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Abstract: The reliable and safe operation of industrial systems needs to detect and diagnose bearing
faults as early as possible. Intelligent fault diagnostic systems that use deep learning convolutional
neural network (CNN) techniques have achieved a great deal of success in recent years. In a traditional
CNN, the fully connected layer is located in the final three layers, and such a layer consists of multiple
layers that are all connected. However, the fully connected layer of the CNN has the disadvantage of
too many training parameters, which makes the model training and testing time longer and incurs
overfitting. Additionally, because the working load is constantly changing and noise from the place
of operation is unavoidable, the efficiency of intelligent fault diagnosis techniques suffers great
reductions. In this research, we propose a novel technique that can effectively solve the problem of
traditional CNN and accurately identify the bearing fault. Firstly, the best pre-trained CNN model
is identified by considering the classification’s success rate for bearing fault diagnosis. Secondly,
the selected CNN model is modified to effectively reduce the parameter quantities, overfitting, and
calculating time of this model. Finally, the best classifier is identified to make a hybrid model concept
to achieve the best performance. It is found that the proposed technique performs well under different
load conditions, even in noisy environments, with variable signal-to-noise ratio (SNR) values. Our
experimental results confirm that this proposed method is highly reliable and efficient in detecting
and classifying bearing faults.

Keywords: CNN model; discrete wavelet transform; global average pooling; intelligent fault
diagnosis; vibration image

1. Introduction

The most crucial part of rotating machines is the bearing, whose main purposes are
to sustain the mechanical rotating body and decrease the friction coefficient while it is in
motion [1]. Rolling bearings are employed to transmit loads from moving to stationary
components or vice versa as well as to create conditions for the relative movement of
rotating parts [2,3]. Efficient bearing fault diagnosis is required to ensure the smooth
operation of mechanical system. There are two parts to bearing fault identification problem.
The initial part focuses on the extraction of fault information-related features from vibration
signals, and the latter one on fault identification, which makes use of the extracted features
for problem detection by applying a variety of artificial intelligence (AI) approaches,
including an artificial neural network (ANN), a decision tree (DT), the k-nearest neighbors
(k-NN) algorithm, a support vector machine (SVM), neuro-fuzzy [4–11], etc.

Sensors 2023, 23, 7764. https://doi.org/10.3390/s23187764 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23187764
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-8921-001X
https://orcid.org/0000-0002-7514-3239
https://doi.org/10.3390/s23187764
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23187764?type=check_update&version=1


Sensors 2023, 23, 7764 2 of 17

Samanta et al. [12] conducted a study comparing the effectiveness of three different
ANN types for detecting bearing faults: multi-layer perception (MLP), the radial basis
function (RBF) network, and the probabilistic neural network (PNN). The preprocessing of
the data, manual feature extraction, and pattern detection are often necessary for the ANN
classification approach. Features are extracted from those ANNs using the crest-factor,
envelope spectrum, root mean square (RMS), crest value, standard deviation, Kurtosis,
variance, and estimation [13]. Due to complex vibration signals, it is difficult for the
manual feature extraction technique of ANN [14] to extract these features. Because a
signal is impacted by surrounding noise as a result of changes in working situations,
existing intelligent fault identification systems in real industries have limitations with
initial features and multiple unidentified complex failure causes. The ANN model does not
produce sufficient results for the reason that the method of extracting features depends on
a high level of professional skill.

