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Abstract: With the development of gas sensor arrays and computational technology, machine ol-
factory systems have been widely used in environmental monitoring, medical diagnosis, and other
fields. The reliable and stable operation of gas sensing systems depends heavily on the accuracy of
the sensors outputs. Therefore, the realization of accurate gas sensor array fault diagnosis is essential
to monitor the working status of sensor arrays and ensure the normal operation of the whole system.
The existing methods extract features from a single dimension and require the separate training of
models for multiple diagnosis tasks, which limits diagnostic accuracy and efficiency. To address these
limitations, for this study, a novel fault diagnosis network based on multi-dimensional feature fusion,
an attention mechanism, and multi-task learning, MAM-Net, was developed and applied to gas
sensor arrays. First, feature fusion models were applied to extract deep and comprehensive features
from the original data in multiple dimensions. A residual network equipped with convolutional block
attention modules and a Bi-LSTM network were designed for two-dimensional and one-dimensional
signals to capture spatial and temporal features simultaneously. Subsequently, a concatenation
layer was constructed using feature stitching to integrate the fault details of different dimensions
and avoid ignoring useful information. Finally, a multi-task learning module was designed for the
parallel learning of the sensor fault diagnosis to effectively improve the diagnosis capability. The
experimental results derived from using the proposed framework on gas sensor datasets across
different amounts of data, balanced and unbalanced datasets, and different experimental settings
show that the proposed framework outperforms the other available methods and demonstrates good
recognition accuracy and robustness.

Keywords: gas sensor array; fault diagnosis; deep learning; attention mechanism; multi-task learning

1. Introduction

With the development of sensor technology, gas sensor arrays are playing an increas-
ingly important role in machine olfaction applications such as environmental monitoring [1],
gas quality detection [2], food quality control [3], and medical diagnosis [4]. A machine
olfactory system (e.g., an electronic nose) identifies gases by analyzing the data returned
from a gas sensor array using pattern recognition methods. Metal-oxide semiconductor
(MOX) gas sensors are widely used because of their low cost, high sensitivity, and fast
response times. For example, Ref. [5] proposed an ultrasensitive gas sensor established
on hollow tungsten trioxide-nickel oxide nanoflowers, which had a fast response time
and outstanding gas sensitivity. A pattern recognition algorithm is an important part of
electronic noses in analyzing gas characteristics, and this type of algorithm is often used to
classify gas mixtures. Common methods include principal component analysis (PCA) [6],
artificial neural networks (ANNs) [7], and convolutional neural networks (CNNs) [8].
These methods are implemented on the basis of data from healthy sensors. A gas sensor
array is the source of the machine olfactory system used to obtain measured gas/odor
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information, and its measurement quality significantly determines the overall performance
of the system.

However, the MOX gas sensor array inevitably suffers from external interference
(corrosive gas influence, dust adhesion, temperature, and humidity changes) or self-failure
(aging, poisoning, and damage to gas sensing materials) during operation. Once the sensor
fails, the application of inaccurate measurements will lead to decreases in the accuracy and
reliability of the classification results or even complete errors [9]. Therefore, appropriate
fault diagnosis algorithms must be employed to monitor the abnormal states of the gas
sensor array (fault detection), identify fault types (fault identification), and locate faulty
gas sensors (fault localization).

With the advancement of automation and integration in modern industry, there has
been an increasing demand for the reliability and safety of related equipment. Fault diagno-
sis and health management techniques have been used in various industrial applications in
recent years, such as the physics-informed residual network (PIResNet) for rolling element
bearing fault diagnostics [10], digital twin-driven intelligent assessment of gear surface
degradation [11], and a novel vibration-based prognostic scheme for gear health manage-
ment in the surface wear progression of the intelligent manufacturing system [12]. All
these methods can provide effective solutions for health management and the predictive
maintenance of working systems in industrial processes. In addition, there has been a surge
in research focused on monitoring the fault status of sensors commonly used in modern
industry. These studies aim to enhance the reliability of measurement signals. Currently,
sensor fault diagnosis is primarily based on data-driven methods [13]. This approach can
directly discover and analyze hidden information in the training data instead of building
complex mathematical models to describe the fault characterization principle in advance.
Machine learning (ML) and deep learning (DL) are the most frequently used data-driven
methods for fault diagnosis. Traditional ML methods are widely utilized for early sensor
fault diagnosis. Common methods include the k-nearest neighbor algorithm [14], support
vector machine [15], PCA [16], and ANN [17]. However, as the size and complexity of
the processed samples increases, ML methods have difficulty determining the appropriate
hyperparameters for feature extraction, which is a challenging task without sufficient prior
knowledge.

With improvements in computer-processing capabilities, DL-based fault diagnosis
methods have emerged as alternatives to traditional ML methods. DL-based methods
can automatically extract classification features from large-scale data, overcoming the
limitations of traditional feature extraction [18,19]. Therefore, deep learning is widely
used to process large amounts of complex sensor data. Common DL-based approaches
include CNN, long short-term memory (LSTM), and generative adversarial networks
(GANs). To overcome the tediousness of ML in data preprocessing, many DL-based
methods convert the original data into a two-dimensional (2D) image format suitable for
CNN processing. In [20], a deep CNN-based diagnostic model was constructed for the
fault classification of the sensors and actuators of robot joints. A CNN fault identification
approach based on the time–frequency characteristics of UAV sensor signals was proposed
in [21]. Both methods improve recognition accuracy compared with traditional ML methods.
With the development of CNNs, improved models have been applied in sensor fault
diagnosis. Ref. [22] described a fault detection method for aeroengine sensors based on
the Inception–CNN model. Compared with an ordinary CNN, this model can extract
more sensor information at different scales to increase the diagnostic accuracy of fault
state detection. LSTM is also an effective method for processing sensor data, as it is
capable of extracting one-dimensional (1D) temporal dependencies directly from sequence
data. Ref. [23] used an LSTM model for voltage sensor fault identification in battery
energy storage systems in 1D temporal dimensions. A method based on a 1D CNN and
LSTM was proposed for the fault identification and recovery of Hall sensors in [24]. This
method further extracts features from a temporal perspective and exhibits high diagnostic
accuracy. GANs are commonly applied to generate samples similar to real samples through
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their adversarial structures, which usually consist of a generator and a discriminator [25].
Additionally, GANs have also been employed in various fault diagnosis tasks due to
their feature extraction capabilities. In [26], a fault detection model was proposed based
on a one-dimensional residual GANomaly network, which effectively enhanced training
efficiency and diagnostic accuracy. Ref. [27] developed a fault identification method based
on Bi-LSTM, GAN, and autoencoder (AE). This method utilizes the reconstructed features
obtained by GAN and AE to identify sensor faults with excellent performance.

Several methods based on DL have also been proposed for gas sensor fault diagnosis.
Sun et al. [28] employed an improved CNN and random forests to classify the fault types
of gas sensors. In [29], the authors used transfer learning combined with LeNet-5 for gas
sensor fault identification. A method that combines a CNN and deep convolutional GAN to
address dataset imbalances in fault type classification was proposed in [30]. These methods
employed the basic CNN structure for feature extraction when classifying fault types in a
sensor array comprising a limited number of gas sensors.

