
Citation: Min, Y.; Wang, Z.; Liu, Y.;

Wang, Z. FS-RSDD: Few-Shot Rail

Surface Defect Detection with

Prototype Learning. Sensors 2023, 23,

7894. https://doi.org/10.3390/

s23187894

Academic Editor: Yi Qin

Received: 4 August 2023

Revised: 29 August 2023

Accepted: 5 September 2023

Published: 15 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

FS-RSDD: Few-Shot Rail Surface Defect Detection with
Prototype Learning
Yongzhi Min 1,*, Ziwei Wang 1,* , Yang Liu 1 and Zheng Wang 2

1 School of Automation and Electrical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China;
12211463@stu.lzjtu.edu.cn

2 School of Mechanical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; wangz@lzjtu.edu.cn
* Correspondence: minyongzhi@lzjtu.edu.cn (Y.M.); 11210387@stu.lzjtu.edu.cn (Z.W.)

Abstract: As an important component of the railway system, the surface damage that occurs on
the rails due to daily operations can pose significant safety hazards. This paper proposes a simple
yet effective rail surface defect detection model, FS-RSDD, for rail surface condition monitoring,
which also aims to address the issue of insufficient defect samples faced by previous detection
models. The model utilizes a pre-trained model to extract deep features of both normal rail samples
and defect samples. Subsequently, an unsupervised learning method is employed to learn feature
distributions and obtain a feature prototype memory bank. Using prototype learning techniques,
FS-RSDD estimates the probability of a test sample belonging to a defect at each pixel based on
the prototype memory bank. This approach overcomes the limitations of deep learning algorithms
based on supervised learning techniques, which often suffer from insufficient training samples and
low credibility in validation. FS-RSDD achieves high accuracy in defect detection and localization
with only a small number of defect samples used for training. Surpassing benchmarked few-shot
industrial defect detection algorithms, FS-RSDD achieves an ROC of 95.2% and 99.1% on RSDDS
Type-I and Type-II rail defect data, respectively, and is on par with state-of-the-art unsupervised
anomaly detection algorithms.

Keywords: rail surface defect detection; few-shot learning; prototype learning; transfer learning;
unsupervised anomaly detection

1. Introduction

The rapid growth of railway operation mileage in recent years, due to the construction of
numerous new railway lines in many countries, has significantly increased the pressure on
maintenance. During the daily operation of railway systems, the interaction between wheels
and rails inevitably leads to surface defects such as spalling, corrugation, and grinding, which
pose serious hidden dangers to safe operation. Unlike internal defects in rails that can be
detected using techniques such as ultrasound [1] and eddy current [2,3], traditional rail surface
defect detection is mainly conducted through manual visual inspection, which is inefficient
and heavily relies on human workers’ experience [4]. In recent years, many researchers have
focused on developing machine vision-based rail surface defect detection technologies that
offer higher efficiency and accuracy to address the aforementioned issues. With the rapid
development of artificial intelligence technology, deep-learning-based algorithms, specifically
supervised learning-based defect detection algorithms, are being widely applied in rail surface
defect detection [5–8].

However, defect samples are difficult to obtain in practical work; thus, defect detection
methods based on supervised learning face two important challenges due to insufficient
defect samples. One of them is the risk of overfitting caused by the limited training data,
which may not adequately represent the distribution of defect; additionally, supervised
learning methods typically require the use of a portion of the defect data for training,

Sensors 2023, 23, 7894. https://doi.org/10.3390/s23187894 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23187894
https://doi.org/10.3390/s23187894
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0009-0001-9482-4267
https://orcid.org/0009-0005-6812-0484
https://doi.org/10.3390/s23187894
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23187894?type=check_update&version=1

Sensors 2023, 23, 7894 2 of 19

leading to a reduction in the number of testing samples available for validation, which
affects the credibility of the validation results. Inspired by the concept of anomaly detection
(AD), some researchers have turned their attention to utilizing unsupervised learning
techniques to address the aforementioned issues in the field of defect detection [9–11].
However, these unsupervised learning-based methods rely completely on modeling the
distribution of normal samples, lacking an understanding of defect data, which may lead
to poor classification performance and a potentially high false-positive/negative rate [12].

To tackle the aforementioned shortcomings of supervised learning-based defect de-
tection methods, this paper proposes a few-shot rail surface defect detection model called
FS-RSDD (few-shot rail surface defect detection). Inspired by the prototype learning and
feature-embedding-based unsupervised AD (anomaly detection algorithms), FS-RSDD
uses a pre-trained neural network as a feature extractor for both normal and defective rail
images. Global average pooling and mask average pooling are used to embed features for
normal and defective samples, respectively, which aim to compress the feature maps into
feature vectors to obtain a compact feature memory bank. Subsequently, an unsupervised
learning algorithm is used to obtain the feature prototypes of normal samples. Finally, the
detection of rail defects is accomplished through the similarity computation between input
features and prototypes. In summary, our main contributions are as follows:

1. To overcome the challenges associated with using supervised learning-based defect
detection algorithms when there is insufficient defect data available, we have intro-
duced a simple yet effective few-shot rail surface defect detection method called
FS-RSDD, which combines unsupervised anomaly detection with prototype learning.
By effectively integrating the feature prototypes of normal rail images and defect rail
images, we have achieved high accuracy in detecting rail surface defects with very
little defect samples used for training.

2. By avoiding the partitioning of normal rail backgrounds into small image patches
and individually modeling the feature distribution of each image patch, FS-RSDD
achieves a compact feature memory bank for normal rail samples, alleviating the issue
of memory bank redundancy in feature-embedding-based unsupervised anomaly
detection algorithms.

3. FS-RSDD extensively leverages the fusion of multi-scale features to improve prediction
accuracy. Furthermore, due to the integration of both normal background feature
prototypes and defect feature prototypes for defect detection, the performance of the
FS-RSDD model remains stable and robust compared to other few-shot industrial
defect detection algorithms, even when the quality of the defect samples used for
training is relatively low.

4. Through extensive experiments, our method outperformed most existing few-shot
supervised defect detection algorithms under the same number of defect samples used
for training and achieved comparable performance to existing unsupervised anomaly
detection algorithms which assume the availability of normal training samples only.

2. Related Works
2.1. Rail Surface Defect Detection

Previous research on rail surface defect detection often utilizes traditional image
processing techniques to extract features from defect images and trains detection models
using corresponding machine learning methods [13–16]. However, the performance of these
methods is limited by the design of feature extraction, and the detection results can easily
be affected by factors such as lighting, noise, and other factors. With the rapid development
of deep learning technology, an increasing number of researchers have started studying rail
surface defect detection methods based on deep learning, especially supervised learning
methods. Wang Hao et al. integrated the improved pyramid feature fusion and modified
loss function into the Mask-RCNN algorithm for the purpose of detecting rail surface
defects [4]. Meng Si et al. proposed a multi-task architecture for rail surface defect detection,
which includes two branch models for rail detection and defect segmentation [17]. Zhang

Sensors 2023, 23, 7894 3 of 19

Hui et al. cascaded the one-stage object detection algorithms SSD and YOLOv3, integrating
the detection results from both networks to improve the accuracy of rail surface defect
detection [18]. However, these approaches neglected the fact that defect samples are scarce
and difficult to obtain in practical work.

Due to the limited number of defect samples in the field of defect detection, supervised
algorithms-based defect detection models often face issues of overfitting and low validation
credibility. To address these problems, many researchers have proposed corresponding
solutions. D. Zhang et al. partitioned the rail image data into multiple segments and
trained the defect detection model. However, this approach did not fundamentally solve
the problem [19], and more researchers have recently started studying steel rail surface
defect algorithms based on unsupervised anomaly detection algorithms. Q. Zhang et al.
implemented the detection of rail surface defects using the multi-scale cross FastFlow
model [20], while Menghui Niu et al. proposed an unsupervised stereoscopic saliency
detection method for detecting rail surface defects and achieved good detection results [21].
However, some studies have pointed out that unsupervised anomaly defect detection algo-
rithms often lead to a higher false detection rate [22,23] due to the lack of knowledge about
defect samples during the training process. In this paper, we propose a simple yet effective
few-shot rail surface defect detection algorithm that fully utilizes the feature information of
normal steel rail samples and defect sample information to achieve defect detection.

2.2. Unsupervised Anomaly Detection for Industrial Images

Deep-learning-based algorithms are being widely used in industrial defect detection
research in recent years due to their high efficiency and accuracy. Many researchers
have devoted themselves to researching industrial defect detection algorithms based on
supervised learning algorithms, which significantly depends on labeled defect data [24–29].
However, due to the hardship of collecting defective samples, it is extremely hard to obtain
enough defect data for a deep model to learn its distribution. Furthermore, supervised
learning-based methods require defect data for training, which further restricts the quantity
of test datasets and affects the credibility of validation performance. In recent years,
unsupervised-based anomaly detection (AD) algorithms have become the mainstream
paradigm for industrial defect detection, which can be categorized as reconstruction-based
and feature-embedding-based [30–32].

Reconstruction-based methods aim to train a deep network such as an adversarial
generative network (GAN) or auto encoder (AE) to reconstruct normal images. When
defective images are fed into the network, the defective parts cannot be reconstructed well,
allowing for the detection of defects. However, sometimes the model can also yield a good
reconstruction for the defective parts due to the powerful ability of the deep model [30].

Feature-embedding-based methods became the prevalent architecture in recent years,
which typically consisted of a feature extractor and a feature estimator. A feature extractor
is a deep network, typically a ResNet [33], that is pre-trained on ImageNet datasets. It
is used to extract features from normal images, which are then stored into a memory
bank. A feature estimator is used to estimate the distribution for normal features, which
can be a multidimensional Gaussian distribution [34], clustering methods [35], or flow-
based methods [36]. To avoid the deviation caused by different data distribution between
industrial images and ImageNet datasets, only features from shallow layers are used.
After distribution estimation, a distance metric is typically used to detect defects, since
defects should be far from the center of the estimated distribution. One major drawback
of embedding-based anomaly detection algorithms is that they estimate the distribution
separately for each patch of the feature map, resulting in a massive and redundant feature
memory bank to restore features from each patch. Many researchers have tried different
methods to alleviate the problem: Padim experimentally studied the possibility to reduce
redundancy of the memory bank and eventually chose to randomly discard a portion
of the extracted features [30]; Patchcore utilized a coreset subsampling method to select
representative features [32], thereby compressing the size of the feature memory bank.

