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Abstract: With the increasing demand for person re-identification (Re-ID) tasks, the need for all-day
retrieval has become an inevitable trend. Nevertheless, single-modal Re-ID is no longer sufficient to
meet this requirement, making Multi-Modal Data crucial in Re-ID. Consequently, a Visible-Infrared
Person Re-Identification (VI Re-ID) task is proposed, which aims to match pairs of person images
from the visible and infrared modalities. The significant modality discrepancy between the modalities
poses a major challenge. Existing VI Re-ID methods focus on cross-modal feature learning and modal
transformation to alleviate the discrepancy but overlook the impact of person contour information.
Contours exhibit modality invariance, which is vital for learning effective identity representations
and cross-modal matching. In addition, due to the low intra-modal diversity in the visible modality,
it is difficult to distinguish the boundaries between some hard samples. To address these issues,
we propose the Graph Sampling-based Multi-stream Enhancement Network (GSMEN). Firstly, the
Contour Expansion Module (CEM) incorporates the contour information of a person into the original
samples, further reducing the modality discrepancy and leading to improved matching stability
between image pairs of different modalities. Additionally, to better distinguish cross-modal hard
sample pairs during the training process, an innovative Cross-modality Graph Sampler (CGS) is
designed for sample selection before training. The CGS calculates the feature distance between
samples from different modalities and groups similar samples into the same batch during the training
process, effectively exploring the boundary relationships between hard classes in the cross-modal
setting. Some experiments conducted on the SYSU-MM01 and RegDB datasets demonstrate the
superiority of our proposed method. Specifically, in the VIS→IR task, the experimental results on the
RegDB dataset achieve 93.69% for Rank-1 and 92.56% for mAP.

Keywords: Multi-Modal Data; VI Re-ID; modality discrepancy; Contour Expansion Module;
Cross-modality Graph Sampler

1. Introduction

Person re-identification (Re-ID) [1–7] is a complex computer vision task that focuses
on matching individuals across non-overlapping camera views. The main objective is
to associate images or videos of the same person while maintaining a low recall rate,
thereby reducing the likelihood of incorrect matches. Effective Re-ID techniques have
significant applications in various domains, such as surveillance, security, and public safety.
With the increasing demand for Re-ID, there is a need to match infrared person images
captured under challenging lighting conditions with visible person images. Consequently,
VI Re-ID [8–13] garners significant attention from both the industry and academia.
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Besides the intra-modal variations already present in single-modal Re-ID, a key chal-
lenge in the VI Re-ID task is how to reduce the modality discrepancy between visible and
infrared images of the same identity. Existing research approaches primarily rely on modal
transformation methods. These methods generate cross-modal or intermediate-modal
images corresponding to person images to convert heterogeneous modalities into a unified
modality, thereby reducing the modal discrepancy. Specifically, Generative Adversarial
Networks (GANs) [14] and encoder–decoder structures [15,16] are commonly introduced
in these methods. However, the transformation from infrared images to visible images
is ill-posed, which may introduce additional noise and fail to generate accurate visible
images. Moreover, GAN-based models [17] often overlook the relationships between global
features or local features of person images in the VI Re-ID task, leading to limited modal
adaptability in their methods.

To enhance the method’s adaptability to cross-modal challenges, some recent re-
searchers apply modal-shared feature learning to the VI Re-ID task, which projects visible
and infrared images into a specific shared embedding space, achieving cross-modal feature
alignment. These approaches can be further divided into global feature learning and local
feature learning. Specifically, global feature learning represents a person image as a single
feature vector, which is suitable for capturing overall person identity information. On the
other hand, local feature learning uses a set of feature vectors based on parts or regions to
represent the image, allowing for a more detailed capture of the local features of person
images. In addition, the two-stream convolutional neural network architecture is commonly
applied in such methods and combined with loss functions (such as identity loss, triplet
loss, etc.) for constraint.

Although these methods have achieved good results in alleviating the modality dis-
crepancy, they still have certain limitations: (1) Existing modal-shared feature learning
methods typically focus on exploring either global or local feature representations and
rarely combine the advantages of both features. Moreover, due to the nature of infrared im-
ages, which only contain a single channel reflecting objects’ thermal radiation, key features
like color cannot be utilized for cross-modal matching. Directly extracting features from
infrared images may also suffer from interference from identity-irrelevant information.
(2) These methods all adopt some basic sampling techniques, such as random sampling
and uniform sampling, which do not consider the relationships and similarities between
samples with different modalities. Additionally, in VI Re-ID tasks, there are limited features
that can be extracted when dealing with infrared modality retrieval, resulting in numer-
ous similar features among samples from different classes. Consequently, conventional
sampling methods struggle to capture the subtle differences between these similar features.

