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Abstract: The network area is extended from ground to air. In order to efficiently manage various
kinds of nodes, new network paradigms are needed such as cell-free massive multiple-input multiple-
output (CF-mMIMO). Additionally, security is also considered as one of the important quality-
of-services (QoS) parameters in future networks. Thus, in this paper, we propose a novel deep
learning-based secure multicast routing protocol (DLSMR) in flying ad hoc networks (FANETs)
with cell-free massive MIMO (CF-mMIMO). We consider the problem of wormhole attacks in the
multicast routing process. To tackle this problem, we propose the DLSMR protocol, which utilizes a
deep learning (DL) approach to predict the secure and unsecured route based on node ID, distance,
destination sequence, hop count, and energy to avoid wormhole attacks. This work also addresses key
concerns in FANETs such as security, scalability, and stability. The main contributions of this paper
are as follows: (1) We propose a deep learning-based secure multicast routing protocol (DLSMR)
to establish a high-stability multicast tree and improve security performance against wormhole
attacks. In more detail, the DLSMR protocol predicts whether the route is secure based on network
information such as node ID, distance, destination sequence, hop count, and remaining energy or not.
(2) To improve the node connectivity and manage multicast members, we propose a top-down particle
swarm optimization-based clustering (TD-PSO) protocol to maximize the cost function considering
node degree, cosine similarity, cosine distance, and cluster head energy to guarantee convergence to
the global optima. Thus, the TD-PSO protocol provides more strong connectivity. (3) Performance
evaluations verify the proposed routing protocol establishes a secure route by avoiding wormhole
attacks as well as by providing strong connectivity. The TD-PSO clustering supports connectivity
to enhance network performance. In addition, we exploit the impact of the mobility model on the
network metrics such as packet delivery ratio, routing delay, control overhead, packet loss ratio, and
number of packet losses.

Keywords: CF-mMIMO; clustering; deep learning; flying ad hoc networks; secure multicast routing;
security; wormhole attack

1. Introduction

Unmanned aerial vehicle (UAV) communications play an important role in mod-
ern network infrastructure, particularly in flying ad hoc networks (FANETs) integrated
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with cell-free massive multiple-input multiple-output (CF-mMIMO) [1,2]. These modern
communications setups rely on effective routing methods which have a direct impact
on performance and efficiency. Recently, security has emerged as a significant concern,
warranting special attention to prevent potential breaches [3–8].

Given its airborne position, the UAV can cover large areas of the ground, providing
superior network coverage over traditional ground-mounted access points (APs) [9,10].
Therefore, clustering or member management is very important, ensuring optimal utiliza-
tion of the UAV’s wide range of capabilities and maintaining network efficiency [11,12].
One of the major security threats to these networks is wormhole attacks which are char-
acterized by capturing enemy nodes and tunnelling packets to other locations on the
network [13]. This misleading tactic breaks regular data transmission pathways and modi-
fies network topology causing substantial network performance and reliability disruptions.
Consequently, understanding these attacks and developing robust defenses against them is
essential to ensure secure and reliable UAV communications.

A multicast routing protocol is a key technique in ensuring reliable data communi-
cation to multiple destinations [14]. The multicast routing protocol can select the best
next node to establish the optimal route from the source to the multiple destinations [15].
Particularly in the FANET environment, UAVs move dynamically so that there can be
a risk of broken connectivity and attack from eavesdroppers [16]. The authors of [16]
proposed a method to detect a black hole in a short time. The authors of [17] studied a
hybrid authentication scheme with a digital signature to improve the security performance
in the UAV and ground node against wormhole attacks. However, the proposed method
has a high processing time to authenticate the secure node.

In this context, deep learning models present an intriguing opportunity [18,19]. When
the deep learning models are applied to FANETs, these models can offer sophisticated
route verification mechanisms. These mechanisms predict the next secure node in the route,
ensuring that the chosen path is free from wormholes before initiating data transmission.
The use of deep learning to improve security in UAV communications forms the basis of
this paper.

1.1. Related Works

Some works have been studied to improve network stability in FANETs. The authors
of [20] proposed bio-inspired clustering for the FANET environment. They develop a bio-
inspired clustering protocol to improve energy efficiency (EE) and manage UAV mobility.
However, it does not consider safety considerations to reduce collisions and enhance
stability. In [21], the authors proposed an intelligent cluster routing scheme (CRSF) to
address UAV communication issues. Additionally, the CRSF can improve the stability
performance in UAV communication. Nevertheless, the CRSF has a high control overhead
during the clustering process. The authors of [22] used clustering as a solution to improve
network stability. In addition, they also studied EE localization and clustering for UAV
wildfire monitoring. The authors of [23] proposed a down–up particle swarm optimization
to improve the scalability of the FANET system. However, this work only considered the
optimization approach to improve stability performance.

Regarding secure multicast routing protocols, improved security performance in the
FANET system was studied in [24]. Scalable and predictive routing (SP-GMRF) was pro-
posed to predict the next node. Based on node position, the SP-GMRF provided the shortest
distance to each destination node. However, SP-GMRF does not consider the clustering
protocol, so it has a high control overhead. The authors of [25] proposed a distributed
tree-based routing (DPTR) for FANETs, forming a network that avoids fragmentation. In
this approach, a tree-like structure connects all the UAVs in the networks. Nevertheless,
the routing delay is high since every node calculates the entire routing tree. In [26], the au-
thors studied swarm EE multicast routing (SEMRP) for UAV swarms for UAVs in group
formation. The SEMRP can reduce packet loss and packet re-transmission, and delay
performance. However, the SEMRP has a high control overhead during the routing process.
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The authors of [27] proposed a credible neighbor discovery (CRFNE) algorithm to shield
messages against wormhole attacks in wireless sensor networks (WSNs). The CRFNE
can detect wormhole attacks during route discovery. However, the CRFNE has a high
processing time due to the greater number of steps to calculate the wormhole threshold
to detect the wormhole node. Based on the AODV routing protocol, the authors of [28]
designed a wormhole-immune routing protocol. However, the DAWA protocol has a high
control overhead because the DAWA protocol broadcasts the packet discovery to all nodes
in the network. Meanwhile, the authors of [29] proposed a hybrid price auction (HPA)-
based routing protocol to avoid sinkhole attacks. In addition to that, the HPA protocol can
improve the security, routing delay, and scalability performance. Nevertheless, they only
consider sinkhole attacks in the network. On the other hand, the DL is applied to improve
end-to-end (E2E) delay in aeronautical ad hoc networks (AANETs) [30]. The authors of [30]
explored a DL-based multicast routing protocol for mapping the local geographic informa-
tion observed by the forwarding node into the information required for determining the
optimal next hop. However, they have not considered wormhole attacks in the networks.
Additionally, the authors of [31] studied reinforcement learning-assisted secure routing to
minimize delays and map geographic information using Q learning. Thus, the proposed
protocol can select the secure route efficiently. However, they did not mention which kind
of attack was considered.