Although the models proposed above have achieved good results, some shortcomings
remain in dealing with increasingly high-dimensional complex data for gas sensor fault
diagnosis. (1) These methods can only extract features from a single dimension and ignore
potential features from other perspectives, which limits the feature extraction capabilities
of such models in complex situations. (2) These models cannot selectively focus on or
ignore features based on their level of contribution to the classification results, which may
fail to capture key features and waste considerable amounts of computational resources.
(3) These diagnostic methods are trained for only a single diagnostic task, which loses
potential correlation features between samples, limiting the diagnostic performance and
utilization of the extracted features and the need to perform multiple diagnosis tasks.

The multi-feature fusion strategy is a solution for capturing the comprehensive features
of samples across different scales [31–33]. Three types of multi-feature fusion algorithms
are commonly used nowadays. The first involves converting the original samples into
frequency–domain signals, time–frequency diagrams, or amplitude-modulated–frequency-
modulated components using techniques such as Fourier transform, wavelet transform,
and empirical modal decomposition. Feature extraction and fusion are subsequently
performed on these different forms of signals [34,35]. However, this approach is limited
in obtaining additional feature information when applied to the smoothed data from gas
sensors, and it also increases the complexity of the entire process. The second approach
involves utilizing different deep learning models to extract and fuse features from the same
perspective. In [36], a fault prediction model based on a hybrid deep neural network model
was proposed, and Qian et al. [37] developed a parallel deep learning framework based
on multiple models for the abnormal prediction of data in industrial production. Both
of these methods use a parallel structure consisting of a 1D CNN and LSTM to capture
temporal features. However, this type of approach tends to ignore features that exist in
other perspectives. The third approach involves fusing features from different perspectives
or scales. CNNs with convolutional kernels of different sizes were used in [32,33] to extract
multi-scale features simultaneously. In [38], LSTM and CNN were used to extract both the
temporal and spatial features of the samples used.

Although these methods improve the amount of information for feature extraction,
they are prone to ignore some decisive feature details because they are unable to select
features that actively contribute significantly to classification for learning. Reportedly, a
combination of network models and attention mechanisms can effectively improve the
feature extraction quality. In [39], the authors proposed a fault type classification strategy
for aircraft attitude sensors using the RepVGG and SENet attention mechanisms. Ref. [40]
developed an attention mechanism for deep residual shrinkage networks using a fault
identification model. This mechanism can effectively improve the identification of fault
features using a model in a signal with noise. Unfortunately, each of these methods [29–33]
was only trained for a single task, which limits their recognition accuracy and efficiency.
Multi-task learning is a paradigm in machine learning that can process multiple tasks
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simultaneously and improve the generalization performance and classification accuracy of
a model [41]. In [42], multi-task learning was applied to the fault type classification and
fault level detection of wind turbine blades and obtained better results than single-task
learning. Similarly, in another study, multi-task learning was used to diagnose bearing
faults and proved capable of elucidating the type and size of each fault in parallel [43].
These methods demonstrate the advantages and feasibility of multi-task learning for fault
diagnosis.

Above all, the existing methods for the fault diagnosis of gas sensors extract features
from a single dimension, ignoring the potentially discriminative features in other dimen-
sions. Additionally, the single-task learning methods for three diagnostic tasks require
diagnostic models to be trained separately, which increases complexity and limits diagnos-
tic accuracy. Therefore, in this paper, a novel network based on multi-dimensional feature
fusion, attention mechanism, and multi-task learning (MAM-Net) for gas sensor array fault
diagnosis is proposed. The main contributions of this paper are as follows:

(1) A multi-dimensional feature fusion method integrating a residual network (ResNet)
and Bi-LSTM is proposed. Deep and comprehensive features can be extracted by
fusing the 2D spatial features and 1D temporal features of samples for the fault
diagnosis of a gas sensor array.

(2) A ResNet equipped with convolutional block attention module (CBAM) is proposed
for the 2D feature extraction of gas sensor data to capture and refine important
fault features more effectively, and the diagnostic accuracy of the model is further
improved.

(3) A multi-task learning module was designed for gas sensor fault detection, fault
identification, and fault localization. This approach can fully utilize the extracted
comprehensive features to perform the three tasks in unison. The diagnostic accuracy
can be improved by parameter sharing and the mutual promotion of simultaneous
training between related tasks.

The remainder of this paper is structured as follows: In Section 2, the theoretical
background for our proposed framework is described. Section 3 provides a systematic
description of the proposed framework and its internal modules. Section 4 introduces the
datasets used in our experiments. Section 5 presents the results and analysis. In Section 6,
we discuss and analyze the performance of the proposed method in other cases. Finally,
Section 7 states the conclusions of this study.

2. Theoretical Background
2.1. ResNet

As an updated version of a traditional CNN, ResNet aims to avoid gradient disappear-
ance and explosion as the depth of the neural network increases [44]. A ResNet is generally
built using several residual blocks with a mapping function designed as follows:

H(x) = F(x) + x, (1)

where x is the residual block input, F(x) is the residual mapping, and H(x) is the residual
block output. The constant mapping x connects the residual block input and output,
which facilitates backpropagation of the loss function and the optimization of the model
parameters [45].

Due to the structure and advantages of ResNet, this network can easily fit various
complex data in two dimensions and is highly effective for feature extraction during
fault diagnosis. In [46], the authors used ResNet for the feature extraction of the wavelet
coefficients of the original letter decomposition from 2D to identify wind turbine gearbox
faults. Ref. [47] converted the original signal into an image using a Markov transfer
field and subsequently applied ResNet to extract 2D features to achieve the classification
of rolling bearing health conditions. Therefore, in this study, ResNet with an attention
mechanism was designed as the 2D feature encoder for the proposed framework.
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2.2. CBAM

The CBAM is a lightweight attention module [48]. It consists of a channel attention
module (CAM) and a spatial attention module (SAM). Its structure is illustrated in Figure 1.
Within the intermediate feature maps of a network, the CBAM can sequentially infer
attention maps along the channel and spatial dimensions to obtain refined features [49].

Figure 1. Basic structure of CBAM.

In the CAM, the intermediate feature map F as input is pooled by global maximum
pooling and global average pooling (GAP) based on the channel. The resulting vectors
are then sent to the fully connected (linear) layer separately for information sharing and
are stitched together to obtain the channel attention map. Subsequently, the channel
attention activated by the sigmoid function is multiplied times F to obtain the channel
refinement feature map F′. In the SAM, F′ is pooled by global maximum and average
according to space, and the resulting 2D vectors are connected. A spatial attention map
is then generated by convolving and activating the combined vectors. Finally, the spatial
attention is multiplied times F′ to obtain the output feature map F′′ of CBAM. This process
is represented by the following equations:

F′ = Mc (F) ⊗ F, (2)

F′′ = Ms
(

F′
)
⊗ F′, (3)

where F, F′, and F′′ represent the input feature map, feature map of the channel attention
output, and feature map of the spatial attention output, respectively. Mc (F) is the out-
put of the CAM, and Ms (F′) is the output of the SAM. ⊗ denotes element-by-element
multiplication.

Due to the attention mechanism, CBAM can allocate weights to different feature maps,
helping the model focus on positions with outstanding features and suppress the regions
that contribute little to the results, which improves the recognition effectiveness of the
feature extraction model. Ref. [50] employed CNN and CBAM to improve the accuracy
for classifying rolling bearing fault types. In [51], the authors used CBAM and ResNet for
fault detection in reciprocating compressors to enhance the model’s representation of key
features. Therefore, we introduced this module into ResNet in this study to improve gas
sensor array fault diagnosis.

