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Abstract: Lidar presents a promising solution for bird surveillance in airport environments. However,
the low observation refresh rate of Lidar poses challenges for tracking bird targets. To address this
problem, we propose a gated recurrent unit (GRU)-based interacting multiple model (IMM) approach
for tracking bird targets at low sampling frequencies. The proposed method constructs various
GRU-based motion models to extract different motion patterns and to give different predictions
of target trajectory in place of traditional target moving models and uses an interacting multiple
model mechanism to dynamically select the most suitable GRU-based motion model for trajectory
prediction and tracking. In order to fuse the GRU-based motion model and IMM, the approximation
state transfer matrix method is proposed to transform the prediction of GRU-based network into an
explicit state transfer model, which enables the calculation of the models’ probability. The simulation
carried out on an open bird trajectory dataset proves that our method outperforms classical tracking
methods at low refresh rates with at least 26% improvement in tracking error. The results show that
the proposed method is effective for tracking small bird targets based on Lidar systems, as well as for
other low-refresh-rate tracking systems.

Keywords: small bird tracking; target tracking; gated recurrent units; interacting multiple model;
Lidar

1. Introduction

Bird strikes are a kind of collision between a bird and an aircraft in a moving state. With
the rapid development of civil aviation, the number of aircraft flying in the air has increased
continuously and rapidly, leading to an increasing number of bird strike events [1]. Direct
and indirect losses due to bird strikes are estimated to be over USD 124 million in 2021
alone according to the report of the Federal Aviation Administration [2,3]. Bird strikes pose
a significant challenge to aviation safety, and bird monitoring and early warning in airports
and their surrounding airspace is of great significance to ensure the safety of civil aviation
operations. However, birds are typically low-flying, small, and slow-moving targets that
are difficult to track effectively with conventional microwave radar [1,4]. Single-photon
counting Lidar is a kind of Lidar using time-correlated single-photon counting (TCSPC)
detection technology [5], which not only inherits the high-resolution and high-accuracy
detection capability of Lidar but also greatly improves the detection sensitivity of the
system to the target echo photons thanks to the use of TCSPC technology. Therefore,
single-photon counting Lidar has emerged as a promising solution for the detection and
tracking of bird targets at airports.

However, the use of TCSPC technology in Lidar requires more time to scan the target
in order to accumulate sufficient echo photons and thus to reduce the impact of background
light noise, resulting in a low scanning frequencies. This limitation leads to fewer sampling
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points for the target under surveillance and makes it difficult to detect changes in target
motion; bird trajectories thus exhibit characteristics similar to manoeuvring targets with
multiple motions and high mobility. As shown in Figure 1, we can see the target motion
change is clear and easy to track when the sampling frequency is high, but the target motion
change is difficult to track at low sampling frequencies. Furthermore, the characteristics
of the motion transition process also vary over the course of the target’s moving, which
increases the complexity of bird tracking. Therefore, the first problem to be solved is the
inability to represent the motion model due to the low sampling frequency. For small bird
tracking in a Lidar system, the small bird is only a single point on the Lidar scanning map,
which is indistinguishable in terms of photon echo intensity and size from false-alarm
points of Lidar due to background noise. Since the changes in the target motion are difficult
to predict precisely, false-alarm points have the probability to be considered the target
with motion changes; this fact also increase the difficulty of small bird tracking. Therefore,
the second problem to be solved is the false-alarm point filtering. To enable Lidar in bird
surveillance in airports and their surrounding airspace, this paper focuses on small bird
tracking on a Lidar system under the low-sampling-frequency condition to develop a
nonlinear bird model representation method and a false-alarm point filtering method.

Figure 1. Trajectory at different sampling time intervals.

For the tracking problem, classical tracking methods, including Kalman filter (KF) [6,7],
extended Kalman filter (EKF) [8,9], unscented Kalman filter (UKF) [10,11], and particle filter
(PF) [12,13], are commonly used for target tracking. The KF method is an efficient recursive
state estimation method which can give optimal state estimation when the target can be
described by a linear model and thus has a good tracking performance in long-distance
bird migration [14]. In [6], the authors combined the KF method with belief propagation
to achieve manoeuvring multi-target tracking, but it is not suitable for regional area bird
tracking. Based on the KF method, the EKF method linearlizes the nonlinear model at each
estimated state to propagate an approximation. Although the EKF method is widely used
in practice, the EKF method is only able to linearize the given nonlinear model and does
not allow for model modification, making it difficult to deal with motion changes during
bird target tracking in a Lidar system. The UKF and PF methods use a probability model in
place of a determined motion model, and they show good tracking capability for nonlinear
manoeuvring targets. However, limited by the probability update method that usually
requires multiple samples for an accurate estimation, they may not be able to effectively
track bird trajectories with multiple motions at low sampling frequencies due to the lack of
sampling for one motion. All these methods are based on a single dynamical model, which
cannot achieve satisfactory performance when the motions of manoeuvring targets show
great complexity and diversity and vary unexpectedly [15,16]. To track high manoeuvring
targets, the interacting multiple model (IMM) algorithm has been proposed [17–19], where
multiple models are used in parallel to track the target and their estimates are weighted and
combined to give a final estimate and prediction. In [20], the authors combined the IMM
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mechanism and PF method to track manoeuvring targets, and a new modified IMM based
on UKF was proposed to track ballistic missile motion in [21]. All these approaches provide
interesting tracking performances. However, the performance of the IMM method still
depends on the choice of determined motion models, and the IMM mechanism can select
or combine the results of multi-models based the models’ probability, but it cannot update
the models to keep up with the motion change in the manoeuvring targets. Moreover,
the models’ probability in the IMM mechanism is a difficult task to be dedicated with an
analysis by leveraging a priori information [21]. And, performance degradation appears
when the number of models used in the IMM mechanism to describe the manoeuvring
target motion increases [22].