The above-mentioned works partially addressed the raised network issues such as
secure multicast routing, network scalability, and deep learning approaches. In more
detail, some studies have examined the effect of DL on secure routing [30,31]; others have
studied the design of secure multicast routing against eavesdropped attack [24,30]; very few
works have explored the effect of DL techniques in the secure multicast routing protocol
specifically against wormhole attacks on security, scalability, and stability performance,
which is a critical performance metric in 5G wireless networks.

1.2. Motivation and Contributions

Based on the abovementioned, secure and multicast routing in FANETs have been
studied considerably. However, there is still a gap in the literature regarding secure
multicast routing against wormhole attacks in FANETs with CF mMIMO networks. To
fill this gap, we proposed a DL-based secure multicast routing (DLSMR) protocol against
wormhole attacks that allows the protocol to predict the next secure node within a short
time. Furthermore, the combination with TD-PSO-based clustering allows the protocol to
find the optimal cluster header. The goal is to improve the security, scalability and stability
performance, and achieve an optimal secure route that meets the requirements of 5G and
beyond 5G wireless networks. The main contributions of this article can be summarized
as follows:

• We propose a deep learning-based secure multicast routing (DLSMR) protocol to
establish a high-stability multicast tree to avoid wormhole attacks in FANETs with
CF-mMIMO. Specifically, we utilize a deep learning model to predict whether the
next node is a wormhole or not. Additionally, we use various network parameters to
establish routes that support more strong connectivity.

• We design a novel top-down particle swarm optimization (TD-PSO)-based clustering
protocol in FANETs to reduce control overhead and improve route connectivity. The
proposed TD-PSO, considering the node position, velocity, direction, and remaining
energy, forms a cluster to optimize the cost function by combining the remaining
energy weight, cosine similarity, cosine distance, and node degree. This strategic
approach leads to electing cluster heads. Furthermore, to ensure communication conti-
nuity between cluster heads when the subsequent ones fall outside of the transmission
range, our TD-PSO protocol also designates gateway nodes.

• The performance evaluations show that the proposed DLSMR with TD-PSO proto-
col can establish a more robust route against wormhole attacks than the benchmark
protocol. Additionally, the proposed TD-PSO clustering supports stronger connec-
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tivity as clustering changes the network topology hierarchically. In addition to that,
we also compare the proposed protocol under two different mobility models (refer-
ence point group mobility and random waypoint) to show the effectiveness of the
proposed protocol.

The remainder of the paper is organized as follows. Section 2 introduces the overview
of wormhole attack. Section 3 introduces the particle swarm optimization theory. Section 4
introduces the proposed routing protocol that consists of the basic concept of the proposed
routing protocol, the proposed TD-PSO-based clustering protocol, the proposed DLSMR,
and proposed deep-learning design. Section 5 presents the performance evaluation that
consists of simulation environments and parameters, performance metrics, and numerical
results. Section 6 concludes the paper. For ease of presentation, Abbreviations summarizes
the main abbreviations used in this paper.

2. Overview of Wormhole Attack

A wormhole attack is a type of network security threat that affects wireless networks,
including flying ad hoc networks (FANETs). In particular, FANETs consist of a group of un-
manned aerial vehicles (UAVs) that communicate with each other to form a self-organizing
and self-healing network. Due to their dynamic topology, limited resources, and open
nature, FANETs are particularly vulnerable to various security threats, including wormhole
attacks. In a wormhole attack, an attacker creates a tunnel between two malicious nodes,
capturing packets at one end and replaying them at the other end almost instantly [32,33].
Wormhole attacks creates the illusion of a shorter and more efficient route between the
malicious nodes. When any transmitted packet reaches one of the attacker nodes, that node
forwards the packet to its distant malicious counterpart through legitimate intermediate
nodes. Although these intermediate nodes are not directly involved in the communication,
their resources get drained because of their unwitting participation in the wormhole attack.

In the multicast routing process, each destination node sends a join request to the
cluster head (CH) within its cluster. The source node sends a multicast route request
(MRREQ) via unicast to each CH to find multiple destination nodes. Upon receiving the
MRREQ, the UAV gateway node (UGW) updates its routing table and rebroadcasts the
MRREQ to neighboring nodes. When a CH with a relevant multicast group ID receives
an MRREQ, it updates its routing table and sends a Route Reply (RREP) packet back to
the source node via unicast. Wormhole attackers also forward MRREQ and RREP packets.
They exploit this routing process by sending fake RREPs with significantly higher sequence
numbers than normal nodes. This makes the attackers appear to offer the freshest route to
the destination, even without consulting their routing table. As a result, other nodes update
their routing tables based on this misleading information, causing severe disruptions in
network functionality.

3. The Particle Swarm Optimization Theory

The particle swarm optimization (PSO) algorithm is an evolutionary computation
technique developed by Kennedy and Eberhart in 1995 [34]. In this algorithm, a swarm
of particles explores a multi-dimensional search space to find optimal solutions. Given an
optimization function f (X), where X is an n-dimensional random vector, these particles
serve as candidate solutions for the optimization problem. Each particle i is characterized by
its velocity Vi = (vi1, vi2, ..., vij) and position Pi = (pi1, pi2, ..., pij), i = 1, 2, ..., q, j = 1, 2, ..., n,
and n and q represent the dimensions and swarm size, respectively. Each particle represents
a candidate solution and searches for the global optimum in the problem space. To find the
optimal solution, each particle moves towards the previous best position (pbest) and the
global best position (gbest) in the cluster can be mathematically expressed as [35]
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pbest(i, t) = arg min
k=1,··· ,t

[ f (Pi(k))], i ∈ 1, 2, · · · , Np,

gbest(t) = arg min
i=1,··· ,Np

k=1,··· ,t

[ f (Pi(k))], (1)

where Np denotes the total number of particles, t denotes the current iteration number, and
f denotes the fitness function. In each generation, particles i adjusts its velocity Vi and
position Xi according to the following formula [36]:

vi(t + 1) = wvi(t) + c1r1(t)(pbest(i, t)− Pi(t)) + c2r2(t)(gbest(t)− Pi(t)),

Pi(t + 1) = Pi(t) + vi(t + 1),
(2)

where w is the inertia weight used to balance the global exploration and local exploitation,
r1 and r2 are uniformly distributed random variables within range [0, 1], and c1 and c2 are
positive constant parameters called acceleration coefficients. As the algorithm progresses,
particles share their best-known positions with some or all of the swarm. This collaborative
sharing helps the guide of the group toward optimal solutions. The extent to which this
division affects individual particles depends on the specific environmental topology used.

4. the Proposed Secure Multicast Routing Protocol: DLSMR

In this section, we describe the structural characteristics of our network, the specifica-
tions of the UAV and ground node, and the existence and implications of wormhole attacks
within the UAV layer.