To address the aforementioned two issues, we propose a novel method named the
Graph Sampling-based Multi-stream Enhancement Network (GSMEN) in this paper. It is
noteworthy that when humans engage in the visual judgment of infrared surveillance, they
heavily rely on contour information. Despite the absence of color and texture features in
infrared images, contour and shape information remains clear and visible, as depicted in
Figure 1a with the contour image. It is evident that contours exhibit certain cross-modal
invariance between visible and infrared images [18]. Additionally, as contours provide
a holistic representation of a person rather than localized features, their global features
can better capture the characteristic information. This observation motivates us to extend
the global features of contours to the local features obtained from modal-shared feature
learning, with the aim of enhancing the feature representation capability and reducing
the cross-modal discrepancy between visible and infrared modalities. Consequently, the
Contour Expansion Module (CEM) is proposed to fuse the contour-enhanced features with
local features, resulting in improved matching performance for cross-modal image pairs.
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Figure 1. (a) Visible images and infrared images utilize the extended contour information obtained 
through contour detection to alleviate the modality discrepancy. Consequently, it becomes easier to 
match the same person between the visible and infrared modalities. (b) Different shapes represent 
different classes in the dataset. The CGS sampler first selects one class as an anchor. Next, it identifies 
the top-k nearest neighboring classes based on their distances to the anchor class. These selected 
neighboring classes are then included in the same batch for training. 

Then, to tackle the challenge of exploring the boundaries between hard classes in VI 
Re-ID task, an efficient batch sampling technique is introduced, known as the Cross-mo-
dality Graph Sampler (CGS). Specifically, CGS involves constructing nearest neighbor re-
lationship graphs for all classes in the visible and infrared modalities at the beginning of 
each epoch and then combining them. Subsequently, CGS conducts batch sampling by 
randomly selecting a sample as the anchor and choosing its top-k nearest neighboring 
samples of different classes, each class containing the same number of S instances, as il-
lustrated in Figure 1b. Therefore, CGS ensures that the samples within a batch are mostly 
similar to each other, providing informative and challenging examples for discriminative 
learning. This sampler aims to explore the boundary relationships between hard classes 
and enhance the discriminative power of the learned model. 

In summary, our contributions in the paper are as follows: 
• To enhance feature representation and reduce the cross-modal discrepancy between 

visible and infrared modalities, we propose the Contour Expansion Module (CEM), 
which combines the global features of contours with the local features obtained from 
modal-shared feature learning. To the best of our knowledge, this method represents 
the first attempt at tackling the VI Re-ID task. 

• To explore the boundaries between hard classes, we introduce the Cross-modality 
Graph Sampler (CGS). The sampler constructs nearest neighbor relationship graphs 
separately for the visible and infrared modalities, and then combines them for batch 
sampling. This sampling strategy ensures that samples within a batch are mostly sim-
ilar to each other, providing informative and challenging examples for discriminative 
learning. 

• We conduct experiments on large-scale VI Re-ID datasets, SYSU-MM01, and RegDB. 
The results demonstrate that our method achieves significant improvements in 
matching performance and modal adaptability. 

2. Related Work 
VI Re-ID aims to address not only the challenges of handling intra-modal differences 

but also the cross-modal disparities arising from heterogeneous images. Therefore, allevi-
ating cross-modal disparities is crucial, as they can exacerbate existing intra-modal differ-
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Figure 1. (a) Visible images and infrared images utilize the extended contour information obtained
through contour detection to alleviate the modality discrepancy. Consequently, it becomes easier to
match the same person between the visible and infrared modalities. (b) Different shapes represent
different classes in the dataset. The CGS sampler first selects one class as an anchor. Next, it identifies
the top-k nearest neighboring classes based on their distances to the anchor class. These selected
neighboring classes are then included in the same batch for training.

Then, to tackle the challenge of exploring the boundaries between hard classes in
VI Re-ID task, an efficient batch sampling technique is introduced, known as the Cross-
modality Graph Sampler (CGS). Specifically, CGS involves constructing nearest neighbor
relationship graphs for all classes in the visible and infrared modalities at the beginning
of each epoch and then combining them. Subsequently, CGS conducts batch sampling
by randomly selecting a sample as the anchor and choosing its top-k nearest neighboring
samples of different classes, each class containing the same number of S instances, as
illustrated in Figure 1b. Therefore, CGS ensures that the samples within a batch are mostly
similar to each other, providing informative and challenging examples for discriminative
learning. This sampler aims to explore the boundary relationships between hard classes
and enhance the discriminative power of the learned model.