In recent years, deep learning-based target detection and tracking methods have at-
tracted the attention of many scholars. In contrast to classical tracking methods, which rely
on mathematical models and assumptions about the target’s motion, deep learning-based
methods offer the potential to learn complex motion patterns directly from data. deep
neural networks (DNNs) methods, such as long short-term memory (LSTM) [23,24], gated
recurrent unit (GRU) [25,26], and Transformer [27,28] have been introduced for handling
time series information in target tracking problems and have achieved significant results in
pedestrian trajectory tracking and multiple object tracking, thanks to their ability to extract
time series features and to generate nonlinear models. In [29], authors proposed a trajectory
tracking method using feed-forward neural networks instead of KF methods, which sig-
nificantly increased the tracking performance, even though the computational complexity
was higher than that in traditional methods. In [30], the authors established a bi-directional
LSTM-based manoeuvring target tracking algorithm for civil aircraft tracking to solve the
problem that manoeuvre motion cannot be modelled in time with predefined multiple
models. The neural network can track manoeuvring targets after sufficient training, but
the large complexity affects the practical application. The authors in [31,32] combined the
theory of DNN and traditional tracking filters, proposing an IMM-LSTM model algorithm
to track manoeuvring targets in different scenarios and achieved promising performance.
However, this method requires input data at high sampling rates, and a significant degra-
dation appears when the sampling time interval is larger than 1 s, which is not suitable
for track trajectories effectively at low sampling frequencies. The combination of DNN
and model-based tracking methods has also been explored [33–35] at a temporary low-
sampling-rate condition; the authors proposed to use the prediction data from the DNN
method when a measurement is not available in the system failure condition and thus
ensuring that the tracking process of a Kalman filter works properly. These applications
also require the help of high-sampling-frequency-sampled historical data, which cannot be
satisfied in a Lidar system since it always works at low sampling frequencies.

To better illustrate the state of the art, we classify the tracking methods according to
three standards: (1) the quantity of models; (2) the basis of models; and (3) the ability to
track a manoeuvring target, as shown in Figure 2. Regarding the quantity, the tracking
methods can be separated into single model and multiple models. Regarding the basis,
the tracking methods can be categorized as data-driven and model-driven. Regarding
the ability to track a manoeuvring target, the methods can be classified as a weak ability
model, a medium ability model, and a strong ability model. Different from other existing
tracking methods, we focus on data-driven methods with multiple models to achieve a
strong ability to track manoeuvring targets, so that we can handle the situation with low
sampling frequencies.

In this paper, focusing on the urgent needs to address the current bird tracking
problem on Lidar systems, we address two main problems: (1) bird tracking under the
low-sampling-frequency condition and (2) false-alarm point filtering. A novel approach
named IMM-GRU is proposed by combining a gated recurrent unit (GRU)-based motion
model with the interacting multiple model (IMM) mechanism. Inspired by the capability
that deep learning methods have shown in model learning based directly on data, we use
a GRU-based network to extract the motion features of bird targets. Since the architec-



Sensors 2023, 23, 7933 4 of 19

ture of a GRU network is usually complex and costly, multiple small GRU architectures
are implemented to learn different independent motion patterns at different sampling
frequencies. In order to select and fuse the most suitable GRU-based motion model for tra-
jectory prediction and tracking, the interacting multiple model mechanism is dynamically
integrated and the probability function is built to evaluate each model. Finally, a simple
back-tracking correction mechanism is proposed to reduce the impact of a false-alarm point.
The experimental results demonstrate the effectiveness of our proposed method in bird
trajectory tracking, surpassing the performance of conventional tracking methods. The
main technical contributions of this paper are as follows:

• The development of an IMM-GRU tracking method that combines the IMM mecha-
nism and GRU-based nonlinear motion models to enable effective tracking of bird
targets at low sampling frequencies.

• The introduction of an approximation state transfer matrix to approximate the explicit
representation of the GRU-based motion model, which enables the fusion of the
GRU-based motion model and IMM mechanism, and model selection.

• The use of the back-tracking correction mechanism improves the prediction perfor-
mance and the robustness to false-alarm points.

Figure 2. Position of the proposed method in the state of the art.

The structure of this paper is organized as follows. In Section 2, we provide an intro-
duction to our proposed IMM-GRU method for manoeuvring target tracking. We explain
how the IMM mechanism is integrated with GRU networks to enable effective tracking
of bird trajectories. In Sections 3 and 4, we present the results of numerical simulations
that assess the performance of our proposed algorithm. We compare its performance with
several classical methods commonly used in target tracking. In Section 5, we conclude the
paper with a summary of our findings and potential future research directions in the field
of bird trajectory tracking.

2. IMM-GRU Method

As bird targets need to overcome gravity in flight with the help of wind, the movement
of bird targets usually changes slowly in the altitude direction, which is easy to track. Based
on this motion characteristic, the tracking of bird targets can be divided into two separate
parts: horizontal position tracking and altitude position tracking. Only the horizontal
position tracking part is affected by a low Lidar sampling frequency, and our bird target
tracking problem can therefore be reduced to a two-dimensional planar tracking problem.

