant studies have demonstrated that self-loosening failure of bolts is
mainly caused by dynamic transverse loading [2–6], and fatigue failure of bolts is usually
caused by dynamic tensile loading [7–10]. However, transverse vibration can cause fatigue
of bolted joints as well. Hashimura [11] proved that the loosening-fatigue life of bolted joints
did not depend on the initial clamping force, but it significantly depended on the transverse
vibration force. Minguez [12] reported that there was bending as well as shearing of bolted
joints because the load transfer path was not symmetric for single lap joints. Increasing bolt
tightening torque did not have any effect on the fatigue life for this type of joint because
the main cause for fatigue failure was the strong bending moment caused by distortion.
Benhaddou [13] and Guo [14] demonstrated that it was easy to generate stress concentration
in the bolt hole, and increasing the preload of bolt could alleviate the stress concentration
and transfer the cracking position. Wang [9] studied the fatigue behavior of stainless steel
bolts under transverse loading and regarded the relative displacements of clamped parts
as the deformations of bolts given the rigid clamped parts. Due to the high notch effect,
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bolts are more prone to fatigue failure than nuts or clamped parts; thus, it is of significance
to study the stress state of bolts. However, the above studies mainly discussed the fatigue
behavior of clamped parts rather than the transverse capacity of bolts itself. Traditionally,
axial load of bolts can be monitored accurately in real time by means of strain gauged
bush [15,16], smart washer [17,18], as well as embedding the sensor into the bolt shank [19].
Through the transverse dynamic load test of bolted joints, researchers found that cracks
at the root of the first bolt thread could be observed after about 104–106 cycles when the
loosening of bolts occurred [11]. But the transverse stress of bolts was less experimentally
measured due to the limitation of measuring techniques. Although stress analysis of bolted
joints is feasible by FEM [6,9], it is difficult to simulate the complex excitations of the actual
operating state, which would result in a large difference between the calculated stress and
actual stress. Especially when the structure is in a nonlinear vibration state, it cannot be
excited in commercial FEA software such as ABAQUS, so the stress simulation results
are not reliable. In short, it is not suitable to simulate the multiaxial stress of bolts under
complex operation states by FEM.

Polygonal wear of wheel tread occurs frequently in Chinese railways, which can
induce drastic vibration or even resonance and cause fatigue failure of critical structures; it
is particularly dangerous for the structures fixed by bolts when the bolt axis is perpendic-
ular to the structural vibration direction. Vibration characteristics and fatigue life under
excitation of wheel polygonization were studied a lot for critical structures, such as gearbox
housing [20], bearings [21] and lifeguards [22,23], etc.; the connecting bolts are usually sub-
jected to multiaxial dynamic stresses in the real operation condition of high-speed trains. In
the past few decades, the issue of damage mechanisms and stress combination of multiaxial
loading have been brought to extensive attention, and significant research progress has
been made by means of theoretical research and numerical analysis [24–27]. However,
multiaxial fatigue life of connecting bolts was rarely studied because the dynamic stress
of bolt threads is difficult to measure. Although metallographic analysis can qualitatively
analyze material fatigue failure, the quantitative analysis cannot be realized because the
cyclic stress level of the structure is unable to be obtained [28,29]. Consequently, it is of
great importance to find a suitable dynamic stress calculation method for bolts.

In recent years, scholars have proposed some novel theoretical models for fatigue life
prediction [30,31]. Although theoretical models can yield accurate solutions provided that
accurate models can be built, it is difficult for structures under complex loads. There are
several dynamic stress simulation methods combining experimental and numerical analysis
suitable for bolt dynamic stress simulation. The quasi-static superposition method and
the modal superposition method are two common methods in structural dynamic stress
simulation. The quasi-static superposition method [32,33] is widely used during the design
stage, but this method is not suitable for resonance stress simulation. As for the modal
superposition method, the main idea is to obtain the load-stress TF (Transfer Function)
of structure, and the external loads are often processed as PSD (Power Spectral Density)
in prior research cases [32,34–36]; then, the stress PSD can be calculated by multiplying
the load PSD by the load-stress TF. Although the modal superposition method is suitable
for dynamic stress simulation under resonance conditions, the phase information of the
load PSD and TF is ignored. In fact, the effect of the phase between multiaxial excitations
on the stress response is so significant that it cannot be ignored; fortunately, the modal
superposition method based on FFT of multiaxial excitations and load-stress FRFs takes
into account the phase information of multiaxial excitations and was chosen as the bolt
dynamic stress simulation method [22].

To simulate the dynamic stress of the bolt in resonance states of structures, the dynamic
characteristics of the connected structure must be experimentally analyzed; therefore,
processing of the experimental signal is also critical. Because the precision of the fast
Fourier transform (FFT) and short-time Fourier transform (STFT) depend on the kind and
size of window function, frequency leakage is easy to occur. To avoid leakage, the Hilbert-
Huang transform (HHT) was introduced based on an algorithm called empirical mode
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decomposition (EMD) [37], which is widely used today to recursively decompose a signal
into different modes of unknown but separate spectral bands, especially appropriate for
nonstationary and nonlinear signals. However, EMD is known for limitations like modal
aliasing and edge effects; thus, the algorithm was further improved with the EEMD [38] and
CEEMD [39] methods. These methods removed the noise by adding a uniform white noise
to the original signal; although mode aliasing can be avoided, amplitude of white noise
has great influence on the calculation accuracy. With further improvement, the variational
mode decomposition (VMD) method was proposed and proved to be effective in avoiding
the shortcomings of the previous methods [40].

1.2. Research Background and Method

As a critical component in high-speed trains, the axle box is mainly composed of
the axle box body and axle box front cover; the front cover is connected to the axle box
body by six M8 × 40 steel bolts with strength grade of 8.8, as shown in Figure 1. After the
high-speed train ran for a period of time on a certain railway line, the connecting bolts
would loosen even fracture from time to time, but these failed bolts were theoretically far
from reaching the design service life. To solve the problem, the failed bolt was replaced
by a new bolt and some prevention methods were used to improve the service life of the
connecting bolt, such as adopting a spring washer, replacing the lubricating oil with grease
or increasing the preload; these methods are called common prevention methods in this
study. However, the new connecting bolts still failed quickly, which obviously greatly
threatened the operation safety of the high-speed train; only when the failure mechanism
of the connecting bolt is found can the intractable problem be solved.
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Figure 1. Structure of the axle box of high-speed train.

It was proved that the axle box front cover was in subharmonic resonance of order
1/2 under excitation of 20th-order wheel polygonization, and the resonance caused greater
transverse stress of the bolted joint [41]. In this study, an effective method based on
numerical and experimental analysis was proposed for multiaxial stress calculation of
bolt threads. Firstly, effectiveness of the common prevention methods under structural
resonance was assessed based on the nonlinear vibration response of the front cover. Next,
feasibility of the method was proved in terms of the axial and transverse stiffness of bolted
joints because of the existence of nonlinear characteristics of bolted joints and the first
application of this linear stress simulation method on bolts. Then, multiaxial dynamic
stresses at the root of the first engaged bolt thread were simulated, the equivalent stress
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was obtained by the octahedral shear stress criterion and adopted to assess the bolt fatigue
life. Finally, a suggestion to improve the fatigue life of bolts was put forward.