Sensors 2023, 23, 7894 4 of 19

This paper introduces a feature representation method widely used in few-shot learning,
which obtains a representative and compact feature memory bank and alleviates the
aforementioned redundancy problem of the memory bank for rail surface defect detection.

2.3. Few-Shot Learning

In recent years, deep learning algorithms based on supervised learning have garnered
significant attention from researchers due to the remarkable ability of deep models and
large-scale datasets with high-quality labels. However, it is well known that supervised
algorithms fail to acquire strong generalization ability when trained on a dataset with
a small amount of data. Moreover, in many fields such as industrial defect detection,
collecting a large-scale dataset with high-quality annotations proves to be challenging.
This realization has prompted many researchers to shift their focus to the field of few-shot
learning, with the aim of enabling the model to obtain strong generalization ability with
only a few samples, akin to human beings.

Within the domain of few-shot learning in computer vision, image classification tasks
are a prominent focal point. These tasks can be broadly categorized into three distinct
classes: data-augmentation-based methods, parameter-optimization-based methods, and
metric-learning-based methods.

Data-augmentation-based methods aim to address the challenge of limited samples
in few-shot learning indirectly by enhancing the intricacy of the dataset through data
augmentation. Trinet [37] employs autoencoders to map the features to the semantic
space, followed by mapping the augmented features back to the sample space via semantic
nearest neighbor search. Moreover, Patchmix [38] resolves the issue of distribution shift
by substituting a specific region of the query image with random gallery images from
diverse categories.

Parameter-optimization-based methods generally first train a meta-learner to learn
common features (prior knowledge) of different tasks and then apply the obtained meta-
knowledge to fine-tune the base learner on the query set. The model-agnostic meta-
learning (MAML) [39], which first trains the model on a large number of task sets to
obtain an adaptable weight and then fine-tunes the model on the target task to obtain the
final classifier.

Metric-learning-based methods leverage pre-trained neural networks to extract fea-
tures from training data. These extracted features are then utilized to measure similarity
between the training data and test data using a metric. Representative methods include
Siamese networks [40] and matching networks [41]. The former inputs two samples into
the neural network and compares the similarity of the output feature vectors, while the
latter uses attention mechanisms to obtain information about the correlation between
feature vectors.

A typical embedding-based approach to few-shot image classification is the proto-
typical network [42], which utilizes a pre-trained model to extract features from a limited
amount of labeled data and learns corresponding feature prototypes from them. The net-
work then produces a distribution over classes for an input feature based on a softmax
function over distances to the prototypes in the embedding space.

The prototypical network approach, combined with the utilization of mask average
pooling, has been widely adopted in few-shot semantic segmentation methods. In addition,
the idea of prototype features in prototypical networks has also been widely applied in
many unsupervised anomaly detection algorithms [43,44].

3. Methods

This paper proposes an approach for rail surface defect detection called FS-RSDD. It
aims to tackle the challenge of detecting surface defects with a limited number of defect
samples. The proposed model combines defect feature prototypes and background feature
prototypes to enable few-shot learning in this task. The architecture of the model is depicted
in Figure 1, illustrating the integration of the proposed approach.

Sensors 2023, 23, 7894 5 of 19

Sensors 2023, 23, x FOR PEER REVIEW 5 of 20

3. Methods

This paper proposes an approach for rail surface defect detection called FS-RSDD. It

aims to tackle the challenge of detecting surface defects with a limited number of defect

samples. The proposed model combines defect feature prototypes and background fea-

ture prototypes to enable few-shot learning in this task. The architecture of the model is

depicted in Figure 1, illustrating the integration of the proposed approach.

Figure 1. The architecture of proposed model.

Figure 1 depicts the proposed method, which consists of two parts: embedding ex-

traction and prediction. In the embedding extraction phase, the approach is inspired by

feature-embedding-based anomaly detection techniques. A pre-trained model is em-

ployed for extracting multi-scale features from the training set images. These extracted

features are then processed to generate a compact memory bank.

During the prediction phase, the feature prototypes obtained from the embedding

extraction phase are utilized to calculate the multi-scale similarity feature maps with the

feature map of test images. These similarity feature maps of normal and defect samples

are then synthesized at each scale to generate a segmentation probability map. Finally, the

probability map is smoothed to obtain the final prediction result. This process enables the

detection of rail surface defects with high accuracy with limited defect samples.

3.1. Embedding Extraction

In this paper, a ResNet 𝑔(∙) pre-trained on the public dataset ImageNet is em-

ployed as a feature extractor, and k is defined as a layer index of ResNet. In order to avoid

the deviation caused by different data distribution between industrial images and

ImageNet datasets, only features from first three layers are used; thus, 𝑘 ∈ {1,2,3}.

First, the pre-trained model weights are fixed, and then the training set images are

passed through the feature extractor. Next, the feature maps are extracted from the shal-

low layer of the network. Specifically, we are presented with {𝑁𝑡𝑟𝑎𝑖𝑛, 𝐷𝑡𝑟𝑎𝑖𝑛}, in which sub-

set𝑁𝑡𝑟𝑎𝑖𝑛 = {𝑥1, 𝑥2,∙∙∙, 𝑥𝑁} only contains normal samples and subset 𝐷𝑡𝑟𝑎𝑖𝑛 = {𝑥𝑁+1, 𝑥𝑁+2,∙∙∙

, 𝑥𝑁+𝑀} only contains defect samples with 𝑁 ≫ 𝑀. As shown in Equations (1) and (2),

𝐹𝐷
𝑘 and 𝐹𝑁

𝑘 refer to the defect feature maps and normal feature maps, respectively. They

are obtained from the k-th layer of the feature extractor, which is denoted as 𝑔𝑘(∙). 𝑀

and 𝑁 refer to number of defect samples and normal samples respectively. 𝐶𝑘, 𝐻𝑘, 𝑊𝑘

refer to channels, height, and width of feature map from layer k.

𝐹𝑁
𝑘 = 𝑔𝑘(𝑁𝑡𝑟𝑎𝑖𝑛), 𝐹𝑁

𝑘 ∈ 𝑅𝑁×𝐶𝑘×𝐻𝑘×𝑊𝑘 (1)

𝐹𝐷
𝑘 = 𝑔𝑘(𝑁𝑡𝑟𝑎𝑖𝑛), 𝐹𝐷

𝑘 ∈ 𝑅𝑀×𝐶𝑘×𝐻𝑘×𝑊𝑘 (2)

Figure 1. The architecture of proposed model.

Figure 1 depicts the proposed method, which consists of two parts: embedding
extraction and prediction. In the embedding extraction phase, the approach is inspired by
feature-embedding-based anomaly detection techniques. A pre-trained model is employed
for extracting multi-scale features from the training set images. These extracted features
are then processed to generate a compact memory bank.

During the prediction phase, the feature prototypes obtained from the embedding
extraction phase are utilized to calculate the multi-scale similarity feature maps with the
feature map of test images. These similarity feature maps of normal and defect samples
are then synthesized at each scale to generate a segmentation probability map. Finally, the
probability map is smoothed to obtain the final prediction result. This process enables the
detection of rail surface defects with high accuracy with limited defect samples.

3.1. Embedding Extraction

In this paper, a ResNet g(·) pre-trained on the public dataset ImageNet is employed
as a feature extractor, and k is defined as a layer index of ResNet. In order to avoid the
deviation caused by different data distribution between industrial images and ImageNet
datasets, only features from first three layers are used; thus, k ∈ {1, 2, 3}.

First, the pre-trained model weights are fixed, and then the training set images
are passed through the feature extractor. Next, the feature maps are extracted from
the shallow layer of the network. Specifically, we are presented with {Ntrain, Dtrain},
in which subset Ntrain = {x1, x2, · · · , xN} only contains normal samples and subset
Dtrain = {xN+1, xN+2, · · · , xN+M} only contains defect samples with N � M. As shown in
Equations (1) and (2), Fk

D and Fk
N refer to the defect feature maps and normal feature maps,

respectively. They are obtained from the k-th layer of the feature extractor, which is denoted
as gk(·). M and N refer to number of defect samples and normal samples respectively. Ck,
Hk, Wk refer to channels, height, and width of feature map from layer k.

Fk
N = gk(Ntrain), Fk

N ∈ RN×Ck×Hk×Wk (1)

Fk
D = gk(Ntrain), Fk

D ∈ RM×Ck×Hk×Wk (2)

After obtaining the feature representations from defective and normal rail images, the
corresponding feature memory bank can be created by the proposed process.

3.2. Compact Multi-Scale Memory Bank

After obtaining the corresponding feature maps, the global average pooling (GAP)
operation is applied to the feature maps of normal rail images. This operation fuses the
global information of normal samples into a feature vector. On the other hand, for defective
rail images, since the defective parts only occupy a small portion of the entire image, the

Sensors 2023, 23, 7894 6 of 19

mask average pooling (MAP) operation is used. This operation, as shown in Figure 2, is
widely employed in few-shot semantic segmentation. It eliminates the features of normal
parts in the feature map and only preserves the defect-specific features by element-wise
production between feature map and mask, and then global average pooling is applied to
obtain the prototype of defects.

Sensors 2023, 23, x FOR PEER REVIEW 6 of 20

After obtaining the feature representations from defective and normal rail images,

the corresponding feature memory bank can be created by the proposed process.

3.2. Compact Multi-Scale Memory Bank

After obtaining the corresponding feature maps, the global average pooling (GAP)

operation is applied to the feature maps of normal rail images. This operation fuses the

global information of normal samples into a feature vector. On the other hand, for defec-

tive rail images, since the defective parts only occupy a small portion of the entire image,

the mask average pooling (MAP) operation is used. This operation, as shown in Figure 2,

is widely employed in few-shot semantic segmentation. It eliminates the features of nor-

mal parts in the feature map and only preserves the defect-specific features by element-

wise production between feature map and mask, and then global average pooling is ap-

plied to obtain the prototype of defects.

Figure 2. Mask average pooling.