The aim of tracking problem that this paper addresses is to estimate the states of a
bird target at time k and to predict the states at time k + 1 according to the sequence of
observations measured up to time step k. The moving model and measurement model of
bird target are described as follows:
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Xk+1 = f (Xk) + qk (1)

Zk = HXk + rk (2)

where Xk = [xk, vxk , yk, vyk ]
T denotes the target state at time k and Zk = [xo

k , vo
xk

, yo
k, vo

yk
]T

represents the measurement at time k. Since Lidar measures the distance of a target by
using a laser pulse, the velocity measurement of the target based on the Doppler effect of
the microwave echo in a conventional radar is no longer applicable for the laser pulse due
to high laser frequencies, so we use the difference between two adjacent observed positions
as the observed velocity of the target. H is the noiseless measurement matrix, f (·) is the
time-varying nonlinear state transition function that presents the bird’s moving process. qk
and rk are the process noise and measurement noise, and (·)T is the transpose operation.

The principle of IMM-GRU is depicted in Figure 3, which includes four steps: noise
filtering, state estimation, model probability update, and trajectory prediction. In this
approach, at each time step, we first filter out the false-alarm measurements based on the
prediction at the previous time step. Afterwards, the estimated state is derived based on
the previous prediction and the measurement at the current time step. Subsequently, the
probabilities of the motion models are updated based on the measurement and covariance
of the estimated state. Finally, n motion models are employed to match the change in motion
and to predict the target trajectory, and the prediction is combined based on the updated
probabilities. The following parts will successively present the process and function of
each step in detail. Since all the processes are cycled over time, we start from the trajectory
prediction step to make it easier to understand.

Figure 3. The principle of IMM-GRU.

2.1. Trajectory Prediction

At low sampling frequencies, the motion change information of a bird target is very
complex: a target can change motions several times during a sampling time interval, and it
can also maintain the same motion for long time. To address the variability in the motion
model of small bird targets under the low sampling frequency condition of Lidar, we
developed multiple GRU-based deep neural networks for target trajectory prediction based
on the previous L historical observation data. Each GRU-based model was trained with
designed data in order to learn a motion change rule that is different from the others.
The proposed strategy tries to give all potential possible predictions.

The GRU-based neural network framework is shown in Figure 4: the GRU network
consists of an input layer, a hidden layer, and an output layer. The required historical data
input length is L. Take the jth GRU-based model as an example; in the input layer, the
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measurements and state estimates of the target at time step k are spliced to feed the GRU
network as input Y j

k, which is written as follows:

Y j
k = concat(X̂ j

k, Zk) (3)

where X̂ j
k is the estimated state given by the jth model. The simultaneous input of mea-

surement and estimation information into the network helps the network to extract the
information embedded in measurement and estimation. This strategy can not only reduce
the prediction error caused by the mistake of treating a false-alarm point as a measurement
with the help of the measurements but also adaptively retains information about the motion
changes embedded in the measurement based on the estimation information.

Figure 4. The structure of the GRU-based motion model.

The hidden layer consists of M bidirectional GRUs which are stacked together, with
one bidirectional GRU taking in outputs of the previous bidirectional GRU, computing its
output, and giving the output to the next bidirectional GRU. The GRUs extract successively
useful information from the input and then update the features stored in the hidden layer,
which are extracted from the historical measurement Z0:k and states X̂ j

0:k. In the GRU-based
network, the processing of the mth bidirectional GRU at time step k can be described
as follows:

−→
h (m)

k = GRU(h(m−1)
k ,

−→
h (m)

k−1) (4)
←−
h (m)

k = GRU(h(m−1)
k ,

←−
h (m)

k−1) (5)

h(m)
k =

−→
h (m)

k ⊕
←−
h (m)

k (6)

where
−→
h (m)

k−1 is the forward hidden feature,
←−
h (m)

k−1 is the backward hidden feature, h(m)
k

is the output of the mth hidden layer, ⊕ is the element-wise sum operation, and GRU(·)
is the GRU operation. The initial hidden feature h(0)k at time step k is the input of GRU

network Y j
k.
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The final features h(M)
k of the Mth bidirectional GRU are given to the output layer,

which consists of a full connection and tanh activation functions. Finally, the network gives
the prediction X j

k+1/k.

X j
k+1/k = tanh(Whh(M)

k + bh) (7)

where Wh is the weight matrix of the final hidden state and bh is the bias coefficients. Then,
the prediction Xk+1/k is given by combining all predictions of n motion models:

Xk+1/k =
n

∑
j=1

µ
j
kX j

k+1/k (8)

where µ
j
k is the probability of the jth motion model at time k, and the calculation of µ

j
k will

be described in the probability update process.

2.2. Noise Filtering

After the trajectory prediction, n different predictions are given by n different motion
models. In this step, we first find the approximate transfer matrix to describe the transition
from the current estimated state to the prediction. Then, we give the range of possible
locations of the target at time k + 1 and the corresponding probabilities. Finally, we filter
the false-alarm points based on the probabilities given in the previous step.

Since the GRU network can neither output a representation of the displayed state
transfer matrix nor the probabilities of a range, the prediction of the jth motion model
X j

k+1/k given by the GRU-based network is only a prediction point, which does not offer
enough range information to filter noise. Therefore, we first construct an approximate
one-step state transfer matrix based on a combination of the constant velocity (CV) model
and constant turn rate (CT) model:

Fk+1/k = αFCV + (1− α)FCT (9)

α = arg min
α∈[0,1]

∥∥∥FX̂ j
k − X j

k+1/k

∥∥∥
2

(10)

where X̂ j
k is the estimated state of the jth motion model at time k; α is a coefficient of the

model; and FCV and FCT are, respectively, the state transfer function of CV model and CT
model, which are expressed as follows:

FCV =


1 T 0 0
0 1 0 0
0 0 1 T
0 0 0 1

 (11)

FCT =


1 sin(ΩT)

Ω 0 − 1−cos(ΩT)
Ω

0 cos(ΩT) 0 − sin(ΩT)
0 1−cos(ΩT)

Ω 1 sin(ΩT)
Ω

0 sin(ΩT) 0 cos(ΩT)

 (12)

where Ω is the angular velocity in the CT model and T is the time interval between two
adjacent steps.

