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Abstract: Delamination damage is one of the most critical damage modes of composite materials.
It takes place through the thickness of the laminated composites and does not show subtle surface
effects. In the present study, a delamination detection approach based on equivalent von Mises
strains is demonstrated for vibrating laminated (i.e., unidirectional fabric) composite plates. In
this context, the governing relations of the inverse finite element method were recast according to
the refined zigzag theory. Using the in situ strain measurements obtained from the surface and
through the thickness of the composite shell, the inverse analysis was performed, and the strain
field of the composite shell was reconstructed. The implementation of the proposed methodology is
demonstrated for two numerical case studies associated with the harmonic and random vibrations
of composite shells. The findings of this study show that the present damage detection method is
capable of real-time monitoring of damage and providing information about the exact location, shape,
and extent of the delamination damage in the vibrating composite plate. Finally, the robustness of
the proposed method in response to resonance and extreme load variations is shown.

Keywords: delamination damage; vibrations; laminated composite shells; inverse finite element
method; refined zigzag theory

1. Introduction

Industry is becoming dependent on composite materials at an ever-increasing rate.
These materials offer superior properties, and consequently are the material of choice
for applications in advanced engineering structures readily available in aerospace and
marine industries. Nevertheless, composite materials are prone to damage, and the damage
mechanisms in composites are more complex than conventional alternatives, such as metals.
Among the various damage modes of composite materials, delamination damage is a
prevalent and critical failure mode. The composite structures lose their structural integrity
because of degradation of stiffness triggered by delamination damage. Delamination
can happen in composites during manufacturing processes, or as a result of in-service
accidents [1]. What makes the delamination damage detection critical and challenging is the
fact that it occurs through the thickness of the laminated material, and it often does not have
any subtle surface effects. Additionally, it is worth mentioning that the stacking sequence
of the laminate is one of the factors that has control over propagation or prevention of
delamination damage [2].
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Given the vitality of the issue, important research efforts have been dedicated to devis-
ing methodologies and designing experiments for detecting and/or preventing delamina-
tion damage in composite materials. Delamination detection via ultrasonic techniques [3],
fiber optic sensors [4], acoustic emission [5,6], radiography [7–9], thermography [10,11],
digital image correlation [12,13], and guided waves [14] are among the most commonly
used techniques in the literature. Drilling of composites is one of the most common factors
that triggers delamination damage in such materials. In this context, numerous studies
in the literature focus on this phenomenon. In terms of experimental efforts to reduce
and prevent delamination damage caused by drilling, Capello [15] demonstrated that
using supports for the workpiece during drilling decreases drilling-induced delamination
drastically. Ultrasonic-assisted drilling was presented as another preventive measure in
the study by Mehbudi et al. [16]. Seif et al. [17] introduced a non-destructive monitoring
technique based on imaging to measure the size of delamination damage in composite ma-
terials. Moreover, De Albuquerque et al. [18] used a data-driven method based on artificial
neural networks to select suitable drilling geometries to minimize delamination damage.
Jia et al. [19] incorporated thermal effects in their predictive analytical model of drilling
thrust force in an attempt to reduce delamination in composite materials. In addition to
drilling, impact is one of the causes of delamination damage, and given its minimal surface
effects, delamination is classified as a type of barely visible impact damage (BVID) [20].
Johnson et al. [21] developed a predictive continuum model to identify delamination dam-
age caused by impact. Other attempts at detection of impact-induced delamination damage
include the application of nonlinear acoustics for identifying delamination [22].

Delamination detection through the mentioned techniques provides promising results;
however, most of the efforts in the direction of delamination damage detection in lami-
nated composite materials fall into the category of vibrational structural health monitoring
(VSHM). In the work of Ratcliffe and Bagaria [23], fundamental vibrational mode of a com-
posite beam was used to define a damage index, which facilitated locating delamination
damage in the plate. This study inspired a study by Barman et al. [24], where they used the
bending modes of the composite beam and defined damage indices based on [23]. Next,
by solving a minimization problem based on the vibrational characteristics of the beam,
the exact location of the damage was detected. Moreover, Kessler et al. [25] proposed a
model-based method using the vibrational frequency responses of composite structures.
Zhang et al. [26] compared three inverse vibration-based damage detection techniques im-
plemented in beam problems, and highlighted the challenges associated with determining
the location of delamination damage. Additionally, data-driven delamination detection
approaches were developed within the context of vibration-based monitoring systems [27].
Generally, VSHM methods have proven to be very efficient in terms of identifying the
existence of damage in a composite material; however, they fail to provide an accurate
location or shape of the delaminated region.

However, development of a shape-sensing approach based on the minimization of
a least-squares functional, known as the inverse finite element method (iFEM) [28], pro-
vided researchers with the means to reconstruct the displacement and strain fields of
engineering structures, irrespective of their material models and/or their loading condi-
tions. Gherlone et al. [29] have shown that the iFEM is more versatile than other available
shape-sensing techniques, such as Ko’s displacement method [30], modal methods [31],
or shape-sensing based on artificial intelligence [32], in terms of implementation. The effi-
cient shape-sensing via the iFEM made it an attractive SHM technique, and soon, through
introduction of various inverse elements, such as a four-node quadrilateral inverse shell
element, known as iQS4 [33], its range of applications was expanded. In this context, suc-
cessful implementations of the iFEM can be found in aerospace [34–38], marine [39,40], civil
engineering [41], and machining [42] applications. More importantly, the theoretical basis
of the iFEM has also experienced significant contributions through the works of various
researchers [43,44]. One of the major theoretical contributions to the iFEM was made by
Cerracchio et al. [45], who incorporated the refined zigzag theory [46] in the mathematical
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framework of the iFEM. Implementation of the RZT within the iFEM framework enabled
accurate reconstruction of the displacement, section strains, and transverse shear strains
through the thickness of the laminated materials, which was not possible according to
the conventional theories such as first order shear deformation theory (FSDT). However,
Kefal et al. [47] noticed that the governing mathematics shown in [45] can be further en-
hanced if new transverse shear strain terms would be added to the least-squares functional.