In Equations (3) and (4), GAP represents the global average pooling operation,

𝑚𝑎𝑠𝑘𝐷𝑗
𝑘 represents the ground truth mask, 𝑝𝐷

𝑘(𝑥𝑗) represents the feature prototype, both

𝑚𝑎𝑠𝑘𝐷𝑗
𝑘 and 𝑝𝐷

𝑘(𝑥𝑗) correspond to a certain defective sample 𝑥𝑗, and 𝑝𝑛
𝑘(𝑥𝑖) represents

the feature prototype of the normal sample 𝑥𝑖. Additionally, 𝑓𝐷
𝑘(𝑥𝑗) indicates a feature

map corresponding to a certain image 𝑥𝑗, and 𝑓𝑁
𝑘(𝑥𝑖) indicates a feature map correspond-

ing to 𝑥𝑖. ⊙ indicates the Hadamard product.

𝑝𝐷
𝑘(𝑥𝑗) = 𝐺𝐴𝑃(𝑓𝐷

𝑘(𝑥𝑗) ⊙ 𝑚𝑎𝑠𝑘𝐷𝑗
𝑘), 𝑝𝐷

𝑘 ∈ 𝑅𝐶𝑘 , 𝑥𝑗 ∈ 𝐷𝑡𝑟𝑎𝑖𝑛 (3)

𝑝𝑁
𝑘 (𝑥𝑖) = 𝐺𝐴𝑃 (𝑓𝑁

𝑘(𝑥𝑖)), 𝑝𝑁
𝑘 ∈ 𝑅𝐶𝑘 , 𝑥𝑖 ∈ 𝐷𝑡𝑟𝑎𝑖𝑛 (4)

The global average pooling operation is shown in Equation (5), where 𝑝𝑁
𝑘 (𝑥𝑖) repre-

sents the normal feature prototype obtained by applying global average pooling to a cer-

tain normal feature in the layer k, and 𝑓𝑁
𝑘(𝑥𝑖)(ℎ, 𝑤) represents the value of feature map

𝑓𝑁
𝑘(𝑥𝑖) at position (h,w).

𝑝𝑁
𝑘 (𝑥𝑖) =

1

𝐻𝑘 ∙ 𝑊𝑘
∑ ∑ 𝑓𝑁

𝑘(𝑥𝑖)(ℎ, 𝑤), 𝑝𝑁
𝑘 ∈ 𝑅𝐶𝑘

𝑊𝑘

𝑤=1

𝐻𝑘

ℎ=1

 (5)

As the number of normal samples used is significantly higher than the number of

defect samples, which is distinct from the few-shot learning scenario, unsupervised algo-

rithms can be used to obtain the distribution of normal sample features. Instead of esti-

mating the feature prototype using the mean of sample features, as carried out in the pro-

totypical network, this study adopts a widely used clustering algorithm, K-Means, to clus-

ter the normal sample features. The cluster centers are then used as the final feature pro-

totypes of the normal samples.

Figure 2. Mask average pooling.

In Equations (3) and (4), GAP represents the global average pooling operation, maskk
Dj

represents the ground truth mask, pk
D
(
xj
)

represents the feature prototype, both maskk
Dj

and pk
D
(

xj
)

correspond to a certain defective sample xj, and pk
n(xi) represents the feature

prototype of the normal sample xi. Additionally, f k
D
(
xj
)

indicates a feature map corre-
sponding to a certain image xj, and f k

N(xi) indicates a feature map corresponding to xi. �
indicates the Hadamard product.

pk
D
(

xj
)
= GAP

(
f k
D
(

xj
)
�maskk

Dj

)
, pk

D ∈ RCk , xj ∈ Dtrain (3)

pk
N(xi) = GAP

(
f k
N(xi)

)
, pk

N ∈ RCk , xi ∈ Dtrain (4)

The global average pooling operation is shown in Equation (5), where pk
N(xi) repre-

sents the normal feature prototype obtained by applying global average pooling to a certain
normal feature in the layer k, and f k

N(xi)(h, w) represents the value of feature map f k
N(xi)

at position (h,w).

pk
N(xi) =

1
Hk·Wk

Hk

∑
h=1

Wk

∑
w=1

f k
N(xi)(h, w), pk

N ∈ RCk (5)

As the number of normal samples used is significantly higher than the number of
defect samples, which is distinct from the few-shot learning scenario, unsupervised al-
gorithms can be used to obtain the distribution of normal sample features. Instead of
estimating the feature prototype using the mean of sample features, as carried out in the
prototypical network, this study adopts a widely used clustering algorithm, K-Means, to
cluster the normal sample features. The cluster centers are then used as the final feature
prototypes of the normal samples.

For the normal sample feature prototype, which consists of a set of feature vectors,
clustering is performed with a predetermined number of clusters denoted as n. In this
study, a cluster center number of 30 is chosen to cluster the normal samples, and the
resulting cluster centers are utilized as the final feature prototypes. Since the number of

Sensors 2023, 23, 7894 7 of 19

defect sample features is relatively small, no clustering is conducted, and they are directly
used as feature prototypes. All prototypes will be stored as a memory bank.

3.3. Pixel-Level Defect Detection

After completing the construction of memory bank, the detection process involves
several steps as illustrated in Figure 3. First, the test image is fed into the corresponding
feature extractor, which is then used to extract multi-scale intermediate features of the
image. Next, the obtained intermediate features are then compared to the feature prototypes
obtained during the model construction stage, and based on their similarity, corresponding
similarity feature maps are calculated.

Sensors 2023, 23, x FOR PEER REVIEW 7 of 20

For the normal sample feature prototype, which consists of a set of feature vectors,

clustering is performed with a predetermined number of clusters denoted as n. In this

study, a cluster center number of 30 is chosen to cluster the normal samples, and the re-

sulting cluster centers are utilized as the final feature prototypes. Since the number of

defect sample features is relatively small, no clustering is conducted, and they are directly

used as feature prototypes. All prototypes will be stored as a memory bank.

3.3. Pixel-Level Defect Detection

After completing the construction of memory bank, the detection process involves

several steps as illustrated in Figure 3. First, the test image is fed into the corresponding

feature extractor, which is then used to extract multi-scale intermediate features of the

image. Next, the obtained intermediate features are then compared to the feature proto-

types obtained during the model construction stage, and based on their similarity, corre-

sponding similarity feature maps are calculated.

Figure 3. Detection procedure of FS-RSDD.

The features obtained from the test images are compared to the corresponding multi-

scale normal and defect prototypes at each position using a similarity calculation 𝑠(∙). The

similarity calculation between input and prototypes is shown in Equations (6) and (7).

𝑆𝐷
𝑘(𝑥)(ℎ, 𝑤) refers to the similarity between defect feature prototypes and input image

feature map at position (h,w), similarly 𝑆𝑁
𝑘(𝑥)(ℎ, 𝑤) refers to the similarity between nor-

mal feature prototypes and input image feature map. Specifically, 𝑓𝑖𝑚𝑔
𝑘 denotes feature

map of a input image.

𝑆𝐷
𝑘(𝑥)(ℎ, 𝑤) =

1

𝑛
∑ 𝑠 (𝑝𝐷

𝑘(𝑥𝑖), 𝑓𝑖𝑚𝑔
𝑘 (ℎ, 𝑤)) ,

𝑛

𝑖=1

𝑆𝐷
𝑘(𝑥)(ℎ, 𝑤) ∈ 𝑅 (6)

𝑆𝑁
𝑘(𝑥)(ℎ, 𝑤) =

1

𝑛
∑ 𝑠 (𝑝𝑁

𝑘 (𝑥𝑖), 𝑓𝑖𝑚𝑔
𝑘 (ℎ, 𝑤)) , 𝑆𝑁

𝑘(𝑥)(ℎ, 𝑤) ∈ 𝑅

𝑛

𝑖=1

 (7)

In this study, cosine similarity was chosen for similarity calculation. The calculation

process for the similarity feature map is demonstrated in Equation (8), where the defect

prototype 𝑝𝐷
𝑘(𝑥𝑗) and input image feature map 𝑓𝑖𝑚𝑔

𝑘 (ℎ, 𝑤) are both vectors of length 𝐶𝑘.

𝑠 (𝑝𝐷
𝑘(𝑥𝑗), 𝑓𝑖𝑚𝑔

𝑘 (ℎ, 𝑤)) =
𝑝𝐷

𝑘(𝑥𝑗) ∙ 𝑓𝑖𝑚𝑔
𝑘 (ℎ, 𝑤)

‖𝑝𝐷
𝑘(𝑥𝑗)‖

2
× ‖𝑓𝑖𝑚𝑔

𝑘 (ℎ, 𝑤)‖
2

 (8)

After performing similarity calculations between all feature prototypes and the input

image features, a probability distribution over defects for each position in the image is

established using softmax. This allows us to obtain the probability of each position being

Figure 3. Detection procedure of FS-RSDD.

The features obtained from the test images are compared to the corresponding multi-
scale normal and defect prototypes at each position using a similarity calculation s(·). The
similarity calculation between input and prototypes is shown in Equations (6) and (7).
Sk

D(x)(h, w) refers to the similarity between defect feature prototypes and input image
feature map at position (h,w), similarly Sk

N(x)(h, w) refers to the similarity between normal
feature prototypes and input image feature map. Specifically, f k

img denotes feature map of a
input image.

Sk
D(x)(h, w) =

1
n

n

∑
i=1

s
(

pk
D(xi), f k

img(h, w)
)

,Sk
D(x)(h, w) ∈ R (6)

Sk
N(x)(h, w) =

1
n

n

∑
i=1

s
(

pk
N(xi), f k

img(h, w)
)

, Sk
N(x)(h, w) ∈ R (7)

In this study, cosine similarity was chosen for similarity calculation. The calculation
process for the similarity feature map is demonstrated in Equation (8), where the defect
prototype pk

D
(

xj
)

and input image feature map f k
img(h, w) are both vectors of length Ck.

s
(

pk
D
(

xj
)
, f k

img(h, w)
)
=

pk
D
(
xj
)
· f k

img(h, w)∥∥pk
D
(
xj
)∥∥

2 ×
∥∥∥ f k

img(h, w)
∥∥∥

2

(8)

After performing similarity calculations between all feature prototypes and the input
image features, a probability distribution over defects for each position in the image
is established using softmax. This allows us to obtain the probability of each position

Sensors 2023, 23, 7894 8 of 19

being a defect, as shown in Equation (9), where q(y = de f ect|x) represents the conditional
probability that y belongs to defect under the premise of given input x:

q(y = de f ect| x) = 1
3

3

∑
k=1

exp
(

Sk
D(x)(h, w)

exp
(
Sk

D(x)(h, w) + exp
(
Sk

N(x)(h, w)
) (9)

By combining Equation (9), we can observe that the essence of FS-RSDD is to evaluate
the similarity between input samples and defect prototypes, as well as the dissimilarity
between input samples and normal prototypes in three feature spaces (obtained from
three layers of the feature extractor), as illustrated in Figure 4. Finally, defect detection is
performed by integrating the prediction results from the three feature spaces, as shown in
Equation (9).