2. Assessment for Effectiveness of Common Prevention Method

In this section, firstly, dynamic behavior of the front cover was analyzed according to
results of the bench test under 20th-order wheel polygonization. Then, a nonlinear model
of the front cover was built by a single degree of freedom (SDOF) modeling strategy, and
the feasibility was verified. Finally, effectiveness of common prevention methods was
assessed based on the nonlinear vibration response of the front cover.

2.1. Dynamic Characteristics of the Bolted Front Cover under Condition of Wheel Polygonization

Dynamic characteristics of the front cover were experimentally studied on a test bench,
as shown in Figure 2. The roller was out-of-round and a 13th-order polygonal wear was
formed along the circumference of the tread, the polygonal roller not only simulated the rail
but also transformed the roller polygonization into the wheel polygonization by high-speed
rotating under the drive of the motor. The weight of the car body was applied by the
hydraulic cylinder; thus, the high-speed advance of the polygonal wheel on the rail was
simulated successfully at the test bench [41].
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Figure 2. Vibration test bench.

In addition, the polygonal order was proportional to the wheel radius, and radiuses of
the roller and wheel were 0.3 m and 0.46 m, respectively; thus, the 13th-order polygonal
roller meant the wheel had a 20th-order polygonization. Acceleration measuring points
were set at the front cover and axle box body, as shown in Figure 1. Then the sweep
frequency test was performed with gradual increase of the roller’s rotational speed, and
the maximum linear speed was 320 km/h.

2.1.1. Subharmonic Resonance

Figure 3 shows the vertical vibration characteristics of the front cover when the radial
deviation of the polygonal roller was 0.075 mm. As shown in Figure 3a, the vibration
amplitude was greatly enlarged at region 1 and 2; the corresponding excitation frequency of
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20th-order wheel polygonization was also labelled as 1 and 2 in Figure 3b. The relationship
between the excitation frequency f and linear speed of wheel v (m/s) is described in
Equation (1):

f =
vn

2πr
(1)

where n = 20 is the polygonal order of wheel; r = 0.46 m is the wheel radius. The linear
speed of the wheel was 288 km/h at 1 and 2, so the excitation frequency of wheel polygon
was 550 Hz according to Equation (1). However, the dominant frequency was around 275
Hz at 1 and 2, which was the natural frequency of the bolted front cover and equal to half
the excitation frequency; this vibration characteristic indicated that the front cover was in
subharmonic resonance of order 1/2, and 288 km/h was a critical speed.

Sensors 2023, 23, x FOR PEER REVIEW 5 of 29 
 

 

2.1.1. Subharmonic Resonance 
Figure 3 shows the vertical vibration characteristics of the front cover when the radial 

deviation of the polygonal roller was 0.075 mm. As shown in Figure 3a, the vibration am-
plitude was greatly enlarged at region 1 and 2; the corresponding excitation frequency of 
20th-order wheel polygonization was also labelled as 1 and 2 in Figure 3b. The relation-
ship between the excitation frequency f and linear speed of wheel v (m/s) is described in 
Equation (1): 

2
vnf

rπ
=  (1)

where n = 20 is the polygonal order of wheel; r = 0.46 m is the wheel radius. The linear 
speed of the wheel was 288 km/h at 1 and 2, so the excitation frequency of wheel polygon 
was 550 Hz according to Equation (1). However, the dominant frequency was around 275 
Hz at 1 and 2, which was the natural frequency of the bolted front cover and equal to half 
the excitation frequency; this vibration characteristic indicated that the front cover was in 
subharmonic resonance of order 1/2, and 288 km/h was a critical speed. 

 

 

Time (s)

A
m

pl
itu

de
 (g

)

400 8000 1200 1600 2000 2400 2800 3200
-100

-50

100

0

50

(a)
1 2

Sensors 2023, 23, x FOR PEER REVIEW 6 of 29 
 

 

  

Figure 3. Vertical vibration characteristics of the front cover in bench test. (a) Time-domain signal of 
acceleration; (b) time-frequency analysis result; (c) jump phenomenon in acceleration process (am-
plification of the signal in box 1 of Figure 3a); (d) jump phenomenon in deceleration process (ampli-
fication of the signal in box 2 of Figure 3a). 

2.1.2. Superharmonic Resonance 
Spectral analysis results of the signal of Figure 3c are represented in Figure 4a; obvi-

ously, superharmonic resonance of order 2 for the front cover also occurred. Figure 4b 
represents the spectral analysis results of vertical vibration of the front cover under wheel 
radial deviation of 0.1 mm and excitation frequency of 280 Hz. According to the main 
frequencies in Figure 4b, the front cover was not only in primary resonance but also in 
superharmonic resonance of order 2 and 3. 

  

Figure 4. Spectral analysis results of vertical vibration signals of the front cover. Excitation frequency 
of 20th-order polygonization was (a) 550 Hz under wheel radial deviation of 0.075 mm; (b) 280 Hz 
under wheel radial deviation of 0.1 mm. 

2.1.3. Jump Phenomenon 
Other than subharmonic resonance and superharmonic resonance, the jump phe-

nomenon is also a unique characteristic of nonlinear vibration, in which the response of 
structural vibration has a sudden change under specific external excitation. The essence is 
due to stiffness softening or stiffness hardening of a system, which are also called soft 
spring or hard spring. Figure 5 is a simple illustration of resonant response curves of linear 
and nonlinear systems; fe, f0 and a refer to excitation frequency, natural frequency and 
response amplitude respectively. The linear system is resonant when fe ≈ f0, but the soft 
spring nonlinearity bends the frequency-response curve to the left, while the hard spring 
nonlinearity bends the curve to the right. Consequently, the vibration amplitude will jump 
at certain fe values (points 1, 2, 3, 4) below and above the natural frequency, respectively. 

Time (s)

(c)

A

B E

Time (s)

(d) F C

D

Frequency (Hz)

A
m

pl
itu

de
 (g

)

0

10

20

30

500 1000 1500 20000

Excitation 
frequency

Subharmonic 
resonance of 

order 1/2

Superharmonic
resonance of 

order 2

(a) 40

Frequency (Hz)

A
m

pl
itu

de
 (g

)

0

10

20

30

200 400 600 800 1000 1200 14000

Primary resonance

Superharmonic
resonance of 

order 2
Superharmonic

resonance of 
order 3

(b)

Figure 3. Vertical vibration characteristics of the front cover in bench test. (a) Time-domain signal
of acceleration; (b) time-frequency analysis result; (c) jump phenomenon in acceleration process
(amplification of the signal in box 1 of Figure 3a); (d) jump phenomenon in deceleration process
(amplification of the signal in box 2 of Figure 3a).
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2.1.2. Superharmonic Resonance

Spectral analysis results of the signal of Figure 3c are represented in Figure 4a; ob-
viously, superharmonic resonance of order 2 for the front cover also occurred. Figure 4b
represents the spectral analysis results of vertical vibration of the front cover under wheel
radial deviation of 0.1 mm and excitation frequency of 280 Hz. According to the main
frequencies in Figure 4b, the front cover was not only in primary resonance but also in
superharmonic resonance of order 2 and 3.
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Figure 4. Spectral analysis results of vertical vibration signals of the front cover. Excitation frequency
of 20th-order polygonization was (a) 550 Hz under wheel radial deviation of 0.075 mm; (b) 280 Hz
under wheel radial deviation of 0.1 mm.