Afterward, we calculate the covariance of prediction Sk+1/k based on the approximate
one-step state transfer matrix Fk+1/k:

Sk+1/k = Fk+1/kSkFT
k+1/k + Qk+1/k (13)

where Sk is the covariance of estimated state at time k and Qk+1/k is the covariance of the
noise in the moving process.
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Then, we use the mixture Gaussian model to describe the probability of location at
time k + 1 for the target:

P(Xk+1|Z0:k) ∼
n

∑
j=1

µ
j
kN (X j

k+1/k , Sj
k+1/k) (14)

where µ
j
k is the probability of the jth motion model at time k. Suppose that we obtain D

measurement points at time k + 1, noted as Zd
k+1, the noise filter process is then to find

the measurement that maximizes the probability P(Zd
k+1|Z0:k) and this measurement is

considered the measurement of the target Zk+1 at time k + 1.

2.3. State Estimation and Probability Update

In this step, we follow the Kalman filtering process to calculate the estimated state
X̂ j

k+1 and the covariance of estimated state Sj
k+1:

Gk+1 = Sk+1/kHT(HSk+1/kHT + Rk+1)
−1 (15)

X̂ j
k+1 = X j

k+1/k + Gk+1(Zk+1 −HX j
k+1/k) (16)

Sj
k+1 = (I−Gk+1H)Sk+1/k (17)

where Rk+1 is the covariance of the noise in a measurement and Gk+1 is the Kalman gain.
After the estimation of the current state, we update the probability of each motion

model. The measurement Zk+1 can be expressed by the jth motion model with the proba-
bility:

P(Zk+1|X̂
j
k+1) ∼ N (X̂ j

k+1 , Sj
k+1) (18)

As we have the probability of each motion model µ
j
k, which is the same as the prob-

ability of X̂ j
k+1, the probability of the j motion model at the current time step is obtained

using the Bayesian rule:
µ

j
k+1 ∝ P(Zk+1|X̂

j
k+1)µ

j
k (19)

Now, we obtain the estimated state, the measurement, and the updated motion model
probability; we then follow the first trajectory prediction process to predict the location of
the target at the next time step, by which we can iteratively track and update the state of
the target.

2.4. Back-Tracking Correction

In a Lidar system, the false-alarm rate Pf a is used to describe the ratio of points
generated by noise to all measured points in the radar scan. Thanks to the application of
TCSPC technology, the false-alarm rate Pf a is generally very low (lower than 5%). When
the sampling frequency of the Lidar is sufficient, the effect of false-alarm points on target
tracking is negligible due to accurate estimation of the target’s state. However, when the
radar sampling frequency is insufficient, even a low false-alarm rate can have a large impact
on the performance of target tracking due to the large errors in the estimation of the target
state during tracking. In the bird target tracking process presented above, there is always
a probability that a false-alarm point will be taken as the measurement of a real target
during the noise filtering process. The mistaken measurement point therefore interferes
with the following L− 1 steps of target tracking even though the following measurements
are correct because the GRU-based trajectory prediction models require L historical data
as input. In order to reduce the impact of incorrectly selected false-alarm points on the
following target tracking process, we propose a simple back-tracking correction mechanism.
The principle of the back-tracking correction mechanism is explained in Figure 5.



Sensors 2023, 23, 7933 9 of 19

Figure 5. The principle of back-tracking correction.

At the noise filtering step of time k, we can calculate the probability that a measurement
Zd

k is the measurement of a real bird target P(Zd
k |Z0:k−1), as shown in Equation (14). We sort

the measurement points by probability from highest to lowest and keep at most the first D′

points that satisfy the condition:

P(Zd
k |Z0:k−1) ≤ η (20)

where η is the selection threshold. If none of the measurements satisfy this criteria, we
can release the constraint on η to choose at least one measurement point. For the D′

points, we choose the point with the maximum probability as the measurement to continue
the tracking process, as designed previous. The remaining points are kept and called
alternative points; we treat each alternative point separately as a real measurement point
and continue the target process independently until the noise filtering step at time k + 1.
Suppose that we have D′ prediction areas at time k + 1 and D′ new measurement points
satisfying the threshold criteria shown in Equation (20); then, there are D′ 2 combinations.

Then, we will select the measurement point Z
dj
k+1 and the historical trajectory {Z1:k−1, Zdi

k }
with the maximum probability P(Z

dj
k+1|Z1:k−1, Zdi

k ) to continue the tracking process. The re-
maining D′ − 1 different combinations with the next highest probability are alternative
historical trajectories.

Since the false-alarm rate Pf a is very low, the probability that two consecutive false-
alarm points are considered measurements of the real target is less than P2

f a and can be

ignored. We note Zt
k as the measurement of the target and note Z f

k as the false-alarm point
at time k. Suppose that we have a mistake at time step k, since the measurements of a
target have time-related relevance and the false-alarm points appear randomly, we have
the following:

P(Zt
k+1|Z0:k−1, Zt

k) > P(Zt
k+1|Z0:k−1, Z f

k ) (21)

As a result, we take the trajectory { Z0:k−1, Zt
k, Zt

k+1 } to continue tracking, and correct
the mistake made at time k by the back tracking correction mechanism.

In this mechanism, the threshold η ensures that most of the obvious false-alarm points
are filtered out, which preliminarily reduces the measurement point quantity. Then, we keep
D′ different historical trajectories at most at each time step, which avoids an exponential
increase in complexity and can effectively further reduce the number of possible historical
trajectories. The proposed mechanism corrects the mistake that a false-alarm point is
considered as a real target and reduces its impact without introducing high complexity.
Therefore, we keep at most D′ trajectories per loop, and at least one trajectory when only
one combination satisfies the two criteria. The performance and complexity depend on the
choice of D′, η, the false-alarm rate, and the prediction error in actual operation. We will
evaluate the mechanism and explain it later in the Results Analysis section.