To overcome the limitations of the existing intelligent approach, the deep learning
(DL) method has recently been used and produced satisfactory results. DL approaches
have the benefit of automatically learning characteristic features and challenging nonlinear
relationships from raw data [15,16]. However, its application in bearing fault detection is
still being developed [17]. One of the deep learning models is the deep convolutional neural
network (DCNN), which is an effective tool for two-dimensional image processing [18]. It is
resilient, can be trained on large amounts of data, and is unaffected by image distortion [19].
A new DL model based on a DCNN for detecting bearing problems in induction motors
(IMs) was proposed by Khan Ma et al. [20]. In addition, DCNN provides advantages
such as quick inference, and the capacity to encode richer, and higher-order network
topologies. Because of its high classification accuracy, DCNN has found widespread use
in computer vision [21]. SVM and CNN are combined by Shao, Y. et al. [22] to present
a novel hybrid intelligent fault diagnostic frame that is superior to some conventional
fault diagnosis techniques and exhibits high precision for rolling bearings. Time domain
signals are converted to two-dimensional (2D) images in several studies of fault diagnosis,
utilizing 2D forms of signals [23,24]. Although 2D image-based bearing fault diagnosis
has achieved excellent accuracy, its performance is still mostly dependent on handmade
feature extraction.

Currently, the pre-trained model is the most widely used convolutional neural network
and has become one of the hotspots in bearing fault diagnosis. Bearing fault signals are
complex due to the high variance, nonlinear, and nonstationary characteristics of vibration
signals [12]. As a result, the input distributions of the layers of the pre-trained model
differ from each other. This can make achieving high accuracy in parameter training
very challenging and time-consuming, which requires proper setup [25]. In a traditional
AlexNet, the fully connected (FC) layer is located in the final three layers. An FC layer
consists of multiple layers that are all connected [26]. It can be defined as a function from
Rm to Rn. Each input parameter of each layer influences each output parameter. However,
the FC layer of the AlexNet has too many training parameters, which makes the model
training and testing time longer, and causes overfitting.

To address the aforementioned problems, this work develops a novel technique for
the intelligent identification of bearing faults in rotating machinery. It effectively reduces
training parameters, solves the traditional AlexNet model’s overfitting problem, and also
increases the classification accuracy. In the proposed technique the best pre-trained CNN
model is firstly selected for the bearing fault diagnosis. In the next step, the selected
CNN model is improved by replacing the FC layer with a global average pooling (GAP)
layer adding some batch normalization (BN) layers to prevent this internal covariate
shifting, which effectively decreases the parameter quantity, overfitting, and calculating
time of the CNN model. The last step constructs a hybrid model concept to achieve the
best performance.
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2. Proposed Methods and Materials

Due to DCNN’s disadvantage of having too many training parameters in an FC
layer, model testing and training take more time so that overfitting occurs. Additionally,
the performance of intelligent defect diagnosis procedures is severely hampered by the
continually changing operating load and inevitable noise from the environment. To solve
the difficulty of the existing intelligent method, this study proposes a novel technique. This
method involves an effective data pre-processing technique, feature selection technique,
and best classifier selection technique to detect and classify the bearing signals. In the
proposed method we firstly classify the bearing fault by considering the original dataset
through GoogleNet, AlexNet, ResNet50, and VGG-16. In the next step, because of the
classification’s success rate of AlexNet compared to other pre-trained models, we modify
the traditional AlexNet model structure, which effectively reduces the parameter quantity,
overfitting, and calculation time of the CNN model. In the last step of the experiment, the
deep features obtained from the last layer of the proposed modified model are applied
separately as the input Softmax, k-NN, and SVM classifier and select the best classifier,
which effectively improves the accuracy of the classification results. The flowchart of the
proposed method is illustrated in Figure 1.
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Figure 1. Flowchart of the proposed system.

2.1. Data Pre-Processing

To develop an effective data pre-processing technique, one uses wavelet transform
and vibration image construction processes.

2.1.1. Wavelet Transform

The real working environments have noise that contaminates the sensory inputs.
The noise removal from the data is required before proceeding with further data anal-
ysis. Traditional Fourier transform (FT) is appropriate for stationary signals. However,