Our network consists of two types of nodes K = {Fk}K
k=1 represented by a set of

flying nodes F and L = {Gl}L
l=1 represented by a set of ground nodes G. These nodes are

organized into clusters, CLc , {c = 1, 2, · · · , C}, through a top-down methodology that
enhances network scalability and performance. UAVs have a distinct set of characteristics
that are crucial for our protocol. These flying nodes are mobile and have the ability to
cover large ground areas, providing superior network coverage compared to traditional
ground nodes. However, their movement speed, direction, and remaining energy must be
accurately tracked to maintain network efficiency and stability. In contrast, ground nodes
serve a vital purpose as points of connection. They receive, process, and transmit data to
UAVs, playing an important role in establishing and maintaining the network’s function-
ality. One of the major security threats in our setup is the presence of wormhole attacks
within the UAV layer. These attacks involve malicious nodes that tunnel packets from one
location to another within the network. This deceptive maneuver disrupts regular data
transmission pathways and modifies network topology, causing significant disturbances
to the network’s performance and reliability. To counteract these challenges, we propose
a novel DLSMR protocol and a TD-PSO-based clustering protocol. The DLSMR protocol
is designed to predict secure routes and avoid wormhole nodes, thereby securing data
transmission. Concurrently, the TD-PSO clustering protocol groups UAVs and ground
nodes into clusters based on their positions, speed, direction, and remaining energy, pro-
viding stable connectivity and improving overall network performance. Through these
techniques, we aim to build a secure, scalable, and efficient communication network that
effectively counteracts wormhole attacks while satisfying the unique characteristics and
needs of UAVs and ground nodes.

4.1. The Basic Concept of the Proposed Secure Multicast Routing and Clustering Protocol

In this section, we explain the basic concepts of our proposed secure multicast routing
and clustering protocol. The process of establishing routes is divided into two steps, which
are as follows:
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• Step 1 (Clustering Process): Firstly, we consider the entire network as a single cluster,
which is then recursively divided into smaller clusters based on the weight of the node
degree, cosine similarity, cosine distance, and remaining energy. We identify flying
nodes as potential cluster heads in this top-down clustering process as they inherently
possess stronger capabilities within the cluster. Moreover, the flying node with the
highest remaining energy is elected as the CH since it has to work harder than the
member nodes as noted in [23]. A flying node that is not selected as a cluster head
receives two or more cluster head information (CHI) packets from the CH, and then
that node becomes an UGW. Otherwise, the ground nodes can only serve as cluster
members. To select the optimal cluster head, the cluster member candidates use the
PSO algorithm to optimize costs. Unlike the traditional clustering method of [23], we
introduce a TD-PSO protocol to improve control overhead during cluster formation.

• Step 2 (Multicast Routing Process): Following the clustering process, each destina-
tion node that wants to receive data transmission sends a join request to the CH within
the cluster. Then, a source node sends a MRREQ to each cluster head by unicast to find
the multiple destination nodes. After that, CH will broadcast the MRREQ packet to
each CH to find the multiple destination nodes. When the UGW receives the MRREQ
packet, it updates its routing table and re-broadcasts the MRREQ packet to the neigh-
bor nodes. When a CH who has a multicast group ID receives an MRREQ packet, they
update the routing table and reply a RREP packet to the previous node by unicast. In
addition to that, the wormhole attacker also forwards the MRREQ and RREP packets.
In this work, we develop a novel DL framework to predict the secure next node while
establishing the route from a source to the multicast group destinations. Based on the
DL framework, we can train a DNN model to learn wormhole nodes’ characteristics
and distinguish them from legitimate ones. Each flying node in the network utilizes a
deep learning framework to find the next secure nodes for multiple destinations. We
consider the node ID, node’s position, destination ID, destination sequence, hop count,
and the remaining energy of the node as the trainable input parameter, and the secure
and unsecured node ID, secure and unsecured status as output parameters of the
DNN model. When a node receives a RREP packet, the contents of the relevant RREP
packet will be used in the DL framework. After training, the DNN model produces
secure and unsecured node ID and their status as output. For example, as we can
see in Figure 1, when the CH receives two RREP packets which are from the neighbor
nodes and the wormhole nodes, the proposed DLSMR protocol can establish a secure
multicast route from S−CH1 − UGW(1,4),CH2 and also S− CH1 − UGW(1,4),CH2,CH3

with a multicast tree to avoid the wormhole attack.

4.2. The Proposed Clustering Protocol: Top-down Particle Swarm Optimization (TD-PSO)
4.2.1. The Basic Concept of the TD-PSO

As shown in Figure 2, we design the top-down particle swarm optimization-based
clustering protocol which ensures network connectivity and reduces the control overhead
in FANETs. The proposed clustering protocol considers the problem of the join weight of
the node degree, cosine similarity, cosine distance, and remaining energy to form clusters.
Additionally, we use the higher remaining energy among the candidate nodes to select
the cluster head. In this work, we assume only UAV can become the CH because it has
the greatest resources compared to the ground node. Then, the selected CHs transmit
packets through inter-cluster forwarding. In most cases, this top-down approach can
ensure network connectivity and coverage. Unlike the bottom-up method, the top-down
method can reduce the number of control overhead because the number of flying nodes
(FN) is greater than the number of ground node (GN) nodes with CF-mMIMO properties. In
order to simplify, we will refer to UAVs and ground users as nodes. The proposed TD-PSO
protocol assumes that each node can know its location information by using the global
positioning system (GPS). The following subsubsection will explain the proposed TD-PSO
protocol in detail.



Sensors 2023, 23, 7960 7 of 28

Figure 1. The basic concepts of the proposed DLSMR protocol.

Figure 2. The basic concepts of the TD-PSO-based clustering protocol.

4.2.2. The Proposed Clustering Protocol: TD-PSO

The proposed TD-PSO protocol considers node position, node speed, node direction,
and remaining energy to form the clusters and elect the cluster head. Figure 3 illustrates
the flowchart of the proposed TD-PSO clustering protocol.
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Figure 3. The flowchart of the proposed TD-PSO-based clustering protocol.

The procedure of forming a cluster and electing the cluster head can be explained
as follows:

• Step 0: Initialization
The nodes turn on and operate independently when the simulation starts. Then, go to
step 1.

• Step 1: Dissemination of Node Information
Each flying node fk periodically estimates its information such as speed, position,
direction, and remaining energy. Then, fk generates and broadcasts information (INFO)
packets to its neighbor UAV nodes. The INFO packet contains the following fields:

〈Type, SID, DID, E, Utype〉
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where Type represents packet type, SID represents source node ID, DID represents
destination node ID, E represents the remaining energy of each node, and Utype
represents the type of node (0 is G, 1 is F). Then, go to step 2.

– If ground node gl receives an INFO packet, then it drops the packet; go to step 4.
Otherwise, go to step 4.

• Step 2: Election of Cluster Head
In order to support strong connectivity, the cluster head is selected by the most
remaining energy among the candidate flying nodes, which mathematically can be
expressed as

f ∗k = arg max
fk∈NB∗fk∪{ fk}

{Ek}. (3)

– If fk = f ∗k , the node fk becomes the cluster head; go to step 3.
– Otherwise, wait to receive the CHI packet and go to step 4.

• Step 3: Dissemination of Cluster Head Information
The node fk becomes the cluster head, then generates and broadcasts the CHI packet
to be announced to its neighbor nodes. The CHI packet contains the following fields:

〈Type, SID, DID, Pos, Dir, S, E, Utype〉

where Type represents packet type, SID represents the source node ID, DID represents
the destination node ID, Pos represents the node’s position, Dir represents the direc-
tion of the node, S represents the speed of the node, E represents the remaining energy
of the node, and Utype represents the type of the node (0 is G, 1 is F).