In addition to the mentioned advances achieved by the iFEM in terms of its efficiency
and versatility, this method has also proven to be a robust damage-sensing and crack-
monitoring tool. Colombo et al. [48] developed a damage anomaly based on the percent
error difference between the in situ and reconstructed equivalent strain measure. In another
study, Colombo et al. [49] enhanced the anomaly index in [48] and verified the iFEM-
based damage detection analysis with experimental measurements. In the same context,
Abdollahzadeh et al. [50] defined a damage index based on the difference between the
equivalent von Mises strains obtained from the reconstructed damaged strain field and
measured intact strain field, and assessed the performance of several inverse element types
to identify damage in curved shell structures. Additionally, Li et al. [51] proposed a strain-
based damage index associated with vibration modes, and performed damage detection
analysis of a cantilevered plate with single and multiple damage cases. This study was
complemented by integrating a convolutional neural network within the iFEM framework,
which resulted in accurate damage identification and quantification [52]. Li et al. [53]
demonstrated the robustness of iFEM/iQS4 in delamination detection by developing a
damage index based on a pseudo-excitation method. The iFEM has also been exploited for
crack detection and monitoring applications. In this regard, Kefal et al. [54] incorporated
the peridynamic theory within the iFEM and proposed a robust real-time crack prognosis
system. In another study, Oboe et al. [55] introduced a “Gaussian likelihood index” for
estimating the size of the crack under mode I failure. To this end, several iFEM models
associated with different damage scenarios were developed, and through calculating
the likelihood index, the length of the crack can be approximated. The findings of this
research effort were further consolidated by validating the novel methodology against the
experimental test data. Most recently, Roy and Gherlone [56] targeted delamination damage
detection in composite structure. In their study, the unidirectional strain data acquired from
the composite material were smoothed over the entire problem domain, which were then
used to locate delamination damage. However, they highlighted that accurate detection
of damage requires collecting strain data from the vicinity of the delaminated region.
Additionally, their study solely focused on identifying the in-plane position of the damage
(without the fine detail of the through-the-thickness location of the delaminated region).
More recently, both in-plane and through-the-thickness localization of the delamination
was achieved based on iFEM–RZT formulation proposed by Ganjdoust et al. [57]. The
superior capability of this recent damage detection methodology was demonstrated for
static loading conditions only.

To the best of the authors’ knowledge, the iFEM has never been implemented to
monitor delamination damage in composite plates subjected to dynamic vibrations. The
present research effort aims to fill such an important research gap by devising a robust
damage diagnosis system based on the iFEM–RZT methodology for the first time in the
literature. The formulation proposed in the present study facilitates delamination detection
in thin vibrating laminated composite structures and involves (i) identifying the onset of
delamination damage, (ii) locating the in-plane and through-the-thickness position of the
delamination, and (iii) reconstructing the shape of the delaminated region. This approach
not only alleviates the need for an accurate and efficient damage monitoring system for
composite materials but is also very versatile in terms of implementation. Furthermore, the
novel features of the toolbox make it an attractive tool for studying and understanding the
dynamic behavior and randomness of the delamination damage in real time.

The paper is structured in the following order: In Section 2, the governing mathematics
of the iFEM–RZT within the context of the iRZT4 inverse element [58] is presented, and the
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iFEM–RZT-based damage detection toolbox is reviewed. Section 3 includes numerical case
studies. In this section, the results of in-plane/through-the-thickness damage detection are
presented, and a detailed interpretation associated with the results from each numerical
case study is presented. Finally, based on the findings of the study, concluding remarks are
stated in Section 4.

2. Theoretical Framework

The damage detection strategy was established within the framework of the iFEM–RZT.
The mathematics of this delamination detection strategy were developed using the iRZT4
inverse-shell element. Then, damage indicators were calculated utilizing the reconstructed
strain field. This section includes the underlying theories of the iFEM–RZT algorithm, and
the equivalent strain-based damage detection method.

2.1. RZT and Derivatization of the iRZT4 Inverse Element

The structure is studied from the perspective of a (i) fixed global coordinate system,
(X, Y, Z), (ii) a local coordinate system, (x, z) ≡ (x1, x2, z), and (iii) an isoparametric
coordinate system, denoted by (s, t). Consider that a laminated composite shell (Figure 1a)
consists of N layers, the displacements of a given material point at the kth layer of the
laminate can be obtained based on the RZT, using the following set of kinematic relations:

u(k)
1 (x, z) = u1(x) + zθ2(x) + φ

(k)
1 (z)ψ2(x) (1a)

u(k)
2 (x, z) = u2(x)− zθ1(x)− φ

(k)
2 (z)ψ1(x) (1b)

uz(x) = w(x) (1c)

where (u1, u2, uz) show translations, (θ1, θ2) show bending rotations, and (ψ1, ψ2) show
the zigzag rotations of a given material point within the plate. In fact, the zigzag rota-
tions are deemed as the amplitude of the in-plane zigzag displacements φ

(k)
1 (z)ψ2(x) and

φ
(k)
2 (z)ψ1(x), which are utilized to find an accurate distribution of the stresses and strains

through the thickness of the laminated composite plate/shell. It must be noted that all the
kinematic variables are functions of the local in-plane coordinates, x = (x1, x2). Thus, the
displacement vector for any material point in the laminated plate/shell will be given using
the vector u ≡ u(x) =

{
u1 u2 uz θ1 θ2 ψ1 ψ2

}T . Moreover, φ
(k)
i (z) (i = 1, 2), are

piecewise linear functions to introduce the effects of zigzag rotations in the kinematic rela-
tions for any given material point (Figure 1b). The reason for defining these functions is that
through-the-thickness displacement for each lamina/ply in a layered structure undergoes
significant changes from one layer to another. On the other hand, zigzag functions secure
the continuity of the displacements of each layer through the thickness of the laminate.
For detailed information associated with the RZT and definition of the zigzag functions,
interested readers are referred to Tessler et al. [46].