2.3. Bi-LSTM

LSTM is a derivative of a recurrent neural network (RNN). It learns features by consid-
ering the order of sequential data, thereby overcoming the problems of gradient explosions
and vanishing gradients in RNN by capturing long-distance dependencies [52,53]. LSTM
consists of three gate cells (forget, input, and output gates) and a memory cell (cell state), as
shown in Figure 2. The cell state runs across all LSTM cells to transfer information over long
distances. The input and forget gates decide whether to retain or discard information about
the cell states, and the output gate generates the output vector Yi based on the cell state
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and input vector Xi. This architecture enables it to maintain important features effectively
during long-term processes [27].

Figure 2. Basic structure of LSTM.

Bi-LSTM is an extension of LSTM. It comprises two LSTM that can simultaneously
process time-series information in the forward and reverse directions. This approach
effectively increases the amount of information available to the network [54] and enhances
the understanding of fault features in the model [55]. Therefore, we utilized Bi-LSTM as
a 1D feature-encoding module in this study to complement the 2D features extracted by
ResNet, thus enhancing the feature extraction capability of the model.

3. Proposed Method

This section introduces the proposed method for gas sensor array fault diagnosis in
detail, and its structure is illustrated in Figure 3. The sensor array is composed of the
gas sensors S1–SN. The data matrix, which consists of the output value of each sensor
during gas detection, is preprocessed to transform it into a 2D image (the input data of the
proposed model). The outputs of this method are labels with multiple fault descriptions of
the sensor array.

Figure 3. Framework of the proposed method.

The proposed MAM-Net comprises two main parts: a multi-dimensional feature
fusion module and multi-task learning module. The multi-dimensional feature fusion
module contains 1D and 2D encoders, which are used to obtain sufficient information
from the training data to improve the accuracy of fault diagnosis. The multi-task learning
module is utilized to conduct fault detection, fault identification, and fault localization and
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then outputs the status, type, and location of the fault simultaneously. The details of each
module are as follows.

3.1. Multi-Dimensional Feature Fusion Module

The proposed multi-dimensional feature fusion module consists of two parallel paths—
1D and 2D encoders—and concatenate and linear layers, as shown in Figure 4a. The two
encoders are utilized to encode fault features in the temporal and spatial dimensions in
parallel. The concatenate and linear layers are employed to fuse the feature information
from the two dimensions.

Figure 4. Schematic of the developed multi-dimensional feature fusion method. (a) Architecture of
multi-dimensional feature fusion module. (b) Internal structure of the improved residual block in the
2D encoder in (a). (c) Internal structure of the Bi-LSTM in the 1D encoder in (a).

In the 2D encoder, ResNet is used as the backbone network to extract the 2D spa-
tial features of the faulty data. The network consists of a convolutional block, multiple
improved residual blocks, and a GAP layer, as illustrated in Figure 4a.

To satisfy the requirements of the multi-dimensional feature fusion module in the
proposed method for the image format of the sensor array data, the original input data are
converted into a 2D data structure, X ∈ RC×H×W , where C, H, and W correspond to the
number of channels, height, and width of the image, respectively. H also represents the
number of sensors, W denotes the period length of the sample, and C = 1. The input data X
first proceed through a convolutional layer (kernel size = 3 × 3), batch normalization (BN)
layer, ReLU activation function, and max pooling layer in the convolution block to obtain
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the basic feature map Y1 ∈ RC1×H1×W1 (C1, H1, and W1 are the corresponding sizes after
convolution). Subsequently, Y1 is fed into multiple stacks of improved residual blocks to
obtain additional fault characteristics. The improved residual block is formed by adding
CBAM to the traditional residual block. The structure is shown in Figure 4b. In this residual
block structure, the feature map is first processed using two convolutional layers, two BN
layers, and one ReLU activation function layer for the overall features. Subsequently, the
CBAM is employed to enhance the representation of effective features and suppress the
interference of invalid features by changing the weight parameters of different feature
information in the feature map. This approach enables the model to focus more on the
locally important features of the data, such as the moment of the peak in the spike fault and
the moment at which the return value approaches zero in the broken circuit fault. Thus,
a feature map Y2 ∈ RC2×H2×W2 can be obtained after several improved residual blocks.
Finally, GAP is used to summarize all fault feature information extracted by the 2D encoder.
GAP can efficiently represent the classification information contained in each channel by
averaging the H2 ×W2 feature values in each channel (i.e., C2 channels) of feature map Y2.
Then, the vector formed by the obtained C2 averages is employed as feature map Y3.

The Bi-LSTM is the main body of the 1D encoder, as shown in Figure 4c, and it can
extract fault features from sensor data in the temporal dimension. The channel dimension
in X is removed by the squeeze layer to obtain feature map Y4 ∈ RH×W (where H denotes
the number of sensors and also represents the number of channels in 1D feature extraction).
The network learns the time-sequence features in a manner similar to natural language
processing. It considers the relationships among multiple sensor data points at each
sampling point as the embedding of information for that moment. The relationships among
different moments of information are used as features. Compared to the 2D encoder,
which captures the spatial relationships between data in a sample as features, this network
focuses on the backward and forward dependencies of time-series data as features. This
approach overcomes the limitations of 2D feature extraction. For example, high similarities
exist between the local spatial features of spike faults and noise faults, and one cannot
distinguish the two types of faults well by only using a 2D encoder for feature extraction.
However, the characteristics of these two fault types differ significantly from one another
from a temporal perspective. Therefore, with the assistance of a 1D encoder, the model can
perform well in distinguishing fault types. The temporal feature map Y5 is obtained after
Bi-LSTM processing.

Finally, the model concatenates the 1D feature map Y5 with the 2D feature map Y3
along the feature dimension and passes it to a linear layer to integrate the information and
obtain the final feature map Y6. This feature map can provide more adequate and effective
fault feature information for subsequent multi-task learning models.

3.2. Multi-Task Learning Module

As shown in Figure 5, the multi-task learning module consists of three different
classifiers: a fault state classifier, a fault type classifier, and a fault location classifier. It
obtains multi-dimensional feature maps from the multi-dimensional feature fusion module
and passes them to different classifiers. Each classifier has the same structure with different
parameter settings; each contains two dropout layers, two linear layers, and a ReLU
activation function. The dropout layers are used to limit the number of participating
training neurons to avoid overfitting. The linear layer can be utilized to establish linear
functions to fit the relationship between sample labels and features by adjusting the weights.
The ReLU activation function can enhance the generalization ability of each classifier by
introducing nonlinear relationships between linear layers.
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Figure 5. Structure of the multi-task learning module.

Unlike single-task learning, multi-task learning can calculate the loss values of multiple
classification tasks in a single training session and update the network parameters based
on these loss values. This approach enables several related diagnostic tasks to share feature
information, improving the diagnostic accuracy and generalizability of each classification
task.

3.2.1. Fault Detection Classifier

This classification model is designed to determine whether a sample is faulty and can
categorize samples into two classes, namely, “normal” and “faulty”, with corresponding
labels of 0 and 1, respectively. Because this classification task is binary, the final linear layer
of the classifier is connected to a sigmoid activation function to transform the model output
into a range from 0 to 1. This approach enables the probability of a sample being “normal”
to be calculated, where a probability of 0.5 is used as the threshold. Subsequently, binary
cross-entropy is utilized as a loss function of fault detection to calculate the loss values
Loss1 based on the output values of the classifier and its corresponding labels. Finally, the
network parameters are updated using the Adam optimizer. The loss function is defined as
follows:

Loss1 = − 1
batch size

batch size

∑
i=1

[yi log(pi) + (1− yi) log(1− pi)], (4)

where the batch size represents the number of samples in a single training epoch, yi repre-
sents the label of the ith sample, and pi is the probability that the result predicted by the
model is the true label.