In summary, our contributions in the paper are as follows:

• To enhance feature representation and reduce the cross-modal discrepancy between
visible and infrared modalities, we propose the Contour Expansion Module (CEM),
which combines the global features of contours with the local features obtained from
modal-shared feature learning. To the best of our knowledge, this method represents
the first attempt at tackling the VI Re-ID task.

• To explore the boundaries between hard classes, we introduce the Cross-modality Graph
Sampler (CGS). The sampler constructs nearest neighbor relationship graphs separately
for the visible and infrared modalities, and then combines them for batch sampling. This
sampling strategy ensures that samples within a batch are mostly similar to each other,
providing informative and challenging examples for discriminative learning.

• We conduct experiments on large-scale VI Re-ID datasets, SYSU-MM01, and RegDB.
The results demonstrate that our method achieves significant improvements in match-
ing performance and modal adaptability.
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2. Related Work

VI Re-ID aims to address not only the challenges of handling intra-modal differences
but also the cross-modal disparities arising from heterogeneous images. Therefore, alleviat-
ing cross-modal disparities is crucial, as they can exacerbate existing intra-modal differences.

To tackle these challenges, researchers attempt the modality-shared feature learning
approach [19–23], which focuses on extracting discriminative and robust features from het-
erogeneous modalities for the model’s learning process. For instance, Wu et al. [8] introduce
the large and challenging benchmark dataset (SYSU-MM01) and propose a deep one-stream
zero-padding network for RGB-IR image matching. Additionally, Fu et al. [19] present a
cross-modality neural architecture search method to enhance the effectiveness of neural
network structures for VI Re-ID tasks. Furthermore, Zheng et al. [24] adopt eight attributes
as annotation information in the PAENet to learn detailed semantic attribute information.

In recent years, image generation-based methods [14,25] are also applied to the VI
Re-ID task, aiming to narrow the gap between visible and infrared modalities by adopting
modality auxiliary information. For this purpose, Dai et al. [13] introduce a framework
based on Generative Adversarial Networks (GANs) [14] for cross-modal image generation
and propose cmGAN for feature learning. Similarly, Wei et al. [26] propose a comprehensive
modality generation module that combines features from different modalities to create a
new modality, effectively integrating multi-modal information. Additionally, Lu et al. [25]
introduce the Progressive Modality-shared Transformer (PMT), which employs grayscale
images as auxiliary modalities to enhance the reliability and commonality of visual features
across different modalities, addressing the negative effects of modality disparities.

Furthermore, it is worth noting that among various types of information in cross-modal
images (such as color, texture, and contour), contour information is crucial in cross-modal
retrieval, as it exhibits strong modality invariance. However, previous researchers did
not consider using it as auxiliary information to alleviate modality differences. Therefore,
we attempt to introduce it as auxiliary enhancement information to improve the image-
matching capability in VI Re-ID tasks.

3. Method

Our VI Re-ID framework is based on a two-stream convolutional neural network [4]
but incorporates contour information to enhance the model’s cross-modal adaptability.
The method we propose is outlined as shown in Figure 2, and the specific steps are as
follows: First, the Cross-modality Graph Sampler (Section 3.1) samples the dataset with
the aim of including categories that are close in distance into the same batch. The obtained
samples consist of two modalities: visible and infrared modalities, both of which are
obtained through contour extraction to produce their respective contour images. Next,
these four categories (two types of original images and their corresponding contour images)
of images are separately input into their corresponding backbone networks. Finally, the
resulting sample features and contour features are fused in the Contour Expansion Module
(Section 3.2) to mitigate the differences between the visible and infrared modalities.
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dality invariance. Hence, this inspired us to apply contour detection to the VI Re-ID task 
to alleviate the modal discrepancies. First, the pre-trained SCHP (Self-Correction Human 
Parsing) [29] is adopted as the contour detector to segment person contour maps from the 
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Figure 2. Framework of GSMEN. (a) CGS samples the samples into N batches separately. (b) The
inputs are divided into three categories: visible images, infrared images, and contour images obtained
through contour detection from the two modalities. (c) ResNet-50 [27] is introduced as the base
backbone network, supplemented with Non-local Attention [28] to enhance feature extraction. (d) The
CEM integrates local features from both Visible and Infrared modalities with global feature from the
contour modality.

