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Abstract: Real-time computation tasks in vehicular edge computing (VEC) provide convenience
for vehicle users. However, the efficiency of task offloading seriously affects the quality of service
(QoS). The predictive-mode task offloading is limited by computation resources, storage resources
and the timeliness of vehicle trajectory data. Meanwhile, machine learning is difficult to deploy on
edge servers. In this paper, we propose a vehicle trajectory prediction method based on the vehicle
frequent pattern for task offloading in VEC. First, in the initialization stage, a T-pattern prediction
tree (TPPT) is constructed based on the historical vehicle trajectory data. Secondly, when predicting
the vehicle trajectory, the vehicle frequent itemset with the largest vehicle trajectory support is found
in the vehicle frequent itemset of the TPPT. Finally, in the update stage, the TPPT is updated in real
time with the predicted vehicle trajectory results. Meanwhile, based on the proposed prediction
method, the strategies of task offloading and optimization algorithm are designed to minimize energy
consumption with time constraints. The experiments are carried out on real-vehicle datasets and
the Capital Bikeshare datasets. The results show that compared with the baseline T-pattern method,
the accuracy of the prediction method is improved by more than 10% and the prediction efficiency
is improved by more than 6.5 times. The vehicle trajectory prediction method based on the vehicle
frequent pattern has high accuracy and prediction efficiency, which can solve the problem of vehicle
trajectory prediction for task offloading.

Keywords: edge computing; trajectory prediction; task offloading; vehicle trajectory

1. Introduction

In recent years, edge computing-related research has gradually received attention
from researchers and scholars [1,2]. Vehicular edge computing (VEC), as a part of edge
computing, provides users with real-time service, and has excellent prospects in the fields
of intelligent transportation systems, smart city applications, and in-vehicle applications.
Meanwhile, how to provide users with the higher quality of service (QoS) of VEC becomes
one of the challenges. The QoS still cannot be improved significantly, and one of its bottle-
necks is the inefficient task offloading. Traditional task offloading methods which offload
the tasks from the vehicles to the cloud server have considerable communication delay [3,4].
Compared with these methods, a lot of research improved task offloading methods through
vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communications, which reduce
the distance of the task transmission [1]. Moreover, resource allocation [5] and network
slicing [6] are optimized for task offloading in VEC.

Meanwhile, a variety of task offloading schemes based on trajectory prediction have
been proposed to optimize task offloading. For example, high-computation-complexity
tasks are computed on the nearby edge servers or the cloud server, and the results are
transmitted to another edge server in the direction of the vehicle’s movement through
multihop transmission. Once the vehicle enters the transmission range of this server, the
computation results are downloaded by the vehicle [7]. However, existing prediction
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schemes focus on the energy consumption optimization [8–10] and ignore the importance
of prediction efficiency and accuracy. However, efficient and accurate prediction results are
essential to predictive-mode task offloading in VEC.

There are very limited works on the prediction results for multihop transmission in
VEC [11,12]. As a result, we have extended existing research and deeply explored the
trajectory prediction algorithms. Recently, some studies have used deep learning methods
to predict vehicle trajectories including the recurrent neural network (RNN) method [13]
and the Transformer method based on the attention mechanism [14]. These deep learning
methods require a large amount of memory space and training time. However, the current
performance of edge servers is not capable of deploying high-complexity deep learning
algorithms [15,16]. At the same time, deep learning algorithms take a long time to predict
vehicle trajectories, which cannot meet the demand for real-time prediction [15]; this is
discussed in the experiment part. Refs. [11,12] ignore the time consumption of the training
process and the prediction process. Trajectory prediction methods based on a frequent
pattern do not require large computation and storage resources [17]. These methods also
have high accuracy or efficiency. For example, vehicle trajectories can be predicted in
real time by constructing T-pattern tree [18–21], but they have low accuracy. The frequent
pattern prediction method proposed in [22] has a higher accuracy rate, but the method
is not efficient enough to predict the vehicle trajectory in real time. Therefore, existing
trajectory prediction methods based on frequent patterns are not compatible with accuracy
and efficiency. Meanwhile, the existing frequent pattern method has to store all of the
historical trajectories which take up a lot of storage space.

In order to solve the vehicle trajectory prediction problem in task offloading, this
paper designs a T-pattern prediction tree (TPPT) and proposes a real-time vehicle trajectory
prediction framework based on frequent patterns. Based on the prediction framework, task
offloading strategies and an optimization algorithm are designed.

The main contributions of this work are summarized as follows:

1. We define a new TPPT data structure for trajectory prediction in VEC. To reduce the
storage resources in VEC, the TPPT only stores the trajectories related to the current
edge server. To improve the accuracy and efficiency, the TPPT stores the vehicle
frequent item and the vehicle frequent pattern. The TPPT is updated in real time
according to the feedback of the prediction result transmitted from the predicted edge
server.

2. In order to improve accuracy and efficiency when using the TPPT in VEC, we propose
a TPPT construction algorithm, a TPPT prediction algorithm and a TPPT updating
algorithm, respectively. By analyzing the characteristics of edge computing servers,
we apply the TPPT in this scenario with the aim of improving efficiency and accuracy.
At the same time, it provides real-time prediction results for task offloading.

3. We design the task offloading strategies via V2I and V2V communication based on
the proposed prediction. By analyzing the energy consumption, we propose a search
algorithm for task offloading to minimize the energy consumption with the constraint
of time consumption.

4. Experiments are carried out on real-vehicle datasets [23] and Capital Bikeshare
datasets [24] to verify that the vehicle trajectory prediction based on the vehicle
frequent pattern has high accuracy and efficiency, which optimizes task offloading in
VEC in real time.

The remaining of this paper is organized as follows. Section 2 introduces the relevant
literature, definitions and prediction problem. Section 3 presents the data structure and
algorithms of trajectory prediction for task offloading in the VEC scenario. The experimental
and performance results are included in Section 4. Section 5 concludes this study and points
out our future work.
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2. Literature Review and Problem Statement
2.1. Task Offloading Research

Task offloading in VEC is a process of transmitting the computation tasks and re-
lated parameters from the service requestor to the service provider through V2V or V2I
communication. Figure 1 shows different layers of a VEC framework [25].
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Optimizing task offloading can make full use of the resources of edge servers and
provide a higher QoS to users. One of the most important methods of task offloading is
predictive-mode transmission. First, Zhang et al. [7] proposed a predictive offloading frame-
work where the computation tasks were sent to the edge servers ahead of their running
direction. The existing improvements took delay and energy consumption into account.
For example, Liu et al. [8] minimized the overall energy consumption of task offloading
in VEC. The authors also proposed a dynamic programming-based predictive algorithm
(DPA) to solve the optimization problem. Furthermore, He and Tian [9] constructed a math-
ematical optimization model with the constraints of time delay and power consumption
for minimizing the power overhead. Combined with V2V and V2I communication, Wang
et al. [10] proposed a hybrid multihop edge-computing offloading (VCMO) algorithm.
However, there are very limited works on the prediction results which decide the direction
of the transmission.