Sensors 2023, 23, x FOR PEER REVIEW 8 of 20

a defect, as shown in Equation (9), where 𝑞(𝑦 = 𝑑𝑒𝑓𝑒𝑐𝑡|𝑥) represents the conditional

probability that y belongs to defect under the premise of given input x:

𝑞(𝑦 = 𝑑𝑒𝑓𝑒𝑐𝑡|𝑥) =
1

3
∑

𝑒𝑥𝑝(𝑆𝐷
𝑘(𝑥)(ℎ, 𝑤)

𝑒𝑥𝑝(𝑆𝐷
𝑘(𝑥)(ℎ, 𝑤) + 𝑒𝑥𝑝(𝑆𝑁

𝑘(𝑥)(ℎ, 𝑤))

3

𝑘=1

 (9)

By combining Equation (9), we can observe that the essence of FS-RSDD is to evaluate

the similarity between input samples and defect prototypes, as well as the dissimilarity

between input samples and normal prototypes in three feature spaces (obtained from

three layers of the feature extractor), as illustrated in Figure 4. Finally, defect detection is

performed by integrating the prediction results from the three feature spaces, as shown in

Equation (9).

Figure 4. The similarity calculation of the FS-RSDD, blue and black areas represent the distribution

bound of normal and defective samples, respectively.

3.4. Image-Level Defect Detection

Image-level defect detection aims to perform image-level binary classification be-

tween normal rail images and rail images containing defects. By processing the predicted

results in Section 3.3 accordingly, we can obtain the corresponding image-level prediction

results.

Our approach is based on a simple idea. If we define 𝑞(𝑦 = 𝑑𝑒𝑓𝑒𝑐𝑡|𝑥) in Section 3.3

as the defect score of a certain pixel, we can represent the probability of an image contain-

ing defects by considering the defect score of the pixel with the highest defect score in the

predicted image. However, this approach leads to poor performance, as it only considers

individual pixels and lacks consideration for the local neighborhood pixels. In order to

further improve the detection accuracy, we decided to use a simple Gaussian blur to fuse

information from the local neighborhood of pixels. The process of Gaussian blur on an

image is the convolution of the image with a two-dimensional Gaussian distribution that

has been discretely sampled, as shown in Figure 5. Subsequently, we performed image-

level defect detection. This approach significantly improved the performance of our

model, as demonstrated in Section 4.3.

Figure 4. The similarity calculation of the FS-RSDD, blue and black areas represent the distribution
bound of normal and defective samples, respectively.

3.4. Image-Level Defect Detection

Image-level defect detection aims to perform image-level binary classification between
normal rail images and rail images containing defects. By processing the predicted results
in Section 3.3 accordingly, we can obtain the corresponding image-level prediction results.

Our approach is based on a simple idea. If we define q(y = de f ect| x) in Section 3.3 as
the defect score of a certain pixel, we can represent the probability of an image containing
defects by considering the defect score of the pixel with the highest defect score in the
predicted image. However, this approach leads to poor performance, as it only considers
individual pixels and lacks consideration for the local neighborhood pixels. In order to
further improve the detection accuracy, we decided to use a simple Gaussian blur to fuse
information from the local neighborhood of pixels. The process of Gaussian blur on an
image is the convolution of the image with a two-dimensional Gaussian distribution that
has been discretely sampled, as shown in Figure 5. Subsequently, we performed image-level
defect detection. This approach significantly improved the performance of our model, as
demonstrated in Section 4.3.

Sensors 2023, 23, 7894 9 of 19Sensors 2023, 23, x FOR PEER REVIEW 9 of 20

Figure 5. The schematic of the process of two-dimensional Gaussian blur, in heat map, the depth

of red color represents the probability of the presence of defects in the area.

4. Experiments and Results

4.1. Evaluation Metrics

This article focuses on the detection and localization of rail surface defects, which

involves binary classification tasks at both image and pixel levels for defect rail images

and normal rail images. The receiver operating characteristic (ROC) and precision recall

(PR) are used as the evaluation metrics for the model.

These two performance metrics have different emphases, which enable this study to

comprehensively evaluate the performance of the model during the experimental process.

Additionally, we assessed the classification performance at both the image level and the

pixel level. These two metrics, respectively, represent the algorithm’s ability to classify

defects and accurately locate them. By evaluating performance at both levels, a more com-

prehensive analysis of the algorithm’s effectiveness can be obtained.

As defined in Equations (10) and (11), the x-axis of the ROC curve represents the

false-positive rate (FPR), and the y-axis represents the true-positive rate (TPR), in which

FP denotes false positives (negative samples falsely predicted as positive), TN denotes

true negatives (negative samples correctly predicted as negative), TP denotes true posi-

tives (positive samples correctly predicted as positive), and FN denotes false negatives

(positive samples falsely predicted as negative). A larger area under the ROC curve indi-

cates better performance of the classifier. In this article, the model evaluation metrics are

divided into image-level ROCs and pixel-level ROCs, which correspond to evaluation

metrics for images and individual pixels, respectively.

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
 (10)

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (11)

The recall rate is represented on the x-axis of the PR curve, while the accuracy preci-

sion is depicted on the vertical axis. The definitions of recall and precision are provided in

Equations (12) and (13), respectively. The area under the PR curve corresponds to the av-

erage accuracy (AP). A larger area under the PR curve indicates better performance of the

classifier.

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (12)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (13)

4.2. Experiment Setup

Figure 5. The schematic of the process of two-dimensional Gaussian blur, in heat map, the depth of
red color represents the probability of the presence of defects in the area.

4. Experiments and Results
4.1. Evaluation Metrics

This article focuses on the detection and localization of rail surface defects, which
involves binary classification tasks at both image and pixel levels for defect rail images and
normal rail images. The receiver operating characteristic (ROC) and precision recall (PR)
are used as the evaluation metrics for the model.

These two performance metrics have different emphases, which enable this study to
comprehensively evaluate the performance of the model during the experimental process.
Additionally, we assessed the classification performance at both the image level and the
pixel level. These two metrics, respectively, represent the algorithm’s ability to classify
defects and accurately locate them. By evaluating performance at both levels, a more
comprehensive analysis of the algorithm’s effectiveness can be obtained.

As defined in Equations (10) and (11), the x-axis of the ROC curve represents the
false-positive rate (FPR), and the y-axis represents the true-positive rate (TPR), in which FP
denotes false positives (negative samples falsely predicted as positive), TN denotes true
negatives (negative samples correctly predicted as negative), TP denotes true positives
(positive samples correctly predicted as positive), and FN denotes false negatives (positive
samples falsely predicted as negative). A larger area under the ROC curve indicates better
performance of the classifier. In this article, the model evaluation metrics are divided into
image-level ROCs and pixel-level ROCs, which correspond to evaluation metrics for images
and individual pixels, respectively.

FPR =
FP

FP + TN
(10)

TPR =
TP

TP + FN
(11)

The recall rate is represented on the x-axis of the PR curve, while the accuracy precision
is depicted on the vertical axis. The definitions of recall and precision are provided in
Equations (12) and (13), respectively. The area under the PR curve corresponds to the
average accuracy (AP). A larger area under the PR curve indicates better performance of
the classifier.

Recall =
TP

TP + FN
(12)

Precision =
TP

TP + FP
(13)

Sensors 2023, 23, 7894 10 of 19

4.2. Experiment Setup
4.2.1. Dataset Setup

This article uses a dataset from the open-source Rail Surface Defect Detection dataset
(RSDDS) [45]. RSDDS consists of two types of rail defect data: Type-I and Type-II. Type-
I defects were obtained from 67 defect images collected from high-speed train tracks.
Type-II defects, on the other hand, were collected from 128 defect images obtained from
regular/heavy-duty transportation tracks. In this article, the two types of defect images are
first divided into normal samples and defect samples through fixed ratio image cropping.
During the cropping process, images that have a too small defect area are discarded. The
image processing process is shown in Figure 6.

Sensors 2023, 23, x FOR PEER REVIEW 10 of 20

4.2.1. Dataset Setup

This article uses a dataset from the open-source Rail Surface Defect Detection dataset

(RSDDS) [45]. RSDDS consists of two types of rail defect data: Type-I and Type-II. Type-I

defects were obtained from 67 defect images collected from high-speed train tracks. Type-

II defects, on the other hand, were collected from 128 defect images obtained from regu-

lar/heavy-duty transportation tracks. In this article, the two types of defect images are first

divided into normal samples and defect samples through fixed ratio image cropping. Dur-

ing the cropping process, images that have a too small defect area are discarded. The im-

age processing process is shown in Figure 6.

Figure 6. The process of dataset creation.

After the aforementioned process, there are 113 defect samples in Type-I dataset and

230 defect samples in Type-II dataset. To ensure a balanced representation of positive and

negative samples in the test set and to provide a more accurate evaluation of the perfor-

mance of the proposed method, we randomly selected normal rail samples for the test set,

ensuring that the quantity was consistent with the number of defect samples.

Finally, the Type-I dataset consisted of 302 normal samples for the training set, 113

defect samples, and 113 normal samples for the testing set. Meanwhile, the Type-II dataset

comprised 2071 normal samples for the training set, 230 defect samples, and 230 normal

samples for the testing set. Additionally, the model necessitates a limited number of defect

samples during the training phase, which will be randomly selected from the test set. After

being partitioned and resized, the resolution of Type-I rail images is 160 × 160, while Type-

II rail images have a resolution of 64 × 64.

4.2.2. Comparison Experiment Setup

The proposed method in this article is compared with mainstream unsupervised in-

dustrial defect detection algorithms and existing few-shot supervised industrial defect de-

tection algorithms in terms of classification evaluation metrics on the RSDDS dataset.

As there may be variations in the defect samples extracted during each training pro-

cess, a random selection of a small subset of defect samples is employed for training dur-

ing the experimental process. To ensure robustness, multiple experiments are conducted,

and the average value is considered as the validation result of the model.