Sensors 2023, 23, 7764 4 of 17

information can often be observed in the frequency domain that is not easily seen in the
time domain. It is critical to obtain the time-frequency characteristics of non-stationary
signals. Wavelet transform (WT) is an excellent choice for processing such signals [27].
A complicated unsteady signal in terms of frequency or time-domain can be represented
by a wavelet transform. The discrete wavelet transform (DWT) is a signal decomposition
technique that employs a collection of distinct, spatially aligned frequency bands. Dual
filters handle the vibration signal, producing two signals: details and approximation. This
technique is known as signal analysis or signal decomposition. The apparatuses of the
breakdown signal can be further rebuilt into the original raw signal without losing any
information [28]. In this study, one-dimensional wavelet decomposition was used up to two
levels to represent the complexity of unsteady vibration signals. The outcome of wavelet
decomposition is shown in Figure 2, which depicts the selection of two levels of detail (d1,
d2) and approximation (a2) for each signal.
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2.1.2. Vibration Image Construction

CNN is initially ideal for processing 2D inputs because of three important architectural
ideas: local receptive fields, weight sharing, and spatial polling [29]. It is significantly easier
to extract information from high-dimensional data, yet bearing vibration signals are 1D
data. Motivated by this fact, time-domain vibration signals were transformed into 2D
gray images. The decomposed vibration signals were separated into segments of the same
length. The procedure for segmenting signals is shown in Figure 3. An image of vibration
with a size of 20 × 20 was generated from one segment of a signal. The quantity of samples
in the vibration signal was the same as the number of pixels in the vibration image. The
process for generating a vibration image is shown in Figure 4. Accordingly, we obtained
four different vibration image types, as shown in Figure 5.
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2.2. Feature Selection

After constructing the vibration images, features were selected by the proposed
modification of the AlexNet network. At first, pre-trained models, AlexNet, GoogleNet,
VGG16, and ResNet50 were used to observe the bearing fault classification performance
and AlexNet provided the highest accuracy. Then, AlexNet was modified by adding and
replacing layers to obtain better accuracy. Finally, features were extracted from the modified
AlexNet model.

2.2.1. Best Pre-Trained Model Selection

In this subsection, the bearing fault was classified based on the vibration image using
GoogleNet, AlexNet, ResNet50, and VGG-16. The procedure for selecting the best pre-
trained model is shown in Figure 6. To train the pre-trained model, such as GoogleNet
AlexNet, ResNet50, and VGG16, we introduced the last three layers, which were the FC
layer, Softmax layer, and output layer. The ADAM and stochastic gradient descent (SGD)
optimization techniques were examined during the training of the deep models. Table 1
shows the classification result of pre-trained models. AlexNet was selected for analyzing
the model because it achieved the highest accuracy.
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Table 1. Classification of the results of the pre-trained model.

Pre-Trained Model
Accuracy (%)

Average
Trial 1 Trial 2 Trial 3 Trial 4 Trial 5

GoogleNet 95.30 94.98 94.65 95.60 95.80 95.27

VGG16 87.50 87.98 88.50 87.30 88.50 87.96

AlexNet 97.50 97.30 98.10 96.88 97.78 97.51

ResNet50 96.98 97.35 96.38 95.88 96.78 96.67

2.2.2. Modified AlexNet Model

At present, AlexNet is the most widely used convolutional neural network and has be-
come one of the hotspots in bearing fault diagnosis [17]. Due to some limitations of AlexNet,
it is very challenging to achieve satisfactory results in bearing fault diagnosis. Figure 7
shows the traditional AlexNet model and the limitations of AlexNet are described below:
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Bearing fault signals are complex due to the high variance, nonlinear, and nonstation-
ary characteristics of vibration signals. As a result, the input distributions of the layers of
AlexNet differ from each other and internal covariate shifting occurs [17]. This can make
achieving accuracy in parameter training very challenging and time-consuming, which
requires proper setup [30]. In a traditional AlexNet, the FC layer is located in the final three
layers, namely fc6, fc7, and fc8. An FC consists of many layers that are all connected [31].
The FC layer of AlexNet has the disadvantage of too many training parameters. The
procedure for calculating the training parameters of FC layers is given below. In AlexNet,
there are two types of FC layers. The first FC layer (fc6) is connected to the final conv layer,
whereas subsequent FC layers (fc7 and fc8) are connected to additional FC layers. Each
situation is analyzed separately.
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Case 1: An FC (fc6) layer’s number of parameters connected to a conv layer can be
calculated [30] by the following equations