– If fk′ ∈ F\{ fk} receive two or more CHI packets, then go to step 5.
– Otherwise, go to step 4.

• Step 4: Decision of Member Node
When ground node gl receives two or more CHI packets, gl will decide which cluster
head follows by calculating the cost function of the cluster head candidate. The ground
node will select the cluster head candidate with the largest cost value. The objective is
to maximize the cost value by considering weight value under node degree, cosine
similarity, cosine distance, and energy, which can be formulated as

max
{x1,x2,x3,x4}

Cl = x1∆l + x2Cosiml + x3Distl + x4El , (4a)

s.t x1 + x2 + x3 + x4 = 1, (4b)

∆l ≤ ∆th, (4c)

Cosiml ≥ Cosimth, (4d)

Distl ≤ Distth, (4e)

El ≥ Eth, (4f)

where (4b) denotes that the total weight of the particle must be equal to one, (4c) denotes
that the node degree difference must be lower than or equal to the node degree threshold,
(4d) denotes that the cosine similarity between two nodes must be greater than or equal
to the cosine similarity threshold, (4e) denotes that the cosine distance between nodes
must be lower than or equal to the cosine distance threshold, and (4f) denotes that the
energy of the cluster head must be greater than or equal to the energy threshold. We
consider four factors which consist of the node degree difference, cosine similarity,
the cosine distance between two nodes, and the remaining energy of its node. The
node degree of its nodes can be written as

Di =
n

∑
j=1,j 6=i

H
j
i (5)
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H
j
i =

n

∑
i=0
{dist(i, j)} < Ri} (6)

where dist(i, j) can be defined as

dist(i, j) =
√
(xi − xj)2 + (yi − yj)2 + (zi − zj)2. (7)

Di stands for the node degree of the node fi, Ri stands for the communication range of
the node i, and dist(i, j) stands for distance between node i and j. Then, the average
node degree can be expressed as

Di =
∑n

i=1 Di

n
. (8)

The self-adaptive node degree variance is calculated by subtracting the node measure
from its average measure, which can be expressed as:

∆i = |dist(i, j)Di| (9)

The second factor is cosine similarity between two nodes which can be defined
as [29,37]

CoSim(i, j) =
∑nI

ni=1
−→
V ni

−→
V j√

∑N
i=1
−→
V 2

i

√
∑N

j=1,m 6=i
−→
V 2

j

, (10)

where
−→
V i and

−→
V j are the i-th and j-th nodes’ vector information, respectively. Each

node
−→
V i is related with a mobility vector information metric value (i.e., speed, direc-

tion, and position)
−→
V i = (

−→
V 1,
−→
V 2,· · · ,−→V j), where

−→
V i constitutes the vector values

which indicate link information between nodes. Under a constrained communication
distance, we can control the cluster member by considering the maximum cosine
similarity. Afterwards, the third factor is the cosine distance of the node, which is used
to find the distance between two nodes and can be formulated by [38]

CoDis(i, j) = {1− CoSim(i, j)}. (11)

Thus, the selected cluster member can be mathematically formulated as

j∗ = arg max
j
{Ci, Cj} (12)

where Ci represents the cost of the node i and Cj represents the the cost of the neighbor
cluster heads near node j. After that, gl sends the join cluster (JC) packet to the CH.
The JC packet contains the following fields:

〈Type, SID, DID, Utype〉

where Type represents packet type, SID represents source node ID, DID represents
destination node ID, and Utype represents the type of node. Then, go to step 5.

– Otherwise, when gl only receives one CHI packet, then sends the JC packet to the
CH and go to step 6.

• Step 5: Decision of Gateway Node
The flying node fk′ ∈ F\{ fk} receives two or more CHI packets and become a gateway
node. Similar to the ground nodes, the flying node fk′ will decide which cluster head
follows by calculating the cost function of the cluster head candidate. When the value
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of the cost function is larger, the relationship between the cluster head and node is
better than other relationships which can be mathematically expressed as

max
{x1,x2,x3,x4}

Ck = x1∆k + x2Cosimk + x3Distk + x4Ek, (13a)

s.t x1 + x2 + x3 + x4 = 1, (13b)

∆k ≤ ∆th, (13c)

Cosimk ≥ Cosimth, (13d)

Distk ≤ Distth, (13e)

Ek ≥ Eth, (13f)

where (13b) denotes that the total weight of the particle must be equal to one, (13c) that
denotes the node degree difference must be lower than or equal to the node degree
threshold, (13d) denotes that the cosine similarity between two nodes must be greater
than or equal to the cosine similarity threshold, (13e) denotes that the cosine dis-
tance between nodes must be lower than or equal to the cosine distance threshold,
and (13f) denotes that the energy of the cluster head must be greater than or equal
to the energy threshold. Thus, the selected cluster member can be mathematically
formulated as

j∗ = arg max
j
{Ck, Cj} (14)

where Ck represents the cost of the node k and Cj represents the cost of the neighbor
cluster heads near node j. Then, fk′ sends the JC packet to the CH; go to step 6.

– Otherwise, when fk′ only receives one CHI packet, then it sends the JC packet to
the CH; go to step 6.

• Step 6: Cluster Member Table Updates
When node f

′
k and gl choose the CH, they update the cluster member (CM) table as

shown in Table 1 where CMID is a unique identifier assigned to each node within
the cluster, CHID represents the identifier of the cluster head that the cluster member
belongs to, and Utype represents the type of user. Then, go to step 7.

• Step 7: Cluster Head Table Updates
When fk receives a JC packet, fk replies with an accept packet (AC) to the transmitted
node, and updates the cluster head table as shown in Table 2 where CHID is a unique
identifier assigned to each cluster head in the network, CMID represents the identi-
fier of the cluster member that belongs to the cluster managed by the cluster head,
and Utype represents the type of user. Finally, the cluster has been formed. The AC
packet contains the following fields:

〈Type, SID, DID〉

where Type, SID, and DID represent the packet type, source node ID, and destination
node ID, respectively.

– Otherwise, the AC packet will be dropped.

In the end, the clustering process is finished. When the source node needs to send a
data transmission to multiple destination nodes, the network will start the routing process
based on the routing protocol algorithm. The list of packets for the proposed TD-PSO
clustering protocol is summarized in Table 3.
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Table 1. Cluster member table of the proposed TD-PSO-based clustering protocol.

CMID CHID Utype

Table 2. Cluster head table of the proposed TD-PSO-based clustering protocol.

CHID CMID Utype

Table 3. List of packets for the TD-PSO clustering protocol.

Packet Name Full Name Field Information

INFO Information Type, SID, DID, E, Utype

CHI Cluster Head Information Type, SID, DID, Pos, Dir, S, E, Utype

JC Join Cluster Type, SID, DID, Utype

AC Accept Cluster Type, SID, DID

4.2.3. Top-Down Particle Swarm Optimization Model

This subsection will explain in detail the particle swarm optimization model used in
the clustering protocol.