These methods need to predict trajectories in real time. For example, in V2I or V2V,
when the tasks or results are transmitted by multihop RSUs [8] or vehicles [10], the trajectory
prediction result determines whether the computation result can be downloaded by vehicles
in real time. Though deep learning is always used to predict trajectories, Refs. [15,16]
pointed out the computation and memory resources of current edge servers could not
support the deployment of deep learning for trajectory prediction. At the same time, when
the computation tasks are completed and the results are transmitted to the predicted RSU,
vehicles have to download the result of computation tasks within the transmission range of
the RSU. Therefore, how to predict vehicle trajectories more accurately and efficiently is an
urgent problem in the task offloading of VEC.

2.2. Trajectory Prediction Research

Trajectory prediction problem can be categorized based on the type of trajectory data
into short-distance trajectory prediction, long-distance trajectory prediction and location
prediction. For short-distance trajectory prediction, Adam et al. [26] and Huang et al. [27]
proposed trajectory prediction methods to avoid collisions for vehicles and humans, respec-
tively. For long-distance trajectory prediction, Wang et al. [28] proposed a multiuser mul-
tistep trajectory prediction method which incorporated long short-term memory (LSTM)
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and sequence-to-sequence (Seq2Seq) learning. For location prediction, Li et al. [29] pro-
posed a prediction framework which integrated individual travel behavior and collective
preferences for next location prediction. Different from the traditional trajectory prediction
problem, the trajectory prediction of task offloading belongs to the node prediction problem.
Namely, the prediction results are the location of the edge servers that the vehicle will pass
through in the future.

Recently, research on node prediction has often used deep learning methods to train
trajectory data fused with node information. Huang et al. [30] proposed the Bayonet-Corpus
which is a trajectory prediction algorithm based on the context of traffic intersections. This
algorithm used a Bi-GRU to model the trajectory matrix for the purpose of prediction.
Liu et al. [31] proposed a prediction model based on K-nearest neighbors (KNN) to realize
real-time urban flow prediction. However, the deep learning approach has a large time
complexity and space complexity, which is not suitable for deployment in edge servers.
Considering the limited resources of edge servers, trajectory prediction based on frequent
patterns is more suitable in task offloading.

Trajectory prediction based on frequent patterns is one of the current research hotspots.
First, Monreale et al. [17] proposed WhereNext, a trajectory prediction method based on
the T-pattern tree. The tree is a collection of T-patterns which are the frequent patterns of
spatiotemporal trajectories. Dong et al. [18] proposed RTMatch, an improved real-time
trajectory prediction method based on a real-time pattern tree (RTPT) and a hash table
(HT). Comito [21] constructed a frequent-pattern tree, which is similar to a T-pattern tree.
Refs. [19,20,22] used frequent trajectory patterns as one part of the trajectory prediction
to address the prediction problem. However, current frequent pattern algorithms do
not consider the local features of trajectories, which cannot guarantee both accuracy and
efficiency.

2.3. Definitions and Problem Statement

This section gives the basic definitions of the vehicle trajectory prediction in VEC.
Then, the prediction problem statement is given based on these definitions.

Definition 1. Vehicle Trajectory. A vehicle trajectory is a sequence of a vehicle v passing through n
edge servers b according to temporal order, which is mathematically defined as follows:

TB = < b0, b1, . . . , bk, . . . , bn >, n ≥ 1 (1)

where TB denotes the vehicle trajectory of vehicle v; bi denotes the edge server through which vehicle
v passes. The length of the vehicle trajectory TB is n + 1. Simulating the vehicle trajectory with the
Capital Bikeshare datasets [24] and assuming that the vehicle trajectory of member number W00742
is TB0, we have

TB0 = < “21st St”, . . . , ”14th St” > (2)

Definition 2. Vehicle Trajectory Support. The vehicle trajectory support s is the frequency of the
vehicle subtrajectory TBi in a given vehicle trajectory set D. It is defined as

si = Support(TBi) =
∣∣{TBi

∣∣TBi ⊆ TBj, TBj ∈ D
}
| (3)

where the vehicle trajectory set D consists of several vehicle trajectories, i.e., D = {TB1, TB2, . . .,
TBj, . . ., TBz}, where the vehicle trajectory TBj is an element in the set D. The length of the vehicle
trajectory set D is z. If the vehicle trajectories TBi and TBj satisfy TBi ⊆ TBj, TBi is the vehicle
subtrajectory of TBj.

Based on the above definitions, this paper gives the definition of the vehicle T-pattern.

Definition 3. Vehicle T-Pattern. The vehicle T-pattern is a binary tuple for describing the vehicle
trajectory and the corresponding vehicle trajectory support, which can be expressed as TP = (TB, E),
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where TB denotes the vehicle trajectory in Equation (1); E denotes the sequence consisting of the
edge Rh between neighboring edge servers. Each edge Rh consists of neighboring edge servers and
the corresponding vehicle trajectory support, i.e., E = <R1, R2, . . ., Rh, . . ., Rn>, Rh = (bh−1, bh, sh),
sh = Support(TBh). In the sequence, the length of R is n, when the length of TB is n + 1. Moreover,
another representation of the vehicle T-pattern is given in this paper:

TP = (TB, E) = b0
Support(TB1)→ . . .

Support(TBn)→ bn (4)

where TP consists of n + 1 edge servers and n edges. Also taking the Capital Bikeshare datasets as
an example, the vehicle T-pattern corresponding to vehicle trajectory TB0 is

TP0 = (TB0, E0) = “21st St” 1→ . . . 1→ ”14th St” (5)

According to the definition of the vehicle T-pattern, the prefix of this vehicle T-pattern
is defined as the portion of the vehicle T-pattern consisting of the first n edge servers,
formalized as Front(TP). The suffix of the vehicle T-pattern is defined as the (n + 1)th
edge server, formalized as Back(TP). Thus, the prefix and suffix of the vehicle T-pattern in
Definition 3 are, respectively,

Front(TP)= b0
Support(TB1)→ . . .