Pc f = Wc f + Bc f (1)

Bc f = F (2)

Wc f = F × N × O2 (3)

where:

Pcf = number of parameters;
Wcf = The number of weights in an FC layer that is linked to a conv layer;
Bcf = The number of biases in an FC layer that is linked to a conv layer;
O = The size of the previous conv layer’s output image;
N = The number of kernels in the last conv layer;
F = The number of neurons in the FC layer.

In the first FC layer (fc6) of AlexNet, F is 4096, N is 256, and O is 6. Therefore,

Wc f = 4096 × 256 × 62

= 37, 748, 736

Bc f = 4096

Pc f = Wc f + Bc f
= 37, 748, 736 + 4096
= 37, 752, 832

Case 2: An FC layer’s number of parameters connected to an FC layer can be calcu-
lated [30] by the following equations

Pf f = B f f + W f f (4)

B f f = F (5)

W f f = F−1 × F (6)

where:

Pc f = number of parameters;
Wc f = The number of weights in an FC layer that is linked to an FC layer;
B f f = The number of biases in an FC layer that is linked to an FC layer;
F = The number of neurons in the FC layer;
F−1 = The number of neurons in the just before FC layer.

In the second FC layer (fc7) of AlexNet, F is 4096, and F−1 = 4096. Therefore,

B f f = F = 4096

W f f 1 = F−1 × F = 4096 × 4096 = 16, 777, 216

Pf f 1 = B f f + W f f = 4096 + 16, 777, 216
= 16, 781, 312

In the last FC layer (fc8) of AlexNet, F is 1000, and F−1 = 4096. Therefore,

B f f = F = 1000
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W f f = F−1 × F = 4096 × 1000 = 4, 096, 000

Pf f 2 = B f f + W f f = 1000 + 4, 096, 000
= 4, 097, 000

The sum of the parameters in AlexNet’s three FC layers makes up the total amount
of parameters

Ptotal = Pc f + Pf f 1 + Pf f 2
= 37, 752, 832 + 16, 781, 312 + 4, 097, 000
= 58, 631, 144

After the calculation, it can be seen in Table 2 that there are 62,378,344 parameters in
AlexNet but of them 58,631,144 training parameters came from the last three FC layers
of AlexNet, which is a significant proportion. However, the FC layer of AlexNet has the
disadvantage of too many training parameters, which makes the model training and testing
time longer and incurs overfitting. This research modified the structure of the AlexNet
model by analyzing the limitations of the traditional AlexNet model. Figure 8 shows the
modified AlexNet model.

Table 2. Number of parameters of the AlexNet model.

Layer Name Size Parameters

conv1 55 × 55 × 96 34,944

conv2 27 × 27 × 256 614,656

conv3 13 × 13 × 384 885,120

conv4 13 × 13 × 384 1,327,488

conv5 13 × 13 × 256 884,992

fc6 4096 × 1 37,752,832

fc7 4096 × 1 16,781,312

fc8 1000 × 1 4,097,000

Total number of parameters 62,378,344
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Firstly, the fully connected layer of AlexNet is replaced by the GAP, which effectively
reduces the total number of parameters, training, and testing time, and also avoids overfit-
ting. Secondly, the BN layer is adopted in the traditional AlexNet to prevent this internal
covariate shifting. The concept of BN is straightforward. When CNNs are trained in
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mini batch mode, the normalization transform is applied to the layer activations by BN to
maintain constant means and variances. It effectively makes good parameter training and
accelerates the training time and accuracy.

Selecting the optimal AlexNet model hyper-parameters throughout the CNN model
construction process can significantly increase the modified AlexNet model’s fault diagnos-
tic accuracy, test speed, and training speed. The optimizer, activation functions, learning
rates, convolution kernels, and pooling kernels are the primary hyper-parameters that
have an important effect on the CNN model’s performance [20]. Table 3 shows the hyper-
parameters of the benchmark model. The ADAM adaptive optimization technique is used
in this model, and the learning rate can be modified adaptively.

