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Abstract: Background: Elevated nocturnal blood pressure (BP) is a risk factor for cardiovascular
disease (CVD) and mortality. Cuffless BP assessment aided by machine learning could be a desirable
alternative to traditional cuff-based methods for monitoring BP during sleep. We describe a machine-
learning-based algorithm for predicting nocturnal BP using single-channel fingertip plethysmography
(PPG) in healthy adults. Methods: Sixty-eight healthy adults with no apparent sleep or CVD (53%
male), with a median (IQR) age of 29 (23–46 years), underwent overnight polysomnography (PSG)
with fingertip PPG and ambulatory blood pressure monitoring (ABPM). Features based on pulse
morphology were extracted from the PPG waveforms. Random forest models were used to predict
night-time systolic blood pressure (SBP) and diastolic blood pressure (DBP). Results: Our model
achieved the highest out-of-sample performance with a window length of 7 s across window lengths
explored (60 s, 30 s, 15 s, 7 s, and 3 s). The mean absolute error (MAE ± STD) was 5.72 ± 4.51 mmHg
for SBP and 4.52 ± 3.60 mmHg for DBP. Similarly, the root mean square error (RMSE ± STD) was
6.47 ± 1.88 mmHg for SBP and 4.62 ± 1.17 mmHg for DBP. The mean correlation coefficient between
measured and predicted values was 0.87 for SBP and 0.86 for DBP. Based on Shapley additive
explanation (SHAP) values, the most important PPG waveform feature was the stiffness index, a
marker that reflects the change in arterial stiffness. Conclusion: Our results highlight the potential
of machine learning-based nocturnal BP prediction using single-channel fingertip PPG in healthy
adults. The accuracy of the predictions demonstrated that our cuffless method was able to capture
the dynamic and complex relationship between PPG waveform characteristics and BP during sleep,
which may provide a scalable, convenient, economical, and non-invasive means to continuously
monitor blood pressure.

Keywords: nocturnal blood pressure; photoplethysmography; cuffless blood pressure measurement;
blood pressure estimation; cardiovascular health; sleep
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1. Introduction

Hypertension is a leading risk factor for morbidity and mortality related to cardio-
vascular disease (CVD) [1]. Early diagnosis of hypertension is essential for the prevention
and treatment of CVD and involves regular BP monitoring. Daytime blood pressure
measurements taken intermittently may not effectively identify masked and nocturnal hy-
pertension [2], which could provide a more accurate assessment of cardiovascular risk [3].
Specifically, night-time or nocturnal BP is more closely associated with cardiovascular
or cerebrovascular events than daytime BP [4,5]. However, measuring BP during sleep
with contemporary cuff-based systems can be uncomfortable and may interrupt sleep.
For continuous, long-term use, cuffless BP estimation methods equipped with advanced
machine learning (ML) algorithms have been proposed.

The feasibility of continuous cuffless BP measurement has recently been demonstrated
using machine learning models trained on plethysmography (PPG) and electrocardiogra-
phy (ECG) signals. ML can use PPG waveform features alone [6,7] or in combination with
ECG features. The latter is used to calculate pulse transit time (PTT) or pulse arrival time
(PAT) as a surrogate measure of the pulse wave velocity [8]. A linear relationship between
PAT/PTT and BP can be derived from explicit analytical models [9]. However, regular
calibration is required to maintain prediction accuracy. PPG-based ML is potentially a
calibration-free approach [10,11] that utilizes the functional relationship between the PPG
signal and blood pressure.

PPG waveform morphology reflects the elasticity and compliance of peripheral
arteries, making it an ideal source for BP estimation [12]. Temporal features extracted from
PPG waveforms have been found to be strong predictors of blood pressure and vascular
aging [13]. Changes in the PPG waveform parallel physiological changes in BP during
cold pressor stimuli and exercise [14] and infusion of a vasoconstrictive drug [15,16] as
well as during sleep [17–19]. Existing studies using data from hospitalised patients, such
as in the ICU [20,21] or under anaesthesia [22], have demonstrated a robust association
between PPG and intra-arterial BP waveforms. However, these results might not be
readily extrapolated to healthier persons who constitute most of the potential users of such
a cuffless system. Only a few studies have evaluated healthy people. Table 1 summarizes
recent studies that (1) used data from outside the ICU, (2) used the PPG signal (and
features), (3) reported an error metric other than the correlation coefficient (mean absolute
error (MAE) or root mean square error (RMSE)). This is important for the comparability
of studies. Despite the clinical importance of nocturnal BP in CVD risk assessment, only a
few studies have investigated cuffless BP prediction during sleep [23,24]. However, none
of the approaches used has met the error criteria set by international guidelines from the
Association for Advancement of Medical Instrumentation (AAMI)/the European Society
of Hypertension (ESH)/ISO [25], which require MAE and STD values to be within 5 and
8 mmHg, respectively.