Support(TBn−1)→ bn−1

Back(TP)= bn

(6)

From the above definition, it is clear that there exists a derivation relation between the
prefix and suffix of the vehicle T-pattern, which is also called the vehicle frequent pattern.
For given sets TPs of vehicle T-patterns, the vehicle frequent pattern is formally defined as

U = { (Front(TP), Back(TP)) | TP in TPs} (7)

where we also write the elements of U as “Front(TP) => Back(TP). The derivation relation
U reflects the strength of the derivation relation. Compared with the traditional frequent
pattern, no threshold is set on the vehicle frequent pattern.

Finally, based on the existing definitions above, this paper gives the vehicle trajectory
prediction problem statement in VEC.

Given:

1. The set D = {TB1, TB2, . . ., TBj, . . ., TBz} is extracted from the vehicle trajectory datasets,
where any element TBj is a vehicle trajectory;

2. The sequence TBp = <b1, b2, . . ., bk, . . ., bp> is the current vehicle trajectory, where any
element bk is an edge server, and its extension bp+1 is to be predicted.

Constraints:

1. The vehicle trajectory TBp+1 consists of the vehicle trajectory TBp and the unknown
but existing edge server bp+1;

2. The vehicle trajectory TBp+1 is a subset of the elements in the vehicle trajectory set D.
That is, ∃TBj ε D such that TBp+1 ⊆ TBj.

Optimization objective:
Find the edge server node bp+1 such that the vehicle trajectory TBp and the edge server

bp+1 form the vehicle trajectory TBp+1. Meanwhile, the vehicle trajectory TBp+1 has the
maximum vehicle trajectory support.

The formal optimization problem is expressed as follows,

argmax
bp+1

Support
(
TBp+1

)
s.t.bp+1 ∈ TBp+1, TBp+1 ⊆ TBj, TBj ∈ D

(8)
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3. Materials and Methods

In order to accomplish the optimization problem given in this paper, a vehicle trajectory
prediction framework based on the vehicle frequent pattern is proposed and this framework
is introduced with VEC. This framework is divided into three parts: initializing the edge
computing server, predicting the vehicle trajectory, and updating the T-pattern prediction
tree in real time. Specifically, the details of the three parts are as follows:

1. We construct the TPPT on the edge server in the initialization stage of the VEC scenario.
We propose a TPPT construction algorithm which constructs the vehicle T-pattern tree,
vehicle frequent itemset and vehicle frequent pattern based on the historical vehicle
trajectories on the edge server locally.

2. We predict the vehicle trajectory based on the TPPT in the VEC scenario. We propose
a TPPT prediction algorithm which predicts the future location of the edge server in
real time. The computation tasks are transmitted to the prediction result via V2I or
V2V communication for the task offloading optimization of VEC.

3. We update the TPPT based on the feedback of prediction results in the VEC scenario.
In order to maintain the timeliness of the TPPT in VEC, we propose a TPPT updating
algorithm which updates the vehicle frequent itemset and vehicle frequent pattern of
the TPPT in real time according to the feedback of the prediction result transmitted
from the predicted edge server.

The vehicle trajectory prediction framework based on the vehicle frequent pattern is
shown in Figure 2.
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In Figure 2, the arrows do not indicate direct transmission relationships between the
vehicle (edge servers) and flow chart. The historical trajectories are stored on edge servers.
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These trajectories are updated in the updating process. The current trajectory is provided
by the vehicle. The edge server location which is the prediction result indicates the name
or the serial number of an edge server.

The storage and computation resources are limited in the task offloading of VEC.
Meanwhile, predictive-mode task offloading in VEC requires real-time vehicle trajectory
prediction. Therefore, in order to ensure the efficiency and accuracy of vehicle trajectory
prediction, this paper designs a T-pattern prediction tree (TPPT), a data structure that stores
only the historical vehicle trajectories and the vehicle frequent pattern related to the current
edge server. The framework shown in Figure 2 mainly solves the optimization problem of
this paper through the T-pattern prediction tree.

The TPPT can be deployed in both V2I and V2V communications of VEC. In the
initialization stage of V2I communication, the edge server constructs the TPPT based on
historical vehicle trajectories. Then, the current trajectory and computation tasks in a vehicle
are offloaded to the edge server when the vehicle enters the transmission range of the edge
server. Based on the TPPT, the edge server predicts the location of another edge server
that the vehicle will pass through in the future. After that, the edge server processes the
computation tasks or transmits these tasks to other edge servers or cloud server according
to the complexity of the tasks and load balance. If the tasks are completed, the results are
transmitted to the predicted edge server. Once the vehicle arrives within the transmission
range, the results are downloaded by the vehicle. Finally, the edge server updates the TPPT
in real time based on the feedback of the prediction results. In V2V communication, the
vehicle offloads the real-time trajectory and downloads the overhead prediction results.
The computational tasks and prediction results are transmitted to the predicted location
of the edge server through the surrounding vehicles via V2V communication. Therefore,
V2I and V2V communications are similar in the trajectory prediction process. In terms
of task offloading, V2I communication transmits the prediction results and computation
tasks to the predicted edge server through RSU, whereas V2V communication transmits
the predicted results and computation tasks through wireless technology between vehicles.

We use the prediction time as the optimization objective of the prediction algorithm.
Without incorporating the energy consumption, a computation task is defined as T [7],
T = {c, d, tmax}, where c is the number of computation resources required to complete the
task, d is the size of the task, and tmax denotes the maximum tolerable delay. The compu-
tation process of VEC usually considers 2 scenarios. If the computation task uses local
computation resources, then it takes time t1 = c/cl to complete this task, where cl denotes
the local computation resources. Since the local computing resource cl is usually small, it
is difficult for time t1 to satisfy t1 < tmax. The computation task can also be transmitted to
the edge server b0. Therefore, the overall process requires time t2 = c/cs + tc + ty, where cs
denotes the computational resources of the edge server, tc denotes the time of communi-
cation, and ty denotes the time of trajectory prediction. The vehicle trajectory prediction
method based on the vehicle frequent pattern makes the total time t2 satisfy t2 < tmax as
much as possible by reducing tc and ty.

3.1. Definition of the T-Pattern Prediction Tree

The three data structures in the TPPT are the vehicle T-pattern tree, the vehicle fre-
quent itemset and the vehicle frequent pattern. Among them, the vehicle T-pattern tree
is composed of the prefixes of the vehicle T-pattern. The vehicle frequent itemset is com-
posed of the suffixes of the vehicle T-pattern and their corresponding vehicle trajectory
supports. The vehicle frequent pattern embodies the corresponding relationships of the
vehicle T-pattern tree and the vehicle frequent itemset. The formal definition of the TPPT is
shown below.
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Definition 4. T-Pattern Prediction Tree. A T-pattern prediction tree is a ternary tuple containing a
vehicle T-pattern tree, a vehicle frequent itemset and a vehicle frequent pattern. Given the vehicle
trajectory datasets D, the T-pattern prediction tree can be represented as

TPPT = (Tree(D), Item(D), Frequent(D)) (9)

where TPPT denotes the T-pattern prediction tree. Tree(D), Item(D) and Frequent(D) denote the
vehicle T-pattern tree, the vehicle frequent itemset and the vehicle frequent pattern under the vehicle
trajectory set D, respectively. In this paper, we provide a detailed explanation of the vehicle T-pattern
tree, the vehicle frequent itemset and the vehicle frequent pattern.