In the comparison experiments with unsupervised methods, since the defect samples

for training are randomly selected in each experiment, the test set may not include the

exact same defect samples in each experiment. Therefore, to maintain consistency, multi-

ple tests are also conducted on the unsupervised industrial defect detection algorithms,

and the defect samples utilized for our method are excluded from the test set to ensure a

Figure 6. The process of dataset creation.

After the aforementioned process, there are 113 defect samples in Type-I dataset and
230 defect samples in Type-II dataset. To ensure a balanced representation of positive
and negative samples in the test set and to provide a more accurate evaluation of the
performance of the proposed method, we randomly selected normal rail samples for the
test set, ensuring that the quantity was consistent with the number of defect samples.

Finally, the Type-I dataset consisted of 302 normal samples for the training set,
113 defect samples, and 113 normal samples for the testing set. Meanwhile, the Type-
II dataset comprised 2071 normal samples for the training set, 230 defect samples, and 230
normal samples for the testing set. Additionally, the model necessitates a limited number
of defect samples during the training phase, which will be randomly selected from the test
set. After being partitioned and resized, the resolution of Type-I rail images is 160 × 160,
while Type-II rail images have a resolution of 64 × 64.

4.2.2. Comparison Experiment Setup

The proposed method in this article is compared with mainstream unsupervised
industrial defect detection algorithms and existing few-shot supervised industrial defect
detection algorithms in terms of classification evaluation metrics on the RSDDS dataset.

As there may be variations in the defect samples extracted during each training process,
a random selection of a small subset of defect samples is employed for training during the
experimental process. To ensure robustness, multiple experiments are conducted, and the
average value is considered as the validation result of the model.

In the comparison experiments with unsupervised methods, since the defect samples
for training are randomly selected in each experiment, the test set may not include the
exact same defect samples in each experiment. Therefore, to maintain consistency, multiple
tests are also conducted on the unsupervised industrial defect detection algorithms, and
the defect samples utilized for our method are excluded from the test set to ensure a fair
evaluation of both methods on the same test set, ensuring that the test set used aligns

Sensors 2023, 23, 7894 11 of 19

consistently with the test set employed in each experiment of the proposed method in
this article.

Similarly, when comparing the performance with few-shot supervised industrial defect
detection algorithms, multiple experiments are conducted, and the average test results are
used as the final performance metric. Additionally, in each experiment, the defect samples
utilized for training the few-shot supervised industrial defect detection algorithm are
consistent with the defect samples randomly selected for training in the proposed method
in this article. Furthermore, the default values were maintained for all other settings of
the comparative models in the code. All the comparative models that were involved with
the gradient decent process are trained to convergence to guarantee the impartiality of
performance comparisons.

4.3. Comparison with Unsupervised-Based Algorithm

The performance comparison results with unsupervised methods are presented in
Tables 1–3. Table 1 displays the average image-level ROC, Table 2 shows the average
image-level AP, and Table 3 presents the average pixel-level ROC. All of these metrics
were obtained from 20 random sampling validations. In the training process, “m” refers
to the defect sample used. It is worth mentioning that the unsupervised algorithms were
implemented using the open-source industrial defect detection library anomalib [46].

Table 1. Image-level ROC of our proposed FS-RSDD and other unsupervised anomaly detection models.

Model
Dataset FS-RSDD Padim [30] PatchCore [32] stfpm [31] cflow [9] fastclow [10]

RSDDS Type-I m = 5 0.941 0.950 0.951 0.899 0.866 0.895
RSDDS Type-I m = 10 0.952 0.950 0.951 0.905 0.903 0.894
RSDDS Type-II m = 5 0.989 0.976 0.996 0.990 0.875 0.983
RSDDS Type-II m = 10 0.991 0.976 0.996 0.990 0.881 0.984

Table 2. Image-level AP of our proposed FS-RSDD and other unsupervised anomaly detection models.

Model
Dataset FS-RSDD Padim PatchCore stfpm cflow fastclow

RSDDS Type-I m = 5 0.943 0.981 0.982 0.947 0.939 0.956
RSDDS Type-I m = 10 0.953 0.980 0.981 0.951 0.950 0.953
RSDDS Type-II m = 5 0.986 0.970 0.995 0.988 0.890 0.980
RSDDS Type-II m = 10 0.986 0.970 0.995 0.988 0.886 0.981

Table 3. Pixel-level ROC of our proposed FS-RSDD and other unsupervised anomaly detection models.

Model
Dataset FS-RSDD Padim PatchCore stfpm cflow fastclow

RSDDS Type-I m = 5 0.987 0.976 0.974 0.980 0.970 0.953
RSDDS Type-I m = 10 0.991 0.977 0.975 0.981 0.971 0.954
RSDDS Type-II m = 5 0.961 0.920 0.919 0.948 0.852 0.919
RSDDS Type-II m = 10 0.962 0.920 0.920 0.948 0.855 0.919

Combining the data from Tables 1 and 2, it can be observed that our proposed method
outperforms other unsupervised industrial defect detection algorithms in terms of image-
level classification ROC, except for PatchCore. However, it does not show significant
advantage over other unsupervised algorithms in terms of image-level AP.

The reason behind this result lies in the fact that AP is more inclined towards the
detection of positive instances, i.e., defect samples, while ROC is a relatively balanced
evaluation metric. The better performance of our method in ROC compared to AP may be

Sensors 2023, 23, 7894 12 of 19

attributed to the fact that, while maintaining a high precision, our method has a lower false-
positive rate for defect detection. However, it has a higher false-negative rate compared to
some algorithms, while under the same conditions, some unsupervised defect detection
algorithms have a lower false-negative rate but a higher false-positive rate.

We further analyzed the defects that were not successfully detected by our method.
Figure 7 shows the heatmap of the undetected defect samples and the successfully classified
normal samples by our method, under the given defect detection threshold.

Sensors 2023, 23, x FOR PEER REVIEW 12 of 20

Table 3. Pixel-level ROC of our proposed FS-RSDD and other unsupervised anomaly detection mod-

els.

 Model

Dataset FS-RSDD Padim
Patch-

Core
stfpm cflow fastclow

RSDDS Type-I m = 5 0.987 0.976 0.974 0.980 0.970 0.953

RSDDS Type-I m = 10 0.991 0.977 0.975 0.981 0.971 0.954

RSDDS Type-II m = 5 0.961 0.920 0.919 0.948 0.852 0.919

RSDDS Type-II m = 10 0.962 0.920 0.920 0.948 0.855 0.919

The reason behind this result lies in the fact that AP is more inclined towards the

detection of positive instances, i.e., defect samples, while ROC is a relatively balanced

evaluation metric. The better performance of our method in ROC compared to AP may be

attributed to the fact that, while maintaining a high precision, our method has a lower

false-positive rate for defect detection. However, it has a higher false-negative rate com-

pared to some algorithms, while under the same conditions, some unsupervised defect

detection algorithms have a lower false-negative rate but a higher false-positive rate.

We further analyzed the defects that were not successfully detected by our method.

Figure 7 shows the heatmap of the undetected defect samples and the successfully classi-

fied normal samples by our method, under the given defect detection threshold.

(a) (b)

Figure 7. The heatmap visualization of false negatives and true negatives in the prediction results:

(a) heatmap of false negatives, showing high defect scores in the actual defective regions; (b)

heatmap of true negatives, showing high anomaly scores for noise or stains that are similar to de-

fects.

By observing the heatmap of false-negative samples, we can visually see that the de-

fective parts in the rail images are actually represented by darker colors. This means that

our proposed method can accurately distinguish the defect foreground from the normal

rail background. The reason why these defects were not detected can be further observed

from the predicted results of true-negative samples. We can see that the reason for the

lower AP in our method is that for those stains or noises that are difficult to distinguish

from defects in the images, our method also considers them as potential defects. Although

the probability of these noises belonging to defects may not be significantly higher than

true defects, this ambiguous discrimination leads to our method’s inability to provide

clear judgments for some challenging cases. In other words, the trade-off of our method

rarely misclassifying normal samples as defect samples is that some defect samples are

Figure 7. The heatmap visualization of false negatives and true negatives in the prediction results:
(a) heatmap of false negatives, showing high defect scores in the actual defective regions; (b) heatmap
of true negatives, showing high anomaly scores for noise or stains that are similar to defects.

By observing the heatmap of false-negative samples, we can visually see that the
defective parts in the rail images are actually represented by darker colors. This means that
our proposed method can accurately distinguish the defect foreground from the normal
rail background. The reason why these defects were not detected can be further observed
from the predicted results of true-negative samples. We can see that the reason for the
lower AP in our method is that for those stains or noises that are difficult to distinguish
from defects in the images, our method also considers them as potential defects. Although
the probability of these noises belonging to defects may not be significantly higher than
true defects, this ambiguous discrimination leads to our method’s inability to provide
clear judgments for some challenging cases. In other words, the trade-off of our method
rarely misclassifying normal samples as defect samples is that some defect samples are also
considered as normal samples. As a result, we have a higher ROC but a relatively lower AP.

Another thing we can observe from Tables 1 and 2 is that, regardless of the algo-
rithm used, there is a significantly better performance on Type-II data compared to Type-I
data. The reason behind this phenomenon is consistent with our previous analysis on the
difference in performance between the two metrics, which is the presence of noise and
interference in the images. As shown in Figure 8, it can be seen that, perhaps due to better
image acquisition conditions, the Type-II rail images contain much less noise compared to
Type-I data.

In Figure 8, the red curve indicates the defective area, while the green curve indicates
the noise that is similar to the defect. It can be clearly seen that Type-I data contain much
more noise that interferes with defect detection compared to Type-II data.

Furthermore, according to the data in Table 3, we can also observe that our method
outperforms most unsupervised AD methods except Patchcore in terms of pixel-level ROC,
indicating that our algorithm achieves more precise segmentation for the same defect.

Sensors 2023, 23, 7894 13 of 19

Sensors 2023, 23, x FOR PEER REVIEW 13 of 20

also considered as normal samples. As a result, we have a higher ROC but a relatively

lower AP.

Another thing we can observe from Tables 1 and 2 is that, regardless of the algorithm

used, there is a significantly better performance on Type-II data compared to Type-I data.