In the TD-PSO algorithm, each individual node in the population is called a particle
and moves in the search space. Particles have memory and, thus, they retain part of
their previous state. Each particle’s movement is the composition of a velocity and two
randomly weighted influences. The two randomly weighted influences are individual and
have the tendency to return to their best previous positions and sociality, or the tendency
to move towards their neighborhood’s best previous position. As briefly mentioned above,
clustering involves gathering similar objects that must first be defined.

Let us assume the objective function Ci where i ∈ {FN,GN} is the global optima C∗i
of optimization with optimal value xl , l ∈ {1, 2, 3, 4}. The proposed TD-PSO algorithm
to find the optimal values, i.e., x1, x2, x3, x4, can be summarized as Algorithm 1, where p
represents the number of parameters, q denotes the number of particles, xpq represents the
position of particle q for parameter p, vpq represents the velocity of particle q for parameter
p, r1 and r2 are random values with range [0, 1] to avoid premature convergence, w denotes
the weight of a particle with range [0.4, 0.9], c1 and c2 are acceleration factors, and t is the
number of iterations.

Algorithm 1 The TD-PSO algorithm to find global optimal points in problems (4) and (13)

Output: Optimal solution C∗ and x∗l
1: Initialization :
2: Set p← 4. ← number of parameters
3: Set q← 50. ← number of particles
4: Set (xpq, vpq)← randomly with constraint.
5: Set w← randomly with range [0.4, 0.9].
6: Set (r1, r2)← randomly with range [0, 1].
7: Set (c1, c2)← 2.
8: for κ = 0, 1, 2, · · · do
9: calculate problem, find C∗, x∗l ;

10: if C∗ < C(t) then
11: C∗ ← C(t)

12: x∗p ← x(t)p
13: end if
14: v(t+1)

pq = w.v(t)pq + c1.r1(x(t)bl − x(κ)pq ) + c1.r1(gt
bl − x(t)pq )

15: x(t+1)
pq = x(t)pq + v(t)l j

16: end for
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4.3. The Proposed Deep Learning-Based Secure Multicast Routing Protocol: DLSMR

We describe the proposed DLSMR protocol to establish a high-stability multicast tree
and improve security performance as shown in Figure 4. The objective function of this
approach is to predict the secure and unsecured nodes during the routing process. Due to
the node’s mobility changing rapidly in FANETs, it makes it easy to attack the network.
In particular, wormhole attacks pose a high risk when the nodes can manipulate packets
during routing and data transmission. Furthermore, also, even when we consider unicast
transmission, it makes the control overhead very high. Thus, this paper proposes deep
learning-based secure multicast routing to avoid wormhole attacks and improve control
overhead in FANETs. It differs from previous works for solving wormhole attacks using
bio-inspired, position-based, and distance methods. In this approach, we consider deep
learning to predict the secure and unsecured nodes quickly during the routing process. The
use of this process can mitigate these threats, ensuring reliable and secure communication
between nodes. Additionally, multicast routing protocols can accommodate this dynamic
nature by allowing for frequent group membership changes and route updates. As can be
observed in Figure 4, a source node (S) needs to establish a multicast tree to the multiple
destination nodes (D). After the clustering process is completed, each D that wants to
receive data transmission sends a join request to the CH in the cluster. Then, S sends a
MRREQ packet to each CH by unicast to find the multiple destination nodes. After that,
CH will broadcast the MRREQ packet to each CH to find the multiple destination nodes.
When UGW receives the MRREQ packet, it updates its routing table and re-broadcasts the
MRREQ packet to the neighbor nodes. When a CH who has a multicast group ID receives
an MRREQ packet, it updates the routing table and replies a RREP packet to the previous
node by unicast. We design the DL framework with the node ID, node position, destination
ID, destination sequence, hop count, and remaining energy as input parameters, and secure
and unsecured node ID, secure and unsecured status as output parameters. By using a DL
framework, we can determine whether the next node is secure or not to establish a secure
multicast route from S to multiple destinations as detailed in Section 4.4.

Figure 5 illustrates the flowchart of the proposed secure multicast routing protocol,
which can be summarized as follows:

Route Request Process:
• Step 1: Initialization

After the clustering process is completed, each destination node (multicast member
node) in a cluster that wants to receive certain data sends a join request (JREQ) to its
cluster head by unicast. The JREQ contains the following:

〈Type,SJREQID ,DID,Status〉

where Type denotes packet type, SJREQID identifies the node that wants to join a multi-
cast group, DID denotes the node ID that wishes to join, and Status denotes the status
of the node (join, leave, etc.). Next, the cluster head stores the multicast ID (MID)
associated with this request in its own table; go to step 2.

• Step 2: Source Node Operation for Route Request: Generates and Sends Route Re-
quest Packet
A node that wants to send data to the multicast group becomes the S. S initiates
the process by generating a MRREQ packet and unicasts this MRREQ to its CH. The
MRREQ packet contains the following fields:

〈Type,SMRREQ
ID ,MGID,MID,SSeq,Hop,TTL〉

where Type represents packet type, SMRREQ
ID represents the source node ID, MGID

represents the multicast group ID, MID represents the multicast ID, SSeq is the source
sequence number, Hop denotes the number of hops between two nodes, and TTL is
the time to live of the packet in the network. Otherwise, go to step 3.
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• Step 3: Intermediate Node Operation at Cluster Head for Route Request
When CHc receives the MRREQ packet, CHc will first check the MRREQ packet.

� Step 3.1: If the SSeq at the received MRREQ is larger than that of the routing table,
then go to step 3.2.

* Conversely, if the SSeq at the received MRREQ equals the SSeq at the routing
table and the MID at the received MRREQ is equal to the MID at the routing
table, or the MID is greater than the MID at the routing table and {hop+ 1} at
the received MRREQ is less than hop at the routing table, then go to step 3.2.
Otherwise, the packet will be dropped.

� Step 3.2: If the TTL at the received MRREQ is greater than or equal to the TTL at
the routing table, then go to step 3.3. Otherwise, the packet will be dropped.

� Step 3.3: If the cluster member ID (CMID) is the same as the MGID, CHc records
the sender’s ID, updates the routing table, and broadcasts MRREQ to NBi; then,
go to step 5.

* Otherwise, CHc records the sender’s ID and updates the routing table and
broadcasts MRREQ to the neighbor node (NBi) in its cluster or the next cluster
heads; go to step 4.

• Step 4: Intermediate Node Operation at Gateway for Route Request
When the gateway node UGWc receives a MRREQ packet from NBi, UGWc records the
sender’s ID and updates the routing table, then UGWc broadcasts the MRREQ to their
neighboring CH nodes until TTL ≥ TTLth; go to step 3.

Route Reply Process:
• Step 5: Cluster head Operation for Route Reply: Generates and Sends Route Reply Packet

CH generates and replies a RREP packet to the previous node by unicast transmission.
The RREP packet contains the following fields:

〈Type,SRREPID ,DRREP
ID ,MID,DSeq,E,Pos,Hop〉

where Type represents the packet type, SID represents the source node ID, DID rep-
resents the destination ID, MID represents the multicast ID, DSeq is the destination
sequence number which is the number of attempts to confirm control messages, E
represents the remaining energy of the node, Pos represents the position of the node,
and Hop represents the number of hops to D. Then, go to step 6.