Definition 5. Vehicle T-Pattern Tree. A vehicle T-pattern tree is a tree structure consisting of a set
of edge servers and a set of edges, formally defined as

TPT= Tree(D) = (TB, E) (10)

where TB denotes the set of edge servers, i.e., N = {b0, b1, . . ., bk, . . ., bn}, bk denotes the edge server
in Equation (1); E is similar to the set of edges in Equation (4), i.e., E = {R1, R2, . . ., Rh, . . ., Rm},
Rh = (bk−1, bk, sk). In the vehicle T-pattern tree, the data structure is not a sequence. As a result,
there is no direct relationship between the length of edge servers n and the length of edges m. In the
vehicle T-pattern tree, node bk is the child of node bk−1, and node bk−1 is the parent of node bk. If bk
does not have a parent node, bk is the root node; if bk does not have a child node, bk is a leaf node.

A branch of a vehicle T-pattern tree is a binary tuple. Specifically, given TPT = (TB, E),
TPT′ = (TB′, E′), N′ ⊆ N, E′ ⊆ E, if ∀bk ε N′, Rh ε E′ such that 1 ≤ |{Rh|bk ε Rh}| ≤ 2, TPT′

is a branch of the vehicle T-pattern tree TPT, denoted as TR.
In addition, the vehicle T-pattern tree needs to satisfy the following 3 conditions:

1. Each node has different children;
2. Each branch is a portion of the vehicle T-pattern;
3. All the branches starting with the root node and ending with the parent of the leaf

node are the prefixes of the vehicle T-pattern.

Definition 6. Vehicle Frequent Itemset. The vehicle frequent itemset is the set consisting of the
suffixes of the vehicle T-pattern and their corresponding vehicle trajectory support, i.e.,

IT= Item(D) = {set|set = (b, s)} (11)

where set denotes the elements of the vehicle frequent itemset. b is the suffix of the vehicle T-pattern
in Equation (6), denoting the key of set. s is the vehicle trajectory support in Equation (3), denoting
the value of set.

According to Definition 3, there exists a derivation relation which is also called the
vehicle frequent pattern in Equation (7) between the prefix and suffix of a vehicle T-pattern.
In the TPPT, we define the vehicle frequent pattern integrating the vehicle T-pattern tree
and the vehicle frequent itemset as follows.

Definition 7. Vehicle Frequent Pattern. A vehicle frequent pattern is a set consisting of branches
of a vehicle T-pattern tree and suffixes of a vehicle frequent itemset, which is formally defined as

FR= Frequent(D) = {U|U = (TR, b)} (12)

where U is the vehicle frequent pattern between TR and b, TR is the branch of the vehicle T-pattern
tree, and the edge server b is the key of the vehicle frequent itemset.
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To compare the advantages of the vehicle T-pattern prediction tree in Definition 4
and the vehicle T-pattern tree in Definition 5, taking the Capital Bikeshare datasets as an
example, we construct the traditional T-pattern tree in [17,18] and the vehicle T-pattern tree
which is a portion of the vehicle T-pattern prediction tree.

Figure 3 shows examples of a traditional T-pattern tree and a vehicle T-pattern tree.
The main difference between the traditional T-pattern tree in Figure 3a and the T-pattern
prediction tree in Figure 3b is the storage content and the prediction process. In terms
of storage content, the traditional T-pattern tree stores all of the historical trajectories,
while the TPPT only stores the historical trajectories related to the current edge server.
Therefore, the TPPT saves storage space and improves prediction efficiency. In terms of the
prediction process, the traditional T-pattern tree traverses and searches for the node with
the largest support of the vehicle trajectory, while the TPPT searches all of the leaf nodes
through the vehicle frequent pattern and mines the leaf node with the largest support of
the vehicle trajectory through the vehicle frequent itemset. Therefore, the TPPT optimizes
the prediction process.
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The TPPT consists of three parts: (1) Figure 3b shows a vehicle T-pattern tree.
(2) Table 1 shows an example of a vehicle frequent itemset. (3) The branch of the ve-
hicle T-pattern tree in Figure 3b and the key of the vehicle frequent itemset in Table 1
constitute the vehicle frequent pattern.

Table 1. Example of vehicle frequent itemset.

Key Value

(b) 20th St 1
(d) 20th St 2
(c) 18th St 2

. . .. . . . . .. . .

In the VEC scenario, we assume that the TPPT is stored in the edge server “17th St”
which is the name of the edge server. Then, the TPPT maintained on the edge server is a
data structure that consists of the vehicle T-pattern tree in Figure 3, the vehicle frequent
itemset in Table 1, and the vehicle frequent pattern formed between them. Given the current
vehicle trajectory formed by nodes (a) in Figure 3b and its corresponding edges, nodes (b),
(c) and (d) in Figure 3b are potential following edge servers. The vehicle frequent itemset
shown in Table 1 also consists of these potential following edge servers.

3.2. Construction of the T-Pattern Prediction Tree

In order to deploy the TPPT faster in VEC, this paper designed an algorithm for the
construction of the TPPT. This algorithm is an initialization algorithm running on the
edge server to optimize task offloading in VEC. At this initialization stage of V2I and V2V
communications, the edge server downloads the historical data related to it from the cloud
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server and deploys the TPPT according to the construction algorithm in its memory. The
Algorithm 1 is shown below.

Algorithm 1: Algorithm for construction of the T-pattern prediction tree.