The analytical section strains and transverse shear strains for each ply are calculated
using the RZT kinematic relations provided in Equation (1):

ε(k) ≡


ε
(k)
11

ε
(k)
22

ε
(k)
12

 = e(u) + zκ(u) + µ(k)(u, z) (2a)

γ(k) ≡
{

γ
(k)
1z

γ
(k)
2z

}
= H(k)

γ (z)γ(u) + H(k)
η (z)η(u) (2b)
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where e(u) and κ(u) represent the membrane strain measure and bending curvatures,
respectively. Moreover, µ(k)(u, z) show the layer-wise zigzag strains. The explicit derivation
of each of the mentioned strain measures is written as

e(u) =
{

u1,1 u2,2 u1,2 + u2,1
}T (3a)

κ(u) =
{

θ2,1 −θ1,2 −θ2,2 + θ1,1
}T (3b)

µ(k)(u, z) = H(k)
φ (z)

{
ψ2,1 −ψ1,2 ψ2,2 −ψ1,1

}T (3c)

Here, H(k)
φ (z) is defined through the thickness of the laminate for each layer as a

function of the piecewise zigzag functions, φ
(k)
i :

H(k)
φ =

φ
(k)
1 0 0 0
0 φ

(k)
2 0 0

0 0 φ
(k)
1 φ

(k)
2

 (4)

In addition, the components of the transverse shear strains can also be explicitly
derived as

γ(u) ≡
{

γ1 γ2
}T

=
{

w,1 + θ2 w,2 − θ1
}T (5a)

η(u) =
{

η1 − ψ2 η2 + ψ1
}T (5b)

where H(k)
γ and H(k)

η are given as

H(k)
γ =

[
1 + φ

(k)
1,z 0

0 1 + φ
(k)
2,z

]
(6a)

H(k)
η =

[
−φ

(k)
1,z 0

0 −φ
(k)
2,z

]
(6b)

The iRZT4 inverse-shell element (Figure 2) is developed by incorporating the RZT
kinematics within the framework of the four-node quadrilateral inverse-shell element, iQS4.
Using the isoparametric shape functions Ni, the position of a given point inside the 4-node
inverse element can be approximated as

xj =
4

∑
i=1

Nixji (j = 1, 2) (7)

with x1i and x2i showing the nodal coordinates of the inverse-shell element along their
respective local coordinate axes.



Sensors 2023, 23, 7926 6 of 23Sensors 2023, 23, x FOR PEER REVIEW 6 of 24 

(a) (b) 

Figure 1. (a) Laminated composite shell; (b) Zigzag functions defined through the thickness of the 

laminated shell. 

(a) (b) 

Figure 2. Inverse shell element, iRZT4: (a) from the perspective of the global and local coordinate 

systems; (b) nodal degrees of freedom for node i  of the inverse element. 

Similarly, the components of the analytical displacements in Equation (1), can be ob-

tained in an approximate form as 

4 4

1
1 1

1i
i

i
i i zi

u N u L
= =

= +  (8a) 

4 4

1
2 2

1i
i

i
i i zi

u N u M 
= =

= +  (8b) 

( ) ( )1

4 4 4

1
2

1
1 2

1i
i i i i i i i

i i
i

w LwN M   
= = =

= − − − −   (8c) 

4

1

( 1,2)
j i ji

i

N j 
=

= = (8d) 

4

1

( 1,2)
j i ji

i

N j 
=

= = (8e) 

where i
L and i

M are higher order anisoparametric shape functions, which are defined

in terms of the bilinear shape functions i
N . Additionally, zi

 and zi
  are the artificial 

drilling rotation and artificial zigzag rotation degrees of freedom, which guarantee avoid-

ing singular solutions. As a result of discretizing the problem domain, the numerical coun-

terparts of analytical strain measures can be recovered in terms of the element displace-

ment vector 
eu according to the kinematic relations of the iRZT4 element as

(( ) , , , , )e e = =u B u e κ μ γ η (9) 

Figure 1. (a) Laminated composite shell; (b) Zigzag functions defined through the thickness of the
laminated shell.

Sensors 2023, 23, x FOR PEER REVIEW 6 of 24 

(a) (b) 

Figure 1. (a) Laminated composite shell; (b) Zigzag functions defined through the thickness of the 

laminated shell. 

(a) (b) 

Figure 2. Inverse shell element, iRZT4: (a) from the perspective of the global and local coordinate 

systems; (b) nodal degrees of freedom for node i  of the inverse element. 

Similarly, the components of the analytical displacements in Equation (1), can be ob-

tained in an approximate form as 

4 4

1
1 1

1i
i

i
i i zi

u N u L
= =

= +  (8a) 

4 4

1
2 2

1i
i

i
i i zi

u N u M 
= =

= +  (8b) 

( ) ( )1

4 4 4

1
2

1
1 2

1i
i i i i i i i

i i
i

w LwN M   
= = =

= − − − −   (8c) 

4

1

( 1,2)
j i ji

i

N j 
=

= = (8d) 

4

1

( 1,2)
j i ji

i

N j 
=

= = (8e) 

where i
L and i

M are higher order anisoparametric shape functions, which are defined

in terms of the bilinear shape functions i
N . Additionally, zi

 and zi
  are the artificial 

drilling rotation and artificial zigzag rotation degrees of freedom, which guarantee avoid-

ing singular solutions. As a result of discretizing the problem domain, the numerical coun-

terparts of analytical strain measures can be recovered in terms of the element displace-

ment vector 
eu according to the kinematic relations of the iRZT4 element as

(( ) , , , , )e e = =u B u e κ μ γ η (9) 

Figure 2. Inverse shell element, iRZT4: (a) from the perspective of the global and local coordinate
systems; (b) nodal degrees of freedom for node i of the inverse element.