In this study, we aimed to develop a framework to estimate night-time BP using
signals from the finger PPG alone. Specifically, we focused on the complex relationship
between PPG waveform features and BP in healthy participants during sleep.
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Table 1. Studies that used ML models to predict BP using PPG features. The list is not exhaustive. A
study was included if (1) data were from community-dwelling adults, (2) PPG waveform features
were used, and (3) results were reported as MAE or RMSE. Studies that used deep neural networks
and raw PPG signals as input were excluded. N.R: Not Reported.

Study Target BP Reference
Measure

PPG
Location

Sample, Size, Age Input Format Method
Error (mmHg)

SBP DBP

[6] Daytime Point BP Finger Health N.R., N = 205,
39 ± 15 yo PPG Features Lasso MAE: 6.9 MAE: 5

[26] Daytime Point BP Forearm Healthy, N = 40,
35 ± 15 yo PPG Features Ensemble

SVR MAE: 7.26 MAE: 5.01

[7] Daytime Point BP Finger Outpatients, N = 219,
57 ± 15 yo PPG Features GPR MAE: 3.02

RMSE: 6.74
MAE: 1.74
RMSE: 3.59

[8] Daytime Finapress*,
Point BP Finger Mixed, N = 62,

59 ± 10 yo
PPG Features

+ PTT GPR MAE: 4.8 MAE: 3.4

[27] Daytime Finapress*,
Point BP Finger Healthy, N = 84,

Age N.R.
PPG Features

+ PTT Deep RNN RMSE: 3.9 RMSE: 2.6

[23] 24 h trend ABPM Wrist Healthy, N = 106,
36.6 ± 11.7 yo PPG Features LSTM RMSE: 8.2 RMSE: 6.5

This
work Night-time ABPM Finger Healthy, N = 68,

29 (23–46) yo PPG Features Random
forest

MAE: 5.7
RMSE: 6.5

MAE: 4.5
RMSE: 4.6

* Continuous blood pressure monitor.

2. Materials and Methods
2.1. Participants

Participants were part of a sleep study that recruited nominally healthy adults aged
between 21 and 70 years for a 2-night protocol in a sleep laboratory [17]. People with pre-
existing sleep, neurological or psychiatric disorders, excessive daytime sleepiness (Epworth
Sleepiness Scale [28] scores > 10), body mass index (BMI) > 35 kg/m2, and habitual sleep
duration less than 5 h/night and on wake-promoting medications were excluded.

Participants visited the laboratory 3 times: First, for a daytime briefing session, where
demographic and anthropometric measurements (height, weight, waist circumference,
and office blood pressure measurements) were obtained. Each participant then had two
overnight polysomnography (PSG) sessions in the laboratory—one session with concurrent
ambulatory blood pressure monitoring (ABPM) and one session without. The order of
nights with and without ABPM was randomised. Ninety participants had concurrent
ABPM recording in one of their sessions.

Participants with less than 3 overnight BP measurements (n = 4) or no measurements
in the pre-sleep baseline period (n = 3) and with PSG/PPG recordings of insufficient quality
(n = 15) were excluded.

The final sample size was 68 healthy adults (53% male), with a median (IQR) age of
29 (23–46) years.

2.2. Laboratory Protocol

Participants arrived at the sleep laboratory approximately 2 h before their self-reported
habitual bedtime. Trained research assistants set up the PSG and ABPM equipment.
Participants then had approximately 15 min of pre-sleep baseline recording, during which
they were asked to sit still without moving. Lights-off and lights-on times were assigned
according to the participant’s habitual bedtime and wake-up time.