2.1.3. Jump Phenomenon

Other than subharmonic resonance and superharmonic resonance, the jump phe-
nomenon is also a unique characteristic of nonlinear vibration, in which the response of
structural vibration has a sudden change under specific external excitation. The essence
is due to stiffness softening or stiffness hardening of a system, which are also called soft
spring or hard spring. Figure 5 is a simple illustration of resonant response curves of linear
and nonlinear systems; f e, f 0 and a refer to excitation frequency, natural frequency and
response amplitude respectively. The linear system is resonant when f e ≈ f 0, but the soft
spring nonlinearity bends the frequency-response curve to the left, while the hard spring
nonlinearity bends the curve to the right. Consequently, the vibration amplitude will jump
at certain f e values (points 1, 2, 3, 4) below and above the natural frequency, respectively.
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Figure 3c,d represent the time-domain signals at region 1 and 2 in Figure 3a. Figure 3c
shows the jump phenomenon in the acceleration process;. the direction of the arrows
represent an increase in speed, the response amplitude jumped from A to B when the wheel
speed increased to v1, which was slightly less than 288 km/h. Speed was constant between
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B and E, then the wheel speed continued to increase, but the vertical amplitude of the front
cover gradually decreased until the maximum test speed of 320 km/h was reached. In
contrast, the jump phenomenon in the deceleration process is shown in Figure 3d; while the
direction of the arrows represent an decrease in speed, vertical vibration of the front cover
gradually increased to maxima at F when the speed was reduced to v2 (v2 was slightly
smaller than v1). Speed was constant between F and C, followed by the jump phenomenon
from C to D when the speed continued to decrease from v2. In short, the jump phenomenon
of vibration amplitude occurred below the natural frequency, which corresponds to the soft
spring curve in Figure 5.

2.2. Nonlinear Modeling of the Bolted Front Cover

The front cover was connected by six bolts evenly distributed along the circumference,
which can be simplified to a spring-mass-damper system of SDOF. According to Newton’s
second law, dynamics of the front cover can be represented by the second-order ordinary
differential equation:

m
..
x = C(

.
x, x)

.
x + K(

.
x, x)x + E(t) (2)

which is a general model for dynamic behavior analysis and nonlinear parameter identifi-
cation of the bolted joints [42,43], where m = 3 kg is mass of the front cover; the variable
..
x represents acceleration; E(t) = Fcos2πf et is external force from the periodic excitation of
wheel polygonization; f e is excitation frequency in Hz; C(

.
x, x)

.
x and K(

.
x, x)x represent the

damping force and restoring force, respectively.
According to the analysis results of Section 2.1, vertical vibration of the front cover had

the nonlinear characteristics of subharmonic resonances and jump phenomena. It has been
proven that subharmonic resonance of order 1/2 and superharmonic resonance of order 2
could be caused by quadratic nonlinear stiffness, while the cubic stiffness nonlinearity took
responsibility for occurrence of the superharmonic resonance of order 3 [44], therefore, the
restoring force can be expressed as the form of

K(
.
x, x)x = −k1x− k2x2 − k3x3 (3)

The jump phenomenon of a hard spring system can be described by combining the
quadratic and cubic nonlinear stiffness as well as linear damping [44]. However, it was
found that the jump phenomenon of a soft spring system could occur under the same
conditions, which showed that the system with soft spring nonlinearity was more complex
than that with hard spring nonlinearity. Therefore, the effect of nonlinear damping was
considered in this study, and the damping force had the form of

C(
.
x, x)

.
x = c1

.
x + c2

.
x2 (4)

The governing equation of vertical vibration of the front cover was obtained by substituting
Equations (3) and (4) into Equation (2) and eliminating m:

..
x + 2µ

.
x + 4π2 f0

2x + α2x2 + α3x3 + α4
.
x2

= k cos 2π fet (5)

where f 0 represents the natural frequency of the derived system in Hz, and the derived
system is the corresponding linear system when α2, α3 and α4 are zero; k = F/m is the
amplitude of excitation from the axle box body; α2 and α3 refer to the coefficients of
quadratic and cubic stiffness, respectively; µ and α4 are coefficients of linear damping and
quadratic nonlinear damping, respectively; µ is proportional to the damping ratio ζ:

µ =
c1

2m
=

ζΩ

2m
(6)

ζ usually ranges from 1% to 10% in engineering, and the damping ratio must be
relatively small because of the occurrence of nonlinear vibration; let ζ = 1.5%, so µ = 4.3.



Sensors 2023, 23, 7962 8 of 28

The method of multiple scales used to seek a second approximation [45] for the
solution of Equation (5) and yields the frequency-response Equation (7) for the non-trivial
solution:

(εΦ1a2 − πσ f0 + εΦ2)
2 −Φ2

3k2 + (2π f0µ)2 = 0 (7)

Φ1 =
3α3

8
−

5α2
2

48π2 f02 −
5α2α4

12
−

α2
4

6
, (8)

Φ2 = k2

16π4( f0
2− fe2)

2

[
3α3 +

(α2+4π2 fe
2α4+4π2 f0 feα4)(α2−4π2 f0 feα4)

2π2 fe( fe+2 f0)

− α2(α2+4π2 fe
2α4)

2π2 f0
2 − (α2+4π2 f0 feα4)(α2+12π2 f0 feα4)

8π2 f0
2

]
− µ2

2

, (9)

Φ3 = 1
16π4( fe2− f0

2)
2

{
(α2 + 4π f0 feα4)

2
(

1− ε2σ
4π f0

)
+

(2πε2µ fe)
2
[

α2+4π f0 feα4
2π2( fe2− f0

2)
− α4

]2
} (10)

where a is the amplitude of frequency response; the parameter ε � 1; σ is the detuning
parameter, which quantitatively describes the nearness of f e to f 0.

In this study, ε = 0.2, f 0 = 275 Hz, and fe = 2 f0 +
εσ
2π . As shown in Figure 3b, the

jump phenomena occurred at f e ≈ 545 Hz in the acceleration process and f e ≈ 540 Hz
in the deceleration process; therefore, the difference of σ was about 25 between the two
jump points. It is difficult to determine the coefficient of nonlinear term in both theoretical
calculation and experimental analysis; a set of values of α2, α3 and α4 is given to make the
frequency response (Figure 6) and acceleration response (Figure 7) as close to reality as
possible. As shown in Figure 6, the subharmonic resonance amplitude a jumped as the
change of f e. The solid arrows represent the increase process of f e; a jumped upward from
A to B when f e increased to about 545 Hz, then a gradually decreased as f e continued to
increase. In the decrease process of f e, which is marked with the dotted arrows, a gradually
increased as f e decreased, and jumped downward from C to D until f e decreased to about
540 Hz. It can be seen that the two jump phenomena correspond to the jump phenomena
of the acceleration and deceleration process in the bench test (Figure 3c,d), respectively.
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2.3. Effect of Multiple Parameters on Structural Subharmonic Resonance

In this section, effectiveness of the common prevention method for connecting bolt
failure under structural subharmonic resonance was studied by investigating the effect of
multiple parameters of Equation (5) on the vertical vibration response of the front cover
system.

2.3.1. Parameter Setting

Values of the multiple parameters are shown in Table 1. Curve O is used for compari-
son, which stands for original values of the parameters that are also the values for Figure 6.
In addition, it was found that when the value of α2, α3 and α4 were in the range of (−7.3,
−4.3), (−42, 9.9) and (2.76, 4.49), respectively, the jump phenomena would occur.