3.1. Contour Expansion Module

The goal of contour detection is to identify pixels in the image that correspond to re-
gions with significant changes in grayscale values. Recently, there have been studies [23,25]
applying contour detection to object detection and semantic segmentation, achieving suc-
cess. The challenge in the VI Re-ID task lies in the significant differences between the
visible and infrared modalities. Additionally, contour information exhibits strong modality
invariance. Hence, this inspired us to apply contour detection to the VI Re-ID task to
alleviate the modal discrepancies. First, the pre-trained SCHP (Self-Correction Human
Parsing) [29] is adopted as the contour detector to segment person contour maps from the
images. Taking the visible image for example, the contour detection of visible image Xvis

is below:
Xvisc = σ(Xvis), (1)

where σ(·) denotes the contour detector, Xvisc represents the person contour map generated
from the visible image Xvis. Then, the obtained contour information needs to be integrated
into the original image information. However, the fusion methods [30–32] vary in diversity.
Therefore, this paper investigates the impact of different fusion methods on the experiments,
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including Element-wise addition and concatenation, as shown in Figure 3. Specifically,
Element-wise addition emphasizes the employment of contour feature to supplement
person image-related semantic information, while Element-wise concatenation expands the
feature dimension without losing the respective information of person image and contour.
Here are the specific fusion methods employed in this study.
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Element-wise addition. As shown in Figure 3b,c, we, respectively perform feature
addition before the CNN and after Conv Block n (1 ≤ n ≤ 5). The specific formula is
as follows:

Fvism
i = Fvis

i + Fvisc
i , (2)

where Fvism
i represent visible feature after merging contour feature Fvisc

i to basic visible
feature Fvis

i . i ∈ {RGB, conv-1, . . . , conv-5} represents the fusion methods shown in
Figure 3b,c. Specifically, Fvism

RGB represents the three-channel features obtained after trans-
forming the RGB image into RGB data.

Element-wise concatenation. As depicted in Figure 3a, we augment the local features
by incorporating the global feature of the visible image contours. Firstly, the visible
image and the contour image are separately processed through CNN to obtain features
Fvis

conv-5 ∈ Rc×h×w and Fvisc
conv-5 ∈ Rc×h×w, respectively. Next, the output features are subjected

to Generalized Mean Pooling for local and global feature pooling, resulting in features
Fvis

local ∈ Rc×h/p and Fvisc
gobal ∈ Rc:

Fvis
local = GEMPooling(Fvis

conv-5, (h/p, w)), (3)

Fvis
gobal = GEMPooling(Fvisc

conv-5, (h, w)), (4)

where GEMPooling(z, (x, y)) applies Generalized Mean Pooling [33] to z using a two-
dimensional scale with the height of x and width of y. p is the number of local body parts
in visible image. Then, 1 × 1 convolutional layers are utilized to adjust the number of
feature channels in Fvis

local and Fvisc
gobal to C. Finally, by concatenating the local feature Fvis of

the visible image with its contour image’s global feature Fvisc, the new visible feature Fvism

is obtained:
Fvism = concat(Fvis, Fvisc

)
, (5)

where concat(e, f ) represents the concatenation of feature e and feature f. Considering the
comparative experiments in Section 4.5.2, Element-wise concatenation better accomplishes
contour enhancement than other ways and is chosen as the fusion method for contour
information in CEM.

3.2. Cross-Modality Graph Sampler

Both DG Re-ID [34–38] and VI Re-ID [5,9–12] face the challenge of modality differences.
Furthermore, conventional sampling methods exhibit significant randomness, making it
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insufficient to distinguish the boundaries between hard classes. In contrast, the CGS
sampler effectively addresses this limitation by focusing on grouping similar samples into
the same batch. Combining with Figure 4, the details of CGS should be introduced below.
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the visible and infrared modalities are obtained based on the latest trained model. Then, they are
merged to obtain the cross-modal distances, denoted as dist. Next, the nearest neighbor classes are
grouped into the same batch based on the distance dist to complete the sampling process.