The reason behind this phenomenon is consistent with our previous analysis on the dif-

ference in performance between the two metrics, which is the presence of noise and inter-

ference in the images. As shown in Figure 8, it can be seen that, perhaps due to better

image acquisition conditions, the Type-II rail images contain much less noise compared

to Type-I data.

In Figure 8, the red curve indicates the defective area, while the green curve indicates

the noise that is similar to the defect. It can be clearly seen that Type-I data contain much

more noise that interferes with defect detection compared to Type-II data.

(a) (b)

Figure 8. Type-I rail surface data and Type-II rail surface data. The true defects are circled in red,

while the noise or stains similar to defects are circled in green. (a) Type-I data, where more noise

and stains are visible; (b) for Type-II data, it is visually evident that there is not much noise interfer-

ence.

Furthermore, according to the data in Table 3, we can also observe that our method

outperforms most unsupervised AD methods except Patchcore in terms of pixel-level

ROC, indicating that our algorithm achieves more precise segmentation for the same de-

fect.
In Figure 9, the segmentation results of different algorithms for the same defect sam-

ple are displayed. It is evident from this that our proposed algorithm exhibits more precise

prediction and is less prone to generating false predictions on the background when com-

pared to other algorithms.

Figure 8. Type-I rail surface data and Type-II rail surface data. The true defects are circled in red,
while the noise or stains similar to defects are circled in green. (a) Type-I data, where more noise and
stains are visible; (b) for Type-II data, it is visually evident that there is not much noise interference.

In Figure 9, the segmentation results of different algorithms for the same defect sample
are displayed. It is evident from this that our proposed algorithm exhibits more precise
prediction and is less prone to generating false predictions on the background when
compared to other algorithms.

Sensors 2023, 23, x FOR PEER REVIEW 14 of 20

Figure 9. Comparison of FS-RSDD with other unsupervised AD models in terms of prediction re-

sults.

4.4. Comparison with Few-Shot Supervised-Based AD Algorithms

We also conducted comparative experiments with few-shot industrial defect detec-

tion algorithms. The experimental setting was similar to the unsupervised algorithm com-

parison experiment. We conducted 20 experiments, each time randomly selecting m defect

samples for model training. The defect samples used for training in the comparative meth-

ods remained consistent with our proposed method. The average ROC and average AP

were then calculated for performance comparison, as shown in Table 4. According to the

results in the table, considering both the ROC and AP metrics, our method demonstrates

advantages compared to DevNet [23] and DRA [22].

Table 4. Comparison between FS-RSDD and other few-shot industrial defect detection models.

 ROC AP

Dataset FS-RSDD DevNet DRA FS-RSDD DevNet DRA

Type-I m = 5 0.941 0.905 0.888 0.943 0.967 0.958

Type-I m = 10 0.952 0.930 0.927 0.953 0.976 0.973

Type-II m = 5 0.989 0.858 0.955 0.986 0.901 0.963

Type-II m = 10 0.991 0.911 0.974 0.986 0.939 0.978

We not only compared the average performance but also recorded the performance

of the model for each experiment in order to observe the impact of different training sam-

ples on the model’s performance.

Figure 10 shows the changes in the model’s ROC after training with randomly sam-

pled defect data from Type-I and Type-II datasets, respectively.

Figure 9. Comparison of FS-RSDD with other unsupervised AD models in terms of prediction results.

4.4. Comparison with Few-Shot Supervised-Based AD Algorithms

We also conducted comparative experiments with few-shot industrial defect detection
algorithms. The experimental setting was similar to the unsupervised algorithm compar-
ison experiment. We conducted 20 experiments, each time randomly selecting m defect
samples for model training. The defect samples used for training in the comparative meth-
ods remained consistent with our proposed method. The average ROC and average AP
were then calculated for performance comparison, as shown in Table 4. According to the
results in the table, considering both the ROC and AP metrics, our method demonstrates
advantages compared to DevNet [23] and DRA [22].

We not only compared the average performance but also recorded the performance of
the model for each experiment in order to observe the impact of different training samples
on the model’s performance.

Figure 10 shows the changes in the model’s ROC after training with randomly sampled
defect data from Type-I and Type-II datasets, respectively.

Sensors 2023, 23, 7894 14 of 19

Table 4. Comparison between FS-RSDD and other few-shot industrial defect detection models.

ROC AP

Dataset FS-RSDD DevNet DRA FS-RSDD DevNet DRA
Type-I m = 5 0.941 0.905 0.888 0.943 0.967 0.958
Type-I m = 10 0.952 0.930 0.927 0.953 0.976 0.973
Type-II m = 5 0.989 0.858 0.955 0.986 0.901 0.963

Type-II m = 10 0.991 0.911 0.974 0.986 0.939 0.978

Sensors 2023, 23, x FOR PEER REVIEW 15 of 20

(a) (b) (c) (d)

Figure 10. Performance fluctuations of FS-RSDD compared to the benchmarked few-shot super-

vised-based AD algorithms with different defect data for training: (a) Type-I, m = 5; (b) Type-II, m

= 5; (c) Type-I, m = 10; (d) Type-II, m = 10.

From the observation of Figure 10, it can be noticed that FS-RSDD exhibits more sta-

ble and robust performance compared to other models when different defect data are used

for training. Furthermore, although FS-RSDD shows more fluctuations on Type-I data

compared to Type-II data, it shows better performance compared to the rest of the few-

shot supervised-based AD models. This is mainly attributed to the fact that FS-RSDD not

only utilizes defect features but also fully utilizes the features of a normal rail for defect

detection. On the other hand, other algorithms tend to focus more on extracting infor-

mation from defect samples, which can lead to lower accuracy when the quality of defect

samples is poor.

4.5. Ablative Studies

In this section, we conducted ablation experiments to explore the impact of different

settings on the performance of FS-RSDD. These experiments included comparative exper-

iments on the model’s performance using features from different semantic levels of the

feature extractor, whether using Gaussian blur or not, and extracting features using dif-

ferent feature extractors. The experiments were conducted by extracting defect samples

and training the model 20 times and then comparing the average performance of the

model. The number of samples extracted was m = 10, and the defect samples used for

training were consistent with those used in the experiments in Sections 4.1 and 4.2.

We first conducted comparative experiments on the performance of the FS-RSDD

model using different feature extractors, both with and without Gaussian blur. Table 5

presents the performance of FS-RSDD on Type-I and Type-II rail surface defect datasets

when using ResNet18, ResNet50, and WideResNet50 [47] as feature extractors.

Table 5. The impact of different feature extractors and the use of Gaussian blur on the performance

of FS-RSDD.

Feature Extractor Image-Level ROC Image-Level AP Pixel-Level ROC FPS

Type-I

m = 10

ResNet18 0.896 0.889 0.964 130.890

ResNet50 0.906 0.901 0.976 70.403

WideResNet50 0.930 0.927 0.985 64.664

ResNet18 + Gaussian blur 0.934 0.935 0.980 130.052

ResNet50 + Gaussian blur 0.937 0.935 0.986 70.837

WideResNet50 + Gaussian blur 0.952 0.953 0.991 63.519

Type-II

m = 10

ResNet18 0.968 0.959 0.939 299.114

ResNet50 0.984 0.978 0.948 231.154

Figure 10. Performance fluctuations of FS-RSDD compared to the benchmarked few-shot supervised-
based AD algorithms with different defect data for training: (a) Type-I, m = 5; (b) Type-II, m = 5;
(c) Type-I, m = 10; (d) Type-II, m = 10.

From the observation of Figure 10, it can be noticed that FS-RSDD exhibits more stable
and robust performance compared to other models when different defect data are used for
training. Furthermore, although FS-RSDD shows more fluctuations on Type-I data compared
to Type-II data, it shows better performance compared to the rest of the few-shot supervised-
based AD models. This is mainly attributed to the fact that FS-RSDD not only utilizes defect
features but also fully utilizes the features of a normal rail for defect detection. On the other
hand, other algorithms tend to focus more on extracting information from defect samples,
which can lead to lower accuracy when the quality of defect samples is poor.

4.5. Ablative Studies

In this section, we conducted ablation experiments to explore the impact of differ-
ent settings on the performance of FS-RSDD. These experiments included comparative
experiments on the model’s performance using features from different semantic levels of
the feature extractor, whether using Gaussian blur or not, and extracting features using
different feature extractors. The experiments were conducted by extracting defect samples
and training the model 20 times and then comparing the average performance of the model.
The number of samples extracted was m = 10, and the defect samples used for training
were consistent with those used in the experiments in Sections 4.1 and 4.2.

We first conducted comparative experiments on the performance of the FS-RSDD
model using different feature extractors, both with and without Gaussian blur. Table 5
presents the performance of FS-RSDD on Type-I and Type-II rail surface defect datasets
when using ResNet18, ResNet50, and WideResNet50 [47] as feature extractors.

From the experiment data in Table 5, we can clearly observe the significant impact of
different feature extractors and the use of Gaussian blur on the detection performance of
the model. From this, we can observe that when using ResNet18 as the feature extractor,
the model has lower accuracy but faster speed. This is evident due to ResNet18 having
fewer model parameters and faster inference speed but correspondingly poorer feature
extraction capability. On the other hand, unlike ResNet18, WideResNet50, with its wider

Sensors 2023, 23, 7894 15 of 19

feature channels, can achieve better performance when used as a feature extractor, albeit
with relatively slower detection speed.

Table 5. The impact of different feature extractors and the use of Gaussian blur on the performance
of FS-RSDD.

Feature Extractor Image-Level ROC Image-Level AP Pixel-Level ROC FPS

Type-I
m = 10

ResNet18 0.896 0.889 0.964 130.890
ResNet50 0.906 0.901 0.976 70.403

WideResNet50 0.930 0.927 0.985 64.664
ResNet18 + Gaussian blur 0.934 0.935 0.980 130.052
ResNet50 + Gaussian blur 0.937 0.935 0.986 70.837

WideResNet50 + Gaussian blur 0.952 0.953 0.991 63.519

Type-II
m = 10

ResNet18 0.968 0.959 0.939 299.114
ResNet50 0.984 0.978 0.948 231.154

WideResNet50 0.985 0.979 0.952 204.306
ResNet18 + Gaussian blur 0.986 0.983 0.955 265.375
ResNet50 + Gaussian blur 0.990 0.986 0.959 215.554

WideResNet50 + Gaussian blur 0.990 0.987 0.959 211.447

Additionally, by comparing the performance of each feature extractor with and without
Gaussian blur, we can easily observe the extent of improvement that Gaussian blur brings
to the model’s performance. This demonstrates the enhancement of predictive performance
through the fusion of pixel neighborhood features.