Input: vehicle trajectory datasets D, D = {TB1, TB2, . . ., TBj, . . ., TBz}.
Output: T-pattern prediction tree TPPT.
1. Init(TPT, IT, FR)
2. for each TBj in D
3. for each bk in TBj
4. TBk = <b0, . . ., bk>
5. TPk = convert_TP(TBk)
6. if TPk in TPT:
7. TPi = TPT.find_branch(TPk)
8. TPi.support += 1
9. if TPk not in TPT:
10. TPi−1 = TPT.find_branch(TPk−1)
11. TPi = TPi−1. Add_node(bk)
12. TPi.support = 1
13. end for
14. end for
15. for bk in TPT.Leaf_node
16. TBk = <b0, . . ., bk>
17. TPk = Convert_TP(TBk)
18. setk = (bk, TPk.support)
19. IT.Add_set(setk)
20. FR.Add_relationship(TPk, bk)
21. end for
22. return TPPT = (TPT, IT, FR)

Among them, lines 2~14 construct the vehicle T-pattern tree. Lines 2~3 traverse each
edge server bk of the vehicle trajectory TBj. Lines 4~5 construct the vehicle trajectory
TBk and its corresponding vehicle T-pattern TPk, with b0 as the start and bk as the end.
Lines 6~12 determine whether there is the same vehicle T-pattern as TPi in the vehicle
T-pattern tree. If there is, the vehicle trajectory support corresponding to TPi is incremented;
otherwise, TPi is constructed in the vehicle T-pattern tree and the vehicle trajectory support
corresponding to TPi is set to 1.

Lines 15~22 construct the vehicle frequent itemset and the vehicle frequent pattern.
Lines 15~17 traverse each leaf node bk of the vehicle T-pattern tree to construct the vehicle
trajectory TBk and its corresponding vehicle T-pattern TPk starting from b0 and ending
at bk. Lines 18~19 construct a set composed of the leaf node bk and the corresponding
vehicle trajectory support. Then, the set is added into the vehicle frequent itemset. Line 20
constructs a binary tuple jointly constituted by the vehicle T-pattern TPk and the leaf node
bk. Then, the binary tuple is added into the vehicle frequent patten.

For the construction process of the TPPT, we take the Capital Bikeshare datasets as
an example, which is shown in Figure 3. In the example, after cleaning the data from the
Capital Bikeshare datasets, the TPPT is constructed according to Algorithm 1. Specifically,
the edge server “17th St” maintains this TPPT. The edge server “20th St” and “18th St” are
the leaf nodes, which are the elements in the vehicle frequent itemset.

3.3. Prediction Based on the T-Pattern Prediction Tree

The TPPTs maintained by edge servers are designed to optimize predictive-mode
task offloading in VEC. In this section, this paper proposes a prediction method based
on the TPPT, in order to meet the real-time, accuracy and efficiency requirement of VEC.
The prediction method is based on statistical theory. It needs to satisfy one assumption:
assuming that a vehicle trajectory appears multiple times, then it can be assumed that this
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vehicle trajectory is related to the user’s driving habits. This assumption is applied in the
TPPT as follows.

Both V2V and V2I communications require maintaining a T-pattern prediction tree.
In V2I and V2V communications, a vehicle offloads the current trajectory to the edge
server when it passes the edge server. The edge server matches the vehicle trajectory in
the maintained vehicle T-pattern tree and finds the vehicle frequent itemset based on the
matched vehicle trajectory and its vehicle frequent pattern. Then, the edge servers of the
vehicle frequent itemset and their corresponding vehicle trajectory support are counted,
and the edge server with the largest vehicle trajectory support is selected to accomplish the
final prediction task.

The vehicle trajectory support in the vehicle frequent itemset indicates the number of
occurrences of the trajectory. When predicting the trajectory, the same edge servers in the
vehicle frequent itemset can be merged, and the corresponding vehicle trajectory support
needs to be accumulated. In this paper, the accumulated result is called the support score,
denoted as score. Its calculation formula is as follows:

score = predict
(
bp
)
= ∑

set.key=bp

set.value (13)

where set.key is the former element of the set in the vehicle frequent itemset, i.e., the edge
server bp. set.value is the latter element of the set in the vehicle frequent itemset, i.e., the
vehicle trajectory support sp. The optimization scheme is to find the edge server that has the
highest support score among the vehicle frequent itemset, which can also be represented as

bp+1 = argmax
set.key

set.value (14)

where bp+1 is the prediction result, i.e., the edge server that the vehicle trajectory will pass
through in the future. For this optimization scheme, this paper designed a prediction
algorithm for the T-pattern prediction tree, also called the TPPT algorithm. The Algorithm 2
is shown below.

Algorithm 2: Prediction algorithm for the T-pattern prediction tree.

Input: T-pattern prediction tree TPPT, current vehicle trajectory TBp.
Output: Edge computing server bp+1.
1. TPT = extract_TPT(TPPT)
2. while IT = Ø do:
3. TB = match_TB(TPT, TBp)
4. IT = match_IT(TB, FR)
5. TBp = delete_first_node(TBp)
6. end while
7. merge(IT)
8. Highest_score = 0
9. for each set in IT:
10. if set.value > Highest_score:
11. bp+1 = set.key
12. Highest_score = set.value
13. end for
14. return bp+1

Among them, lines 1~7 obtain the vehicle T-pattern tree and match the current vehicle
trajectory in the vehicle T-pattern tree. Lines 3~4 find the vehicle frequent itemset related to
the current vehicle trajectory through the vehicle frequent pattern. Then, that portion of the
vehicle frequent itemset is merged according to the name or the serial number of the edge
server. Lines 2~6 loop to match the current vehicle trajectory. If no vehicle frequent itemset
is found, the first node of the vehicle trajectory is deleted. Lines 9~13 iterate through each
set to find the set with the highest support score as the final prediction result.
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In the example in Figure 3, the support scores corresponding to “18th St” and “20th
St” are calculated and updated separately. The maximum value is taken as the highest
support score. In Figure 3, “20th St” has the highest support score of 3. Finally, the edge
server corresponding to the highest support score is output as the final prediction result. In
Figure 3, “20th St” is the final prediction result.

3.4. Real-Time Updating of the T-Pattern Prediction Tree

The vehicle trajectories have a certain degree of effectiveness. To ensure the accuracy
of the vehicle trajectory prediction, the T-pattern prediction tree maintained by edge servers
needs to be updated in real time. For this reason, this paper designed a real-time updating
algorithm for the T-pattern prediction tree. The application scenario of this method is as
follows.

Given the prediction result bp+1 of the edge server bp and the time threshold t, if the
current vehicle has passed the edge server bp+1 within the time threshold t, the prediction
result is correct. Otherwise, the prediction result is incorrect. The edge server bp+1 generates
feedback of the prediction result based on whether the prediction result is correct or not. The
feedback is transmitted to the edge server bp. The edge server bp updates the maintained
TPPT after obtaining the feedback. The Algorithm 3 is shown below.

Algorithm 3: Real-time updating algorithm for the T-pattern prediction tree.