Table 1. Parameter table.

Curve Number
Linear Damping

Coefficient
µ

Excitation Amplitude
k (g)

Nonlinear Coefficients Initial Condition
x0α2 α3 α4

O 4.3 20 −4.6 5 3 (0.03 0.1)
µ 3.5 20 −4.6 5 3 (0.03 0.1)
k 4.3 12 −4.6 5 3 (0.03 0.1)

α2 4.3 20 −7 5 3 (0.03 0.1)
α3 4.3 20 −4.6 8 3 (0.03 0.1)
α4 4.3 20 −4.6 5 4.4 (0.03 0.1)
x0 2 20 −4.6 5 3 (0 0)

2.3.2. Comparison between the Test Signal and Numerical Signal

Figure 7a is the locally amplified signal of Figure 3c; there are several frequency compo-
nents for vertical vibration of the front cover. The test acceleration signal was decomposed
by VMD to obtain the main frequencies and reduce noise; the VMD function decomposes a
signal into a small number K (K ≥ 2) of narrowband intrinsic mode functions (IMFs) and
can effectively avoid modal aliasing and edge effects. To avoid over-decomposition and
under-decomposition, the appropriate number K can be predicted by the evaluation index
of the mean absolute percentage error (MAPE) [46], which represents the ratio of the resid-
ual after VMD decomposition to the original signal. In this paper, the minimum K value
with MAPE value less than 1% was selected as the optimal number of mode decomposition.
Through verification, as shown in Figure 7b, it was found that K = 5 (MAPE = 0.5657%)
was appropriate. As shown in Figure 8, the test signal (Figure 7a) was decomposed to
five IMFs; each IMF has a central frequency, and IMF 3 and IMF 4 represent the 550 Hz
vibration and 275 Hz vibration, respectively; the former is the excitation frequency of wheel
polygonization, while the latter is the subharmonic resonance frequency.
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IMF 5 can be regarded as a noise signal due to its irregular vibration and small
amplitude. For comparison, the test signal of subharmonic resonance of order 1/2 under
excitation of 550 Hz was constructed by adding IMF 3 and IMF 4, as shown in Figure 9. The
numerical signal was obtained by substituting the parameters of curve O in Table 1 into
Equation (5). Both the experimental and numerical vibrations were steady-state motions
and have very similar characteristics.
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Figure 9. Comparison of the experimental and numerical signal.

As shown in Figure 10, the time-frequency spectrums of the two signals were obtained
by HHT. The energy distribution showed that both the signals contained frequencies of
275 Hz and 550 Hz, and 275 Hz was the main frequency; in other words, subharmonic
resonance of order 1/2 was the most outstanding vibration characteristic, which is also
a key point throughout this study. Consequently, it was further proved that the SDOF
modeling method is reasonable and feasible to simulate the vertical vibration of the front
cover.



Sensors 2023, 23, 7962 11 of 28

Sensors 2023, 23, x FOR PEER REVIEW 11 of 29 
 

 

IMF 5 can be regarded as a noise signal due to its irregular vibration and small am-
plitude. For comparison, the test signal of subharmonic resonance of order 1/2 under ex-
citation of 550 Hz was constructed by adding IMF 3 and IMF 4, as shown in Figure 9. The 
numerical signal was obtained by substituting the parameters of curve O in Table 1 into 
Equation (5). Both the experimental and numerical vibrations were steady-state motions 
and have very similar characteristics. 

 
Figure 9. Comparison of the experimental and numerical signal. 

As shown in Figure 10, the time-frequency spectrums of the two signals were ob-
tained by HHT. The energy distribution showed that both the signals contained frequen-
cies of 275 Hz and 550 Hz, and 275 Hz was the main frequency; in other words, subhar-
monic resonance of order 1/2 was the most outstanding vibration characteristic, which is 
also a key point throughout this study. Consequently, it was further proved that the SDOF 
modeling method is reasonable and feasible to simulate the vertical vibration of the front 
cover. 

 
Figure 10. HHT of (a) test signal and (b) numerical signal. 

2.3.3. Qualitative Analysis for Effect of Multiple Parameters 
In this subsection, the effect of multiple parameters on subharmonic resonance re-

sponse of the front cover was analyzed. As shown in Figure 11a, it was effective to reduce 
the vibration amplitude by changing the excitation amplitude and the initial condition. 
The effect of the linear damping coefficient μ on vibration response was closely related to 
initial conditions; under the nonzero initial condition, the decrease of μ increased the sub-
harmonic resonance response. However, subharmonic resonance was not excited in the 
zero initial condition; even if μ was further reduced, the vibration amplitude was much 
smaller than the response in subharmonic resonance. As shown in Figure 11b, subhar-
monic resonance was more sensitive to 3α  and 4α than to 2α . In addition, there is no 
doubt that f0 and fe have great influence on the subharmonic resonance, but as long as 

A
cc

el
er

at
io

n 
(g

)

Figure 10. HHT of (a) test signal and (b) numerical signal.

2.3.3. Qualitative Analysis for Effect of Multiple Parameters

In this subsection, the effect of multiple parameters on subharmonic resonance re-
sponse of the front cover was analyzed. As shown in Figure 11a, it was effective to reduce
the vibration amplitude by changing the excitation amplitude and the initial condition.
The effect of the linear damping coefficient µ on vibration response was closely related
to initial conditions; under the nonzero initial condition, the decrease of µ increased the
subharmonic resonance response. However, subharmonic resonance was not excited in the
zero initial condition; even if µ was further reduced, the vibration amplitude was much
smaller than the response in subharmonic resonance. As shown in Figure 11b, subharmonic
resonance was more sensitive to α3 and α4 than to α2. In addition, there is no doubt that
f 0 and f e have great influence on the subharmonic resonance, but as long as fe ≈ 2 f0,
changing the natural frequency of the derived system will only change the cycle period
without affecting the occurrence of subharmonic resonance.
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Figure 11. Effect of multiple parameters on vertical resonance of the front cover. (a) Effect of excitation
amplitude and linear damping; (b) effect of nonlinear terms.

2.3.4. Evaluation of the Common Prevention Methods

Essentially, the common prevention methods of adopting spring washers, replacing
the lubricating oil with grease, and increasing the preload all increased the friction between
interfaces, which is effective for bolt connection under static loads because the friction is
more difficult to overcome. However, according to the above analysis results, uncertainty of
the effect of damping on a nonlinear system means increasing the preload may not achieve
a satisfactory result. Although adequate damping could prevent subharmonic resonance, it
is impossible to increase the damping of bolted joints so much by the common prevention
methods. In addition, the linear stiffness of the connecting bolt, k1, can be expressed as

k1 =
EA

l
(11)
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where E is Young’s modulus of the bolt material, and A and l are the sectional area and
length of bolt, respectively. When the preload increases, the decrease of A and increase of l
lead to the decrease of bolt connection stiffness k1. Meanwhile, the natural frequency of the
derived system Ω, which is proportional to k1, also decreases. In this case, the change of f 0
caused by preload is so small due to the small variation of A and l that it is difficult to affect
the structural vibration significantly. In other words, the common prevention methods
were not effective enough for improving the service life of connection bolts in the front
cover because dynamic behavior of the nonlinear system was hard to predict and control.
In the following sections, the fatigue life of bolts under structural subharmonic resonance
are analyzed and solutions proposed to improve the service life of the connecting bolt.