3. Experimental Setup
3.1. Data Preparation

In this research, a pigeon trajectory dataset is used [36]. There are three pigeon groups
in the trajectory dataset, and each group contains 10 pigeons. The trajectory is obtained from
the GPS device on the pigeons, and the trajectory information contains three-dimensional
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position, velocity and acceleration data with a sampling interval of 0.1 s. Since pigeons stop
flying from time to time, a new trajectory begins when the pigeon starts to fly again. Even
though the trajectories of different pigeons belonging to the same flock have a similarity
with each others, it can be assumed that each trajectory has a uniqueness due to the splitting
and aggregation of pigeon flocks. Therefore, each pigeon has its own unique trajectory, and
we track a pigeon on its unique trajectory. In order to simulate Lidar scanning data, only the
horizontal position information (X,Y position) are used in the simulation, and the velocity
information is obtained by differentiating the position information during the simulation.
The original data in the dataset are downsampled at different sampling time intervals ∆t
from 0.1 s to 5 s with 0.1 s step. Finally, all trajectories are divided into a training set, a
validation set, and a test set with a ratio of 8:1:1. In order to simulate real scenario noise on
a Lidar system, we add white Gaussian noise with the probability distribution N (0, 4δl2),
where δl is Lidar detection resolution that depends on the average distance between the
target and the Lidar location [37], and thus, δl varies from 0.5 m to 3 m in the simulation.

3.2. Implementation Details

In this paper, five GRU-based motion models are implemented for IMM-GRU method.
Each motion model has the same architecture: the GRU layer M is set to 2, the dimension
of hidden features is set as 32, and the input data length L is set to 7. In order to learn
the characteristics of different motion change information, the downsampled trajectories
are divided into five categories according to ∆t ∈ {[0.1, 1], [1.1, 2], [2.1, 3], [3.1, 4], [4.1, 5]}:
the data with ∆t ∈ [0.1, 1] and [4.1, 5] contain, respectively, the slowest and fastest motion
change information. Then, the datasets are used to correspondingly train the five different
motion models. The motion models are named from motion model-1 to motion model-5,
which motion model-1 designed to learn the slowest motion change information trained
using a dataset with ∆t ∈ [0.1, 1] and the motion model-5 designed to learn the fastest
motion change information. In order to prevent the GRU model from overfitting, we add
a dropout layer between the hidden layers, and the dropout probability is set to 0.1. In
the IMM-GRU method, the measurement noise covariance R is set as 4I, corresponding
roughly to the noise level at the measurement process, and the system noise covariance Q
is set as 16I, which reduces the confidential level of the system transition process to enable
fast adjustment when target motion changes occur. The input signal of the GRU network at
each time step is normalized before feeding into the GRU network. For the back tracking
correction mechanism, the maximum historical trajectories D′ and the threshold η are set,
respectively, to 2 and 0.01.

Classical methods, such as IMM-UKF, UKF, PF, and GRU-EKF, are implemented.
We set 1000 particles in the PF method in order to obtain the best possible performance.
The conventional GRU deep neural network used in the GRU-EKF method consists of
eight layers, the dimension of hidden features is set to 128, and the input length is set to
7. The conventional GRU deep neural network is trained with the entire training dataset,
with ∆t ∈ [0.1, 5]. We use the same dropout method, and the dropout probability is set to
0.1. In the GRU-EKF method, the GRU network gives the prediction, and the EKF method
is used to calculate the estimated state as presented in the IMM-GRU method.

All the GRU-based neural networks are trained with the corresponding training
dataset and are optimized with the Adam with a 0.5 weight decay for five epochs. The train-
ing process is stopped when the loss no longer decreases in the last 20 epochs. The other
hyper-parameters are as follows: the batch size is 256, and the learning rate is initially set as
0.01 and is optimized using a cosine annealing schedule, each with five epochs. We choose
the mean square error loss function to compute the loss. The models are implemented in
PyTorch and trained on a workstation with a GTX 3090Ti GPU.
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3.3. Experiment Design

For the evaluation of the tracking performance, we choose root mean square error
(RMSE) and false detection ratio as the evaluation metrics. The RMSE is calculated as fol-
lows:

RMSE =

√√√√ 1
N

N

∑
k=1

(zk − Xk)2 (22)

where N is the total time step of the trajectory used in simulation; Xk is the real state value
at time k; and zk will be, respectively, estimated state X̂k and prediction Xk/k−1 for the
evaluation of the estimation and prediction performance.

The false detection ratio Pf is calculated as follows:

Pf =
N f

Nt
(23)

where N f is the number of events in which a false-alarm point was treated as a real
target measurement during the simulation and Nt is the number of false-alarm point
occurrences. This metric can be used to evaluate the algorithm’s resistance to false-alarm
point interference.

By analysing the mechanism of target tracking, there are several factors that affect the
tracking performance, such as the sampling time interval, the false-alarm rate, and the way
the motion mode changes, where the way the motion mode changes can be reflected in
the different trajectories of the target motion. Moreover, the parameters in the proposed
method, such as the number of motion models, the configuration of the motion model,
and the input mechanism setting, have also directly impacted the tracking performance
and should be evaluated. Therefore, we set up the following experiments to compare
the performance of our proposed algorithm with the conventional method to validate the
technical contribution previously listed and to study the impact of the parameters in the
proposed method:

(1) The evaluation of prediction and estimation performance at different sampling time
intervals to show that the proposed method can overcome the defect due to a low
sampling frequency.