3.2.2. Fault Identification and Localization Classifier

The fault type and location classifiers differ from the fault detection classifier in that
they are both multi-classification classifiers. The fault identification classifier can classify
the samples into N1 types according to the fault type, such as no fault, broken circuit fault,
spike fault, or noise fault. These fault types correspond to labels ranging from 0 to N1.
For a gas sensor array consisting of N2 sensors, the fault location, as the output of the
fault localization classifier, can be labeled from 0 to N2, where 0 indicates that no fault has
occurred in the array.

To perform these multiple classification tasks, the classifier first normalizes the model
output vector using the softmax activation function to obtain the vector ŷ. Values ranging
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from 0 to 1 within ŷ represent the probabilities of different classes, and the class corre-
sponding to the maximum value is the prediction result of the model. Subsequently, the
cross-entropy loss function is used to calculate the loss values between the model outputs
ŷ and the true label y of the samples to update the parameters of the model.

The loss values for fault identification and localization are calculated using the cross-
entropy loss functions Loss2 and Loss3 and can be mathematically defined as follows:

Loss2 = Loss3 = − 1
batch size

batch size

∑
j=1

C

∑
i=1

yji· log ŷji, (5)

where yji represents the true value of the ith class for the jth sample in a batch; ŷji is the
corresponding predicted value; and C represents the number of classes, which, in fault
identification and localization, is N1 and N2, respectively.

3.3. MAM-Net Model Training

The training of the MAM-Net is a process of constantly optimizing the loss values
corresponding to the three classifiers. First, the loss values Loss1, Loss2, and Loss3 are
calculated based on the multiple fault labels of the input samples with the predictions
of the model. Subsequently, a backpropagation (BP) algorithm is used to calculate the
gradient from the output layer to the input layer based on three sequential loss values.
Finally, the Adam optimizer is employed to update the parameters of the model based on
the gradient information calculated in the model to minimize the loss function. Due to
the application of the multi-task learning method, Adam can update the model based on
three types of gradient information simultaneously during training. This method realizes
parameter sharing and cross-task learning across three tasks.

4. Dataset Preparation
4.1. Dataset Description

A carbon monoxide gas sensor dataset collected by Javier Burgués et al. [56,57] was
used in the experiments. This dataset was obtained from 14 temperature-modulated
MOX gas sensors, including 7 SB-500-12 units from Nissha FIS and 7 TGS3870-A04 units
from Figaro Engineering. The experimental setup for the data collection of gas sensors is
shown in Figure 6. The dataset was obtained by exposing the sensor array to mixtures of
carbon monoxide and humid synthetic air in a gas chamber. During the experiment, the
heating unit inside the sensor was voltage-modulated with 20 s and 25 s interval cycles, as
recommended by the manufacturer. The entire measurement process took 3 weeks.

Figure 6. Experimental setup [56] for data collection of gas sensors.

To ensure that the data format was consistent, we used samples with the same period
length and stable gas concentration as those used in the training data through data prepro-
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cessing. The final sample size obtained was 75 × 14 (where 75 denotes the period length
and 14 represents the number of sensors). Figure 7 shows the output curves of the 14 gas
sensors at different gas concentrations for some of the samples.

Figure 7. Output curves from the 14 gas sensors (S1–S14) for some samples with CO concentrations
of (a) 20 ppm, (b) 17.78 ppm, (c) 15.56 ppm, (d) 11.11 ppm, (e) 8.89 ppm, (f) 6.67 ppm, (g) 4.44 ppm,
and (h) 2.22 ppm.

To achieve accurate fault diagnosis predictions, balanced data should be trained
using deep neural networks [30]. Therefore, in this study, the number of samples in the
preprocessed dataset was adjusted to ensure that the amount of data for each sensor at
various concentrations was consistent. The number of samples for each gas concentration
was adjusted to 266 (14 × 19, where 14 represents the number of sensors and 19 represents
the number of samples allocated to each sensor at each concentration). The diagnosis
performance in the case of imbalanced data is discussed in Section 6.

4.2. Fault Injection

Fault injection is a suitable method of testing the validity of a diagnostic model. The
fault injection method can be utilized to test the efficacy of a model by adding fault features
to sensor measurements to simulate the actual fault data. Subsequently, the fault occurrence
time and fault intensity can be randomly changed via fault injection to generate a more
representative fault dataset and test the generalization ability of the model [58].

In the experiments, we considered five types of sensor faults based on the existing stud-
ies on sensor fault characteristics: broken circuit, bias, spike, noise, and gain faults [19,59].
The characteristics of each fault type can be described as follows:

• Broken circuit fault: The value returned by the gas sensor drops to zero and stops
changing because of a circuit break or short circuit in the system.

• Bias fault: The output value is stabilized around a fixed value due to the reaction-
sensitive unit of the semiconductor gas sensor with the heating wire off.

• Spike fault: The output value appears as a pulse value because of an abnormal voltage
spike pulse in the sensor circuit.

• Noise fault: The output values appear irregular and strongly disturbed because of
external disturbances.

• Gain fault: The output value has a constant ratio to the ideal value because of internal
circuit issues.
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The relationship between the original health data x(t) and fault data y(t) after the
fault injection is summarized as follows:

y(t) = Kx(t) + B(t), (6)

where K and B(t) are parameters for which the settings for each fault type are listed in
Table 1. Examples of the corresponding data curves after fault injection into the health
dataset and normal signals are shown in Figure 8.

Table 1. Settings for each type of fault.

Fault Type K Value B(t) Value

Healthy signal 1 0
Broken circuit fault 0 0

Bias fault 0 (0.95–1.05) × x(a), a: time of failure
Spike fault 1 40–45 (random variations in the cycle)
Noise fault 0.6–1.4, varies with time 0
Gain fault 1.5–2.0, varies with time 0

Figure 8. Example comparisons between various types of faults and normal signals.

To compare the fault diagnosis performance for different amounts of data, we divided
the dataset obtained after fault injection into three datasets while maintaining data balance,
which, from largest to smallest, were Dataset1 (Ds1), Dataset2 (Ds2), and Dataset3 (Ds3).
Ds1 contained 12,768 samples, Ds2 contained 6720 samples, and Ds3 contained 3360
samples. The numbers of occurrences of the various fault types in each dataset are listed
in Table 2. Finally, each synthetic fault dataset was divided into training, validation, and
testing datasets in a ratio of 8:1:1.

Table 2. Number of various types of faults and health signals in fault datasets. The “8” in the table
represents the eight gas concentration cases.

Fault Type Label Ds1 Ds2 Ds3

Healthy signal 0 2128 (266 × 8) 1120 (140 × 8) 560 (70 × 8)
Broken circuit signal 1 2128 1120 560

Bias fault 2 2128 1120 560
Spike fault 3 2128 1120 560
Noise fault 4 2128 1120 560
Gain fault 5 2128 1120 560
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5. Experimental Results

A series of two types of experiments were conducted to validate the effectiveness and
superiority of the proposed model.

One type of experiment aims to explore the optimal network structure under different
components, combinations, and module parameters in our proposed MAM-Net structure
and to verify the advantages of each component module (2D-ResNet 34, ResNet with
CBAM, multi-dimensional feature extraction based on ResNet with CBAM and Bi-LSTM,
multi-task learning module) in the proposed model. The type of experiments is carried
out through the following three comparisons: (1) comparing the performance of the 2D
encoder with different network depths, dimensions, and attention modules; (2) comparing
the effect of multi-dimensional feature extraction with that of single-dimensional feature
extraction on the model recognition accuracy; (3) comparing the classification effect of
multi-task learning with that of single-task learning.