Comparative experiments were also conducted on the performance of the FS-RSDD
model by utilizing features from different semantic levels to construct the memory bank,
as presented in Table 6. In the experiment, the WideResNet50 is employed as the feature
extractor, and Gaussian blur is applied to improve the performance. It can be clearly seen
that the use of different combinations of semantic level features has an impact on the perfor-
mance of FS-RSDD. When only using single- or two-level features for model construction,
the performance of the model is suboptimal. However, when using multi-level features
from a shallow layer, FS-RSDD exhibits the best performance. Furthermore, we conducted
experiments with the utilization of features from deeper semantic levels. However, we
observed no significant enhancement in the performance of FS-RSDD but a decrease in
frames per second (FPS) due to the increased number of feature similarity calculations.

Table 6. The impact of constructing a feature memory bank using different hierarchical features on
the performance of FS-RSDD.

Dataset Layer Image-Level
ROC

Pixel-Level
ROC

Image-Level
AP FPS

Type-I
m = 10

Layer1 0.677 0.885 0.658 71.145
Layer1 + 2 0.920 0.976 0.911 63.552
Layer1 + 3 0.935 0.988 0.943 66.293
Layer2 + 3 0.954 0.991 0.956 75.039

Layer1 + 2 + 3 0.952 0.991 0.953 63.519
Layer1 + 2 + 3 + 4 0.949 0.988 0.948 61.557

Type-II
m = 10

Layer1 0.846 0.925 0.868 235.983
Layer1 + 2 0.981 0.964 0.976 221.524
Layer1 + 3 0.990 0.957 0.986 222.655
Layer2 + 3 0.990 0.959 0.987 240.008

Layer1 + 2 + 3 0.991 0.962 0.987 211.447
Layer1 + 2 + 3 + 4 0.992 0.955 0.988 207.422

Sensors 2023, 23, 7894 16 of 19

4.6. Time Complexity and the Size of Memory Bank

In this section, we conducted a comparative analysis of the computational complexity
and size of memory banks among different models. The Type-I image data have a resolution
of 160 × 160, while the Type-II data have a resolution of 64 × 64. All models employed the
same network, WideResNet50, as the feature extractor. It is evident from Table 7 that FS-
RSDD, benefiting from its compact feature memory bank that models the entire normal rail
background, outperforms unsupervised anomaly detection and few-shot defect detection
algorithms in terms of time complexity. Moreover, this advantage is more significant on the
low-resolution Type-II dataset.

Table 7. The time complexity comparison between FS-RSDD and other benchmarked models.

FS-RSDD Padim Patchcore stfpm cflow fastflow devnet

Type-I
m = 10 63.519 57.434 60.378 47.500 21.310 44.954 25.306

Type-II
m = 10 211.447 101.045 96.905 84.843 61.526 58.613 39.192

We also conducted experiments regarding the size of the memory bank. We extracted
the memory bank of our model and other methods and compared them to demonstrate the
compactness of the memory bank obtained by our approach. We contrasted our method
with memory-bank-based approaches [30,32]. The results are as shown in Table 8. In the
experiment, each model utilizes the WideResNet50 feature extractor, with an input image
resolution of 160.

Table 8. Memory bank comparison: each element is a floating-point number.

FS-RSDD Patchcore Padim

Number of elements 71,680 184,320 950,364,800
File size 282 KB 721 KB 3.54 GB

5. Discussion

The method proposed in this article mainly combines the idea of feature-embedding-
based industrial defect detection algorithms and the prototypical network. By embedding
features of defects and normal rails, corresponding feature memory banks are obtained.
FS-RSDD estimates the similarity of the input samples to the defect prototype and the
normal prototype in the feature space for defect detection. This simple and direct method
can achieve quite good results on the rail surface defect dataset using only a few samples.
However, there are still some shortcomings. After studying the experimental results in
Section 4.3, it can be concluded that although this method can effectively distinguish the
rail background and defect foreground, it cannot effectively discriminate between defects
and noise.

To explore the possibility of improving the model’s detection performance using
traditional image-processing techniques, we conducted additional experiments. We per-
formed another experiment on both the RSDDS Type-I dataset without processing and
the dataset processed with image processing. The experiment was conducted only once,
and the random seed was fixed. Following the method described in reference [45], we
used gamma transform to improve the uneven lighting in the images and combined it
with Gaussian blur for image denoising. In the end, we achieved a pixel-level ROC of
99.3% and an image-level ROC of 96.5% on the original dataset, while on the denoised
dataset we achieved a pixel-level ROC of 99.3% and an image-level ROC of 96.2%. It can be
seen that after image processing, the model’s performance did not improve as expected.
We believe this may be due to the fact that deep-learning-based feature extractors have
strong feature extraction capabilities, and the noise and uneven lighting that traditional

Sensors 2023, 23, 7894 17 of 19

image processing techniques can handle can also be distinguished by the feature extractor.
However, noise and interference that are difficult for the feature extractor to distinguish
are equally challenging for traditional image processing techniques. Therefore, instead
of traditional image processing methods, we will focus on enhancing our work through
novel image processing techniques in the future. Additionally, our research will prioritize
exploring deep learning methods in defect detection.

6. Conclusions

This paper proposes a few-shot rail surface defect detection model, FS-RSDD, to
address the issue of insufficient defect samples in the field of rail surface defect detection. FS-
RSDD combines the idea of feature-embedding-based industrial defect detection algorithms
with the prototypical network. The method utilizes a pre-trained convolutional neural
network to embed features of both defective and normal samples. It then uses clustering
algorithms to learn the distribution of features of normal samples. Finally, through the
prototype learning approach, softmax is used to estimate the probability of a test sample’s
feature belonging to a defect in the feature space.

The proposed method surpasses all comparative algorithms in terms of speed by
achieving a compact feature memory bank, which models the overall feature distribution
of normal rail backgrounds. Additionally, the proposed method outperforms comparative
few-shot defect detection algorithms in terms of accuracy on the RSDDS public dataset and
is on par with the current state-of-the-art unsupervised anomaly detection algorithms.

Author Contributions: Conceptualization, Y.M. and Z.W. (Ziwei Wang); data curation, Z.W. (Ziwei
Wang); methodology, Z.W. (Ziwei Wang), Y.L. and Z.W. (Zheng Wang); writing—original draft, Z.W.
(Ziwei Wang) and Y.L.; writing—review and editing, Y.M. and Z.W. (Zheng Wang). All authors have
read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (Grant No.
62066024) and the National Natural Science Foundation of China (Grant No.12162019).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Li, Y.; Trinh, H.; Haas, N.; Otto, C.; Pankanti, S. Rail Component Detection, Optimization, and Assessment for Automatic Rail

Track Inspection. IEEE Trans. Intell. Transp. Syst. 2014, 15, 760–770. [CrossRef]
2. Gao, B.; Bai, L.; Woo, W.L.; Tian, G.Y.; Cheng, Y. Automatic Defect Identification of Eddy Current Pulsed Thermography Using

Single Channel Blind Source Separation. IEEE Trans. Instrum. Meas. 2014, 63, 913–922. [CrossRef]
3. Alvarenga, T.A.; Carvalho, A.L.; Honorio, L.M.; Cerqueira, A.S.; Filho, L.M.A.; Nobrega, R.A. Detection and Classification System

for Rail Surface Defects Based on Eddy Current. Sensors 2021, 21, 7937. [CrossRef] [PubMed]
4. Wang, H.; Li, M.; Wan, Z. Rail Surface Defect Detection Based on Improved Mask R-CNN. Comput. Electr. Eng. 2022, 102, 108269.

[CrossRef]
5. Hsieh, C.-C.; Hsu, T.-Y.; Huang, W.-H. An Online Rail Track Fastener Classification System Based on YOLO Models. Sensors 2022,

22, 9970. [CrossRef]
6. Luo, H.; Cai, L.; Li, C. Rail Surface Defect Detection Based on An Improved YOLOv5s. Appl. Sci. 2023, 13, 7330. [CrossRef]
7. Zhang, C.; Xu, D.; Zhang, L.; Deng, W. Rail Surface Defect Detection Based on Image Enhancement and Improved YOLOX.

Electronics 2023, 12, 2672. [CrossRef]
8. Hu, J.; Qiao, P.; Lv, H.; Yang, L.; Ouyang, A.; He, Y.; Liu, Y. High Speed Railway Fastener Defect Detection by Using Improved

YoLoX-Nano Model. Sensors 2022, 22, 8399. [CrossRef]
9. Gudovskiy, D.; Ishizaka, S.; Kozuka, K. CFLOW-AD: Real-Time Unsupervised Anomaly Detection with Localization via

Conditional Normalizing Flows. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision
(WACV), Waikoloa, HI, USA, 3–8 January 2021.

10. Yu, J.; Zheng, Y.; Wang, X.; Li, W.; Wu, Y.; Zhao, R.; Wu, L. FastFlow: Unsupervised Anomaly Detection and Localization via 2D
Normalizing Flows. arXiv 2021, arXiv:2111.07677.

https://doi.org/10.1109/TITS.2013.2287155
https://doi.org/10.1109/TIM.2013.2285789
https://doi.org/10.3390/s21237937
https://www.ncbi.nlm.nih.gov/pubmed/34883941
https://doi.org/10.1016/j.compeleceng.2022.108269
https://doi.org/10.3390/s22249970
https://doi.org/10.3390/app13127330
https://doi.org/10.3390/electronics12122672
https://doi.org/10.3390/s22218399

Sensors 2023, 23, 7894 18 of 19

11. Yang, M.; Wu, P.; Liu, J.; Feng, H. MemSeg: A Semi-Supervised Method for Image Surface Defect Detection Using Differences and
Commonalities. Eng. Appl. Artif. Intell. 2022, 119, 105835. [CrossRef]

12. Pang, G.; Shen, C.; Cao, L.; Hengel, A.V.D. Deep Learning for Anomaly Detection: A Review. ACM Comput. Surv. 2022, 54, 1–38.
[CrossRef]

13. Yu, H.; Li, Q.; Tan, Y.; Gan, J.; Wang, J.; Geng, Y.; Jia, L. A Coarse-to-Fine Model for Rail Surface Defect Detection. IEEE Trans.
Instrum. Meas. 2019, 68, 656–666. [CrossRef]

14. Ghorai, S.; Mukherjee, A.; Gangadaran, M.; Dutta, P.K. Automatic Defect Detection on Hot-Rolled Flat Steel Products. IEEE Trans.
Instrum. Meas. 2013, 62, 612–621. [CrossRef]

15. Zhang, H.; Jin, X.; Wu, Q.M.J.; Wang, Y.; He, Z.; Yang, Y. Automatic Visual Detection System of Railway Surface Defects with
Curvature Filter and Improved Gaussian Mixture Model. IEEE Trans. Instrum. Meas. 2018, 67, 1593–1608. [CrossRef]

16. Liu, Z.; Wang, W.; Zhang, X.; Jia, W. Inspection of Rail Surface Defects Based on Image Processing. In Proceedings of the 2010 2nd
International Asia Conference on Informatics in Control, Automation and Robotics (CAR 2010), Wuhan, China, 3–7 March 2010;
Volume 1, pp. 472–475.