(2) The evaluation of the function of motion models.
(3) The evaluation of the number of motion model in IMM-GRU.
(4) The evaluation of the probability of false-alarm points.
(5) The evaluation of the back-tracking correction mechanism.

4. Results Analysis
4.1. Performance at Various Sampling Time Intervals

The performance of prediction and state estimation is evaluated through RMSE versus
sampling time interval ∆t. The false-alarm rate is set to 0. The results of the test set shown in
Figure 6 are the average from 500 Monte Carlo experiments at different trajectories. The noise
added to each trajectory is white Gaussian noise with zeros mean and 4 m2 variance.

From the Figure 6a, we can see that the IMM-GRU method gives generally better
prediction and estimation than other classical methods, especially when ∆t is larger than
2 s, and over 18 m prediction performance gain compared to the sub-optimal solution,
which proves that the GRU-based network succeeds in learning the motion change in-
formation and gives better prediction. IMM-UKF, UKF, and PF are slightly better than
IMM-GRU when the ∆t is between 0.1 s and 0.4 s, IMM-GRU has about 0.5 m RMSE more at
∆t = 0.1 s. This fact shows that the trajectory between any two observation moments can be
approximated as a linear-like motion when the sampling interval is small, which requires
less adaptability to the variable motion modes of the tracking method. GRU-EKF has
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similar performance to that of IMM-GRU due to the stacked learning of five small networks
and the interacting motion model selection mechanism; IMM-GRU has a better RMSE
performance and a lower computational load. For the estimation performance shown in
Figure 6b, it has similar characterization to the prediction performance shown in Figure 6a:
the IMM-GRU method has nearly identical performance when the ∆t is small and has
the best estimation performance when the ∆t is large, and the RMSE of the estimation is
only about 4.5 m at ∆t = 5 s, a 26% improvement compared with the sub-optimal solution
GRU-EKF. The results prove that the proposed method can significantly improve the pre-
diction and state estimation performance and can achieve bird tracking at low observation
sampling frequencies.

(a) (b)

Figure 6. Comparison of (a) prediction performance and (b) estimation performance at varying
sampling time intervals.

In terms of computational complexity, the average single-step tracking computation
times of the IMM-UKF, UKF, PF, GRU-EKF and IMM-GRU methods are 0.74 ms, 0.23 ms,
50.24 ms, 23.71 ms, and 13.65 ms, respectively, all of which are less than 100 ms and satisfy
the real-time computational requirements of the program. Since IMM-UKF and UKF are
model-based methods, they have less computational complexity than data-based methods,
such as the GRU-EKF and IMM-GRU methods. The PF method is the most time-consuming
since we have configured 1000 particles in the PF method; even though large search particles
have been configured, its performance is much worse than the data-based methods GRU-
EKF and IMM-GRU. Compared with the GRU-EKF method, the proposed IMM-GRU
reduces the computation time by about 43%, which proves the significant improvement in
computational complexity.

4.2. Motion Model Function Evaluation

In this subsection, we design simulation tests in order to study the function of each
motion model during tracking and to investigate the conditions that are favourable for our
method. We first test the proposed method on a circular trajectory. In the circular trajectory,
the target makes a turning movement with a constant turning rate, so the target has only
one motion. The tracking results at ∆t = 1 s are shown in Figure 7. The tracking trajectory is
shown in Figure 7a, and the RMSE of the estimation is shown in Figure 7b; we can see that
the tracking performance is similar for all tested methods. And, the statistical proportion
of motion model weights during tracking is shown in Figure 7c. We can see that motion
model-1, which learned the slowest motion change information in IMM-GRU, takes up
100% of the weight. The results show that IMM-GRU recognizes that the target is in a state
of slow motion change, which corresponds to the circular trajectory that has only one mode,
and the motion change rate is zero.
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Then, we increase the sampling time interval from 1 s up to 5 s with a 1 s step for the
circular trajectory, the estimation RMSEs of each method are shown in Table 1. We can see
that the tracking performance is similar for all tested methods at ∆t = 1 s, 2 s, and 3 s. This
is because the circular trajectory contains only one simple motion mode, and the increase
in the sampling time interval is only manifested in the model as the increase in velocity
or angular velocity, and the model is still accurate, so the performance of IMM-GRU is
similar to that of conventional algorithms. At ∆t = 4 s and 5 s, the inaccuracies of the model
introduced by the large sampling time interval is not negligible; therefore, the IMM-GRU
begins to show its advantage in tracking a target under a large sampling time interval and
the fast motion change condition. The results confirm that the IMM-GRU has advantages
at large sampling intervals and has similar tracking performance to that of conventional
algorithms when the target is in a state of slow motion change.

(a) (b) (c)

Figure 7. Tracking target on a circular trajectory. (a) Tracking trajectory at ∆t = 1 s. (b) RMSE
performance at ∆t = 1 s. (c) The statistic proportion of motion model weights in tracking at ∆t = 1 s.

Table 1. Tracking target on a circular trajectory at different ∆t.