Input: original T-pattern prediction tree TPFTα, feedback of prediction result.
Output: updated T-pattern prediction tree TPFTβ.
1. TB = match_TB(TPT, result.TB)
2. IT = match_IT(TB, FR)
3. if result.prediction = True:
4. TB.support += 1
5. IT.set.value += 1
6. if result.prediction = False:
7. TB.support −= 1
8. IT.set.value −= 1
9. TPFTβ = update(TPFTα, TB, IT)
10. return TPFTβ

Among them, lines 1~3 obtain the vehicle T-pattern tree and the vehicle frequent
itemset in the T-pattern prediction tree TPFTα. Lines 4~9 determine whether the prediction
result is correct or not. If the prediction result is correct, the vehicle trajectory support
corresponding to this vehicle trajectory is incremented. Otherwise, the vehicle trajectory
support corresponding to this vehicle trajectory is decremented. Line 10 synchronizes the
update results to the T-pattern prediction tree.

Taking the Capital Bikeshare datasets as an example, as shown in Figure 3, assume
that the vehicle trajectory is <“20th St”, “17th St”> and the prediction result is “20th St”.
If the vehicle trajectory subsequently passes through the edge server “20th St”, then the
vehicle trajectory support corresponding to this vehicle trajectory in the TPPT is incre-
mented. Otherwise, the vehicle trajectory support corresponding to this vehicle trajectory
is decremented.

3.5. Task Offloading Strategies, Energy Consumption and Search Algorithm

In this section, we propose two task offloading strategies based on the proposed
prediction method in Section 3.3. In addition, the incorrect prediction is considered in
the strategies. After that, by analyzing the energy consumption, we also present a task
offloading optimization algorithm, which minimizes the energy consumption with the time
constraints.

Refs. [7,8] proposed the predictive-mode task offloading method via V2I and V2V,
respectively. However, the trajectory was random. They did not integrate the trajectory
prediction in the task offloading. In our task offloading strategies, we integrate the pro-
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posed prediction method. Before the task offloading, each edge server is initialized using
Algorithm 1. The task offloading strategy in V2I communication is divided into 4 steps.

Step 1. When the vehicle arrives within the transmission range of the RSU, the
computation tasks and the prediction tasks are offloaded to the edge server.

Step 2. The edge server predicts the location of the next edge server based on Algo-
rithm 2. The computation tasks and/or their results are transmitted to the predicted edge
server via V2I based on the search algorithm (which is introduced in the following part of
this section).

Step 3. If the tasks are completed on two edge servers and the prediction result is
correct, the results of the computation tasks are transmitted to the vehicle once it arrives. If
the tasks are not completed on these two edge servers and the vehicle arrives within the
transmission range of the last edge server, then go back to Step 2 and repeat. If the prediction
result is incorrect and detected by Algorithm 3, the computation tasks and/or their results
have to be transmitted to the known correct edge server via V2I communication.

Step 4. If the computation tasks and/or their results are transmitted to the known
correct edge server, but the vehicle has been out of the transmission range, then go back to
Step 2 and repeat.

The task offloading strategy in V2V communication is divided into 4 steps.
Step 1. When the vehicle arrives within the transmission range of the RSU, only the

prediction tasks are offloaded to the edge server
Step 2. The edge server also predicts the location of the next edge server. Then, the

prediction results are transmitted to the vehicle. After that, the computation tasks are
transmitted to the predicted edge server via V2V communication based on the search
algorithm.

Steps 3 and 4. The process is similar to that in V2I. The only difference is that the
communication method is V2V.

For the energy consumption, we improve the definition in [7,8]. First, we consider the
computation tasks is a set C = {T1, T2, . . ., Tv, . . ., Tw}. Each task Tv = {cv, dv, tv} is a ternary
tuple Tv where cv is the number of computation resources required to complete the task Tv,
dv is the size of the task, and tv denotes the maximum tolerable delay. Then, for each edge
server, b is a quintet defined as b =

{
fb, Pc

b , Pc
b
}

, where fb, Pc
b , Pc

b are the computation rate,
computation power and transmission power, respectively. Finally, let fr be the transmission
rate.

According to the above definition, the computation time is

tv
b =

cv

fb
(15)

and the transmission time is
tv
r =

dv

fr
(16)

The computation energy consumption is

Ev
b =

cvPc
b

fb
(17)

and the transmission energy consumption is

Ev
r =

dvPc
r

fr
(18)

According to the above strategies, we do not know how many hops it will take to
complete the computation tasks. Based on the proposed prediction algorithm, we can
predict the neighboring edge server. Therefore, time is used as a constraint to locally
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optimize the computation tasks. As a result, we calculate the time consumption and energy
consumption of neighboring edge servers. The time consumption is

tall =
w

∑
v=1

xv
f

(
tv
b1
+ tv

r

)
+

(
1− xv

f

)
tv
b2
+ tp (19)

where tp denotes the time consumption of the prediction, and the energy consumption is

Eall =
w

∑
v=1

xv
f

(
Ev

b1
+ Ev

r

)
+

(
1− xv

f

)
Ev

b2
+ tpPc

b (20)

where xv
f is a binary variable indicating the status of task v. In the time and energy

consumption, the tasks’ allocation and computation are only executed on two edge servers.
Meanwhile, only the transmission of computation tasks is calculated. The size of the results
is usually so small that they can be ignored in transmission.

The optimization problem based on the proposed prediction method for task offload-
ing can be formulated as

min Eall
s.t.0 < tall < min(t1, . . . , tw)

(21)

where the constraints are such that there is no localized out-of-delay.
Finally, we propose a search algorithm to address the optimization problem accord-

ing to Equation (21). The search algorithm is to minimize the energy consumption in
Equation (20) with the time consumption in Equation (19). The Algorithm 4 is as follows.

Algorithm 4: Search algorithm for task offloading.

Input: computation tasks set C, edge server b1, edge server b2.
Output: minimum energy consumption Emin.
1. Emin = +∞
2. for each v in |C|:
3. tall = calculate t in Equation (19) based on v, b1, b2
4. Eall = calculate E in Equation (20) based on v, b1, b2
5. if tall < min(t1, . . ., tw):
6. if Eall < Emin:
7. Eall = Emin
8. return Eall

Among them, lines 2~7 traverse the computation tasks to obtain the minimum en-
ergy consumption with the constraint of time. Lines 3~4 calculate the time and energy
consumption at each iteration. Line 5 takes the constraint into account. Lines 6~7 obtain
the minimum energy consumption.

4. Results and Discussions

In order to verify the accuracy and efficiency of the method proposed in this paper,
real-vehicle datasets and the bicycle check-in datasets publicly available on the Capital Bike-
share’s website [24] were selected as the experiment datasets. RNN [13], Transformer [14]
and T-pattern algorithms [17–22] were chosen as the baseline methods.