Before each epoch, we calculate the distances or similarities between classes using the
latest trained model and then construct a graph encompassing all classes. This approach al-
lows us to leverage the relationships between classes for informative sampling. To illustrate,
one image per class is randomly chosen to form a smaller sub-dataset. Next, the feature
Fvism ∈ RC×d should be extracted thought the latest trained model, where C represents
the total number of training classes and d is the feature dimension. Subsequently, the
pairwise Euclidean distances between all the selected samples are computed by the feature
Fvism ∈ RC×d. As a result, we obtain a distance matrix distv ∈ RC×C that encompasses
all classes:

distv = φ((Fvism, Fvism), dim = 0), (6)

where φ((x, y), dim = z) represents the pairwise Euclidean distances calculated for the
feature vectors x and y after aligning them along the zth dimension. Similarly, the process
is applied to the infrared modality sample set:

disti = φ((Fin f m, Fin f m), dim = 0), (7)

where Fin f m ∈ RC×d is the feature extracted from Infrared samples. Afterwards, to obtain
the neighboring classes across different modalities, the overall class distance matrix dist
can be obtained by adding matrices distv and disti together:

dist = distv + disti. (8)

Later, the top k − 1 nearest neighboring classes need to be denoted by N(c)
= {xi|i = 1, . . . , k− 1} from each class c, where k is the number of classes to sample in
each mini-batch. Subsequently, a graph G =(V, E) with V = {c|c = 1, . . . , C} represents
the vertices, where each class corresponds to one node, and E = {(c1, c2) | c2 ∈ N(c1)}
representing the edges. Finally, according to the graph G, we perform random sampling
of S instances per class to create a mini-batch containing B = K× S samples for training.
This approach allows us to establish connections between classes based on their proximity,
enabling informative sampling for our training process.
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3.3. Loss Function

Triplet loss Ltri [39] and Cross-entropy loss Lid are the fundamental losses for image
classification tasks. Moreover, the Barlow Twins loss Lssd [40] is a self-supervised learning
loss function, which is also introduced into our method to improve its performance. The
overall loss is computed as follow:

L = Lid + Ltri + Lssd (9)

4. Experiments
4.1. Datasets and Evaluation Protocol
4.1.1. Datasets

SYSU-MM01 [8] dataset consists of 491 different identities captured by four visible
cameras and two infrared cameras. It encompasses two search modes: All-Search mode
and Indoor-Search mode. Specifically, in the All-Search mode, the gallery set comprises all
images captured by the visible cameras, allowing researchers to explore scenarios where
all available visible cameras are employed for Re-ID tasks. In contrast, the Indoor-Search
mode utilizes images from indoor visible cameras as the gallery set, which is employed for
studying Re-ID tasks in indoor environments. The training set comprises 19,659 visible (VIS)
images and 1792 infrared (NIR) images, providing a diverse collection of data covering
395 distinct person identities. The test set consists of 3803 infrared images from 96 different
person identities, serving as the query set.

RegDB [41] dataset comprises pairs of images captured by visible and infrared cameras.
It contains images of 412 different identities, with each identity having 10 visible images
and 10 infrared images. These images are captured by a pair of cameras that overlap
with each other, providing a comprehensive set of data for evaluation. Additionally, in
order to effectively validate various methods, the dataset offers two testing protocols:
Infrared-to-Visible (IR-to-VIS) and Visible-to-Infrared (VIS-to-IR).

4.1.2. Evaluation Protocol

To assess the performance of both datasets, we employ standard evaluation protocols,
which incorporate Cumulative Matching Characteristics (CMC) [42], and mean Average Pre-
cision (mAP) [43] as evaluation metrics. Specifically, we conducted ten tests and computed
the average results across these tests.

4.2. Implementation

The proposed methodology utilizes the PyTorch deep learning framework and is
implemented on an NVIDIA RTX 3090 GPU. Building upon existing VI Re-ID methods,
a pretrained ResNet-50 [28] is employed as a backbone network. During training, all
images should be resized to the dimensions of 288× 144 and data augmentation techniques
(random cropping and random horizontal flipping) [44] are introduced.

The training process involves using the stochastic gradient descent (SGD) optimizer
with a momentum value of 0.9. The initial learning rate is set to 0.01, and a warm-up
strategy is employed to adjust the learning rate. Specifically, the learning rate is initialized
to 0.01 and undergoes 10 decays, each occurring every twenty epochs. The training is
stopped after 60 epochs. The number p of local body parts in Formula (3) is set to 6.