Table 3. Hyper-parameter descriptions.

Name Type Activations Learnable

Data 227 × 227 × 1 images Image input 227 × 227 × 1 -

conv1 Convolution 55 × 55 × 96 Weights 11 × 11 × 1 × 96; Bias 1 × 1 × 96

batchnorm-1 Batch Normalization 55 × 55 × 96 offset 1 × 1 × 96 scale 1 × 1 × 96

Relu-1 ReLu 55 × 55 × 96 -

Pool-1 Max Pooling 27 × 27 × 96 -

conv2 Convolution 27 × 27 × 256 Weights 5 × 5 × 48 × 128; Bias 1 × 1 × 128 × 2

batchnorm-2 Batch Normalization 27 × 27 × 256 offset 1 × 1 × 256 scale 1 × 1 × 256

Relu-2 ReLu 27 × 27 × 256 -

Pool-2 Max Pooling 13 × 13 × 96 -

conv3 Convolution 13 × 13 × 384 Weights 3 × 3 × 256 × 384; Bias 1 × 1 × 384

batchnorm-3 Batch Normalization 13 × 13 × 384 offset 1 × 1 × 384 scale 1 × 1 × 384

Relu-3 ReLu 13 × 13 × 384 -

conv4 Convolution 13 × 13 × 384 Weights 3 × 3 × 192 × 192; Bias 1 × 1 × 192 × 2

batchnorm-4 Batch Normalization 13 × 13 × 384 offset 1 × 1 × 384 scale 1 × 1 × 384

Relu-4 ReLu 13 × 13 × 384 -

conv5 Convolution 13 × 13 × 256 Weights 3 × 3 × 192 × 128 × 2;
Bias 1 × 1 × 128 × 2

batchnorm-5 Batch Normalization 13 × 13 × 256 offset 1 × 1 × 256 scale 1 × 1 × 256

Relu-5 ReLu 13 × 13 × 256 -

Pool-5 Max Pooling 6 × 6 × 256 -

drop 6 Dropout 6 × 6 × 256 -

Relu-6 ReLu 6 × 6 × 256 -

gapool Global Average Pooling 1 × 1 × 256 -

Prob Softmax Softmax 1 × 1 × 4 -

The number of parameters in a convolutional layer in the modified AlexNet is
given [30] by the following equations

Pc = Bc + Wc (7)

Bc = N (8)

Wc = C × N × K2 (9)
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where Wc = No. of weights, Bc = No. of biases, Pc = No. of parameters, K = width of kernels,
N = No. of kernels, and C = No. of channels.

In the modified AlexNet, at the conv1 layer, C = 3, K = 11, N = 96.

So, Bc = N = 96

Wc = C × N × K2

= 3 × 96 × 112

= 34848

Pc = Bc + Wc
= 96 + 34, 848 = 34, 944

Similarly, the number of parameters can be calculated for conv2, conv3, conv4, and
conv5, and they are 614,656, 885,120, 1,327,488, and 884,992, respectively.

The total number of parameters of the modified AlexNet is summarized in Table 4.
It can be seen that only 3,752,704 parameters are used in the modified AlexNet whereas
62,378,344 parameters were used in the traditional AlexNet. More than 58,625,640
(62,378,344–3,752,704) parameters were used in the traditional AlexNet, which makes
the model training, and testing time longer, and occurs overfitting. In contrast, the pro-
posed modified AlexNet effectively reduces the total number of parameters, training, and
testing time, and it also avoids overfitting.

Table 4. Number of parameters of the modified AlexNet model.