3. Feasibility Analysis for the Stress Simulation Method

Nonlinear characteristics of structure were ignored automatically at the modal-related
analysis stage of dynamic stress simulation. Therefore, feasibility of the calculation method
was verified in this section. Firstly, axial load measuring bolts were made and calibrated to
measure the axial dynamic stress of bolts; moreover, multiaxial acceleration excitations as
well as the operational modes of the front cover were also measured from the vibration
test. Then, the FE model of the bolted front cover was established, and the mode-based
steady-state dynamics analysis was performed to obtain the FRFs (Frequency Response
Functions). Finally, the vertical acceleration of the front cover and axial stress of bolts were
simulated based on the multiaxial excitations and FRFs.

3.1. Theoretical Background of the Stress Simulation Method

In this section, the stress simulation method was studied to calculate accurate structure
dynamic stress under resonance and multi-load conditions. Based on the structure dynamic
theory and previous research results [22,47], the dynamic stress time history calculation
method was adopted in this study, in which the phase information between multi loadings
was not ignored. Dynamics of multi-degree-of-freedom systems subjected to time-varying
excitation can be governed by the following differential equations:

M
..
X(t) + C

.
X(t) + KX(t) = fe(t) (12)

where M, C, and K are mass, damping and stiffness matrices, respectively; X(t) and fe(t)
are displacement and excitation vectors, respectively. Assuming that there are totally R
modes, the load-stress FRFs can be obtained by Equation (12) [47]:

H(Ω) = E·
R

∑
r=1

{ψε
r}{ϕr}T

kr −Ω2mr + jΩcr
(13)

where mr, cr, kr are the rth modal mass, modal damping, and modal stiffness, respectively;
Ω is the excitation frequency; {ϕr} is the real value mode vector; {ψε

r} is the rth strain
mode corresponding to {ϕr}; j =

√
−1; E is elastic module.

Due to the front cover being fixed to the axle box body, so accelerations at the end
of the axle box body were regarded as the input load. For the acceleration-stress FRF, the
phase information needs to be retained, as shown in Equation (15):

H(Ω) = E·
{

R
∑

r=1

{ψε
r}{ϕr}T

(kr−Ω2mr)
2
+(Ωcr)

2 [(kr −Ω2mr) + j(−Ωcr)]

}
= E·

{
R
∑

r=1

(1−λ2
r )

ker [(1−λ2
r )

2
+(2ζrλr)

2]
+ j·

R
∑

r=1

−2ζrλr

ker [(1−λ2
r )

2
+(2ζrλr)

2]

}
= HR(Ω) + j·H I(Ω)

(14)

where ker = kr/
{{

ψε
r
}{

ϕr
}T}, λr = Ω/Ωr, Ωr

2 = kr/mr, ζr = cr/
√

4mrkr.
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In addition, assuming the length of a discrete acceleration signal f (n) is N, the FFT of
f (n) is

F(Ω) =
N−1
∑

n=0
f (n)e−jΩn

=
N−1
∑

n=0
f (n) cos nΩ− j·

N−1
∑

n=0
f (n) sin nΩ

= FR(Ω) + j·FI(Ω)

(15)

In the case of multi-load input, that is, when the number of external loadings is more
than one, and assuming that the number is ke, all the loadings should be considered to
stimulate the stress response; thus, the frequency domain of concerned point stress under
the multi-load input condition can be calculated by Equation (16) below:

σ(Ω) =
ke
∑

i=1
[Fi(Ω)·H(Ω)]

=
ke
∑

i=1

{
[Fi

R(Ω)HR(Ω)− Fi
I(Ω)H I(Ω)] + j·[Fi

R(Ω)H I(Ω)− Fi
I(Ω)HR(Ω)]

}
(16)

Then, the time history stress at the concerned point can be calculated by IFFT:

σ(N) =
1
N

N−1

∑
n=0

[σ(Ω)ejΩn] (17)

σ(N) is the simulated dynamic stress time history, which is used for fatigue life
prediction.

3.2. Acquisition of Vibration Signals
3.2.1. Fabrication and Calibration of Axial Load Measuring Bolt

A nonlinear connection such as a bolted joint is usually simplified as a linear system
because the accurate nonlinear model is difficult to be established, but the premise is that
the accuracy of calculation results can be guaranteed. In this study, damping of the bolted
joint was assumed to be linear; therefore, feasibility of the linear stress simulation method
was assessed in terms of the axial and transverse stiffness of the bolted joint.

The axial stiffness could be assessed by certifying the bolt axial stress. In order to
measure the axial bolt stress in the vibration test, axial stress measuring bolts were made,
as shown in Figure 12. Firstly, a hole with diameter of 2.2 mm and an appropriate depth
was drilled in the center of the bolt. Then, an LB11 strain gauge was attached to inside of
the bolt by a hot-curing epoxy resin adhesive. LB11 is a cylindrical strain gauge to measure
strain, force, and vibration in screws or bolts [48].
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Drilling reduced the effective cross section and durability of the bolt, which resulted
in that the stress-strain relationship could not be depicted with the classical material
mechanics formula. Hence, calibration for the drilled bolts was conducted by a strain gauge
load cell for tension and compression. Calibration for each bolt was repeated three times,
and the results had great consistency. The relationship between the micro strain εm (µm/m)
and the bolt axial stress Sa (MPa) is shown in Equation (18).

Sa =
7.9704εm − 2.813

Ae
(18)

where Ae is the effective sectional area of the bolt shank, which should minus the area of
the drilled hole.

3.2.2. Measurement of Multiaxial Excitations and Bolt Axial Load Variation

As shown in Figure 1, triaxial accelerometers were set at the end of the front cover
and the axle box body where near the front cover, two axial load measuring bolts were
assembled symmetrically at the front cover and tightened with the torque of 20 Nm. Only
vibrations of the axle box body were considered as multiaxial external loads because almost
all the external excitations of the front cover came from the axle box body; the multiload
can be divided into the longitudinal acceleration, the lateral acceleration, and the vertical
acceleration.

The multiaxial excitations of the front cover are shown in Figure 13: the left is the
time domain signal at the running speed of 288 km/h, while the right is the FFT result
of the left. The largest amplitude of vertical vibration was 40 g, followed by longitudinal
vibration, and the smallest was lateral vibration. The dominant frequencies of the three
accelerations were all multiples of 27.49 Hz, which is the theoretical rotational frequency of
the wheel that is equal to wheel perimeter divided by linear speed of 288 km/h and is also
the frequency when n = 1 in Equation (1).

As shown in Figure 14, the dynamic axial stress of the bolt was obtained in accordance
with the micro-strain measured by LB11 strain gauge and Equation (18). Obviously, the
amplitude of dynamic axial stress also increases in the subharmonic resonance state and
changes between ±2 MPa. It is noticeable that the micro-strain measurement started after
bolt tightening, so axial stress caused by preloading is not included in Figure 14.

3.2.3. Modal Test of the Front Cover

In this section, the vibration mode of the front cover was obtained by modal test and
used to verify the correctness of the subsequent numerical modeling. OMA (Operational
Modal Analysis) rather than EMA (Experimental Modal Analysis) was chosen due to the
practical advantages [41,49–51], which is preferable for in-operation structures because
the output-only data is needed and the test structure remains in its normal in-operation
condition during the test. More importantly, OMA is quite suitable for structures with
nonlinear characteristics.