• Step 6: Intermediate Node Operation at Gateway Node for Route Reply
The intermediate node NBi records the sender’s ID of RREP packets and updates
its routing table when it receives the RREP packet. Then, NBi forwards the RREP
packet to the previous node; go to step 7. Otherwise, NBi waits until it receives
the RREP packet.

• Step 7: Intermediate Node Operation at CH for Route Reply
When the CHc receives RREP, then go to step 7.1. Otherwise, CHc waits until it receives
the RREP packet.

� Step 7.1: When the CHc receives the RREP, then CHc checks the SRREPID in the
RREP packet. The SRREPID in the RREP packet means the destination node ID. So,
if the SRREPID equals StabID , then go to step step 7.2. Otherwise, CHc records the
sender’s ID, updates the routing table, and forwards to the previous node by
unicast transmission; then, go to step 8.

� Step 7.2: When the SRREPID equals StabID , we will predict the best secure next node
with input parameter consisting of the node ID, position of the node, destination
ID, destination sequence number, and remaining energy. The output parameters
consists of the NID1

sec, NID2
nsec, and the status of the node (secure or unsecured)

to select the secure next node as the best next node while establishing the route
from S to multiple Di by using a DNN model; then, go to step step 7.3.
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� Step 7.3: If the Statsec equals 1, then CHc can determine the secure route to be
pursued by the secure next node. Then, CHc records the NIDsec, updates the
routing table, and forwards to the previous node. The multicast tree routing table
can be summarized in Table 4, where SID is the source ID, MGID is the multicast
group ID, SSeq is the source sequence number, DSeq is the destination sequence
number , MID is the multicast node ID, PNID is the previous node ID, NNID is the
next node ID, and Hop represents the number of hops to D. The routing table will
be used to determine the next node to the multicast group D that data packets will
pass through during the data transmission process. Then, go to step 8. Otherwise,
the packet will be dropped and the process is ended.

• Step 8: Source Node Operation for Route Reply
If S receives all RREP packets from the multicast group, then go to the data transmis-
sion process in step 9. Otherwise, go to step Step 8.1:.

� Step 8.1: If Timer ≤ 2× TTLth, wait for all RREP packets from the multicast
group until Timer > 2× TTLth. Otherwise, go back to step 2.

Data Transmission Process:
• Step 9: Data Transmission at Source Node

When S receives all RREP packets from the multicast group Di, the S multicasts the
data packet to the next hops based on the deep learning framework. If a node of the
tree receives a data packet, it will forward the data packet to the multicast group in
the same way as the source.

Figure 4. The basic concepts of the deep learning− (-) based secure multicast routing (DLSMR) protocol.

Table 4. Multicast tree routing table of the proposed DLSMR protocol.

SID MGID MID SSeq DSeq PNID NNID Hop
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Figure 5. Flowchart of the proposed deep learning-based secure multicast routing (DLSMR) protocol.

The list of packets for the DLSMR protocol are summarized in Table 5.

Table 5. List of packets for the DLSMR protocol.

Packet Name Full Name Field Information

JREQ Join Request Type,SJREQID ,DID,Status

MRREQ Multicast Route Request Type,SMRREQ
ID ,MGID,MID,SSeq,Hop,TTL

RREP Route Reply Type,SRREPID ,DRREP
ID ,MID,DSeq,E,Pos,Hop
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4.4. The Proposed Deep Learning Design

As shown in Figure 1, a wormhole attack occurs when an attacker creates a tunnel
between two malicious nodes in the network, allowing them to capture packets at one end
and replay them at the other end instantly. A wormhole creates the illusion of a shorter and
more efficient route between the two malicious nodes. To solve this problem, we develop a
novel deep learning framework to predict the secure next node while establishing the route
from the source to multiple destinations in FANETs.

Each node in the network can determine which node in the network is the most secure
for multiple destinations through a deep learning framework. In this subsection, we design
the deep learning framework to capture the relation between network parameters and
system performances as shown in Figure 6. The main objective of this work is to predict the
secure next node in the proposed DLSMR protocol. In this work, we utilize multivariate
regression, which is more challenging than single regression. A deep learning model
includes two phases, the training phase and the testing phase.

(a) Training

(b) Testing
Figure 6. Comparison of packet loss ratio and number of packet losses as a function of node speed.

In the training phase, the input parameters consist of the node identifier (NID), the dis-
tance between two nodes (Dist) which are denoted in Equation (7), the destination sequence
(Dseq), the number of hops (Hop), and the remaining energy of the node (E). According
to these input parameters, the model predicts the secure node ID, the unsecured node ID,
the secure status, and the unsecured status as the output.

In a training iteration, as shown in Figure 6a, an error is obtained by comparing the
deep learning output with the target and the simulation result obtain four outputs. Then,
the error is minimized by updating the weights and biases on the neurons using back-
propagation, which continues until the iteration is satisfied. The trainable deep learning
framework is tested using a new input variable to predict the secure and unsecured next
nodes as shown in Figure 6b. In our design, we use a feed-forward neural network with
1× 5 dimensional input layers, L hidden layers, and 1× 4 dimensional output layers to
obtain the two kinds of ID and status of the node as shown in Figure 7.

Therefore, the proposed deep learning design can reduce complexity and also can
predict the secure next node in real-time based on the information of its node as the
input parameter. The layer structure used in the deep learning design to improve system
performance is shown in Table 6.
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Figure 7. The structure of the deep learning framework for predicting the secure and unsecured
next node.

Table 6. Model of the deep neural network to predict the secure next node.

Size Activation Function

Input 5 -
Layer 1 150 ELU
Layer 2 100 ELU
Layer 3 200 ELU
Layer 4 150 ELU
Layer 5 100 ELU
Output 4 LINEAR

5. Performance Evaluation
5.1. Simulation Environments and Parameters

In this section, we evaluate the performance of the proposed routing protocol, DLSMR.
To illustrate our proposed protocol, we deploy 30, 50, and 100 nodes within an urban area
of 1000 m × 1000 m and a transmission range of 250 m. In addition to that, we deploy
a wormhole pair consisting of two wormhole nodes. These wormhole nodes are placed
randomly within the network for each simulation run. We establish a ‘tunnel’ between these
randomly positioned wormhole nodes to simulate the wormhole attack, allowing them to
shortcut the normal network routing. In this scenario, we simulate our proposed protocol
under two different mobility models, namely random waypoint mobility (RWP) [39] and
reference point group mobility (RPGM) [40], to evaluate its performance in FANETs. Every
result in this simulation is an average from 200 sections, with pausing and moving times
set at 3 s and 5 s, respectively. Furthermore, the mobile nodes are initially randomly
distributed around the simulated area and move at different speeds (15 km/h, 30 km/h,
45 km/h, 60 km/h, and 75 km/h). The MAC protocol is modeled using the IEEE 802.11a
standard and uses a receiver signal strength indicator (RSSI) threshold of −80 dbm for
communication range to make it more practical. The main reason for considering RSSI
is that the value of RSSI fluctuations obtained has taken into consideration its effect on
changes in channel conditions, including multi-path fading [41].