4.3. Comparison with State-of-the-Art Methods

In this section, a comparison between the proposed method and state-of-the-art VI Re-
ID approaches is conducted, including Cross-modal feature learning: DDAG [21], AGW [4],
cm-SSFT [45], GLMC [22] (best method), MPANet [12], LBA [46], CM-NAS [19], MMN [47],
MID [48]; Modal transformation: cmGAN [13], AlignGAN [49], Xmodal [17], SFANet [50],
AGMNet [51] (best method), and PMT [25]. According to Table 1, the results on the two
datasets demonstrate that the proposed GSMEN outperforms state-of-the-art methods,
achieving the outstanding performance. The specific comparisons are below:
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Table 1. Comparing data (%) between our method and other VI Re-ID methods. Red and bold signify the best result, while blue indicates the second-best result.

Method Venue

SYSU-MM01 RegDB

All-Search Indoor-Search VIS to IR IR to VIS

R-1 R-10 R-20 mAP R-1 R-10 R-20 mAP R-1 R-10 R-20 mAP R-1 R-10 R-20 mAP

cmGAN [13] IJCAI 18 26.97 67.51 80.56 27.80 31.63 77.23 89.18 42.19 - - - - - - - -
AlignGAN [49] ICCV 19 42.40 85.00 93.70 40.70 45.90 87.60 94.40 54.30 57.90 - - 53.6 56.30 - - 53.40

Xmodal [17] AAAI 20 49.92 89.79 95.96 50.73 - - - - - - - - 62.21 - - 60.18
DDAG [21] ECCV 20 54.75 90.39 95.81 53.02 61.02 94.16 98.41 67.98 69.34 86.19 91.49 63.46 68.06 85.15 90.31 61.80

AGW [4] TPAMI 21 47.50 84.39 92.14 47.65 54.17 91.14 95.98 62.97 - - - - - - - -
cm-SSFT [45] CVPR 20 61.60 89.20 93.90 63.20 70.50 94.90 97.70 72.60 72.30 - - 72.90 71.00 - - 71.70
GLMC [22] TNNLS 21 64.37 93.90 97.53 63.43 67.35 98.10 99.77 74.02 91.84 97.86 98.98 81.42 91.12 97.86 98.69 81.06

MPANet [12] CVPR 21 70.58 96.21 98.80 68.24 76.64 98.21 99.57 80.95 82.80 - - 87.70 83.70 - - 80.90
LBA [46] ICCV 21 55.41 - - 54.14 58.46 - - 66.33 74.17 - - 67.64 72.43 - - 65.46

SFANet [50] CVPR 21 65.74 92.98 97.05 60.83 71.60 96.60 99.45 80.05 76.31 91.02 94.27 68.00 70.15 85.24 89.27 63.77
CM-NAS [15] CVPR 21 61.99 92.87 97.25 60.02 67.01 97.02 99.32 72.95 84.54 95.18 97.85 80.32 82.57 94.51 97.37 78.31

MMN [47] ACM 21 70.60 96.20 99.00 66.90 76.20 97.20 99.30 79.60 91.60 97.70 98.90 84.10 87.50 96.00 98.10 80.50
MID [48] AAAI 22 60.27 92.90 - 59.40 64.86 96.12 - 70.12 87.45 95.73 - 84.85 84.29 93.44 - 81.41

AGMNet [51] TNNLS 23 69.63 96.27 98.82 66.11 74.68 97.51 99.14 78.30 88.40 95.10 96.94 81.45 85.34 94.56 97.48 81.19
PMT [25] AAAI 23 67.53 95.36 98.64 64.98 71.66 96.73 99.25 76.52 84.83 - - 76.55 84.16 - - 75.13

GSMEN Ours 72.97 98.93 99.43 70.54 78.22 97.38 99.24 80.13 93.69 98.04 99.13 92.56 91.41 98.09 98.77 92.08
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Evaluations on SYSU-MM01. In comparison with the state-of-the-art Cross-modal
feature learning method GLMC [22], our approach demonstrates significant superiority
in both the All-Search and Indoor-Search modes. Specifically, in the All-Search mode, our
method achieves a higher mAP and Rank-1 accuracy by 7.11% and 8.6%, respectively,
compared to GLMC. Similarly, in the Indoor-Search mode, our method outperforms GLMC
with a mAP and Rank-1 accuracy higher by 6.11% and 11.37%, respectively.

Furthermore, when compared to the current best Cross-modal feature learning method
AGMNet [51], our approach also achieves remarkable performance gains. In the All-Search
mode, our method surpasses AGMNet with a higher mAP and Rank-1 accuracy by 4.43%
and 3.34%, respectively. Similarly, in the Indoor-Search mode, our method outperforms
AGMNet with a mAP and Rank-1 accuracy higher by 1.83% and 3.54%, respectively.