As shown in Figure 15a, 19 measuring points of acceleration were set on the external
surface of the front cover (1–13) and close to the connection bolts (14–19). Then, the
frequency sweep test was carried out as in Section 2.1 to obtain the vibration signals in
three directions. Finally, modal analysis was carried out in the vibration control system
of Simcenter Testlab according to the acceleration signals. As shown in Figure 15b, the
solid line model is the undeformed model, while the dotted line model represents the
deformed model, and the first-order modal frequency and modal damping were 274.36 Hz
and 1.88%, respectively. There are three arrows with different colors at each measuring
point; the green, blue, and red arrows represent the vibrations in the x, y, and z directions,
respectively. The size of the arrow represents the vibration intensity; obviously, the front
cover mainly vibrated in the z direction, that is, perpendicular to the axis of connection
bolt, which means that the bolts were mainly subjected to transverse loads.
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Figure 13. Multiaxial acceleration excitations in time domain and frequency domain. (a) Longitudinal
excitation; (b) lateral excitation; (c) vertical excitation.
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Figure 14. Time history of the bolt axial stress.
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Figure 15. OMA results of the bolted front cover. (a) The analytical model composed of the accelera-
tion measuring points; (b) the first-order mode.

3.3. Finite Element Analysis
3.3.1. Finite Element Modeling

As shown in Figure 16a, the three-dimensional FE model of the front cover was
established in the CAE software of HyperMesh 2019. The numbers 1-6 refer to the six
connecting bolts, the external threads of the bolts and internal threads of the axle box
body were constructed with the thread pitch of 1.25 mm. The front cover was divided by
tetrahedron elements with type of solid 185, while the bolts, washers and cylinders were
divided by the mixture of pentahedrons and hexahedrons. Since the axle box body was
assumed to be rigid, only a small region around the tapped hole was modeled, and the
external nodes were constrained. In addition, contact elements were overlaid on contact
regions between the bolt head and washer, the washer and front cover, the front cover
and axle box body, as well as between the internal and external threads. The connecting
bolts were unlubricated galvanized bolts, which fit into to the friction coefficient class C of
Table A5 in VDI 2230 [52], so the friction coefficients range from 0.14 to 0.24. In this study,
the friction coefficients were set to 0.18.

Preload of 11,000 N was applied at shank for each bolt in ABAQUS 2021, followed
by a general static analysis; convergence of the contact was calculated by the Newton-
Raphson method. Stress distribution on the bolt after preloading is shown in Figure 16b;
the maximum stress was 408.5 MPa, which is lower than the material yield limit (640 MPa)
of grade 8.8 bolt. Moreover, the maximum stress occurred at the root of the first engaged
thread, which is reasonable due to the high notch effect at the first load-bearing thread turn
of the bolt [52]. The preload calculation results show that FE modeling of the front cover
was reasonable.

3.3.2. Modal Analysis

Modal analysis of the bolted front cover was carried out after the preload calculation;
the modes were extracted by the block Lanczos method. The first four order modal
frequencies are listed in Table 2, and the first two were around 275 Hz, which further
proves that subharmonic resonance of order 1/2 did occur when the excitation frequency
was 550 Hz.

As shown in Figure 17, the first two modes of the connection bolts were the first-order
bending modes; in other words, the front cover vibrated in the z direction and the bolts
were subjected to transverse loads. The mode frequencies and mode shapes of the first two
modes were in good agreement with the OMA results, so validity of the FE model was
further proved.
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Table 2. Modal analysis results.

Mode 1 2 3 4

Frequency (Hz) 274.52 276.51 394.80 614.65

3.3.3. FRF Calculation

Mode-based steady-state dynamics analysis was conducted to calculate the FRFs,
which included the real and imaginary parts. A white noise load was regarded as the base
excitation input, the frequency band of white noise was from 200 Hz to 600 Hz, which
contains the frequencies of interest in this study. In addition to the accurate modal frequency
and modal shape, accurate modal damping was also needed for accurate calculation of
FRFs. Therefore, the damping ratio 1.88% of OMA was adopted for the first two calculation
modes.

Feasibility of the linear stress simulation method in axial direction of the bolted joint
can be verified easily because bolt axial stress can be measured directly, but transverse stress
of bolt was difficult to be measured; therefore, the method was verified in the transverse
direction of the bolted joint by verifying the vertical vibration of the front cover. The vertical
acceleration FRFs of the front cover are shown in Figure 18a–c; the main frequency was
about 275 Hz under longitudinal and vertical excitation, which is close to the first-order
bending modal frequency of bolts, while the main frequency was about 395 Hz under
the lateral excitation. Simultaneously, the axial stress FRFs of the bolt shank were also
calculated to simulate the axle stress of bolts, as shown in Figure 18d–f.
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3.4. Acceleration and Stress Simulation of the Bolted Front Cover

In this section, dynamic data in the frequency domain are calculated by the frequency
domain signals of the multiaxial excitations in Figure 13 and FRFs in Figure 18. Then,
dynamic time history can be acquired by Inverse FFT (IFFT) of the frequency domain data.
A comparison between the simulation results and test results is shown in Figure 19. As
shown in Figure 19a,b, the numerical signals were consistent with the experimental signals.
Figure 19c,d show that both the experimental and numerical signals had the dominant
frequencies of 274.53 Hz and 548.67 Hz, which corresponded to the first-order bending
modal frequency of bolts and the excitation frequency of the 20th-order wheel polygon,
respectively.

In summary, the consistency between experimental and numerical results for vertical
acceleration and axial stress demonstrates that the linear stress simulation method is able to
ensure the calculation accuracy. In other words, this method is feasible for dynamic stress
simulation under nonlinear vibration states.
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Figure 18. (a–c) represent vertical acceleration FRFs of the front cover under the excitation of
longitudinal load, lateral load, and vertical load, respectively; (d–f) represent axial stress FRFs at bolt
shank under the excitation of longitudinal load, lateral load, and vertical load, respectively.
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Figure 19. Comparison between the experimental and numerical results. (a,b) are time domain
signals of the front cover and bolt, respectively; (c,d) are frequency domain signals of the front cover
and bolt, respectively.

4. Analysis of Multiaxial Fatigue Behavior of Connecting Bolt

After feasibility of the stress simulation method was proved, multiaxial fatigue behav-
ior was analyzed in this section. Transverse and axial resonance stresses at the root of the
first engaged thread of connecting bolts were calculated firstly. Then, the multiaxial fatigue
analysis criterion was determined. Finally, load change cycles were calculated with the
rain-flow counting method, and the bolt fatigue life was predicted.

4.1. Calculation of Dynamic Stress at Bolt Thread

As it is the most dangerous location, resonance stress at the first engaged thread must
be evaluated. Figure 20a–c shows the transverse stress FRFs of node 233,773 at the first
engaged thread of bolt 2 (Figure 16a). Obviously, the 275 Hz vibration was most sensitive
to the vertical excitation. The lateral excitation easily excited the 395 Hz vibration but had
little effect on the 275 Hz vibration. In other words, subharmonic resonance of order 1/2 of
the front cover was mainly aroused by the vertical vibration.
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Figure 20. (a–c) represent transverse stress FRFs at thread root under the excitation of longitudinal
load, lateral load, and vertical load, respectively; (d–f) represent axial stress FRFs at thread root under
the excitation of longitudinal load, lateral load, and vertical load, respectively.