The simulation experiments are conducted using the NS3 simulator. We summarize
the simulation environment and parameters in Table 7. Additionally, we measured the
accuracy between the predicted secure next node and the output data of the test set by
calculating the root mean square error (RMSE) of the proposed deep learning framework.
The RMSE can be written as [42]

RMSE =

√
1
n

n

∑
t=1

(p(t) − p̂(t))2 (15)

where n denotes the number of samples in the test set, p(t) denotes the predicted value of the
t-th observation in the dataset, and p̂(t) denotes the observed value for the t-th observation
in the dataset. It is more likely that the predicted secure next node and observation are
closely matched when the RMSE is smaller.
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Table 7. Parameters and simulation environments.

Parameters Value

Simulator NS-3 simulator
Simulation area 1000 × 1000 m2

Packet size 1024 bits
Mobility model RPGM and RWP
Transmission range 250 m
Simulation time 200 s
Session length 5 s
Number of nodes [30, 50, 100]
Wormhole pairs 1 (Wormhole nodes 2)
Node’s speed range [15:15:75] (km/h)
Receive signal strength indicator (RSSI) threshold −80 dBm
MAC protocol 802.11a

5.2. Performance Metrics

The performance metrics used in this paper for performance evaluation purposes are
the following [29]:

• Packet delivery ratio (PDR): This is defined as the number of data packets delivered to
multicast destinations over the number of data packets supposed to be delivered to
multicast destinations. This ratio represents the effectiveness of the routing strategy.

• Control overhead: This refers to the average number of control packets sent to nodes
during the route creation process per session per node per multicast data delivered.

• Delay: This is defined as the average delay to establish a multicast route from source
to multicast destinations per one session.

• The average number of cluster head changing: This refers to the number of cluster
heads changing per cluster per session on average.

• Packet loss ratio: This is defined by the proportion of data packets that are lost during
transmission from the sender in a multicast group. A lower packet loss ratio indicates
better performance and reliability of the secure multicast routing protocol.

5.3. Numerical Results

In this subsection, we present numerical results to validate the efficacy of our proposed
DLSMR protocol. The simulation settings are outlined in Table 7. We use the NS3 simulation,
where the algorithm is run for 200 s with 5 s for each session. For the DNN model,
the dataset is generated over 1,000,000, 90% of which are used for training while the
remaining 10% are allocated for validation. Additionally, we construct 100 distinct datasets
to evaluate the performance of the trained DNN model. Our objective is to predict the
secure next node through the DNN model accurately. The parameters employed for DNN
training are detailed in Table 8.

Table 8. DNN training parameters.

Parameters Value

Dataset 1,000,000
Epoch 50

Batch size 256
Optimizer Adam

Initial learning rate 0.00001

To demonstrate the effectiveness of the proposed algorithm (DLSMR with TD-PSO), we
compare its performance with the multicast ad hoc on-demand distance vector (MAODV)
routing protocol with or without TD-PSO clustering protocol.

First, we evaluate the impact of the number of iterations on the maximum cost of the
TD-PSO clustering algorithm in Figure 8. As can be observed in Figure 8, the proposed
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Algorithm 1 converges at the fifth iteration with the number of population (nPop) of 100,
which shows the proposed TD-PSO for the clustering protocol is efficient to find the optimal
value. The reason is that the algorithm has a higher chance of generating a solution close to
the global optimum during the initial stages. Moreover, the algorithm with a population
of 100 outperforms the algorithm with a population of 50. The reason is that when the
population size increases from 50 to 100, the algorithm has a larger set of candidate solutions
to find the optimal solution.
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t
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Figure 8. Convergence of Algorithm 1 for maximize cost problem as a function of the number
of iterations.

Figure 9 shows the comparison of the average number of cluster head changes in
each session as a function of node speed. As can be seen in Figure 9, when the number
of nodes increases from 30 to 100, the average number of cluster head changes increases.
Furthermore, when node speed increases from 15 to 75 km/h, the average number of
cluster head changes also increases. The reason is that, when the node’s speed increases,
the node’s relative position can change quickly. Therefore, the nodes’ arrangement and
connections can also be changed rapidly. In the clustering protocol, if nodes are moving
quickly, the optimal choice for the cluster head can change frequently as nodes move in
and out of range of each other. This might require frequent re-election of the cluster head,
increasing the average number of cluster head changes. Additionally, higher speeds might
lead to increased link breakages, which would necessitate the formation of new clusters,
further increasing the frequency of cluster head changes. Furthermore, when comparing
the mobility models, the proposed protocol with the RPGM model outperforms that with
the RWP model. In RPGM, nodes in a group follow a predefined reference point, resulting
in more stable network topology and less frequent cluster head changes. Additionally,
RPGM also captures the correlation of movement between nodes in a group, while in the
RWP model each node moves independently, leading to more frequent changes in network
topology and causing more cluster head changes. Therefore, in the proposed clustering
protocol in a scenario where the number of nodes (30, 50, 100) and their speed increases,
the average number of cluster head changes increases slightly when the network topology
changes rapidly. Nevertheless, the number of cluster head changes in each session is less
than one. This means the clustering protocol has a very high level of stability.
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Figure 9. Average number of cluster heads changing as a function of node speed.

In Figure 10, we analyze the impact of the number of hidden neurons on the DNN
model with the different numbers of hidden layers. As we can see in Figure 10, the RMSE
with one hidden layer will decrease from 0.3164 to 0.0138, with two hidden layers will
decrease from 0.0583 to 0.006, and with five hidden layers will decrease from 0.036 to
0.000124 when the number of hidden neurons increases from 5 to 250. It can be explained
that the DNN model with more neurons performs better than the DNN model with fewer
neurons. Furthermore, the more hidden layer of the DNN model performs better than the
less hidden layer.
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Figure 10. Impact of the number of hidden neurons on the DNN model with different numbers of
hidden layers.

Figure 11 illustrates the PDR versus the variation in node speed. As can be observed
in Figure 11, when the speed of the node increases, the PDR is decreased. The reason is that
the entire network becomes more unstable as node speed increases. This instability leads
to more frequent disruptions of the multicast tree structure and potential packet losses,
decreasing the PDR. Again, when comparing the two mobility models, it is evident that
the RPGM protocol results in superior performance compared to the RWP model, which
exhibits a high PDR. However, it should be noted that the reduction in PDR is significantly
less in the case of the DLSMR+TD-PSO protocol compared to other schemes. Therefore,
the DLSMR+TD-PSO protocol with the RPGM model shows the highest level of reliability
in maintaining a high PDR.
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Figure 11. Packet delivery ratio as a function of node speed.

Figure 12 reveals the impact of node speed on routing delays, including the latency
time for cluster construction per session as a function of node speed. As can be observed
in Figure 12, the routing delay increases when the node speed increases. The reason is
that nodes will move more dynamically when the node’s speed increases, consequently
increasing the time to establish the route. Once again, the protocols under the RPGM model
demonstrate higher stability than protocols under the RWP models because the coordinated
group movement in RPGM reduces sudden changes in network topology, thereby reducing
route establishment delays. On the other hand, the proposed DLSMR+TD-PSO protocol
only involves UAVs as CHs and GW nodes to determine the route to be followed by packets.
Thus, the proposed DLSMR+TD-PSO protocol with the RPGM model can send packets
with a minimum delay compared to other schemes.
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Figure 12. Routing delay as a function of node speed.