The Institutional Review Board of the National University of Singapore approved the
study, and the protocol was in accordance with the principles in the Declaration of Helsinki.
Informed written consent was obtained from all participants during the briefing session.
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2.3. Data Acquisition

The plethysmography (PPG) signal was recorded from the fingertip concurrently
with electroencephalography (EEG), electrooculography (EOG; right and left outer canthi),
submental electromyography (EMG), and electrocardiography (ECG) via the SOMNOtouch
system (SOMNOmedics GmbH, Randersacker, Germany) during overnight sleep. The
sampling rate of PPG, EEG, and ECG was 256 Hz.

Ambulatory blood pressure was measured using the clinically validated OnTrak 90227
monitor (Spacelabs Healthcare, Snoqualmie, WA, USA) [29] on the opposite arm of the PPG
sensor. Each participant had multiple measurements during sleep, and the BP measurement
interval was 30 min. Nights with less than 3 valid sleep BP measurements were excluded
from the dataset. The median number of ABPM readings during sleep per participant was
15 with an IQR range of 14–16. The data acquisition protocol is summarized in Figure 1.
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Figure 1. An overview of experimental protocol and analysis workflow. (A) Data collection setup with
Polysomnography (PSG), Ambulatory Blood Pressure Monitor (ABPM), and Photoplethysmography
(PPG). (B) PPG signal was windowed preceding ABPM measurements while in bed (BPsn). Awake-
sitting BP measurements (BPwn) were excluded. (C) Block diagram of analysis flow.

2.4. PPG Pulse Waveform Analysis and Feature Extraction

PPG waveform analyses were conducted in MATLAB version R2021b (The Math
Works, Inc., Natick, MA, USA) as described in previous work [17]. The pre-processing step
included band-pass filtering of the PPG signal (0.05–20 Hz via a 4th-order Chebyshev2
filter) and motion artefact reduction via amplitude thresholding. The filtered PPG was
divided into 30 s windows with 20 s overlap, with pulse onsets detected within each win-
dow using the ‘qppg.m’ function from the PhysioNet Cardiovascular Signal Toolbox [30].
The following criteria were used to remove artefactual detections: (1) The onset-to-onset
duration was limited to a minimum of 0.4 s and a maximum of 2 s, and (2) the maximum
acceptable change in peak-to-peak duration between consecutive pulses was set to 40%.
Moreover, if more than 20% of onsets (within a window) were labelled as artefacts, the
entire window was discarded and not analysed further.

Fiducial points of the PPG pulse (onset, offset, maximum slope point, systolic peak, di-
astolic peak, and the dicrotic notch) were located using a custom algorithm [17], which com-
bined the derivatives approach [31] with Gaussian fitting [32]. First, a Gaussian (“gauss1”
function from Gaussian model library) was fitted to the systolic arm of the PPG pulse
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(dashed blue line in Figure 2A), and its subtraction from the main pulse wave produced
the residual wave (red line in Figure 2A). The max slope point was defined as the 1st peak
of the 1st derivative pulse (blue line in Figure 2B), while the systolic peak was where the
1st derivative of the PPG signal crossed zero for the 1st time between max slope and offset
(blue line in Figure 2B). The dicrotic notch corresponded to the largest peak on the 2nd
derivative pulse wave (blue line in Figure 2C) within the window from the 2nd peak of
the 1st derivative residual wave and the 3rd peak of the 1st derivative pulse. The diastolic
peak was the 1st peak after dicrotic notch on the pulse wave (blue line in Figure 2A). Finally,
amplitude- and duration-based PPG features were extracted for each pulse.
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Figure 2. Fiducial point detection on the PPG pulse waveform using 1st and 2nd derivative signals.
(A) PPG pulse (blue line), a Gaussian fitted to systolic phase of the pulse (dashed line) and Residual
wave (red line) resulting from the subtraction of Gaussian fit from PPG pulse. (B) First derivatives of
PPG pulse (blue line) and Residual (redline). (C) Second derivatives of PPG pulse (blue line) and
Residual (red line). Ons: Onset, mSlp: Max Slope Point, Sys: Systolic Peak, Dic: Dicrotic Notch, Dias:
Diastolic Peak, Offs: Offset.