Evaluations on RegDB. In comparison with the best-performing method in the VIS-
to-IR mode, our approach demonstrates remarkable superiority. Specifically, our method
achieves a higher mAP by 4.86% in this mode, showcasing its effectiveness in handling the
cross-modal matching between visible and infrared images.

Similarly, in the IR-to-VIS mode, our method outperforms the best-performing method
with a significantly higher mAP by 10.67%. This result highlights the exceptional capability
of our approach to effectively address the challenges of cross-modal matching between
infrared and visible images.

These impressive performance demonstrates the versatility and effectiveness of our
proposed method in handling VI Re-ID task.

4.4. Ablation Study

In this section, a comprehensive ablation study is conducted to thoroughly evaluate
the contributions of the Contour-oriented Enhancement Module (CEM) and the Cross-
modality Graph Sampler (CGS) in our proposed approach. By systematically adding or
removing these modules, we investigate their individual impacts on the performance of our
model. The results are presented in Table 2, where shows the mAP and Rank-1 accuracy
for each experimental setting.

Table 2. Ablation experiment results of our method. Training on SYSU-MM01 dataset. The bold
indicates the best result.

Settings
All-Search Indoor-Search

R-1 mAP R-1 mAP

B 62.73 60.81 66.32 67.01
B + CEM 71.24 68.57 77.08 78.26
B + CGS 65.18 62.42 68.54 69.94

B + CGS + CEM 72.97 70.54 78.22 80.13

First, we establish a baseline model [4] that comprises basic feature extraction and
re-ranking with K-reciprocal [52]. In the subsequent analysis, the All-Search evaluation
protocol on the SYSU-MM01 dataset [8] is applied as the benchmark for comparison. The
performance of the baseline model achieves a mAP of 70.54% and a Rank-1 accuracy
of 72.97%.

In the next step, to assess the influence of the CEM module, we integrate it into
the baseline model. The inclusion of the CEM module results in significant performance
gains, with mAP and Rank-1 accuracy increasing by 7.74% and 8.51%, respectively. This
demonstrates that the CEM module effectively enhances feature representation and reduces
modality discrepancy, contributing to the overall improvement in VI Re-ID performance.

Then, the impact of the CGS module is evaluated by incorporating it into the baseline
model. The addition of the CGS module also leads to notable performance improvements,
with mAP and Rank-1 accuracy increasing by 2.45% and 1.61%, respectively. The CGS
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module facilitates informative and challenging sample selection, effectively optimizing the
training data and further enhancing the model’s discriminative capability.

Finally, we examine the combined effect of both the CEM and CGS modules by
integrating them into the baseline model simultaneously. Remarkably, this joint integration
yields remarkable performance enhancements, with mAP and Rank-1 accuracy increasing
by 10.24% and 9.73%, respectively. The synergistic interplay between CEM and CGS
reinforces the feature representation and sample selection aspects, leading to substantial
overall improvements in the VI Re-ID task.

The ablation study demonstrates the effectiveness and significance of both the CEM
and CGS modules in our proposed approach. The CEM module successfully leverages
contour information to enhance feature representation, while the CGS module optimizes
the sampling strategy for informative and challenging examples. By understanding the
individual contributions of these modules, our study offers valuable insights into the design
of a robust and efficient VI Re-ID task.

4.5. Comparison Experiment
4.5.1. Comparison Experiment of Sampling Methods

In our comparative experiments on different sampling methods, namely Random
Sampler, Uniform Sampler, and our proposed Cross-modality Graph Sampler (CGS), we
observe significant differences in their performances from Figure 5. Specifically, our CGS
sampling method outperformed both Random Sampling and Uniform Sampling by a
notable margin. The mAP achieved with CGS is 1.81% higher than Random Sampling and
2.41% higher than Uniform Sampling on the SYSU-MM01 dataset with All-Search mode.
This result clearly demonstrates the superiority of our CGS sampling approach in improving
the overall performance of the VI Re-ID task. Compared to other sampling methods
that exhibit randomness, CGS leverages the relationships among classes and ensures
that instances within a batch are mostly similar, providing informative and challenging
examples for discriminative learning. By incorporating such informative sampling, our
method is better able to handle cross-modal challenges and effectively capture subtle
differences between similar features, leading to the improved performance observed in the
experiments (Table 3).
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Table 3. Comparison experiments of different sampling methods. Training on SYSU-MM01 dataset.
The bold indicates the best result.