The other type of experiment aims to demonstrate the superiority of the proposed
MAM-Net by conducting comparisons with existing gas sensor fault diagnosis methods on
three fault diagnostic tasks.

All experiments were performed on a computer (Intel Xeon E5-1603 V4 CPU and
NVIDIA GeForce GTX 1080Ti GPU) on a PyTorch platform built with a Jupyter notebook.
During the training of the model, the batch size and iteration epochs were set to 32 and 50,
respectively. The test results were the averages of the best accuracies obtained after training
the model five separate times on the training set.

5.1. Two-Dimensional Encoder Performance Comparison

To validate the advantages of the depth, dimension, and attention mechanism of
ResNet used by the 2D encoder in the proposed model, we conducted the following
experiments.

5.1.1. Performance Comparison of ResNet with Different Depths and Dimensions

In the field of machine vision, the recognition accuracy of a model can typically be
improved by increasing the network depth [60]. The recognition accuracies (Acc) of the
ResNet with different depths (Dep) in the three classification tasks for Ds1, Ds2, and Ds3
are listed in Table 3. ResNet34 exhibits good classification performance for all three datasets.
Although ResNet50 can perform the best on Ds1, which has a larger amount of data, its
accuracy gradually decreases as the amount of data decreases and eventually falls below
that of ResNet34. Due to the challenges in collecting substantial amounts of fault data in
real-world situations, we selected ResNet34 as the main body of the 2D encoder.

Table 3. Acc of ResNet with different Dep and Dim.

Model

Acc (%)
(Fault Detection)

Acc (%)
(Fault Identification)

Acc (%)
(Fault Localization)

Ds1 Ds2 Ds3 Ds1 Ds2 Ds3 Ds1 Ds2 Ds3

Dep
ResNet18 99.73 97.87 98.93 99.88 99.16 99.04 99.97 99.76 99.28
ResNet34 100.0 98.39 98.52 99.92 99.46 99.30 99.98 99.78 99.56
ResNet50 100.0 98.49 98.38 99.98 99.28 99.41 99.98 99.77 99.24

Dim
1D-ResNet 34 99.86 98.82 94.03 99.77 99.40 97.10 99.79 99.40 95.25
2D-ResNet 34 100.0 98.39 98.52 99.92 99.46 99.30 99.98 99.78 99.56

The best values for each experiment are in bold.

Furthermore, ResNet, which is currently employed in sensor arrays, typically utilizes
1D or 2D convolutional kernels; the 1D convolutional kernel version replaced all the 3× 3
convolutional kernels of the 2D version into a 3 × feature-dimension, and the pooling
operation was transformed from 2D to 1D [61]. In contrast, the average diagnostic accuracy
of the 1D convolutional version was lower than that of the 2D version, as shown in Table 3.
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Therefore, the feature extraction module formed by the 2D version of ResNet has stronger
feature capturing capabilities.

5.1.2. Performance Comparison of Different Attention Modules

To discuss the advantages of using a CBAM in the proposed method, we compared
the enhancement effects of different attentional modules on the 2D encoder feature learning
ability in this experiment. The average recognition accuracies of ResNets with different
attention mechanisms, including SENet [52], DRSN [29], and CBAM [37] for fault detection,
fault identification, and fault localization on Ds1, Ds2, and Ds3, respectively, are listed in
Table 4.

Table 4. Diagnostic accuracies of different attentional modules under single-dimensional feature
extraction methods and the diagnostic accuracy of the multi-dimensional feature extraction method.

Method Model

Acc (%)
(Fault Detection)

Acc (%)
(Fault Identification)

Acc (%)
(Fault Localization)

Ds1 Ds2 Ds3 Ds1 Ds2 Ds3 Ds1 Ds2 Ds3

Single-
dimensional

feature
extraction

ResNet + SENet 100.0 99.20 99.08 99.86 99.39 98.71 99.97 99.49 99.51
ResNet + DRSN 99.98 98.78 98.67 99.77 99.30 98.50 99.80 99.58 99.36
ResNet + CBAM 100.0 99.66 99.14 99.90 99.41 99.50 99.86 99.30 99.56

Bi-LSTM 97.75 78.21 78.68 95.65 83.14 79.65 96.69 82.99 75.99

Multi-
dimensional

feature
extraction

ResNet(CBAM)
+ Bi-LSTM 99.97 99.69 99.25 99.92 99.40 99.54 99.96 99.38 99.82

The best values for each experiment are in bold.

The results indicated that the combination of ResNet and CBAM performed the best
in the classification tasks of fault detection and identification. Meanwhile, the ResNet with
SENet and ResNet with DRSN only performed well in fault localization when the amount
of data was large and did not maintain their advantages when the amount of data was
small. However, the ResNet with CBAM achieved the highest classification accuracy for the
three diagnostic tasks on Ds3, which had a small amount of data. Therefore, the adopted
CBAM enhanced the 2D spatial feature extraction capability of the 2D encoder.

5.2. Multi-Dimensional Feature Extraction vs. Single-Dimension Feature Extraction

The advantages of the proposed multi-dimensional feature extraction method are
discussed in this section. In this experiment, the multi-dimensional feature extraction
method with the 2D and 1D encoders was trained. On three datasets, the average fault
diagnosis accuracies of the 2D feature extraction consisting of Resnet and different attention
modules, the 1D feature extraction based on Bi-LSTM, and the multi-dimensional extraction
consisting of the 1D and 2D encoders were compared. The results are summarized in Table 4.
The average classification accuracy for all three diagnostic tasks is improved by adding the
Bi-LSTM to the ResNet and CBAM combination.

In terms of the average accuracy across the three datasets, the multi-dimensional
feature extraction method outperforms the combination of ResNet and CBAM, which is
the best-performing single-dimensional feature extraction method, by 0.04% and 0.02% in
fault detection and identification, with accuracies of 99.64% and 99.62%, respectively. In
fault localization, although the combination of ResNet and SENet performs well among the
single-dimensional methods, it still lags behind the multi-dimensional methods by 0.06%.
Additionally, it can be noticed that Bi-LSTM does not perform well on the three diagnostic
tasks compared to other single-dimensional methods. However, the highest diagnostic
accuracy was achieved when using Bi-LSTM as the 1D encoder and the combination of
ResNet and CBAM as the 2D encoder for multi-dimensional feature extraction.
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5.3. Multi-Task Learning vs. Single-Task Learning

This section describes the verification of the effectiveness of the proposed multi-task
learning structure. To demonstrate that the multi-task learning structure can enhance
the classification accuracy of the proposed model on the three fault diagnosis tasks, a
comparative experiment between multi-task and single-task learning was conducted. The
average diagnostic accuracies of the proposed multi-task model and single-task learning
models for fault detection, fault identification, and fault localization on Ds1, Ds2, and Ds3
are listed in Table 5. The single-task learning structure for each classification task in the
experiments was identical to that of the corresponding branch in the multi-task learning
structure.

Table 5. Diagnosis accuracies of single- and multi-task learning.