∆t (s) IMM-UKF (m) UKF (m) PF (m) GRU-EKF (m) IMM-GRU (m)

1 2.48 2.54 2.80 2.46 2.46
2 2.52 2.66 2.81 2.84 2.72
3 3.15 3.45 2.89 3.49 2.87
4 4.88 6.03 3.92 3.46 3.53
5 7.20 8.71 8.25 4.03 4.44

Afterwards, we tested the methods on a pigeon trajectory that was randomly selected,
and the trajectory was resampled with different sampling time intervals. The results
are shown in Figure 8: Figure 8a,d,g show, respectively, the tracking results on the same
trajectory under sampling time interval ∆t = 1 s, 3 s, and 5 s; Figure 8b,e,h show, respectively,
the corresponding tracking errors of each method; and Figure 8c,f,i show, respectively, the
statistical results of the motion model weights at any time step during tracking. Since
the pigeon changes its flight state during its flight, going through various states such as
straight flight, left turn, and right turn, the pigeon trajectory contains different motion
states. We can see that the tracking trajectory exhibits complex and variable characteristics,
and the tracking error becomes increasingly large with increasing sampling time. When
∆t is small (at 1 s) and the motion changes slowly, all the methods under test have similar
performance, as shown in Figure 8b. When ∆t is large (at 5 s) and the motion changes
quickly, the proposed IMM-GRU has not only a minimal average error but also the most
stable performance with small variation, as shown in Figure 8h. For ∆t = 3 s shown
in Figure 8e, IMM-GRU has shown significant estimation performance improvement
compared with conventional methods, while the results obtained on the circular trajectory
at ∆t = 3 s do not show the fact that IMM-GRU has a clear improvement. Since the pigeon
trajectory contains multiple motions and more complex motion change information than the
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information contained in the circular trajectory, we can see that the proposed method has a
better performance in the complex situation caused by the changes in the complex motions.

For the motion models, motion models-1, -2, and -3, which were designed to learn
slow motion change information, dominate IMM-GRU at ∆t = 1 s. Compared with the
results on the circular trajectory in which only one motion model took 100% of the weight,
shown in Figure 7c, we can clearly see that there are multiple motions in pigeon trajectories,
and it is not possible to describe all the motion changes with only one motion model. In
contrast, at ∆t = 5 s, motion models-4 and -5, which were designed to learn fast motion
change information, dominate the weight. And, motion models-1 and -2 are still useful
because the motion of the target over a number of time periods can be equated to a slowly
changing motion. The results prove that all the motion models implemented in the IMM-
GRU are useful at large sampling time intervals, while only the motion models designed
for slow motion change information are useful at a small sampling time interval. We can
conclude that, with the sampling interval, each motion model can contribute differently
and specifically to the tracking of a manoeuvring target. With the benefit of this innovation,
IMM-GRU can reach a better performance in tracking, especially for fast changing motions
and/or large sampling time interval.

4.3. Evaluation of Motion Model Quantity

We explored the IMM-GRU prediction performance by varying the number of motion
models with the same GRU configuration. The training dataset is divided into the corre-
sponding number of parts, and each GRU-based motion model is trained to convergence
in the same way as the previous configuration. The results of the RMSE performance over
different sampling time intervals are shown in Figure 9. We can see that the performance
degrades significantly when the number of model decreases to 3 compared with the perfor-
mance with five motion models, since a small network cannot learn all information from
the corresponding training dataset. In contrast, while the number of model increases, the
prediction performance gains little. The results prove that five motion models are a good
compromise between performance and complexity.

4.4. Evaluation Over False-Alarm Rate

In a Lidar operation, measurement data from Lidar scanning contains actual target
measurements as well as false-alarm points due to background light noise. Due to the
application of photon-counting technology, the false-alarm rate of Lidar is low, generally
lower than 5%. In this subsection, we compare the different methods at 2% and 5% false-
alarm rates to verify the performance of the algorithms against background light noise
interference. The experimental results are shown in Table 2, which lists the estimation RMSE
of each method under different false-alarm conditions, and the data in the parentheses are
the changes in tracking errors relative to the tracking errors under the condition of no false-
alarm points. It can be seen that the tracking performance of IMM-GRU is the best under
different false-alarm rates; especially under the condition of large sampling intervals, the
tracking error of IMM-GRU method still has obvious advantages over the other methods.
The experiment results prove that the IMM-GRU method has good false-alarm resistance.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 8. Tracking on a same trajectory with different sampling intervals. (a) Tracking trajectory at
∆t = 1 s. (b) RMSE performance at ∆t = 1 s. (c) The statistic proportion of motion model weights in
tracking at ∆t = 1 s. (d) Tracking trajectory at ∆t = 3 s. (e) RMSE performance at ∆t = 3 s. (f) The
statistic proportion of motion model weights in tracking at ∆t = 3 s. (g) Tracking trajectory at ∆t = 5 s.
(h) RMSE performance at ∆t = 5 s. (i) The statistic proportion of motion model weights in tracking at
∆t = 5 s.
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(a) (b)

Figure 9. Comparison of prediction and estimation performance at varying numbers of motion model.
(a) Prediction performance. (b) Estimation performance.

Table 2. Tracking performance at different false-alarm rates.

False-
Alarm
Rate

∆t (s) IMM-UKF (m) UKF (m) PF (m) GRU-EKF (m) IMM-GRU (m)

2%

1 2.63 (+0.33) 3.07 (+0.01) 2.73 (+0.08) 2.54 (+0.25) 2.57 (+0.02)
2 3.21 (+2.04) 6.20 (+0.05) 3.13 (+0.08) 3.11 (+0.45) 2.95 (+0.03)
3 4.80 (+3.14) 8.86 (+0.26) 3.99 (+0.05) 3.85 (+0.40) 3.06 (+0.04)
4 6.91 (+4.13) 11.55 (+0.48) 6.68 (+0.36) 5.38 (+1.01) 4.07 (+0.12)
5 8.33 (+4.47) 12.65 (+0.57) 11.64 (+0.15) 6.30 (+0.53) 4.86 (+0.52)