Among them, RNN [13] and Transformer [14] are deep learning algorithms. Com-
parative experiments were conducted with such algorithms to analyze the applicability
of deep learning in VEC. T-pattern algorithms [17–22] belong to class of algorithms based
on the vehicle frequent pattern. Comparative experiments were conducted to analyze the
accuracy and efficiency of the TPPT algorithm proposed in this paper.
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4.1. Experimental Environment, Datasets and Parameters

This section describes the experimental environment, datasets and parameters. The en-
vironment was the Windows 10 operating system, an i5-8279U CPU, and the experimental
codes were all written and run via python 3.9.

The experimental datasets used in the experiment were divided into two parts. The
first part was the real-vehicle datasets. The fields of these datasets contained the trajectory
serial number and the bayonet serial number. The second part was the bicycle check-in
datasets publicly available on the Capital Bikeshare’s website [24]. The fields of these
datasets contained the duration of use, start date, end date, start location, end location,
vehicle number and membership type. The nodes in the datasets were not completely
adjacent to each other. It could be used to simulate edge servers, as well as to predict the
next position of a trajectory. The specific description of the datasets is shown in Table 2.

Table 2. Experimental datasets and their fields.

Data Sources Field Name Field Type

Real-vehicle datasets
Trajectory serial number Unsigned integer
Bayonet serial number Unsigned integer

Capital Bikeshare

Duration of use Unsigned integer
Start date String (computer science)
End date String (computer science)

Start position String/unsigned Integer
End position String/unsigned Integer

Vehicle number String (computer science)
Membership type String (computer science)

When processing the test datasets in the experiment, trajectories of length n were
divided into trajectories of length n − 1 (>2) and trajectory of length 1 (a node) as the
to-be-predicted trajectories and the true prediction results, respectively. Trajectories could
not be divided with a trajectory length less than or equal to two. The datasets did not
have any trajectory with a length greater than or equal to seven. Therefore, the data length
threshold λ was set to three, four, five, and six in the experiment. A k-fold cross validation
was designed during the experiment to solve the problem in two aspects. In terms of data
volume, the k-fold cross-validation solved the problem of less data volume for the real data.
In terms of the scenario of VEC, the trajectory data in the real scenario had randomness.
The test datasets in the k-fold cross-validation were mutually exclusive each time, which
was more in line with the application of this scenario.

Finally, the evaluation index of the experiment was given according to a classification
problem. The accuracy of the algorithm in the experiment was analyzed based on the
evaluation index. Meanwhile, the prediction efficiency of the algorithm in the experiment
was analyzed according to the program running time.

Given a total of z samples in the experimental datasets, this paper calculated the
accuracy evaluation index in the experiments, namely,

Accuracy =
z

∑
j=1

Tj

Tj + Fj
(22)

where Tj denotes the number of samples predicted correctly, and Fj denotes the number of
samples predicted incorrectly in sample j. The experiment analyzed the accuracy by this
formula and the efficiency by the running time of the program.

4.2. Comparisons and Analysis with Deep Learning Methods

Comparisons with deep learning methods used real-vehicle datasets. In the TPPT
algorithm, the experimental results were taken as the highest and average values of accuracy
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and efficiency for different values of λ. The RNN and Transformer models used default
hyperparameters. The experimental results are shown in Table 3.

Table 3. Comparison of accuracy (%) of algorithms.

Algorithm Maximum Accuracy Average Accuracy

TPPT 78.3 66.3
RNN [13] 78.2 78.2

Transformer [14] 78.0 78.0

In terms of accuracy, the TPPT algorithm reached the highest accuracy when λ was
three, at which time it was better than the deep learning algorithms. However, the average
accuracy of the TPPT algorithm was not as good as the deep learning algorithms. Typically,
the length of the trajectory can be determined by users in VEC. Therefore, if users often
offload trajectories with shorter lengths, the highest accuracy is more important in VEC.
In order to further validate the applicability of deep learning methods, the experiment
recorded the time of the training process and prediction process of each algorithm. The
results are shown in Table 4.

Table 4. Comparison of training and prediction efficiency of the algorithms.

Algorithm Training Stage Predicting Stage
Minimum Time Average Time Minimum Time Average Time

TPPT 5.8904 43.6172 0.0045 0.5313
RNN 3355.9228 3355.9228 81.399 81.399

Transformer 3743.5721 3743.5721 698.6232 698.6232

The unit of time in Table 4 is the second. The TPPT algorithm proposed in this paper
was much better than the deep learning algorithms in terms of training and prediction
efficiency. In the training process, the training time of the algorithm proposed in this paper
was about 78 times less than that of the deep learning algorithms. In the prediction process,
the prediction time of the algorithm proposed in this paper was about 152 times less than
that of the deep learning algorithms. In the scenario of VEC, the deep learning algorithms
need to spend a lot of time to train the model, which cannot meet the real-time prediction
requirement. Therefore, deep learning algorithms are not suitable for application in the
scenario of VEC.

4.3. Comparisons and Analysis with the T-Pattern Algorithm
4.3.1. Accuracy Comparisons and Analysis

In the accuracy analysis of the algorithm, relevant experiments were firstly conducted
on the real-vehicle datasets. During the prediction process of the experiment, the number
of correct and incorrect amounts was recorded when λ was three, four, five and six. The
experimental results are shown in Table 5.

Table 5. Prediction results on the real-vehicle datasets.

λ Algorithm Correct Amount Incorrect Amount

3
TPPT 179,976 49,939

T-Pattern 159,226 70,689

4
TPPT 21,006 7786

T-Pattern 16,835 11,957

5
TPPT 3234 1949

T-Pattern 2136 3047

6
TPPT 541 510

T-Pattern 242 809
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According to the evaluation index, the accuracy of the three-fold cross-validation
was calculated. The results are shown in Figure 4. Overall, in terms of accuracy, the
prediction effect of the TPPT algorithm was better than that of the T-pattern algorithm.
The accuracy was improved by more than 10%. When λ became large, compared with
the T-pattern algorithm, the accuracy improvement of the TPPT algorithm became larger,
but the accuracy decreased. After analyzing the incorrect data, it was found that this was
because there were some trajectories that had not appeared in the historical trajectories.
When λ became large, the number of such data increased, and the accuracy decreased.
Meanwhile, when λ became larger, the T-pattern prediction tree had more geographic
information, which led to the accuracy improvement becoming larger.
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Then, experiments were carried out on the Capital Bikeshare datasets to again analyze
the accuracy. In these datasets, 3 months of vehicle trajectories were selected as the training
set and an adjacent month of vehicle trajectory was selected as the test set. The prediction
task in datasets is to predict the edge servers that will be passed in the future given any
trajectory whose nodes may not adjacent. The experimental results are shown in Table 6.

Table 6. Prediction results on the Capital Bikeshare datasets.