Method

Acc (%)
(Fault Detection)

Acc (%)
(Fault Identification)

Acc (%)
(Fault Localization)

Ds1 Ds2 Ds3 Ds1 Ds2 Ds3 Ds1 Ds2 Ds3

Single fault detection 99.54 97.37 97.37 - - - - - -
Single fault diagnosis - - - 99.85 99.26 99.26 - - -

Single fault localization - - - - - - 99.98 99.77 99.77
Multi-task learning 99.97 99.69 99.25 99.92 99.40 99.54 99.96 99.38 99.82

The best values for each experiment are in bold.

It can be seen from Table 5 that multi-task learning enables the model to achieve
outstanding classification accuracy in multiple diagnostic tasks simultaneously. Although
multi-task learning does not perform as well as single-task learning in fault localization,
it outperforms single-task learning in terms of fault detection and identification. This
finding further demonstrates that multi-task learning can increase the accuracy in multiple
classification tasks.

By comparing the experimental results, the specific parameters of the proposed MAM-
Net model were obtained; they are listed in Table 6.

Table 6. Details of the proposed model.

Module Layer Specification Output Size

-- Inputs -- 1× 75× 14

2D encoder
ResNet34 (CBAM)

Conv1 3 × 3, 64, s =1, p = 1 64× 75× 14
Max pool 3 × 3, s =2, p = 1 64× 38× 7
Conv2_x

[
3× 3, 64
3× 3, 64

]
× 3 64× 38× 7

Conv3_x
[

3× 3, 128
3× 3, 128

]
× 4 128× 19× 4

Conv4_x
[

3× 3, 256
3× 3, 256

]
× 6 256× 10× 2

Conv5_x
[

3× 3, 512
3× 3, 512

]
× 3 512× 5× 1

Gap Output size = (1,1) 512× 1× 1

1D encoder Bi-Lstm Hidden size = 256 512× 1

Multi-task learning Linear (1024, 512) 512× 1
Linear (512, Class) Class× 1

5.4. Model Validation
5.4.1. Compared Methods

To further demonstrate the superiority of the proposed MAM-Net method, a com-
parative experiment was performed using the existing fault diagnosis methods. These
existing methods include single-dimensional feature extraction, multi-dimensional feature
extraction, single-task learning, and multi-task learning approaches. We adjusted certain
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parameters of these models to align their input–output structures with the experiments of
this study and fine-tuned certain model parameters using insights gained from multiple
experiments in order to enhance the comparability of each model. Considering that the
amount of fault data is small in practice, Ds3 was used as the dataset to train the models in
the experiments described in this section. The parameters or structures of each model were
as follows.

(1) MLP

This model consisted of linear layers, and the ReLU activation function was added
between layers to improve the generalization ability of this model [62]. The structure
of the MLP was as follows: {Input (75 × 14), linear (75 × 14, 512), linear (512, 256),
linear (256, Class)}.

(2) LeNet

This model consisted of a combined stack of convolution and max pooling layers. The
structure of LeNet was as follows: {Input (1, 75, 14), convolution (1, 64, 3), max pool (2, 2),
convolution (64, 128, 3), max pool (2, 2), linear (1024, 512), linear (512, Class)} [28].

(3) DenseNet

This model consisted of multiple dense blocks containing a CNN. The network could
alleviate the gradient problem caused by the deepening of the network by considering
the output of all of the previous layers as the input into a deeper layer. The parameters
of DenseNet were as follows: {Input (1, 75, 14), init_channels = 64, growth rate = 2,
blocks = [6, 12, 24, 16], dropout = (0.5), linear (4352, 1024), linear (1024, 512), dropout (0.5),
linear (512, Class)}.

(4) RepVGG

RepVGG was based on the VGG network and introduced a ResNet-like branching
structure that improved the speed and accuracy of the network [39]. The parameters of the
model were as follows: {Input (1, 75, 14), blocks = [1, 2, 4, 14, 1], width multiplier = [1, 1, 1, 2.5],
dropout = (0.5), linear (512 × 2.5, 256), dropout (0.5), linear (256, Class)}.

(5) CNN

CNN are commonly used as models in DL. In this study, the CNN structure consisted
of a convolutional layer and maximum pooling layer, whose details were as follows: {Input
(1, 75, 14), convolution (1, 64, 3, 1, 1), max pool (3, 2, 1), convolution (64, 128, 3, 1, 1), max
pool (3, 2, 1), convolution (128, 256, 3, 1, 1), max pool (3, 2, 1), GAP (1, 1), linear (5120, 512),
dropout (0.5), linear (512, Class)}.

(6) Inception

Inception is a network model that can capture more feature information by simulta-
neously using multiple convolutional kernels of different sizes for feature extraction from
the data [22]. In this study, the parameters of Inception were as follows: {Input (1, 75, 14),
inception type = V2, dropout = (0.5), linear (1024, 512), dropout (0.5), linear (512, Class)}.

(7) CNN-LSTM

This type of model consists of a parallel network structure of CNN and LSTM models,
using CNN and LSTM to extract temporal dimensional features simultaneously [37]. In
this study, the following structure was used: {the CNN had the same structure as above,
LSTM (14, 64), concatenate (256, 128), dropout (0.5), LSTM (64, 128), linear (256 + 128, 128),
dropout (0.5), linear (128, Class)}.
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(8) MFSMTP

MFSMTP is a multi-task learning network that can extract features from data using
three different sizes of convolutional kernels to capture more feature information [32].
The parameters of MFSMTP were as follows: {Input (1, 75, 14), convolution1 (5, 1, 2),
convolution2 (3, 1, 1), convolution3 (1, 1, 0), linear (192, Class)}.

(9) MTL-CNN

MTL-CNN is a multi-task learning model that takes a traditional CNN as the main body
of feature extraction. This approach enables the model to maintain both rapid diagnosis speed
and high classification accuracy when addressing multiple diagnostic tasks [63]. The structure
of MTL-CNN was as follows: {Convolution (1, 64, 3, 1, 1), convolution (1, 64, 3, 1, 1), convo-
lution (1, 64, 3, 1, 1), max pool (3, 2, 1), convolution (1, 64, 3, 1, 1), convolution (1, 64, 3, 1, 1),
max pool (3, 2, 1), linear (228, 128), linear (128, class)}.

The Precision, Recall, and F1 score were used to evaluate and compare the fault
diagnosis performances of different models [64]. The formulae for these evaluation metrics
are as follows:

Precision =
TP

TP + FP
, (7)

Recall =
TP

TP + FN
, (8)

F1 =
2× Precision× Recall

TP + FP
, (9)

where TP and FP refer to the numbers of samples correctly and incorrectly classified
as positive, respectively, and TN and FN refer to the numbers of samples correctly and
incorrectly classified as negative, respectively.

5.4.2. Comparison of Fault Detection Performance

In this experiment, we compared the three metrics of the proposed model with other
methods in terms of fault detection. Table 7 lists the fault diagnosis performance of the
different models after 50 training epochs. The best values of each metric are highlighted in
bold. The number of epochs was set at 50 based on the observation that the proposed model
and other comparative models have achieved stability in terms of loss and classification
accuracy.

Table 7. Diagnostic performance of each model.