2.5. BP Prediction Model

The blood pressure prediction model was set up in Python (ver. 3.8) using PPG features
in the windows preceding blood pressure measurements. A random forest regression model
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was trained to predict blood pressure using 75 PPG features (Supplementary Table S1)
and 3 demographic features (age, sex, and BMI). Five different time window lengths (60 s,
30 s, 15 s, 7 s, and 3 s) were evaluated in terms of model performance. The random forest
regression model is an ensemble of decision trees and makes predictions about the ground
truth according to the vote of all of the trees [33]. This model is very capable of capturing
the non-linear relationship between features and targets.

A training–validation–test procedure was used to tune the hyperparameters of the
random forest regression model by using random search. More specifically, data were split
into train–validation–test sets with a ratio of 3:1:1. Care was taken so that all of the trials
of each participant were assigned to only 1 of the 5 partitions, which ensured that trials
within a given participant were not used for both training and testing.

The random forest was trained on the training set with hyperparameters tuned on
the validation set. The hyperparameters tuned were the number of trees in the forest,
maximum depth of the tree, minimum number of samples required to split an internal
node, minimum number of samples required to be at a leaf node, and the number of
features to consider. The best hyperparameters were then used to train a final model by
combining data from both training and validation sets. The prediction performance of the
final model was then evaluated on the test set. At no time was the test set used to tune the
hyperparameters or train the model.

To ensure stability, the above training–validation–test procedure was repeated 50 times
by different random splits of the participants into training, validation, and test sets.

2.6. Blood Pressure Prediction Performance Evaluation

To evaluate the performance of our model, we compared the quality of predictions on
the test set using mean absolute error (MAE) as the main evaluation metric. MAE measures
the average absolute difference between the actual and predicted values of the target
variable. Along with the MAE, the standard deviation of MAE was also reported. To assess
the model’s overall performance in comparison to previous studies, we also calculated
the mean root mean square error (RMSE) and mean Pearson’s correlation (R) across all
individuals in the test set. Performance metrics (MAE, RMSE, and R) were first averaged
across trials within each participant and then averaged across the participants. We used
repeated measures correlation (to account for within-individual associations) [34] between
the actual and predicted BP values. Bias was evaluated via Bland–Altman plots. Lastly,
feature importance was evaluated via SHAP (Shapley additive explanations) values [35].
When comparing the two methods, the corrected resampled t-test was used [36,37].

3. Results

The characteristics of the sample are summarized in Table 2. The final sample consisted
of 68 healthy adults whose BMI, office BP, and sleep BP (via ABPM) were in a healthy range.
The median (IQR) SBP was 110 (103, 121) mmHg, and the DBP was 71 (66, 77) mmHg,
while the distribution of SBP and DBP measurements is shown in Figure 3. The median
number of ABPM readings during sleep per participant was 15, while the median time in
bed duration was more than 7 h with a sleep efficiency of 88%.

Our model achieved the highest out-of-sample performance with a window length of
7 s out of window lengths explored (60 s, 30 s, 15 s, 7 s, and 3 s) (Table 3). The mean predic-
tion error was 5.72 ± 4.51 mmHg (MAE ± STD) for SBP and 4.52 ± 3.60 mmHg for DBP. The
same window length also resulted in the lowest RMSE for both SBP (6.47 ± 1.88 mmHg)
and DBP (4.62 ± 1.17) and the highest R for SBP (0.87 ± 0.09).

On the other hand, window lengths of 3 s resulted in the worst prediction performance
for all performance metrics. Mean absolute error was 6.63 ± 5.80 for SBP and 6.78 ± 5.40
for DBP, while RMSE was 6.72 ± 1.91 for SBP and 6.92 ± 1.58 for DBP. R values were also
lowest with a window length of 3 s.
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Table 2. Summary of participant characteristics. SBP: Systolic blood pressure, DBP: Diastolic Blood
Pressure, ABPM: Ambulatory Blood Pressure.

Sample Summary N = 68 1

Age 29 (23, 46)
Gender
Female 32 (47%)
Male 36 (53%)
BMI (kg/m2) 22.8 (21.1, 24.3)
Office SBP (mmHg) 110 (103, 121)
Office DBP (mmHg) 71 (66, 77)
ABPM Summary
Sleep SBP (mmHg) 104 (99, 114)
Sleep DPB (mmHg) 64 (60, 69)
BP readings per participant (n) 15 (14, 16)
Sleep Summary
Time in Bed (min) 463 (420, 490)
Sleep Efficiency (%) 88 (79, 92)

1 Median (IQR); n (%).
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Table 3. Prediction performance for Systolic Blood Pressure and Diastolic Blood Pressure using
different window lengths. Each performance metric was first averaged across all measurement trials
within participants and then averaged across all participants. MAE: Mean Absolute Error, RMSE:
Root Mean Square Error, R: Pearson Correlation, SD: Standard Deviation.