Similarly, the components of the analytical displacements in Equation (1), can be
obtained in an approximate form as

u1 =
4

∑
i=1

Niu1i +
4

∑
i=1

Liθzi (8a)

u2 =
4

∑
i=1

Niu2i +
4

∑
i=1

Miθzi (8b)

w =
4

∑
i=1

Niwi −
4

∑
i=1

Li(θ1i − ψ1i)−
4

∑
i=1

Mi(θ2i − ψ2i) (8c)

θj =
4

∑
i=1

Niθji (j = 1, 2) (8d)

ψj =
4

∑
i=1

Niψji (j = 1, 2) (8e)

where Li and Mi are higher order anisoparametric shape functions, which are defined in
terms of the bilinear shape functions Ni. Additionally, θzi and ψzi are the artificial drilling
rotation and artificial zigzag rotation degrees of freedom, which guarantee avoiding singu-
lar solutions. As a result of discretizing the problem domain, the numerical counterparts of
analytical strain measures can be recovered in terms of the element displacement vector ue

according to the kinematic relations of the iRZT4 element as

χ(ue) = Bχue (χ = e,κ,µ,γ,η) (9)
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where the nodal degrees of freedom for the ith node of an individual iRZT4 element are
given as

ue
i =

{
u1i u2i wi θ1i θ2i θzi ψ1i ψ2i ψzi

}T
(i = 1, 2, 3, 4) (10)

Within the framework of the iFEM–RZT, the least-squares functional accounts for five
distinct deformation fields. In this context, for each field, a function is defined in terms of
the difference between the numerical strain measures (Equations (3) and (5)) and the in situ
strain measurements. This can be defined as

φe(u
e) = e(ue)− E (11a)

φκ(u
e) = κ(ue)−K (11b)

φµ(u
e, zj) = µ

(k)(ue, zj)−Mj (11c)

φγ(u
e) = γ(ue)− Γ (11d)

φη(u
e) = η(ue)−H (11e)

Equations (11a–c) refer to the membrane strains, bending curvatures, and zigzag
strains, respectively, while Equations (11d–e) correspond to the transverse shear strain
measures. Additionally, the experimental strain measures are given as E for membrane
strain measures, K for bending curvatures, Mj for zigzag section strains at the jth interface
of the laminate, Γ and H for the transverse shear strains.

As is illustrated in Figure 3, the experimental strain data can be acquired from the
bounding surfaces, and through the thickness of the shell. In the Figure, ε+i , ε−i , and εj

i
refer to section strain measurements of the ith sensor, at the top surface, bottom surface,
and jth interface of the laminate, respectively. The section strain measures E, K, and Mj can
be obtained by manipulating the in situ strain measures, as is outlined in [58]. However,
measuring the experimental strains associated with the transverse shear strain terms Γ and
H is not as straightforward as the strain measures described previously, and they require
auxiliary techniques such as smoothed iFEM [44] to be obtained. Nevertheless, the effects
of the transverse shear strain terms are usually negligible in thin shells in comparison to
other experimental strain data.
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The least-squares functional can be written for a single iRZT4 element by integrating
the weighted summation of the norm of the difference functions (Equation (11)) over the
area of the inverse element as

Φ(ue) =
1

Ae

x

Ae

[
we‖φe(ue)‖2 + wκ‖φκ(ue)‖2 + wµ

∥∥φµ(ue, zj)
∥∥2

+wγ‖φγ(ue)‖2 + wη‖φη(ue)‖2

]
dx1dx2 (12)

In this equation, ‖X‖2 is the normal second order Euclidean norm operator, which can
be determined by calculating the dot product X · X. Moreover, wχ with χ = {e, κ, µ, γ, η}
are the scalar weight coefficients that are utilized to enforce the effects of strain data for a
certain element. In this regard, we, wκ , and wµ are associated with the membrane, bending,
and zigzag strain measures, respectively, while wγ and wη are related to the transverse shear
strains. These coefficients take a value of wχ = 1 if the sensor data are available at a certain
location, and if no experimental data are available, a very small number wχ = α relative to
unity is assigned to them, e.g., α = 10−5. As a result, the elements for whom the sensor
data are available will have a more dominant role in the reconstruction of the displacement
field. By minimizing the least-squares functional subject to the local displacement vector, a
system of equations can be obtained at the element level:

∂Φ(ue)

∂ue = 0 → keue − fe = 0 (13)

in which ke denotes the local (element) iFEM matrix, and fe is the local (element) right-
hand-side (RHS) vector.

ke =
1

Ae

x

Ae


we(Be)TBe + (2h)2wκ(Bκ)TBκ+

wµ(H
(k)
φ (zj)Bµ)

T
H(k)

φ (zj)Bµ+

wγ(Bγ)TBγ + wη(Bη)TBη

dx1dx2 (14a)

fe =
1

Ae

x

Ae


we(Be)TE + (2h)2wκ(Bκ)TK+

wµ(H
(k)
φ (zj)Bµ)

T
Mj+

wγ(Bγ)T
Γ + wη(Bη)TH

dx1dx2 (14b)

Like the (forward) FEM, the local iFEM matrix and the local RHS vector are trans-
formed from the local coordinates to the global coordinates. Afterwards, they are assembled
into a global system of equations. In this regard, it can be written that:

KG =
nel

∑
i=1

(Te)TkeTe (15a)

FG =
nel

∑
i=1

(Te)Tfe (15b)

where nel is used to denote the total number of the inverse elements. In addition, KG
and FG are the global iFEM matrix and global RHS vectors, respectively, and Te is the
transformation matrix from the local reference frame to the global coordinates. In addition,
the global displacement vector is also given as

UG =
nel

∑
i=1

(Te)Tue (16)

Hence, the global system of equations will be defined as

KGUG = FG (17)
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To solve the given global system of equations, the rows and columns associated with
the essential boundary conditions are reduced, and a new reduced global system of equa-
tions is obtained. Then, the reduced displacement vector is obtained using matrix algebra.