Methods
Fault Detection (%) Fault Identification (%) Fault Localization (%)

Precision Recall F1 Precision Recall F1 Precision Recall F1

MLP 77.51 53.88 53.00 68.44 66.18 66.37 89.70 61.77 70.27
LeNet 95.36 96.56 95.95 95.39 94.70 94.90 97.31 95.62 96.38

DenseNet 95.89 95.89 95.90 98.89 98.71 98.78 96.14 94.94 95.47
RepVGG 94.61 96.37 95.50 94.96 94.79 94.72 91.76 91.34 91.44

CNN 97.31 96.92 97.09 98.72 98.64 98.66 99.31 99.00 99.14
Inception 95.27 93.68 94.44 96.68 96.53 96.52 92.09 92.80 92.20

CNN-LSTM 96.31 96.06 96.18 98.34 98.17 98.25 95.26 94.05 94.53
MTL-CNN 94.08 96.23 95.10 92.04 92.05 92.00 82.69 81.17 81.49
MSFMTP 98.70 98.11 98.40 97.23 98.20 97.16 97.68 97.31 97.41

Proposed model
(MAM-Net)

99.41
(↑0.71)

99.87
(↑1.76)

99.65
(↑1.25)

99.83
(↑0.94)

99.80
(↑1.09)

99.81
(↑1.03)

99.86
(↑0.55)

99.69
(↑0.69)

99.78
(↑0.64)

The best values of each metric are in bold, ↑ represents the improvement achieved by the proposed model
compared to the other models with the highest accuracy.
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The results show that the proposed model is superior to the other models in all fault
detection metrics. MAM-Net outperforms MSFMTP, which is the best performer among the
other models, in terms of Precision, Recall, and F1 by 0.71%, 1.76%, and 1.25%, respectively.
It is worth noting that although MTL-CNN, MSFMTP, and MAM-Net are all multi-task
learning methods, the proposed model outperforms MTL-CNN in all three metrics by a
margin of 5.33%, 3.64%, and 4.55%, respectively. This is because MTL-CNN can only extract
features from a single dimension at a fixed scale. Although MSFMTP can utilize multi-scale
extraction to obtain more feature information, its accuracy is still lower than the proposed
model MAM-Net due to the limitation of its extraction dimension.

To visually display the classification results, a confusion matrix was introduced as
a visualization tool, as shown in Figure 9. Evidently, the proposed MAM-Net model can
predict the fault states of the samples with minimal error. In contrast, the other models
exhibit confusion between the fault and health states during fault detection, especially the
MLP, which makes accurate fault state classification difficult.

Figure 9. Confusion matrices of different fault detection methods.

5.4.3. Comparison of Fault Identification Performance

As shown in Table 7, for fault type identification, MAM-Net has a higher classification
accuracy than the other models. DenseNet performed well in fault type identification;
however, it was still outperformed by MAM-Net in each metric. In terms of Precision, MAM-
Net performed 0.94% better than DenseNet. In terms of Recall and F1, the proposed method
exceeded DenseNet by 1.09% and 1.03%, with values of 99.80% and 99.81%, respectively.
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For a clearer comparison of the classification results of the different methods, T-SNE
was introduced to downscale the high-dimensional feature maps extracted by the model
to a 2D space, as shown in Figure 10. Evidently, the proposed method can easily classify
and aggregate samples from different fault types. By contrast, MLP and LeNet performed
poorly in distinguishing the fault classes. In the other methods, although models such as
DenseNet, RepVGG, CNN, and MTL-CNN can cluster some fault types, there is still no
clear boundary between certain fault types. Models such as Inception, CNN-LSTM, and
MSFMTP are able to make a relatively clear distinction between each fault type by capturing
multiple features simultaneously, but there are still some samples that are confused.

Figure 10. T-SNE visualization for different fault identification methods. 0 represents no fault, and 1,
2, 3, 4, and 5 represent break fault, bias fault, spike fault, noise fault, and gain fault, respectively.

5.4.4. Comparison of Fault Localization Performance

Fault location information also plays an important role in fault diagnosis. The data
in Table 7 and T-SNE visualization results in Figure 11 emphasize the strength of the
proposed framework in fault localization. As shown in Table 7, CNN, LeNet, MSFMTP, and
the proposed MAM-Net all perform well in fault localization. The highest classification
accuracy is still achieved by MAM-Net. Figure 11 shows that the intra-class shrinkage of
MLP, CNN, LeNet, and MTL-CNN is worse than the other methods. This finding indicates
that several models with better classification results may exhibit decreases in accuracy
as data complexity increases. However, the MAM-Net method proposed in this study
can increase the inter-class distance well to distinguish each location and also shorten the
intra-class distance effectively to aggregate samples with the same fault location.
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Figure 11. T-SNE visualization results obtained using different methods for fault localization, where
0 represents no sensor with a fault, and 1–14 represent the 14 sensors with faults.

6. Discussion
6.1. Diagnostic Performance of Different Methods on Different Amounts of Data

Fault data are typically difficult to collect when a fault diagnosis model is applied in
practice, such that the number of samples within the training dataset is small. Therefore,
the classification performances of each method on Ds3, which contained a small amount of
data, were compared in the model validation experiments described in Section 5.4. The
classification accuracies of deep learning models usually improve as the amount of data
in the training set increases [65]. Therefore, the advantages of the proposed MAM-Net
model for the three diagnostic tasks when the amount of data increases were verified as
described in this section. The settings of the experiments in this section are the same as
those described in Section 5.4.1 for the experiments conducted on Ds3. The performances
of each model on Ds1 and Ds2, two datasets containing more data than Ds3, are presented
in Table 8.

As shown in Table 8, the best performance of the proposed model is reflected in fault
detection, identification, and localization, with accuracies of 98.39%, 99.46%, and 99.75%,
respectively, when trained on Ds2 with a moderate amount of data. For Ds1, which has
a large amount of data, the classification accuracy performances of the other models are
close to that of MAM-Net but still lower in terms of overall performance. For example,
MAM-Net has the highest accuracy of 99.99% for fault localization, and RepVGG achieves
the same accuracy as the proposed model (99.92%) for fault identification. Although the
proposed method lags behind Inception in fault detection, it still outperforms Inception in
the other classification tasks. Therefore, the solution proposed in this study can achieve
better performance with different amounts of data.



Sensors 2023, 23, 7836 21 of 26

Table 8. Diagnostic accuracies of each model on different amounts of data.

Method

Acc (%)
(Fault Detection)

Acc (%)
(Fault Identification)

Acc (%)
(Fault Localization)

Ds1 Ds2 Ds1 Ds2 Ds1 Ds2

MLP 80.52 74.01 73.56 69.91 86.21 85.43
LeNet 98.60 93.83 99.70 97.90 99.71 97.88

DenseNet 99.51 94.96 99.77 98.21 99.94 98.85
RepVGG 99.77 96.02 99.92 98.24 99.98 97.83

CNN 99.58 97.17 99.76 99.26 99.86 99.48
Inception 99.95 97.38 99.49 98.27 99.49 96.72

CNN-LSTM 99.17 97.24 99.60 99.45 99.67 98.53
MTL-CNN 99.54 95.00 98.79 95.30 99.93 92.78
MSFMTP 99.73 97.25 99.92 98.56 99.92 99.12

Proposed model
(MAM-Net) 99.77 (–) 98.39

(↑1.01) 99.92 (–) 99.46
(↑0.01)

99.99
(↑0.01)

99.75
(↑0.27)

The best values for each experiment are in bold, ↑ represents the improvement achieved by the proposed model
compared to the other models with the highest accuracy; – represents no improvement.