Figure 20d–f show the axial stress FRFs of node 233,773. It is obvious that the axial
stress response at node 233,773 was much larger than the response at the bolt shank
(Figure 18d–f). Similarly, 275 Hz vibration was more sensitive to vertical and longitudinal
excitations, while 395 Hz vibration was more sensitive to lateral excitation. It means that
the axial deformation at node 233,773 under subharmonic resonance was not originated
from the axial excitation but from the transverse excitations.

Simulation of the transverse dynamic stress of node 233,773 is shown in Figure 21a.
The maximum stress range of the transverse stress was around 20 MPa, which was much
larger than the axial stress range at the bolt shank (Figure 19b). As shown in Figure 21b, the
tensile stress at the root of the bolt thread could not be ignored due to the bending mode;
the maximum range of the axial dynamic stress of node 233,773 was around 45 MPa, which
was much larger than the stress range at the bolt shank as well. It is obvious that the axial
stress at the bolt thread was more predominant than the transverse stress, which would
accelerate fatigue-crack propagation [24,25].
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Figure 21. Dynamic stress simulation results and local amplification. (a) transverse dynamic stress
and (b) axial dynamic stress at thread root.

4.2. Analysis of Bolt Fatigue Strength
4.2.1. Criteria of Stresses Combination and Fatigue Life Calculation

There are some stress combination techniques for multiaxial stresses, such as the
critical plane approach and the octahedral shear stress criterion; the latter is also often
called either the von Mises or the distortion energy criterion. The octahedral stress criterion
is work for in-phase or proportional loading, which is suitable for bolt fatigue analysis
in this study because the stresses were all caused by the excitation of 20th-order wheel
polygonization. There are three main processes to evaluate fatigue life by the octahedral
stress criterion: (1) cycle counting for the stress load history, (2) calculation of equivalent
stress for multiaxial stresses, and (3) prediction of fatigue life. The fatigue analysis criterion
was firstly represented in this subsection.

According to the octahedral stress criterion, the equivalent stress can be expressed as

σe =
1√
2

√
(σ1 − σ2)

2 + (σ2 − σ3)
2 + (σ3 − σ1)

2 (19)

where σ1, σ2, and σ3 are principal stresses. The amplitudes of the principal stresses, σ1a, σ2a,
and σ3a, can then be employed to compute an equivalent stress amplitude σa

e by using the
similar relationship as Equation (19). In addition, consider the effect of mean stresses; an
equivalent mean stress σm

e can be calculated from the mean stresses in the three principal
directions. Therefore, the cyclic stressing can be specified as{

σa
e = 1√

2

√
(σ1a − σ2a)

2 + (σ2a − σ3a)
2 + (σ3a − σ1a)

2

σm
e = σ1m + σ2m + σ3m

(20)
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Equation (20) can be analogized to obtain the equivalent stress amplitude and equiva-
lent mean stress for any convenient coordinate axes:{

σa
e = 1√

2

√
(σxa − σya)

2 + (σya − σza)
2 + (σza − σxa)

2 + 6(τ2
xya + τ2

yza + τ2
zxa)

σm
e = σxm + σym + σzm

(21)

According to the previous analysis, σy and σz at the bolt thread root were obtained in
Section 4.1 (Figure 21); σx was neglected for vertical vibration of the front cover, and the
shear stresses were also neglected. Thus, equivalent amplitude and mean value of bolt
stresses can be expressed as{

σa
e = 1√

2

√
σya2 + σza2 + (σya − σza)

2

σm
e = σym + σzm

(22)

An equivalent stress amplitude of the completely reversed uniaxial stress can be
obtained by combining σa

e and σm
e:

σar
e =

σa
e

1− σme

σf
′

(23)

where σf
′ is a constant and approximately equal to the true fracture strength of material. In

this study, σf
′= 1200 MPa.

The technical committee of the BS standard has determined several S-N curves suitable
for fatigue life calculation of bolted joints through fatigue tests under various load condi-
tions and published them in EN1993-1-9:2005 [53]. According to the GL2010 standard [54],
for bolts rolled before heat treatment and subjected to tension and bending loads, the
S-N curve for category 71 in EN1993-1-9:2005 is applicable. For constant amplitude stress
ranges, the S-N curve has the form as follows:

(∆σa)
mN f = (∆σc)

m × 2× 106 (24)

where ∆σa is cycling stress range, N f is the number of cycles to fatigue failure, m = 3, and
the number ∆σc = 71 represents the reference value of fatigue strength for the curve of
category 71 at 2 million cycles. The S-N curve expressed in stress amplitude (half the stress
range) is shown below:

(σar
e)3N f = 8.95× 1010 (25)

Finally, the fatigue life can be predicted according to Miner’s cumulative damage
theory.

4.2.2. Fatigue Life Prediction of Bolt

The number of cycles necessary to break the structure depends on the cycle amplitude
and mean value of stress. The rain-flow cycle counting method is an effective method for
variable amplitude multiaxial loading which can identify all the stress cycles. According to
the rain-flow count, there were totally 2743 different stress cycles and half-cycles for both
the transverse stress and axial stress; the number of cycles for each cycle stress was Ni = 1
or 1/2. The stress ranges and mean stresses are shown in Figure 22.



Sensors 2023, 23, 7962 24 of 28

Sensors 2023, 23, x FOR PEER REVIEW 24 of 29 
 

 

of category 71 at 2 million cycles. The S-N curve expressed in stress amplitude (half the 
stress range) is shown below: 

e 3 10( ) 8.95 10ar fN = ×σ   (25)

Finally, the fatigue life can be predicted according to Miner’s cumulative damage 
theory. 

4.2.2. Fatigue Life Prediction of Bolt 
The number of cycles necessary to break the structure depends on the cycle ampli-

tude and mean value of stress. The rain-flow cycle counting method is an effective method 
for variable amplitude multiaxial loading which can identify all the stress cycles. Accord-
ing to the rain-flow count, there were totally 2743 different stress cycles and half-cycles 
for both the transverse stress and axial stress; the number of cycles for each cycle stress 
was Ni = 1 or 1/2. The stress ranges and mean stresses are shown in Figure 22. 

  

Figure 22. Rain-flow count results for (a) transverse stress time history and (b) axial stress time 
history of node 233773. 

An equivalent stress amplitude e
aσ  and equivalent mean stress e

mσ  were obtained 
by the 2743 different stress ranges and mean stresses according to Equation (22). Then, the 
equivalent stress amplitude e

arσ  for fatigue calculation was obtained by Equation (23). 
According to Equation (25), the failure cycle fiN  that corresponded to each Ni was calcu-
lated. After getting all the 2743 failure cycles, the accumulation at the root of the first en-
gaged bolt thread caused by transverse and axial cyclic stress can be obtained by Equation 
(26). 

2743

1

i

i fi

ND
N=

=    (26)

It was calculated that 65.18 10D −= × , which represents the damage at the thread root 
caused by the multiaxial excitation signal of 5 s length, so fatigue life of the bolt was 

65 / (5.18 10 3600) 26.8t −= × × =  h, which means that fatigue failure of the bolt would occur 
if only the subharmonic resonance state of the front cover lasted for more than 26.8 h. 