Figure 13 presents a comparison of the control overhead as a function of node speed,
including the control overhead for cluster formation per node per session. As can be seen,
the control overhead increases a little bit when the speed of the node increases. Essentially,
this is due to the fact that, when the node’s speed increases, more packets will be needed
for route establishment and thus the overhead will rise. Again, comparing the different
mobility models, the RPGM model demonstrates better control overhead due to high
stability than the RWP model. In addition to that, the proposed TD-PSO clustering protocol
can reduce the control overhead in all schemes. This means that the TD-PSO clustering
protocol only involves CH and GW in the routing process, and the control overhead
decrease is much less in the scheme with TD-PSO clustering protocol compared with
schemes without TD-PSO clustering protocol. On the other hand, the proposed DLSMR
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routing protocol outperforms the MAODV protocol. Thus, the DLSMR+TD-PSO protocol
with the RPGM model presented has the best performance which can improve connectivity
and provide a stable connection compared to the other schemes regarding control overhead.
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Figure 13. Control overhead as a function of node speed.

In Figure 14, we demonstrate the PDR as a function of multicast group size to evaluate
the scalability of the DLSMR+TD-PSO protocol. It can be observed that the PDR has a nearly
constant value and is unaffected when the multicast group size increases. The reason is
that the DLSMR+TD-PSO protocol is capable of delivering packets to multiple destinations
at the same time, ensuring consistent PDR even as the size of the multicast group increases.
The protocol under the RPGM model shows superior performance compared to the RWP
model. This is primarily because nodes in RPGM move in groups, which results in a more
predictable and less chaotic network. Consequently, this leads to fewer packet losses and a
better PDR, despite an increase in destinations. Furthermore, the DLSMR+TD-PSO protocol
accurately predicts the secure next node during the routing process, even in a dynamic
network. TD-PSO also helps the optimization of the allocation of network resources, thereby
ensuring efficient data delivery. As a result, we can conclude that the DLSMR+TD-PSO
protocol with the RPGM model has strong scalability in terms of PDR.
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Figure 14. PDR as a function of multicast group size.

Then, we will turn our attention to look at the security performance. Figure 15
illustrates the comparison of the average packet loss ratio and number of packet losses in
each session as a function of node speed as shown in Figure 15a and Figure 15b, respectively.
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According to Figure 15a, when the node’s speed increases, the ratio of packet loss increases.
Furthermore, also in Figure 15b, when the node’s speed increases, the average number of
packet losses increases. The reason is that, when the node’s speed increases, the node’s
location frequently changes, thus causing packets to be transmitted directly to wormhole
nodes. Furthermore, the proposed TD-PSO clustering protocol can reduce the number of
links between nodes. Therefore, it can improve the packet loss ratio and the number of
packet loss performances. On the other hand, the RPGM model instead of RWP can help
the mitigation of the movement issue due to the collective and predictable movement of
nodes resulting in fewer route changes and more stable connections, also reducing the
likelihood of packet loss. Thus, the proposed DLSMR+TD-PSO protocol with the RPGM
model is proven to be secure from a network security perspective.
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Figure 15. Comparison of packet loss ratio and number of packet losses as a function of node speed.

Figure 16 shows the impact of the node density of the proposed DLSMR+TD-PSO
protocol on the network metrics. We set the minimum number of nodes at 30, 50, and the
maximum of 100. As can be seen in Figure 16a, the PDR decreases when the node speed
increases, while the PDR slightly increases when the number of nodes increases. This
behavior is influenced by the more predictable movement patterns in the RPGM model,
which leads to less frequent route changes and fewer packet losses. Furthermore, we
evaluate the routing delay as a function of node speed with different numbers of nodes,
as shown in Figure 16b. It is observed that, when the number of nodes and speed of
nodes increases, the routing delay increases slightly but not significantly. This means that
when the number of nodes and node speed increases, the number of hops also increases,
which can cause the routing process to take longer. In addition to that, the effect of node
speed on the control overhead is illustrated in Figure 16c. It can be seen that when the
node speed and the number of nodes increases, the control overhead increases. The
reason is that the network density increases when nodes increase, resulting in more
frequent packets to establish routes. Therefore, increased node speed or increased
number of nodes requires more resources to establish a multicast route; consequently,
the control overhead will be increased. Despite these challenges, it can be proved that
the proposed DLSMR+TD-PSO protocol with RPGM mobility model has good scalability
and effectively manages to improve the PDR, routing delay, and control overhead as the
number of nodes increases.
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Figure 16. The impact of the number of nodes on the network performance metric.

6. Conclusions

In this paper, we proposed a DLSMR and TD-PSO protocol in FANETs with CF-
mMIMO to establish a secure multicast route that improves node connectivity against
wormhole attacks. The proposed DLSMR protocol utilized a DL approach to predict
the secure and unsecured route based on various parameters such as node ID, distance,
destination sequence, hop count, and energy which can avoid wormhole attacks. To
enhance node connectivity, we proposed a TD-PSO clustering protocol that employed
particle swarm optimization to find the global optimal points to maximize the cost function.
This function considered the weight of the remaining energy, cosine similarity, cosine
distance, and node degree, which led to electing the cluster head candidate. Furthermore,
we also compared the protocol performance under two different mobility models (RPGM
and RWP). The performance evaluation showed that the proposed DLSMR protocol with
TD-PSO clustering protocol with the RPGM model can establish highly stable multicast
trees that are robust to wormhole attacks. The proposed DLSMR protocol has better security
performance than the MAODV protocol as a benchmark against wormhole attacks. This is
indicated by the PDR and number of packet loss performance values which are better than
MAODV. Simultaneously, the TD-PSO protocol can improve node connectivity and manage
multicast members efficiently with good control overhead, number of cluster head changes,
and routing delay. Overall, the proposed DLSMR protocol with TD-PSO clustering protocol
under the RPGM model guarantees high stability, low routing delay, low packet loss ratio,
low number of packet losses, low control overhead, and high PDR. To expand this work,
we are trying to develop a secure routing protocol with a cross-layer design to protect the
information against eavesdropper attacks using the DL technique.
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The following abbreviations are used in this manuscript:

AC Accept cluster
CF-mMIMO Cell-free massive MIMO
CH Cluster head
CHI Cluster head information
CM Cluster member
DL Deep learning
DLSMR Deep learning secure multicast routing
DNN Deep neural network
FANET Flying ad hoc network
FN Flying nodes
GN Ground nodes
INFO Information
JC Join cluster
MAODV Multicast ad hoc on-demand distance vector
MRREQ Multicast route request
PDR Packet delivery ratio
PSO Particle swarm optimization
RREP Route reply
RMSE Root mean square error
RSSI Received signal strength indicator
RWP Random waypoint mobility
RPGM Reference point group mobility
TD-PSO Top-down particle swarm optimization
UAV Unmanned aerial vehicle
UGW UAV gateway node
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