6.2. Diagnostic Performance of MAM-Net on Imbalanced Dataset

To achieve accurate diagnostic predictions, balanced data are required to train deep
neural networks. However, the collection of faulty samples in some cases is not easy.
Therefore, the problem of imbalanced training data samples exists. Imbalanced data
samples make training a model to achieve accurate sensor fault diagnosis relatively difficult.
This section examines the fault diagnosis effectiveness of the proposed MAM-Net method
for imbalanced samples. The dataset used here was the original dataset without balancing
the number of samples at each gas concentration; that is, the number of fault samples was
not the same for different gas concentrations. Table 9 lists the fault diagnosis accuracies
of the models for the unbalanced dataset. From the table, it can be seen that the average
accuracies of the proposed model for fault detection and localization are 99.74% and 99.90%,
respectively. Compared to the highest accuracies obtained among the other methods, MAM-
Net achieves accuracy improvements of 0.53% and 0.11% for fault detection and localization,
respectively. For fault identification, the classification accuracy of the proposed model
is 99.78%, which is only 0.06% below the highest accuracy. Therefore, MAM-Net still
outperforms the other methods in terms of overall performance on the imbalanced dataset.

Table 9. Diagnostic accuracies of each model on the imbalanced dataset.

Method Acc (%)
(Fault Detection)

Acc (%)
(Fault Identification)

Acc (%)
(Fault Localization)

MLP 78.43 74.78 83.62
LeNet 88.12 99.41 99.77

DenseNet 99.21 99.44 99.51
RepVGG 99.09 99.62 99.77

CNN 99.21 99.84 99.79
Inception 99.07 99.65 99.43

CNN-LSTM 98.78 94.05 94.53
MTL-CNN 96.41 92.25 95.99
MSFMTP 97.35 93.02 98.12

Proposed model
(MAM-Net) 99.74 (↑0.53) 99.78 (–) 99.90 (↑0.11)

The best values for each experiment are in bold, ↑ represents the improvement achieved by the proposed model
compared to the other models with the highest accuracy, – represents no improvement.

6.3. Generalization Performance of MAM-Net

In the practical application of fault diagnosis models, in addition to the importance
of fault diagnostic accuracy, the generalizability of the model (i.e., consistently excellent
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performance across different data sources) should also be considered. Therefore, to test
the generalization of the proposed model on different datasets, a dataset of gas mixtures
collected by Fonollosa [66] was used for the experiments described in this section. The
dataset was obtained from 16 MOX gas sensors exposed to the two gas mixtures for 12 h of
continuous measurements. The two gas mixtures were ethylene and methane in air and
ethylene and carbon monoxide in air.

The experiments discussed in this section were started by using the same method to
preprocess the data as described above, and the sample size obtained was 75 × 16 (where
75 denotes the length of the sampling period, and 16 denotes the number of sensors).
Subsequently, fault injection was applied to generate the fault dataset and divide the
obtained fault dataset into training, validation, and testing datasets in the same ratio.
Finally, the generalization of the proposed MAM-Net method was verified by training each
model on these datasets and comparing their accuracies on the three classification tasks.
Table 10 shows the classification accuracies of each model in the three fault diagnosis tasks.

Table 10. Diagnostic accuracies of each method on the dataset from [66].

Method Acc (%)
(Fault Detection)

Acc (%)
(Fault Identification)

Acc (%)
(Fault Localization)

MLP 78.10 58.80 75.78
LeNet 86.08 86.23 96.55

DenseNet 96.70 96.79 98.28
RepVGG 94.31 97.16 98.80

CNN 98.85 97.62 99.38
Inception 98.21 96.97 98.74

CNN-LSTM 99.09 97.54 98.86
MTL-CNN 98.57 92.38 97.48
MSFMTP 98.24 92.87 98.04

Proposed model
(MAM-Net) 99.00 (–) 98.70 (↑1.08) 99.50 (↑0.12)

The best values for each experiment are in bold, ↑ represents the improvement achieved by the proposed model
compared to the other models with the highest accuracy, – represents no improvement.

In Table 10, similar to the situation for the previous dataset, the proposed method
exhibits the best overall performance in the three classification tasks. The accuracy of
MAM-Net in fault identification reaches 98.70%, exceeding that of the CNN, which was the
best among the other methods, by 1.08%. It also surpassed the CNN in fault localization
performance by 0.12%. In fault detection, although not the best, the proposed approach
achieves an accuracy only 0.09% away from the highest accuracy. Therefore, the proposed
MAM–Net model provides good generalization and enables the application of gas sensor
data in different situations for fault diagnosis.

6.4. Real-Time Analysis of the Proposed Methods

In practical implementations of fault diagnosis systems, beyond the essential criteria
of accuracy, it is critical to take into account the model’s diagnostic time for gas-based
real-time fault detection. The prediction time of the model must be sufficiently short to
meet the requirements of real-time diagnosis. We recorded the time (in seconds) taken by
each method to perform prediction on a batch of test dataset to reflect the computational
burden, as the computation time for a single sample is exceptionally short. The prediction
model used was obtained through 50 epochs of training on Ds3. The recorded times are
presented individually and summarized in Table 11.
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Table 11. Diagnostic time for a batch of samples on different diagnostic tasks.

Method Diagnostic Time (s)
(Fault Detection)

Diagnostic Time (s)
(Fault Identification)

Diagnostic Time (s)
(Fault Localization)

MLP 0.000908 0.000908 0.001090
LeNet 0.021080 0.024532 0.021260

DenseNet 0.108900 0.101667 0.116933
RepVGG 0.093128 0.078500 0.095940

CNN 0.566950 0.051789 0.069959
Inception 0.072141 0.067871 0.065235

CNN-LSTM 0.127745 0.131743 0.133921
MSFMTP 0.079318 (Simultaneous for three tasks)

MTL-CNN 0.134287 (Simultaneous for three tasks)

Proposed model
(MAM-Net) 0.462554 (Simultaneous for three tasks)

In the experiment, the carbon monoxide gas sensor dataset had a heating period of 25 s
and a sampling rate of 0.333 s. The data cycle for fault diagnosis was based on the sensor
heating cycle. For example, to accurately distinguish between different fault types within
a sample period, such as distinguishing spike faults from noise faults, a heating cycle is
necessary to obtain the characteristics of this fault. We record the time (in seconds) taken
by each method to perform prediction on a batch of test data to reflect the computational
burden, as the computation time for a single sample is exceptionally short. From Table 11,
it can be observed that its diagnostic time (0.462554 s for a batch, i.e., 0.01445 s for one
sample) is far less than the duration of a single sample cycle and a sampling rate of 0.333 s.
Therefore, the proposed MAM-Net method can meet the real-time requirements of practical
applications while achieving high diagnostic accuracy.

7. Conclusions

In this study, we developed a novel gas sensor array fault diagnosis method called
MAM-Net based on multi-dimensional feature fusion, an attention mechanism, and multi-
task learning. The multi-dimensional feature fusion module can obtain sufficient and
effective diagnostic feature information from sensor array data by integrating fault feature
representations from different dimensions. With this module, the diagnostic performance of
the model can be improved by providing better feature capture capabilities. The multi-task
learning module developed in this study can simultaneously perform classification tasks for
fault detection, identification, and localization. The module can integrate and supplement
more diagnostic information through parameter sharing between multiple tasks to improve
the fault diagnostic accuracy of the model further. The experimental results show that
the MAM-Net method is significantly better than other methods in terms of classification
metrics and result visualization for fault diagnosis with different amounts of data, different
experimental settings, and balanced and unbalanced datasets.

In future work, considering the requirement of real-time fault diagnosis for various
gas-based applications, we will focus on lightening the structure of the proposed model to
shorten the diagnosis time and minimize the computational burden. Meanwhile, we will
conduct further research on data reconstruction strategies for faulty sensors based on GAN
methods.
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