KRUR = FR → UR = (KR)
−1FR (18)

Thus, the displacement field, and consequently the strain field of the laminated shell
structures, can be recovered utilizing the iFEM–RZT methodology.

2.2. Damage Detection Toolbox Based on iFEM–RZT

The equivalent strain-based damage detection toolbox is developed using the shape-
sensing results of the iFEM analysis. Based on the reconstructed strain field, various
damage indices are defined. These damage indices enable the iFEM–RZT methodology to
detect the in-plane location and configuration of the delamination damage. Moreover, they
identify the location of the delamination damage through the thickness of the layered shell.
The robustness and accuracy of the shape-sensing results via the iFEM ensures the accuracy
of the damage detection via the present methodology. Furthermore, it is known that in
shape-sensing via the iFEM, no a priori information regarding the material model or loading
conditions is required; however, the use of RZT in this delamination damage detection
toolbox requires information about the material model so that the through-the-thickness
location of delamination is identified.

The damage detection toolbox based on iFEM–RZT uses equivalent von Mises strains
to calculate damage indices. To find the in-plane location of the damage, the equivalent
von Mises strain associated with membrane strain measure and bending curvature are
calculated. To find the equivalent strain measures, the first and second principal strains for
membrane and bending strain measures are established as

ε
χ
1,2 =

χ11 + χ22

2
±

√(
χ11 − χ22

2

)2
+
(χ12

2

)2
(χ = e, κ) (19)

where e =
{

e11 e22 e12
}T and κ =

{
κ11 κ22 κ12

}T are used to denote the recon-
structed membrane strain measures and bending curvatures, respectively, and the equiva-
lent von Mises strain associated with each strain measure will be obtained as

ε
χ
VM =

√(
ε

χ
1
)2 − ε

χ
1 ε

χ
2 +

(
ε

χ
2
)2

(χ = e, κ) (20)

As a result, the membrane damage index, De, and the twisting damage index, Dκ , can
be formulated as

Dχ(ε
χ
VM) =

∣∣∣∣∣∣
(

ε
χ,B
VM

)
i
−
(
ε

χ
VM
)

i

ε
χ,max
VM

∣∣∣∣∣∣ (χ = e, κ; i = 1, 2, . . . , nel) (21)

Here, ε
χ,max
VM is the maximum reconstructed von Mises strain using the iFEM, and ε

χ,B
VM

shows the baseline value for the equivalent strain measures at each mode. This reference
value is associated with the last instant when the structure is intact. The baseline value is
updated consistently until the first signs of von Mises strain localization are observed. In
this case, the time increment associated with the onset of damage localization will be the
final baseline measurement until the end of the damage detection analysis.

Using a similar process, the location of the delaminated region through the thickness
of the shell structure can be determined. In this context, the principal strains for each layer
are first calculated as
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ε
(k)
1,2 =

ε
(k)
11 + ε

(k)
22

2
+

√√√√( ε
(k)
11 − ε

(k)
22

2

)2

+

(
γ
(k)
12
2

)2

(22)

using which, the average equivalent strains for each layer are obtained as

ε
(k)
VM =

1
2h(k)

zk∫
zk−1

√(
ε
(k)
1

)2
− ε

(k)
1 ε

(k)
2 +

(
ε
(k)
1

)2
dz (23)

and the damage indices for each lamina, D(k), will be given as

D(k)(ε
(k)
VM) =

∣∣∣∣∣∣
(

ε
(k),B
VM

)
i
−
(

ε
(k)
VM

)
i

ε
(k),max
VM

∣∣∣∣∣∣ (i = 1, 2, . . . , nel) (24)

where, ε
(k),max
VM is the maximum reconstructed average von Mises strain of each ply, and

ε
(k),max
VM is the reference average strain measure for each lamina. Hence, using the membrane

and twisting damage indices, the in-plane location and shape of the delaminated region
is configured, and then, a layer-wise inspection of delamination damage is performed,
to identify the through-the-thickness position of the delaminated region in the shell. For
a detailed account of the implementation of the present delamination damage detection
method, see [57].

3. Numerical Examples

The robustness and efficiency of the proposed damage detection toolbox has been
demonstrated in several numerical case studies in the previous study by the same authors,
all of which included time-invariant loading. However, complex engineering structures
available in aerospace and marine industries often undergo dynamic loads, and the loading
condition might be of a harmonic, stochastic, or random nature. In addition, it is known
that structural damage in composite materials is a progressive process. Therefore, damage
detection systems for composite materials must be capable of identifying the onset of
damage, and providing information regarding the behavior of the damage, such as its
intensity over time and load steps.

In the present effort, two numerical case studies were investigated, namely a can-
tilevered plate subject to harmonic load and a cantilevered curved composite shell subject
to random bending load. In both examples, the efficacy of the inverse damage detection
strategy is studied in terms of identifying the initiation of the delamination damage, and
the ability of the method in locating the in-plane and through-the-thickness position and
configuration of the delamination damage. It is also worth mentioning that, in neither of
the test cases, the damage model is natural, i.e., damage is not modeled in a progressive
manner. Indeed, it is assumed that the shell structure is in a pristine state until a certain
time increment, after which delamination damage appears in the structure. Therefore, it
is worth noting that the present numerical examples do not entail this damage detection
technique to monitor the propagation and growth of the delaminated region. Herein, only
the initiation and intensity of the delamination damage are monitored over time.