Window
Length (s)

Systolic Blood Pressure Diastolic Blood Pressure

MAE
(SD)

RMSE
(SD)

R
(SD)

MAE
(SD)

RMSE
(SD)

R
(SD)

1 min
6.38 6.51 0.866 4.92 5.14 0.864

(−4.61) (−1.87) (−0.08) (−3.63) (−1.12) (−0.06)

30 s
6.09 6.53 0.868 4.81 4.92 0.869

(−4.46) (−1.87) (−0.09) (−3.52) (−1.14) (−0.08)

15 s
5.9 6.48 0.869 4.64 4.67 0.871

(−4.61) (−1.76) (−0.09) (−3.54) (−1.11) (−0.08)

7 s
5.72 6.47 0.87 4.52 4.62 0.868

(−4.51) (−1.88) (−0.09) (−3.6) (−1.17) (−0.08)

3 s
6.63 6.72 0.865 6.78 6.92 0.857

(−5.8) (−1.91) (−0.08) (−4.5) (−1.58) (−0.08)
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Next, we investigated the strength of the relationship between true and predicted BP
via correlation. Figure 4A,B exemplify results from a representative test set of one split.
The Pearson correlation was 0.96 between true SBP and predicted SBP (Figure 4A) and
0.89 between true DBP and predicted DBP (Figure 4B). Similarly, the repeated measures
correlation coefficient (Rrm) was 0.88 for SBP (Figure 4A) and 0.87 for DBP (Figure 4B), indi-
cating a strong within-individual association for this sample. Figure 4C,D depict Pearson
correlations across all sample points for SBP (R = 0.89) and DBP (R = 0.88), respectively.
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Figure 4. Strength of correlations between True and Predicted BP values. (A) Pearson correlation
(R) and repeated measures correlation (Rrm) for Systolic Blood Pressure (SBP) in a representative
test set of one split (14 participants). Same colour refers to individual measurements from the same
participant. (B) Pearson correlation (R) and repeated measures correlation (Rrm) for Diastolic Blood
Pressure (dBP) in a representative test set of one split. Same colour refers to different individual
measurements from the same participant. (C) Pearson correlation across all sample points for SBP.
(D) Pearson correlation across all sample points for DBP.



Sensors 2023, 23, 7931 9 of 15

We then examined how individual-level prediction accuracies were distributed across
participants. Figure 5A,B display individual-level correlation coefficients for SBP and
DBP, respectively. Although average R values were 0.87 for SBP and 0.86 for DBP, a few
participants had poor prediction accuracy with R values below 0.7. The distribution of
MAE values is shown in Figure 5C.
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Figure 5. Distribution of correlation and error across participants. (A) Individual-level correlations
across participants for Systolic Blood Pressure (SBP). First, correlation across measurement trials was
calculated for each test fold of each split. Then, the average R across 10 splits for each participant was
computed. (B) Individual-level correlations across participants for Diastolic Blood Pressure (DBP).
First, correlation across trials was calculated for each test fold of each split. Then, the average R across
10 splits for each participant was computed. (C) Distribution of mean absolute error (MAE) across
participants. The error was computed for each trial of each test subject and then averaged across all
trials and splits of each participant.

Systematic errors between true and predicted BP values are shown in Figure 6. Bland–
Altman plots in Figure 6A,B exemplify the bias pattern for SBP and DBP for a representative
sample (from a 1 test fold of 1 split). There was a −0.55 mmHg bias between true and
predicted SBP and 0.18 mmHg bias between true and predicted DBP, with a visible propor-
tional bias. Figure 6C,D display the error for all test samples, as an illustration of model
performance. Overall, the SBP and DBP were slightly underestimated with a mean bias of
−0.13 mmHg and −0.08 mmHg across all samples.
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Figure 6. Comparison of errors between the true and predicted BP values. (A) Bland-Altman plot
showing the agreement between True and Predicted SBP values for a representative test set of one
split. Bias was −0.55 mmHg. Points of a particular colour denote different measurement trials within
the same participant. (B) Bland-Altman plot showing the agreement between True and Predicted
DBP for a representative test set of one split. Bias was 0.18 mmHg. Same colour refers to different
trials within the same participant. (C) Bland-Altman plot across all test samples of all data splits for
Systolic Blood Pressure. Bias was −0.13 mmHg. (D) Bland-Altman plots across all test samples of all
data split for Diastolic Blood Pressure. Bias was −0.08 mmHg.