5. Method for Improving Fatigue Life of Connecting Bolt 
According to the above fatigue analysis results, bolts at the axle box front cover easily 

failed around the linear speed of 288 km/h after the stable 20th-order polygonal wheel 
formed. Reprofiling is the most effective way to eliminate the wheel polygonization-in-
duced resonance at present, and 250,000 km is a fixed reprofiling interval for Chinese high-
speed trains. Wang et al. [55] reported that vertical vibration of the axle box increased 
slowly in the early 150,000 km and rapidly in the late 100,000 km, which indicated rapid 
growth of the polygonization amplitude. Moreover, 280 km/h to 300 km/h is a common 

Figure 22. Rain-flow count results for (a) transverse stress time history and (b) axial stress time
history of node 233773.

An equivalent stress amplitude σa
e and equivalent mean stress σm

e were obtained
by the 2743 different stress ranges and mean stresses according to Equation (22). Then,
the equivalent stress amplitude σar

e for fatigue calculation was obtained by Equation
(23). According to Equation (25), the failure cycle N f i that corresponded to each Ni was
calculated. After getting all the 2743 failure cycles, the accumulation at the root of the
first engaged bolt thread caused by transverse and axial cyclic stress can be obtained by
Equation (26).

D =
2743

∑
i=1

Ni
N f i

(26)

It was calculated that D = 5.18× 10−6, which represents the damage at the thread
root caused by the multiaxial excitation signal of 5 s length, so fatigue life of the bolt was
t = 5/(5.18× 10−6 × 3600) = 26.8 h, which means that fatigue failure of the bolt would
occur if only the subharmonic resonance state of the front cover lasted for more than 26.8 h.

5. Method for Improving Fatigue Life of Connecting Bolt

According to the above fatigue analysis results, bolts at the axle box front cover easily
failed around the linear speed of 288 km/h after the stable 20th-order polygonal wheel
formed. Reprofiling is the most effective way to eliminate the wheel polygonization-
induced resonance at present, and 250,000 km is a fixed reprofiling interval for Chinese
high-speed trains. Wang et al. [55] reported that vertical vibration of the axle box increased
slowly in the early 150,000 km and rapidly in the late 100,000 km, which indicated rapid
growth of the polygonization amplitude. Moreover, 280 km/h to 300 km/h is a common
running speed range for high-speed trains in China. Therefore, there is a high probability
of fatigue failure for connecting bolts of the front cover during a reprofiling interval.

Subharmonic resonance of the front cover must be avoided to prevent the multiaxial
vibration fatigue of bolts. There are two methods to improve fatigue life of bolts. One
is to optimize the structure of the front cover so that the first-order modal frequency is
greater than 290 Hz, which is half the excitation frequency of the 20th-order wheel polygon
at the running speed of 300 km/h. Nevertheless, modifying the structure of a widely
used component is costly. The other method is to prevent the formation of 20th-order
wheel polygonization. In order to explore the fatigue behavior of bolts with no wheel
polygonization, a sweep frequency test under the condition of wheel tread defect of wheel-
flat but no polygonization was carried out. The reason why the wheel with defects was
used instead of the new wheel after reprofiling was that the wheel would not be in a perfect
state in most of the running time, so a working condition that was inferior to the new
reprofiled wheel but better than the polygonal wheel was used. The same frequency sweep
test was carried out as previously. The maximum vibrational amplitude of the multiaxial
acceleration loadings from the axle box body was around 20 g at the linear speed range of
280–300 km/h, and the front cover was not in resonance; thus, the stress caused by bending
modes of the bolt was ignored under the circumstances, and only the effect of transverse
stress on bolt fatigue life was considered. The results of transverse stress simulation at the



Sensors 2023, 23, 7962 25 of 28

first engaged thread root and local amplification are shown in Figure 23. Obviously, there
was an aperiodic vibration with smaller transverse stress amplitude in comparison with
the resonance stress in Figure 21a.
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Figure 23. Transverse stress at the thread root and local amplification when there was no wheel
polygonization.

The fatigue life of bolts was calculated by the same method as in Section 4. Ac-
cumulation caused by transverse vibration at the root of the first engaged thread was
Dτ = 1.95× 10−9, so the fatigue life of the bolt was more than 700 thousand hours, which
means the probability of bolt fatigue failure decreases rapidly as long as the front cover is
not in resonance, even though the wheel tread has defects. Hence, shortening the reprofiling
interval to reduce the polygonal wear could effectively improve the fatigue life of bolts.

6. Conclusions

A linear method based on frequency response analysis was first used to calculate the
bolt resonance stress in this work. It was proved that the method was feasible and accurate
enough for dynamic stress simulation, which provides a practical way for multiaxial
fatigue behavior analysis of bolts under complicated running conditions of high-speed
trains. Several conclusions were drawn as follows:

1. The SODF nonlinear modeling method is reasonable for the bolted front cover. The
common prevention methods for bolt failure were theoretically proved ineffective
under structural subharmonic resonance of order 1/2.

2. The results of bolt stress measurement show that the dynamic behaviors of bolt under
a nonlinear vibration state should be assessed due to the increasing of bolt stress.

3. Although the vibration amplitude of the front cover in the direction of the bolt axis
was small, the axial resonance stress at the bolt thread’s root could not be neglected
due to the first-order bending modes of bolts.

4. Feasibility of the linear stress simulation method was proved in terms of the transverse
stiffness and axial stiffness of the bolted joint. It indicated that the method was
accurate enough to simulate the subharmonic resonance stress of bolts even if the
nonlinearity of the bolted joint was ignored.

5. Resonance stresses at the root of the first engaged bolt thread were much larger
than the resonance stress at the bolt shank, and the axial resonance stress was more
predominant at the bolt thread than the transverse resonance stress.

6. Since the multiaxial stresses were caused by the homologous excitations, the octahe-
dral shear stress criterion was suitable for equivalent stress calculation. The fatigue
life of the bolt was about 26.8 h, which means that the connecting bolts were prone
to multiaxial fatigue failure when the front cover was in subharmonic resonance of
order 1/2 for a long time.

7. The fatigue life of the bolts is greatly improved when the front cover is not in subhar-
monic resonance. Consequently, the probability of fatigue failure of bolts could be
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reduced effectively by shortening the reprofiling interval to reduce the wear of the
polygon.

The fatigue life analysis method of bolts adopted in this study has great practical
significance for safety monitoring in engineering; it is easy to evaluate the reliability of the
bolted joint under various vibration conditions. However, this simulation method neglects
the effects of nonlinear factors and is not suitable for strongly nonlinear systems; therefore,
a more universal stress simulation method should be explored in subsequent studies. In
addition, the octahedral shear stress criterion is not suitable for non-proportional loading,
and further study should be advanced for a more universal method, such as the critical
plane approach.
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Nomenclature

EMA Experimental modal analysis H I(Ω) the imaginary part of H(Ω)
EMD empirical mode decomposition HHT Hilbert-Huang transform
f (n) the discrete acceleration excitation signal IMF intrinsic mode functions
F(Ω) FFT result of f (n) ke number of external loadings
FR(Ω) the real part of F(Ω) MAPE mean absolute percentage error
FI(Ω) the imaginary part of F(Ω) N length of f (n)
FE finite element OMA operational modal analysis
FEA finite element analysis SDOF single degree of freedom
FEM finite element method STFT short-time Fourier transform
FRF frequency response function S-N stress-number of cycles
FFT fast Fourier transform VMD variational mode decomposition
H(Ω) the acceleration-stress FRF σ(Ω) frequency domain signal of simulation stress
HR(Ω) the real part of H(Ω) σ(N) time domain signal of simulation stress
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