17. Meng, S.; Kuang, S.; Ma, Z.; Wu, Y. MtlrNet: An Effective Deep Multitask Learning Architecture for Rail Crack Detection. IEEE
Trans. Instrum. Meas. 2022, 71, 1–10. [CrossRef]

18. Zhang, H.; Song, Y.; Chen, Y.; Zhong, H.; Liu, L.; Wang, Y.; Akilan, T.; Wu, Q.M.J. MRSDI-CNN: Multi-Model Rail Surface Defect
Inspection System Based on Convolutional Neural Networks. IEEE Trans. Intell. Transp. Syst. 2022, 23, 11162–11177. [CrossRef]

19. Zhang, D.; Song, K.; Wang, Q.; He, Y.; Wen, X.; Yan, Y. Two Deep Learning Networks for Rail Surface Defect Inspection of Limited
Samples With Line-Level Label. IEEE Trans. Ind. Inform. 2021, 17, 6731–6741. [CrossRef]

20. Zhang, Q.; Wu, B.; Shao, Y.; Ye, Z. Surface Defect Detection of Rails Based on Convolutional Neural Network Multi-Scale-Cross
FastFlow. In Proceedings of the 2022 5th International Conference on Pattern Recognition and Artificial Intelligence (PRAI),
Chengdu, China, 19–21 August 2022; pp. 405–411.

21. Niu, M.; Song, K.; Huang, L.; Wang, Q.; Yan, Y.; Meng, Q. Unsupervised Saliency Detection of Rail Surface Defects Using
Stereoscopic Images. IEEE Trans. Ind. Inform. 2021, 17, 2271–2281. [CrossRef]

22. Ding, C.; Pang, G.; Shen, C. Catching Both Gray and Black Swans: Open-Set Supervised Anomaly Detection. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 18–24 June 2022.

23. Pang, G.; Ding, C.; Shen, C.; Hengel, A.V.D. Explainable Deep Few-Shot Anomaly Detection with Deviation Networks. arXiv
2021, arXiv:2108.00462.

24. Liu, B.; Gao, F.; Li, Y. Cost-Sensitive YOLOv5 for Detecting Surface Defects of Industrial Products. Sensors 2023, 23, 2610.
[CrossRef]

25. Li, B.; Gao, Q. Defect Detection for Metal Shaft Surfaces Based on an Improved YOLOv5 Algorithm and Transfer Learning.
Sensors 2023, 23, 3761. [CrossRef] [PubMed]

26. Ahmed, K.R. DSTEELNet: A Real-Time Parallel Dilated CNN with Atrous Spatial Pyramid Pooling for Detecting and Classifying
Defects in Surface Steel Strips. Sensors 2023, 23, 544. [CrossRef]

27. Han, G.; Li, T.; Li, Q.; Zhao, F.; Zhang, M.; Wang, R.; Yuan, Q.; Liu, K.; Qin, L. Improved Algorithm for Insulator and Its Defect
Detection Based on YOLOX. Sensors 2022, 22, 6186. [CrossRef]

28. Zheng, J.; Wu, H.; Zhang, H.; Wang, Z.; Xu, W. Insulator-Defect Detection Algorithm Based on Improved YOLOv7. Sensors 2022,
22, 8801. [CrossRef] [PubMed]

29. Kou, L.; Sysyn, M.; Fischer, S.; Liu, J.; Nabochenko, O. Optical Rail Surface Crack Detection Method Based on Semantic
Segmentation Replacement for Magnetic Particle Inspection. Sensors 2022, 22, 8214. [CrossRef] [PubMed]

30. Defard, T.; Setkov, A.; Loesch, A.; Audigier, R. PaDiM: A Patch Distribution Modeling Framework for Anomaly Detection and
Localization. In Pattern Recognition. ICPR International Workshops and Challenges. ICPR 2021; Lecture Notes in Computer Science;
Springer: Cham, Switzerland, 2020.

31. Wang, G.; Han, S.; Ding, E.; Huang, D. Student-Teacher Feature Pyramid Matching for Anomaly Detection. arXiv 2021,
arXiv:2103.04257.

32. Roth, K.; Pemula, L.; Zepeda, J.; Scholkopf, B.; Brox, T.; Gehler, P. Towards Total Recall in Industrial Anomaly Detection. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 18–24
June 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 14298–14308.

33. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016.

34. Li, C.-L.; Sohn, K.; Yoon, J.; Pfister, T. CutPaste: Self-Supervised Learning for Anomaly Detection and Localization. arXiv 2021,
arXiv:2104.04015.

35. Reiss, T.; Cohen, N.; Bergman, L.; Hoshen, Y. PANDA: Adapting Pretrained Features for Anomaly Detection and Segmentation.
In Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA,
20–25 June 2021; pp. 2805–2813.

36. Rudolph, M.; Wandt, B.; Rosenhahn, B. Same Same But DifferNet: Semi-Supervised Defect Detection with Normalizing Flows. In
Proceedings of the 2021 IEEE Winter Conference on Applications of Computer Vision (WACV), Waikoloa, HI, USA, 3–8 January
2021; pp. 1906–1915.

https://doi.org/10.1016/j.engappai.2023.105835
https://doi.org/10.1145/3439950
https://doi.org/10.1109/TIM.2018.2853958
https://doi.org/10.1109/TIM.2012.2218677
https://doi.org/10.1109/TIM.2018.2803830
https://doi.org/10.1109/TIM.2022.3181940
https://doi.org/10.1109/TITS.2021.3101053
https://doi.org/10.1109/TII.2020.3045196
https://doi.org/10.1109/TII.2020.3004397
https://doi.org/10.3390/s23052610
https://doi.org/10.3390/s23073761
https://www.ncbi.nlm.nih.gov/pubmed/37050821
https://doi.org/10.3390/s23010544
https://doi.org/10.3390/s22166186
https://doi.org/10.3390/s22228801
https://www.ncbi.nlm.nih.gov/pubmed/36433397
https://doi.org/10.3390/s22218214
https://www.ncbi.nlm.nih.gov/pubmed/36365912

Sensors 2023, 23, 7894 19 of 19

37. Chen, Z.; Fu, Y.; Zhang, Y.; Jiang, Y.-G.; Xue, X.; Sigal, L. Multi-Level Semantic Feature Augmentation for One-Shot Learning.
IEEE Trans. Image Process. 2019, 28, 4594–4605. [CrossRef]

38. Xu, C.; Liu, C.; Sun, X.; Yang, S.; Wang, Y.; Wang, C.; Fu, Y. PatchMix Augmentation to Identify Causal Features in Few-Shot
Learning 2022. arXiv 2022, arXiv:2211.16019.

39. Finn, C.; Abbeel, P.; Levine, S. Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks. In Proceedings of the 34th
International Conference on Machine Learning, Sydney, Australia, PMLR. 17 July 2017; pp. 1126–1135.

40. Koch, G.R. Siamese Neural Networks for One-Shot Image Recognition. Master’s Thesis, University of Toronto, Toronto, ON,
Canada, 2015.

41. Vinyals, O.; Blundell, C.; Lillicrap, T.; Wierstra, D. Matching Networks for One Shot Learning. In Advances in Neural Information
Processing Systems; Curran Associates, Inc.: New York, NY, USA, 2016; Volume 29.

42. Snell, J.; Swersky, K.; Zemel, R.S. Prototypical Networks for Few-Shot Learning 2017. arXiv 2017, arXiv:1703.05175v2.
43. Yang, B.; Liu, C.; Li, B.; Jiao, J.; Ye, Q. Prototype Mixture Models for Few-Shot Semantic Segmentation. arXiv 2020, arXiv:2008.03898.
44. Dong, N.; Xing, E.P. Few-Shot Semantic Segmentation with Prototype Learning. BMVC 2018, 3. Available online:

http://bmvc2018.org/contents/papers/0255.pdf (accessed on 29 August 2023).
45. Gan, J.; Li, Q.; Wang, J.; Yu, H. A Hierarchical Extractor-Based Visual Rail Surface Inspection System. IEEE Sens. J. 2017, 17,

7935–7944. [CrossRef]
46. Akcay, S.; Ameln, D.; Vaidya, A.; Lakshmanan, B.; Ahuja, N.; Genc, U. Anomalib: A Deep Learning Library for Anomaly

Detection. In Proceedings of the 2022 IEEE International Conference on Image Processing (ICIP), Bordeaux, France, 16–19 October
2022; pp. 1706–1710.

47. Zagoruyko, S.; Komodakis, N. Wide Residual Networks 2017. arXiv 2017, arXiv:1605.07146v4.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/TIP.2019.2910052
https://doi.org/10.1109/JSEN.2017.2761858

	Introduction
	Related Works
	Rail Surface Defect Detection
	Unsupervised Anomaly Detection for Industrial Images
	Few-Shot Learning

	Methods
	Embedding Extraction
	Compact Multi-Scale Memory Bank
	Pixel-Level Defect Detection
	Image-Level Defect Detection

	Experiments and Results
	Evaluation Metrics
	Experiment Setup
	Dataset Setup
	Comparison Experiment Setup

	Comparison with Unsupervised-Based Algorithm
	Comparison with Few-Shot Supervised-Based AD Algorithms
	Ablative Studies
	Time Complexity and the Size of Memory Bank

	Discussion
	Conclusions
	References