Finally, we explored feature importance via SHAP values and listed the 10 most
important PPG features according to their impact on model output in Figure 7. The SI
(stiffness index), defined as the ratio between a person’s height and the distance between
systolic and diastolic peaks, was the most important PPG feature followed by dTVO (global
minimum to offset time in first derivative) and LASI1 (inverse time from dicrotic notch to
systolic peak). When demographic variables were included in the list (Figure S1), BMI was
the most important feature, followed by SI and age.
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Figure 7. Beeswarm plot with 10 most important PPG waveform features based on SHAP values: SI:
stiffness index, dTVO: minimum to offset time in first derivative, LASI1: inverse time from dicrotic notch
to systolic peak, pAmp: pulse amplitude, mNPV: modified normalized pulse volume, LASI3: inverse
time from diastolic peak to maximum slope point, NA2: normalized area under maximum slope point
to systolic peak, tSD: descending time, DicAmp: dicrotic notch amplitude, RA: area ratios between onset
to dicrotic notch and dicrotic notch to offset. Features are ordered according to their importance from
top to bottom. The x-axis represents log odds. Colouring shows the direction of this association, where
blue indicates lower values of a given measure and red indicates higher respective measure values.

4. Discussion

We present a cuffless BP approach to measure nocturnal BP in a healthy sample. A
random forest model was used to infer BP values using PPG waveform characteristics.
The model reached an out-of-sample performance of 5.72 ± 4.51 mmHg (MAE ± STD) for
SBP and 4.52 ± 3.60 mmHg for DBP using an analysis window of 7 s, demonstrating good
performance in line with international guidelines [25]. Similarly, RMSE was 6.47 ± 1.88 for
SBP and 4.62 ± 1.17 for DBP. Finally, we observed that the stiffness index (SI) was the most
important PPG feature in terms of impact on model output, highlighting the complex and
dynamic relationship between vascular stiffness, blood pressure, and sleep.

4.1. Nocturnal BP Prediction Using PPG Waveform

PPG-based BP prediction via ML is a calibration-free approach that can exploit a single
or multiple channels of PPG as input. The PPG pulse contour might vary due to functional
(e.g., autonomic nervous system activity during sleep [17–19] and physical activity [14])
or structural changes (e.g., ageing [38,39] and/or disease [40]). The temporal features
extracted from the PPG pulse have been shown to be strong predictors of blood pressure
and vascular aging [13,16]. For example, the time interval and amplitude ratio between
the first and second peaks of PPG are related to arterial properties and inversely correlated
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with age [15,38,39], while pulse amplitude may reflect vasoconstriction due to increased
sympathetic activity [19,41]. Although there is no consensus on which PPG features are
most indicative of arterial function, several studies employed BP prediction models using
PPG features in healthy people. Most models focused on predicting daytime BP (Table 1).
These studies differed in sample characteristics such as age (mostly middle age and above)
and health status (healthy [26,27] or mixed with patients [7,8]) and the set of features used in
models (PPG features alone [6,7,26] or in combination with PTT [8,27]). Although daytime
BP prediction models have achieved good prediction performance [8,27], an important
limitation is that the user is required to deliberately avoid movement during recording.

Sleep provides a unique opportunity to monitor BP levels with reduced levels of move-
ment artefacts. Despite the clinical importance of nocturnal BP in CVD risk assessment,
there are only a few studies predicting night-time BP. A PAT-based model was employed to
predict 24 h BP in 10 healthy adults, and the performance during sleep was suboptimal
with an RMSE of 8.2 mmHg for SBP and 6.7 mmHg for DBP [24]. More recently, 24 h BP
trends and BP dipping were predicted using features of the wrist PPG signal in healthy
participants [23]. The use of a long- and short-term memory network (LSTM) model yielded
an RMSE of 8.22 ± 2.11 mmHg for relative SBP and 6.76 ± 1.48 mmHg for relative DBP,
with correlation coefficients of 0.69 and 0.76 for SBP and DBP, respectively. In the same
study, a random forest model was also evaluated but had poorer performance than the
LSTM model. Although direct comparison was not possible due to differences in error
metrics (MAE vs. RMSE) and prediction target (absolute BP vs. relative BP), both studies
highlighted the potential of night-time BP prediction using PPG.