3.1. Cantilevered Plate Subject to Harmonic Load

In this example, a cantilevered laminated composite plate is considered. The loading
condition of the problem is defined according to the vibrational characteristics of the plate.
In other words, if the kth mode of vibration is bending, the harmonic load will also be a
bending load. Given this, the first two natural frequencies and mode shapes of the intact
system were determined using the commercial FE software, Ansys Mechanical APDL. Based
on the results, it can be seen that the first vibration mode of the system is bending (first
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flap) with the fundamental natural frequency determined as ωn1 = 19.3422 rad/s, whereas
the second mode corresponds to torsion (first torsion) and its respective natural frequency
is ωn2 = 37.9360 rad/s. Hence, the present example consists of two sub-problems:

• Cantilevered laminated composite plate subject to harmonic bending load;
• Cantilevered laminated composite plate subject to harmonic torsion load.

Figure 4 shows the geometry of the plate, where the in-plane and through-the-thickness
configurations of the delaminate region are also depicted. The plate has a length and width
of 1000 mm and a thickness of 4 mm. Hence, it can be categorized as a thin plate (Span-
to-thickness ratio 1000/4 = 250). The stacking sequence of the laminated plate is given
by [0/± 45/90] and the orthotropic material properties for each lamina are provided in
Table 1.
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Figure 4. The geometry of the delaminated cantilevered laminated composite plate.

Table 1. Material properties of an individual unidirectional carbon–epoxy ply.

Young’s Modulus [GPa] Poisson’s Ratio Shear Modulus [GPa]

E1 = 133.9 ν12 = ν13 = 0.32 G12 = G13 = 4.8
E2 = E3 = 11.5 ν23 = 0.37 G23 = 4.2

On the other hand, Figure 5 shows the loading conditions for each of the sub-problems
mentioned above. The figure shows that, in each case, the harmonic load is applied to the
free edge of the plate.

In addition, the delaminated region is a 50× 50 square region, which is located at
the interface of the 3rd and 4th layers. At the intact cross-section, all the laminae have the
same thickness, while at the defected cross-section, the thickness of the 3rd and 4th plies
is reduced to 95% of their intact thickness; therefore, the thickness of the delamination
damage is 10% of the total thickness of the laminate. In fact, the delaminated region is
simply modeled as a lack of layer in the forward analysis. In both sub-problems of this
case study, harmonic load is applied over a period of 4 s, and after t = 1 s, delamination
damage is activated in the plate.

Moreover, the input strain data for the iFEM–RZT algorithm are collected from the
top/bottom surfaces of the laminated plate in the present case study. In addition, through-
the-thickness strain data from the interface of the 1st and 2nd layers are also acquired.
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As it was discussed in Section 2.2, the in situ strain data include all the components of
the section strains,

{
ε11 ε22 γ12

}T . These data are collected according to the sensor
placement scheme depicted in Figure 6.
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Figure 6. Sensor placement pattern for the cantilevered laminated composite plate.

3.1.1. Cantilevered Laminated Composite Plate Subject to Harmonic Bending Load

As it is illustrated in Figure 5a, the harmonic distributed bending load is applied to
the free edge of the composite plate. The bending load is given as Fb(t) = Fb0 sin(ω1t), in
which the amplitude of the force is Fb0 = 100 N and the excitation frequency is defined
as ω1 = 0.95ωn1 . The value of the excitation frequency was selected close to the natural
frequency to trigger the resonance in the first vibrational mode of the plate. Strain data
were collected from the plate with a frequency of 100 Hz, according to the sensor placement
scheme depicted in Figure 6.

The strain field of the plate was reconstructed through the iFEM–RZT algorithm.
In this context, the weight coefficients used in the iFEM–RZT least-squares functional
(Equation (12)) were set equal to unity for the iRZT4 elements with sensor data, whereas, for
elements that do not possess sensor data, their value was wχ = 10−4 for χ = {e, κ, µ, γ, η}.
Delamination detection was performed by first determining the in-plane location of the
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damage. Hence, first, the membrane and twisting damage indicators are calculated. The
contour plots associated with the membrane and twisting damage indices are presented in
Figure 7 and Figure 8, respectively. It is evident that, prior to damage initiation, neither of
the damage indices showed any sign of damage localization in the plate. However, after
the damage was initiated, both the membrane and twisting damage indices identified a
damaged region at the location of the damage, according to Figure 4. The magnitude of
the damage at this stage was not significantly high; however, as the harmonic loading
continues over time, at t = 3.5 s, both damage indicators show the delamination damage
at its highest intensity. Moreover, using the contour plots provided in Figures 7 and 8, a
rough estimation of the in-plane shape of the damage is also enabled.
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bending load; (a) the instant prior to damage initiation, t = 1 s, (b) the instant of damage initiation,
t = 1.01 s, (c) the instant with the maximum damage, t = 3.5 s.
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Figure 8. Twisting damage index for cantilevered laminated composite plate subject to harmonic
bending load; (a) the instant prior to damage initiation, t = 1 s, (b) the instant of damage initiation,
t = 1.01 s, (c) the instant with the maximum damage, t = 3.5 s.

Additionally, the location of the delaminated region can be determined through a
layer-wise inspection of damage based on the proposed strategy. In this context, after
finding the in-plane location of the damage, at each time increment, damage indices for
each layer are calculated via Equation (24) at the delaminated region. The variations of the
normalized damage identifiers are plotted and illustrated in Figure 9.

According to these results, it can be seen that the damage indices associated with the
3rd and 4th layers acquire values greater than those related to the other layers. These results
imply that the delaminated region is located between the 3rd and 4th layers. Furthermore,
the values of the damage identifiers change drastically after t = 1 s, indicating the onset of
delamination damage. Additionally, from the variations in the layer-wise damage indices
in Figure 9, the effects of resonance on the intensity of the damage can be seen.
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Figure 9. Layer-wise damage indices for cantilevered plate under harmonic bending load.