Layer Name Size Parameters

conv1 55 × 55 × 96 34,944

Batchnorm-1 55 × 55 × 96 384

conv2 27 × 27 × 256 614,656

Batchnorm-2 27 × 27 × 256 1024

conv3 13 × 13 × 384 885,120

Batchnorm-3 13 × 13 × 384 1536

conv4 13 × 13 × 384 1,327,488

Batchnorm-4 13 × 13 × 384 1536

conv5 13 × 13 × 256 884,992

Batchnorm-5 13 × 13 × 256 1024

Total number of parameters 3,752,704

2.2.3. Best Classifier Selection for Bearing Faults

This section presents the hybrid model concept. Additionally, to achieve the best clas-
sification performance, the features obtained from the last layer of the proposed modified
AlexNet are applied as the input to various machine learning models, including Softmax,
kNN, SVM, and DT. Furthermore, the classification abilities of the models are investigated
individually.

3. Experimental Verification Based on Vibration Signals
3.1. Testbed Description

In this research, the proposed system has been employed to diagnose the experimental
vibration signals of bearings to evaluate as well as verify the effectiveness and accuracy
of intelligent diagnosis. Two datasets are used for evaluating the proposed system: the
CWRU dataset, and the MFPT dataset [31,32].

The CWRU dataset: This dataset was chosen for this analysis because CWRU data
have received favorable reviews from many scholars studying bearing failure [4]. The four
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classes in this dataset are healthy (normal), inner race fault, ball fault, and outer race fault.
Data on vibration signals are collected using accelerometers. The experimental setup, which
includes a 1.5 KW (2 hp) induction motor, is shown in Figure 9. To obtain data, sampling
frequencies of 12 kHz and 48 kHz were used. Deep groove ball bearings of the 6205-2RS
JEM SKM type are considered to be the operational condition. In this work, 409,600 samples
of data were taken into account for normal bearings and 409,600 samples are taken into
account for fault data. The fault diameter in this study is 1.016 mm (0.014 inches). Figure 10
shows each of the four raw vibration signals.
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The MFPT dataset: The society for machinery failure prevention technology (MFPT)
dataset [32] is also used for rolling bearing fault evaluation and study. The MFPT bearing
data make use of a NICE bearing. This dataset contains three types of bearing data: normal
bearing data, inner race fault data, and outer race fault data at varying loads. The data are
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from a single-channel radial accelerometer. In this work, 409,600 samples of data are taken
into account for normal bearings and 409,600 samples are taken into account for fault data.

3.2. Experimental Outcome

For testing reasons, a laptop with a Core i3-5005U processor was used. For the coding
environment, the MATLAB 2020a version was utilized. Following the simulation, the
results of training, validation, and testing were recorded.

3.2.1. The Proposed System’s Performance

The proposed system was trained on 1024 vibration images and tested on 400 vibration
images. Five BN layers were added, and the FC layer was replaced with the GAP layer to
AlexNet. Table 5 shows the comparison between the FC layer, and GAP of five trials. It
can be observed by comparing Table 5, that as a result of using FC, due to overfitting, the
testing accuracy decreased from the training accuracy. In contrast, by using GAP instead
of FC, overfitting was reduced. However, the accuracy was slightly reduced. Five BN
layers were added to improve accuracy. The final proposed system’s training and testing
accuracy is shown in Table 6. It can be observed by comparing Table 6 that the performance
of the improved AlexNet model was much better than the performance of the traditional
FC AlexNet model. The full connection layer is removed in the modified AlexNet model,
which has a significant impact on the model’s ability to be used for online, quick fault
diagnosis. This also had a big effect on the number of model parameters there are and the
duration of the training required. The modified AlexNet model achieved an accuracy of
98.30%, whereas the traditional AlexNet model was 94.40% accurate [32]. The proposed
modified AlexNet model’s overfitting problems are not present in our proposed method.

Table 5. Impact on global average pooling (GAP).