4.2. Pulse Waveform Modulation during Sleep

Compared to stable daytime measurements or ICU recordings, PPG signals during
sleep fluctuate more widely. However, they are less susceptible to movement artefacts. This
makes sleep an ideal state for the detection of nocturnal hypertension that could otherwise
be masked during the day. During sleep, several physiological changes that affect the shape
of the PPG waveform occur. For example, a shift towards sympathetic activity increases
vascular tone and decreases blood flow, resulting in a lower PPG pulse amplitude [42,43].
Decreases in pulse wave amplitude have been associated with obstructive respiratory
events and cortical arousals as a marker of an increased sympathetic drive [41,43]. Similarly,
the time difference between peaks of PPG pulse, which is an indicator of arterial stiffness,
changes according to sleep stage, lengthening during deeper stages of sleep [17,18]. Thus,
the PPG signal carries useful information about cardiac contractility, vascular elasticity,
and autonomic nervous system activity, three key determinants of blood pressure. Our
study also showed that for the time difference between peaks and pulse amplitude, the
features that had the greatest impact on model output (Figure 6) were indeed waveform
characteristics modulated by sleep stage [17].

4.3. Clinical Importance of Nocturnal BP Measurement

In population studies, both daytime SBP and nocturnal BP measures have been shown
to be independent risk factors for cardiovascular and cerebrovascular disease and mortal-
ity [4,44]. While wearable cuffless BP devices have been validated for daytime usage [45,46],
their performance during sleep remains unclear. Traditionally, the detection and monitoring
of nocturnal hypertension requires a cuff-based ABPM to be worn during sleep [47]. This
can be uncomfortable and might disrupt sleep. When we looked at the effect of ABPM
on sleep, we also saw that there was a slight reduction in sleep quality and amount of
deep sleep in sessions with ABPM compared to sessions without ABPM (Table S2). Due
to the high cost, the technology is also limited to clinical use and cannot be deployed on
a large scale as a longitudinal monitoring system. Therefore, the emergence of a cuffless,
non-invasive BP measurement device using physiological signals offers a compelling al-
ternative, especially considering the widespread use and accessibility of modern sleep
trackers equipped with advanced PPG sensors.
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Despite the clinical importance, only a limited number of studies have attempted to
predict night-time BP via a cuffless approach. Likewise, a significant number of PPG-based
algorithms were developed using data from intensive care patients (such as the MIMIC
dataset), and they are often difficult to generalize to healthy populations. Here, we proposed
an algorithm to predict nocturnal BP in healthy people, which is generally overlooked in
prediction studies. Starting to monitor nocturnal BP in good health—before the onset of
hypertension—is important to establish one’s ‘baseline and patterns’ that could help in the
formulation of strategies to reduce the impact of future hypertension in susceptible individuals.

4.4. Limitations

Our model required only a single-channel PPG signal and a signal window length of
7 s to achieve a high performance close to the error limits set by international guidelines [25].
On the other hand, because our sample comprised young and healthy people, the range
of BP values assessed was relatively restricted. The generalization of our model to older
persons, those with hypertension, and those with peripheral vascular disease remains to be
shown. The proportional bias towards higher blood pressure estimates when true values
are below the sample mean and lower blood pressure when true values are higher than the
sample mean may make the method suited mainly for studying the nocturnal physiology
of healthier normotensive persons.

5. Conclusions

A machine-learning-based approach based on PPG waveform features during sleep
can provide a scalable, convenient, economical, and non-invasive means to continuously
monitor blood pressure. With the widespread use of sleep trackers with inbuilt PPG sensors,
this may prove to be an approach that allows for large-scale evaluation of nocturnal BP
fluctuations in currently normotensive persons and possibly a tool for identifying persons
at risk for cardiovascular or cerebrovascular disease.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/s23187931/s1, Table S1: List of PPG waveform features used in
models, Figure S1: Beeswarm plot with most important features (including demographic features)
based on SHAP values.
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