3.1.2. Cantilevered Laminated Composite Plate Subject to Harmonic Torsion Load

As was mentioned earlier, the plate undergoes torsional response in its second mode
of vibration. In this sub-problem, the present damage detection strategy is implemented to
identify delamination damage when the structure is subject to harmonic torsion load. In this
regard, the free edge of the plate is subject to a harmonic torsional load (Figure 5b) given by
Ft(t) = Ft0 sin(ω2t). The amplitude of the force is Ft0 = 100 N, and the excitation frequency
is related to the second natural frequency of the plate through the relation ω2 = 0.95ωn2 . In
contrast to the previous example, strain data acquisition is performed with a frequency of
200 Hz throughout the entire analysis time.

Like the previous example, the membrane and twisting damage indices are calculated
using Equation (21), and the results are demonstrated in Figures 10 and 11. According to
these results, the iFEM–RZT-based delamination detection approach is able to detect the
in-plane location of the damage in the structure and distinguish the intact and damaged
states of the laminated plate. In addition, it can be observed that, at various time increments,
the intensity of the damage changes. In contrast to the previous case, the values of the
membrane and twisting damage indices never reach the maximum intensity of the damage,
i.e., unity. The correlation between this phenomenon and possible effects of increasing
the frequency of the vibration requires further investigation; nevertheless, the proposed
damage detection method is still capable of finding the in-plane location of the damage
and approximating its morphology.
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Figure 11. Twisting damage index for cantilevered laminated composite plate subject to harmonic
torsion load; (a) the instant prior to damage initiation, t = 1 s, (b) the instant of damage initiation,
t = 1.005 s, (c) the instant with the maximum damage, t = 1.7 s.

The results of the through-the-thickness damage detection are presented in Figure 12.
Like the previous case, the layer-wise damage identifiers correctly show the interface of the
3rd and 4th layers as the through-the-thickness location of the delaminated region, as the
normalized layer-wise damage indices show more intense levels of damage for these two
layers. Additionally, the resonant behavior of the damage is projected in the presented plot,
and the variations in the values of the layer-wise damage indices shows traces of beating
phenomenon, which is commonly encountered in resonant systems.
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Figure 12. Layer-wise damage indices for cantilevered plate under harmonic torsion load.

In general, the results of the two sub-problems show that delamination damage can be
identified effectively, in terms of its exact in-plane and through-the-thickness location in a
thin vibrating laminated composite shell. Moreover, the shape of the delaminated region is
reconstructed using the membrane and twisting damage indices, and the resonant effects of
the damage are highlighted in the variations of the layer-wise damage indices with respect
to time.

3.2. Cantilevered Curved Shell Subject to Random Bending Load

Complex structures, commonly used in aerospace or marine industries, are often
subject to harsh and random loading conditions. In this subsection, the damage detection
method is implemented to locate delamination damage in a composite curved shell sub-
jected to random distributed bending load (Figure 13). The length of the shell is 200 mm,
and the curvature of the shell has a radius of 100 mm. Additionally, the total thickness of the
shell is 3.5 mm, and it comprises seven equally thick layers of unidirectional carbon–epoxy
composite (Table 1). The stacking sequence of the laminate is given as [0, 90, 0, 90, 0, 90, 0].
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Figure 13. Cantilevered curved laminated shell subject to random bending load.

The structure is subject to a random distributed bending load from its free edge that
varies between 0 N and 200 N over a period of 30 s. In addition, delamination damage is
located at the interface of the 1st and 2nd plies, which is initiated at t = 6 s. It is assumed
that, because of the delamination, the thickness of the 1st and 2nd laminae decrease by 10%
of their undamaged thickness, indicating that the delamination has a thickness equal to
0.1 mm. The in situ strain data are acquired from the top/bottom surfaces of the shell, as
well as from the interface of the 6th and 7th plies, according to the sensor placement scheme
illustrated in Figure 14. The figure also shows the in-plane location of the rectangular
delaminated region.
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Figure 14. Sensor placement scheme and in-plane location of the delaminated region provided in
(x–y) plane.

Figure 15 shows the variations in the magnitude of the random bending load with
respect to the time of the analysis. The magnitude of the bending load for each time step
has been provided in Appendix A. The iFEM–RZT algorithm processes the strain data
associated with each load step to reconstruct the strain field of the curved shell. In this
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regard, the weight coefficients, wχ, are defined exactly as in the previous case study, i.e.,
wχ = 1 for elements with sensors and wχ = 10−4 for elements without sensors, so that
elements with sensors will have a more dominant effect on reconstructing the displacement
and strain fields.
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Figure 15. Random variation in the bending load with respect to the time of the analysis.

Considering that the structure undergoes greater levels of strain as the magnitude
of the random load is higher, the in-plane damage detection results have been provided
for the load steps with higher magnitudes of load and the time step corresponding to the
instant before the initiation of the damage. Figures 16 and 17 show the membrane and
twisting damage indices associated with these time steps for the curved structure.

The contour plots for the membrane and twisting damage indices show accurate
identification of the in-plane location and shape of the delaminated region when the
structure is subject to extreme changes in the applied load. Intuitively, as the magnitude of
the load increases, it is expected that the structure experiences intense levels of damage,
or extreme changes of the equivalent von Mises strains from two consecutive load steps
might make the damage detection prone to error; nevertheless, the results show that, prior
to damage initiation, higher values for the random bending load do not have any effect
on the performance of the proposed damage detection methodology. Indeed, the iFEM-
based damage monitoring system provides an accurate distinction between the pristine
and damaged state of the structure. In addition, slight variations in the maximum load
magnitudes are taken into account by the present damage detection approach. These
effects are reflected in the varying intensity of the damage indices derived for various
loads, indicating that the iFEM–RZT-based model is sensitive to the load variations. This
robustness can be credited to accurate reconstruction of the displacement and strain fields
achieved via the iFEM. In addition, it must be noted that, although the structure does
not experience damage until t = 5 s, the values for damage indices are not equal to zero.
Nonetheless, these results can be interpreted through continuum damage models. As
an example, the acceptable range for the critical value of the damage index for metallic
structures is usually 0.2 < Dc < 0.8, with Dc denoting the critical damage index [59]. The
correlation between the presented results and the critical damage range for composite
materials can be the topic of future research efforts.