Settings
All-Search Indoor-Search

R-1 mAP R-1 mAP

Random Sampler 72.02 68.73 77.18 78.54
Uniform Sampler 71.28 68.13 76.62 78.77

Cross-modality Graph Sampler 72.97 70.54 78.22 80.13

4.5.2. Comparison Experiment of Fusion Methods

Besides, considering Section 3.1, for the method of fusing contour information, com-
parative experiments need to be conducted on different feature fusion methods, such as
Element-wise addition and Element-wise concatenation (EC). Therefore, some comparative
experiments are shown in Figure 5a, which can help determine which fusion method
performs best in the task. Specifically, when our model adopts the Element-wise Concate-
nation fusion method, the mAP and Rank-1 accuracy of 72.97% and 70.54% is achieved,
which outperformed other fusion methods and showed the best overall fusion performance.
Taking into account the above analysis, the Element-wise Concatenation fusion method is
employed for integrating contour information in this paper.

4.5.3. Comparison Experiment of the Contour Detectors

For the selection of contour extraction methods, two options are considered: Canny
edge detection and Self-Correction Human Parsing (SCHP). Therefore, a comparative anal-
ysis is conducted, and the specific results are shown in Table 4. Specifically, under the
Indoor-Search mode, the SCHP method outperformed the Canny edge detection method
with a Rank-1 accuracy improvement of 7.93% and an mAP improvement of 5.65%. These re-
sults indicate that the SCHP method is better suited for contour extraction in our approach.

Table 4. Comparison experiments of different contour detectors. Training on SYSU-MM01 dataset.
The bold indicates the best result.

Settings
All-Search Indoor-Search

R-1 mAP R-1 mAP

Canny edge detection [53] 71.23 67.59 70.29 74.48
SCHP [29] 72.97 70.54 78.22 80.13

4.5.4. Comparison Experiment of the Output Channel

Furthermore, before employing the Element-wise Concatenation fusion method to
merge the contour global features with the local features obtained from modal-shared
feature learning, the output channel values of the contour global features are also worth
our attention. In Figure 5b, we compare the output channel values of contour global
features from 1 × 1 Conv. Our model achieves better performance when the output
channel is set to 512. This result indicates that setting the output channel to 512 enhances
the representation capability of our model for fusing contour information. This finding
confirms the significance of selecting an appropriate output channel value for the effective
utilization of contour global features and the enhancement of model performance.

4.6. Qualitative Analysis

In this section, we compare our proposed method with the AGW [4] approach using the
SYSU-MM01 dataset. For the comparison, two sample images are selected, one depicting
the frontal view and the other showing the rear view of individuals, as query samples. The
Rank-10 visualization results are presented in Figure 6.
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Upon analyzing the results, we observe that our method, with the inclusion of contour
information and the utilization of the CGS sampler, effectively improves the retrieval per-
formance. Specifically, in the case of the AGW method, there are instances of two erroneous
matches in the rearview image retrieval, where these two images belong to the same class.
In contrast, our method achieves correct Rank-10 results for all samples, indicating the
superiority of the CGS sampler in distinguishing between similar samples from different
classes. Moreover, when using the frontal view as a query sample, the AGW method shows
three incorrect matches. These errors can be attributed to the similarity in backgrounds
between these samples and the query sample. However, there are noticeable differences in
the contour information between them. After enhancing the contour information in our
method, only one matching error was observed, showcasing the significant role of contour
assistance in enhancing matching capability.

Overall, these qualitative analyses demonstrate that the integration of contour infor-
mation and the utilization of the CGS sampler effectively address the challenges posed by
modal discrepancies and improve the precision and accuracy of the VI Re-ID task.

5. Conclusions

In this paper, we propose the Graph Sampling-based Multi-stream Enhancement
Network (GSMEN) for the VI Re-ID task. The GSMEN integrates contour information with
the globally shared contour features obtained from modal-shared feature learning. This in-
tegration aims to enhance feature representation and reduce cross-modal discrepancy. Our
approach introduces the Contour Expansion Module (CEM) for fusing contour-enhanced
features with local features and the Cross-modality Graph Sampler (CGS) for effective
batch sampling. Experimental results on large-scale datasets demonstrate significant im-
provements in matching performance and modal adaptability. Our contributions include
the novel CEM approach and the efficient CGS sampler, which show promising potential
for VI Re-ID in various applications.
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