5%

1 2.64 (+0.38) 3.11 (+0.00) 2.82 (+0.01) 2.55 (+0.26) 2.59 (+0.04)
2 3.37 (+2.40) 6.56 (+0.20) 3.11 (+0.04) 3.20 (+0.54) 2.99 (+0.07)
3 5.34 (+3.78) 9.49 (+0.80) 4.08 (+0.06) 4.02 (+0.58) 3.08 (+0.06)
4 7.79 (+4.99) 12.40 (+1.36) 7.26 (+0.94) 5.67 (+1.29) 4.38 (+0.43)
5 8.72 (+5.36) 13.54 (+0.96) 12.32 (+0.84) 7.17 (+1.40) 4.87 (+0.53)

4.5. Evaluation of Back Tracking Correction Mechanism

In this subsection, we will evaluate the function of the back-tracking correction mecha-
nism. We perform IMM-GRU with and without the back-tracking correction mechanism on
different trajectories, and we add a false-alarm point with 5% probability to the trajectories.
Then, the RMSE of the state estimation and the false detection ratio of each method are
calculated and listed in the Table 3. From Table 3, we can see that IMM-GRU with the
back-tracking correction mechanism has a better performance and a lower false detection
ratio; the back-tracking correction mechanism can correct the mistake that treats a false-
alarm point as a measurement of a real target in the previous step, thus attenuating the
interference caused by the mistake. The results prove the effectiveness of the back-tracking
correction mechanism.

Table 3. Tracking performance between with/without back-tracking correction mechanism.

∆t (s) IMM-GRU with Back- IMM-GRU without Back-
Tracking Correction Mechanism Tracking Correction Mechanism

Estimation
RMSE (m)

False detection
ratio

Estimation
RMSE (m)

False detection
ratio

1 2.59 0.6% 2.70 0.8%
2 2.99 1.0% 3.11 1.2%
3 3.08 1.6% 3.21 2.2%
4 4.38 3.4% 4.62 4.2%
5 4.87 4.4% 5.10 5.6%
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In the back-tracking correction mechanism, the parameter D′ is used to configure the
maximum historical trajectories kept at each step. It is obvious that the large D′ means that
more trajectories are kept as alternatives, which leads to a high computational load, and the
back-tracking correction mechanism is closed when D′ = 1. We evaluate the back-tracking
correction with D′ set to 2 and 3 at ∆t = 3 s. The RMSE of the estimation is 3.08 m at D′ = 2
and 3.05 m at D′ = 3. The results show that a larger D′ does not gain much in terms of
RMSE performance because the false-alarm rate is low and thus the extra alternative is
redundant. In addition to the D′, the η also affects the performance and computational
complexity of the back-tracking correction mechanism. The large η will result in only
one measurement being selected at each time step and thus the back-tracking correction
mechanism will in fact not be used, while the small η will result in lots of measurement
points and thus high computational complexity. Moreover, the setting of η is also directly
related to the prediction error: the smaller the prediction error, the larger an η can be set to
reduce as many obvious false-alarm points as possible. Under the low-sampling-frequency
condition, the high prediction error leads to smaller η settings. The RMSE performance of
the estimation at ∆t = 3 s with different η configurations are shown in Table 4. The results
prove that a lower η can improve the tracking performance but not indefinitely. Therefore,
by considering the computational complexity, we set D′ and η to 2 and 0.01, respectively.

Table 4. The RMSE performance of the estimation at ∆t = 3 s with different η configurations.

η 0.005 0.01 0.02

RMSE (m) 3.07 3.08 3.15

Briefly, we summarize the five different kinds of experiments carried out: The first
experiment demonstrated that the proposed method outperforms the IMM-UKF, UKF,
PF, and GRU-EKF methods, with at least 26% tracking performance gain at ∆t = 5 s.
Our method uses the high-sampling-frequency data only in the training process and
performs tracking under the low-sampling-frequency condition without any help from
the high-sampling-frequency data, which is different from similar work that exists [33–35].
For the computational complexity, IMM-GRU meets real-time requirements and reduces
the 43% computation time compared to GRU-EKF, which is also a data-driven method.
The second experiment shows that the GRU-based motion models indeed learned the
motion change information as designed, which is the key point that guarantees the good
performance at large sampling time intervals and dynamic manoeuvring target tracking
scenarios. The third experiment justifies the configuration of the five different motion
models used in IMM-GRU. The fourth experiment demonstrates the good resistance to
the false-alarm rate. The fifth experiment shows the further improvement in resistance
to the false-alarm rate brought about by the back-tracking correction mechanism. Our
research shows that tracking motion change can help to improve the tracking performance
of manoeuvring targets, and multiple small GRU networks with the help of the IMM
mechanism can achieve better performance than a large complex neural network with less
computational complexity.

5. Conclusions

In this paper, we proposed an IMM-GRU method for bird tracking on a Lidar sys-
tem with a low observation refresh rate. The IMM-GRU method leverages multiple GRU
networks to match target motions and to predict target trajectories and uses the IMM
mechanism to combine different predictions and to give a final appropriate prediction.
Simulations on a bird trajectory dataset demonstrate that the IMM-GRU method outper-
forms other methods such as IMM-UKF, UKF, PF, and GRU-EKF methods. The proposed
method shows the good ability of GRU in predicting and tracking a target’s motion change
based on temporal information dependencies without any prior model knowledge, which
suggests that motion change is effective information in target tracking, and data-driven
algorithms can be considered as promising alternatives to model-driven approaches under
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low-sampling-frequency conditions. The IMM mechanism allows for using several small
GRU networks in parallel and thus reducing the computational complexity and improving
the algorithm performance. The combination strategy can work equally well for other
scenarios with diverse model variations. These results highlight the effectiveness of the
IMM-GRU method in addressing the tracking challenges posed by low observation rates in
Lidar systems. Future work could include the interpretability of the GRU network on a
motion model and real implementations of the proposed method on dedicated FPGA-based
accelerators for Lidar systems.
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