Furthermore, to locate the through-the-thickness position of the delaminated region,
layer-wise damage indices were calculated using Equation (24). After identifying the
in-plane location of the damage utilizing the membrane and twisting damage indices, the
layer-wise damage identifiers can be calculated at the delaminated region. The damage
indices calculated at the damaged region for each ply are depicted in Figure 18.



Sensors 2023, 23, 7926 18 of 23Sensors 2023, 23, x FOR PEER REVIEW 18 of 24 
 

 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 16. Membrane damage index for cantilevered curved shell subject to random bending load; 

(a) 4t =  s, (b) 5t =  s (Last time step prior to damage initiation), (c) 7t =  s, (d) 11t = s, (e) 

18t =  s, and (f) 23t =  s. 

  
(a) (b) 

Figure 16. Membrane damage index for cantilevered curved shell subject to random bending load;
(a) t = 4 s, (b) t = 5 s (Last time step prior to damage initiation), (c) t = 7 s, (d) t = 11 s, (e) t = 18 s,
and (f) t = 23 s.

According to these curves, the layer-wise damage indices identify the through-the-
thickness position of the delaminated region as the interface of the 1st and 2nd plies.
However, the peaks of the curves illustrated in Figure 18 are not necessarily compatible
with the peak values of the membrane and twisting damage indices. Nevertheless, they
can still be used for detecting the position of the defected region through the thickness of
the curved structure.
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Figure 17. Twisting damage index for cantilevered curved shell subject to random bending load;
(a) t = 4 s, (b) t = 5 s (Last time step prior to damage initiation), (c) t = 7 s, (d) t = 11 s, (e) t = 18 s,
and (f) t = 23 s.

In summary, it was demonstrated that the proposed damage detection strategy iden-
tified the configuration of the damage effectively in the curved laminated shell. If the
time increments associated with the most intense levels of damage are to be considered
critical time steps, the results of the in-plane damage detection are more reliable than the
through-the-thickness damage inspection. Nonetheless, in terms of providing the location
of the delaminated region within the structure, the robustness of the delamination detection
method is guaranteed. In general, the delamination detection and damage monitoring re-
sults of the proposed methodology show superiority to the results available in the literature.
Several features make the proposed iFEM–RZT-based technique a valuable tool. Among
these features, the capability of the present approach to accurately locate the delaminated
region is one of the most important features, which is a rather far-fetched objective when
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using VSHM techniques [25]. On the other hand, some of the delamination detection
techniques, such as the ones proposed in [23,24], have tried to alleviate this issue of the
VSHM methods in beam problems; however, to the best of the authors’ knowledge, their
methodology has not been implemented to problems involving plates/shells. Moreover,
vibrational modes will become more complex as the dimensions of the domain increase,
whereas the iFEM–RZT-based method is very versatile in terms of numerical/practical im-
plementation thanks to its well-developed library of inverse elements [33,44,47,50]. Finally,
the most recent iFEM-based delamination detection technique [56] is more economical than
the present methodology in terms of instrumentation; however, it lacks the capability to
detect the delaminated region through the thickness of the laminate, whereas the technique
proposed in the present paper is exempt from such a restriction.
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Figure 18. Layer-wise damage indices for cantilevered curved shell subject to random bending load.

4. Concluding Remarks

In this paper, a robust damage monitoring technique is presented for delamination
detection in composite structures subjected to forced vibrations. To illustrate the efficiency
of the proposed methodology, two numerical case studies have been conducted. In the first
example, the harmonic vibrations of a cantilevered composite plate were considered, where
the applied harmonic load was closely related to the vibrational modes of the composite
plate. In the second example, the random vibration of a cantilevered curved composite shell
was studied. According to the results of both examples, the iFEM–RZT-based delamination
detection strategy was found to be an effective tool in terms of diagnosing damage in
vibrating composite shells. In this context, it has been demonstrated that, by utilizing
this technique, valuable information associated with (i) the existence and initiation of
delamination damage in the laminate, (ii) the in-plane and through-the-thickness position
of the damage, and (iii) the shape and extent of the delaminated region can be obtained
by using only sensor data (i.e., without any material/loading information of the laminate).
Moreover, it is shown that this methodology is immune to load variations in the case of
random vibrations. Furthermore, the effects of resonance of the system in harmonic vibra-
tions can be captured using this technique. Overall, it has been proven that the iFEM–RZT
damage detection method is a viable technique for the real-time diagnosis of delamination
within thin complex/curved/built-up structural topologies made of laminated composites.

As a limitation of the proposed approach, it is only applicable to laminated struc-
tures (i.e., not directly for 3D woven composites). Additionally, during the analysis, the
present damage detection approach has only been applied to problems that involve thin
plates/shells. Therefore, these topics can be the subject of future research work to further
enhance the present damage detection strategy’s performance. Additionally, the future
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direction of this research could involve implementing the present methodology to monitor
the time-dependent variation and propagation of the delaminated damage and the study
of multiple delaminated regions in the structure.
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Appendix A

The random distributed load discussed in Section 3.2 was generated using the RAND()
function in MS Excel. The numeric values associated with the random bending load at
various time steps (Figure 15) are listed in Table A1.

Table A1. The magnitudes of the random bending load for each time step used in the damage
detection of the Cantilevered Curved Shell Subject to Random Bending Load.

Time [s] Force [N] Time [s] Force [N]

0 0.00 16 122.62
1 17.68 17 164.43
2 118.82 18 185.96
3 97.04 19 12.56
4 193.61 20 20.94
5 52.20 21 94.42
6 194.10 22 147.35
7 8.68 23 197.94
8 17.39 24 19.75
9 69.75 25 145.35
10 1.65 26 17.38
11 196.91 27 103.93
12 11.78 28 75.94
13 125.40 29 69.76
14 71.24 30 107.49
15 133.85
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