Training Set TEST Set Algorithm Correct Number

Data from Jan to Mar Data for Apr TPPT 648
T-Pattern 216

Data from May to Jul Data for Aug TPPT 837
T-Pattern 230

Data from Sep to Nov Data for Dec
TPPT 1084

T-Pattern 478

On the Capital Bikeshare datasets, the TPPT algorithm had more than twice the
number of correct predictions compared with the T-pattern algorithm. It can be noticed
that the number of correct predictions kept increasing over time. This was due to the
increasing quantity of data in the training set. Both the T-pattern prediction tree and the
T-pattern tree became larger and contained more information. Overall, there was a large
amount of randomness in the latter month’s vehicle trajectory used for the prediction.
The prediction result could be any one of thousands of nodes. The reason for the better
prediction results of the TPPT algorithm is that the T-pattern prediction tree optimizes
the statistical results. Specifically, the node with the highest probability of all the nodes is
calculated in combination with the historical data.
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4.3.2. Efficiency Comparisons and Analysis

Experiments were carried out on the real-vehicle datasets to analyze the prediction
efficiency of the algorithms proposed in this paper. During the experiments, the running
time of different algorithms with different λ’s was recorded as different values. The results
are shown in Table 7.

Table 7. Time used for prediction in the real vehicle datasets.

λ Algorithm Running Time (s)

3
TPPT 1.9925

T-Pattern 13.3361

4
TPPT 0.1048

T-Pattern 1.7502

5
TPPT 0.0234

T-Pattern 0.3809

6
TPPT 0.0045

T-Pattern 0.0907

The experimental results showed that the TPPT algorithm had a substantial improve-
ment in prediction efficiency, which was improved by more than 6.5 times relative to the
T-Pattern prediction algorithm. This is because the vehicle T-pattern tree in the TPPT algo-
rithm merges the repeated trajectories. Moreover, the T-pattern prediction tree prestores
the prediction results, which reduces the time complexity and improves the prediction
efficiency.

In addition, the threshold λ had a large impact on the algorithm’s prediction efficiency.
This is because the threshold λ determines the size of the data volume and the size of the
TPPT. In other words, at a lower threshold λ, the data volume is larger. The T-pattern pre-
diction tree also has a larger size resulting in a longer running time. In the real environment,
the TPPT only stores the trajectories related to the current edge server without traversing
the full number of historical trajectories. Therefore, the algorithm proposed in this paper
has a higher prediction efficiency in the real environment.

4.4. Performance Evaluation of Task Offloading

The above experiment demonstrates the performance of the prediction method. Ac-
cording to the proposed prediction method, we show illustrative results to demonstrate
the performance of our proposed strategies and optimization method. Similar to [7,8], we
compared with a local execution to analyze our time and energy consumption. We set
similar parameters for the task offloading as in [8]. The detailed parameters are shown in
Table 8.

Table 8. Detailed parameters of task offloading.

Parameter Description Value

ci Computation load of task i 100
fb Computation rate of server b 500
di Size of task i 20
fr Transmission rate 200
Pc

b Computation power of server b 200
Pc

r Transmission power of server b 150
tp Time consumption of prediction 0.5

In Table 8, the time consumption of the prediction is the average prediction time in
Table 4. The time and energy consumption were calculated through Equations (15)–(20).
During the experiments, we considered that the neighboring servers completed the corre-
sponding computation tasks before transferring the computation tasks to the third server.
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The waiting time of the third server was ignored. Meanwhile, due to the unavailability of
network dynamics, we distributed the computation tasks equally among the edge servers.

In terms of time consumption, the number of edge servers was set to two, three, four
and five in our proposed method. The time consumption was calculated when the number
of computational tasks was 10, 20, 30, 40 and 50. The calculation results are shown in
Figure 5.
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Figure 5 shows the time consumption varies with the number of computation tasks
under the four strategies. Overall, when the maximum tolerable delay is sufficient to
complete the computation tasks, the proposed strategy with the least servers consumes
the least amount of time. Namely, the strategy with two servers is superior to a local
execution and the strategies with more servers. The experiments demonstrate that the
strategy proposed in this paper consumes less time. Meanwhile, the experiments give
an inspiration to us. When there are more tasks and not enough server resources and
tasks have to be transmitted to multiple servers, the fewer servers used, the lower the time
consumption. In detail, when the number of tasks is greater than 40, both the strategies
with two and three servers outperform traditional local execution.

In terms of energy consumption, the setting was the same as that of time consumption.
The calculation results are shown in Figure 6.
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Figure 6 shows the energy consumption varies with the number of computation tasks
under the four strategies. Overall, the strategy with two servers always has the lowest
energy consumption, which proves that the strategy proposed in this paper is better than
the traditional task offloading in terms of energy consumption. With regard to details,
when the number of tasks is greater than 30, both the strategies with two and two servers
outperform the traditional strategy. Meanwhile, the difference in energy consumption
between the two strategies with two and three servers is small. Therefore, when optimizing
the strategy, the strategy with the minimum number of servers should be selected. Similarly,
in a dynamic network, if the number of servers is close, we need to select the best one based
on real-time traffic.

5. Conclusions and Future Work

In order to accurately and efficiently predict vehicle trajectories in task offloading, a
vehicle trajectory prediction framework based on the vehicle frequent pattern was proposed.
At initialization, a T-pattern prediction tree is constructed based on historical data. In the
prediction step, vehicle trajectories were predicted based on the T-pattern prediction tree.
In real-time updating, the T-pattern prediction tree was updated based on the feedback of
the prediction results.

The experiment was carried out on real-vehicle datasets and the Capital Bikeshare
datasets. First, the experiment proved that deep learning algorithms were not suitable to
the VEC scenario. Compared with the T-pattern algorithm, the accuracy of the proposed
algorithm was improved by more than 10% and the efficiency was improved by more than
6.5 times. It could provide accurate and effective vehicle trajectory prediction results for
task offloading in VEC.

In the future, we will conduct our research in three aspects.

• In terms of trajectory prediction, we will integrate more trajectory information to fur-
ther improve the accuracy and efficiency, such as coordinate, timestamp and distance.
Such information will affect the accuracy of trajectory predictions. In addition, such
information is helpful in VEC, which affects the strategies of task offloading.

• In terms of task offloading in VEC, we will incorporate more of the energy consumption
which is important in VEC. For the energy consumption, we may consider traffic
dynamics and load balance in VEC. In addition, we will use the blockchain to manage
the tasks.

• In terms of the styles of computing, we will try to use the TPPT in vehicular cloud
computing and vehicular fog computing. Since different paradigms have different
scopes of application, we will compare their application results.
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