AlexNet

Using Fully Connection Layer (FC) Using Global Average Pooling (GAP)

Training
Accuracy (%)

Testing
Accuracy (%)

Training
Accuracy (%)

Testing Accuracy
(%)

Trial 1 97.50 94.40 95.80 95.20

Trial 2 97.30 94.30 95.50 95.10

Trial 3 98.10 95.20 96.60 96.00

Trial 4 96.88 94.00 95.20 94.85

Trial 5 97.78 94.50 96.20 95.95

Table 6. Comparison of results between the traditional AlexNet and modified AlexNet.

Method Training
Accuracy (%)

Testing
Accuracy (%)

Training
Time(s)

Testing
Time (s)

AlexNet 97.50 94.40 148.92 0.295

Modified AlexNet 98.74 98.30 112.48 0.157

This section presents the hybrid model concept. Additionally, to achieve the best
classification performance, the features obtained from the last layer of the modified AlexNet
are applied as the input to various machine learning models, including Softmax, kNN, and
SVM. Furthermore, the classification abilities of the models are investigated individually.
Figure 11 shows the performance of the classifier on the CWRU dataset and the MFPT
dataset. The accuracy of the CWRU dataset is shown in red, whereas the accuracy of
the MFPT dataset is represented in blue. It can be observed by comparing Table 5 that
the performance of the modified AlexNet–SVM hybrid model is much better than the
performance of the modified AlexNet–Softmax, and modified AlexNet–kNN hybrid models
on both the CWRU dataset, and the MFPT dataset.
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This section compares the results of using DWT vs. without DWT in a noisy environ-
ment. Figure 12 shows how DWT impacted classification results. In Figure 12 the red line
on the graph represents performance with DWT, while the blue dot line represents perfor-
mance without DWT on the CWRU dataset and the green color line on the graph represents
performance with DWT, while the yellow dot line represents performance without DWT
on MFPT dataset. The noisy situation on the CWRU dataset is shown, and it is clear from
the graph that using DWT is more effective than not using DWT in a noisy environment.
On the MFPT dataset, the performance under noisy conditions with DWT is shown by the
green color line, and the performance without DWT is shown by the yellow dot line. The
graph shows that the proposed DWT model for a noisy environment performs better on
the CWRU, and the MFPT datasets, respectively.
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3.2.2. Evaluation Measurements of the Proposed System

In this study, the precision ratio, recall ratio, and F1 measure are calculated to further
investigate and analyze the proposed method’s performance in terms of classification. The
probability of truly positive values out of all projected positive values is referred to as
precision. Recall measures how often truly positive values are expected to be positive
values. F1 represents the harmonic mean of recall and precision [31] as follows:

Precision (P) =
TP

(TP + FP)
(10)
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Recall (R) =
TP

(TP + FN)
(11)

F1 =
2 × TP

2 × TP + FP + FN
(12)

where TP is the number of actual positive events, FP is the number of false positives, and
FN is the number of false negatives. Based on Equations (10)–(12), precision, recall, and
F1 can be calculated on the experimental findings of the proposed system in Table 7. As
shown in Figure 13, the precision rate is 98.93%, the recall rate is 100%, and the F1 measure
is 99.46%.

Table 7. Evaluation results of the proposed system.

Model TP FP FN Precision
Rate

Recall
Rate

F1-Measure

Modified
AlexNet-SVM 185 2 0 98.93% 100% 99.46%

Modified
AlexNet-Softmax 183 3 1 96.51% 98.81% 98.92%

Modified
AlexNet-kNN 186 3 0 98.41% 100% 99.20%
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3.2.3. Evaluation in a Noisy Situation

Noise has an impact on signals in real applications in industry. Noise is an additional
problem that is created because of changes in the working environment, which decrease
the model’s performance. In the following section, the effectiveness of the proposed system
is investigated in a noisy situation while identifying bearing faults. Before being tested
on noisy signals, the proposed model is trained on the original signal. Additive white
Gaussian (AWG) noise is added to create a noisy signal by changing the signal–noise ratio
(SNR) to raw signals. The SNR is determined as follows:

SNR = 10 log10(
Psignal

Pnoise
) (13)

The proposed system is validated with noisy signals. Figure 14 depicts the perfor-
mance of the proposed system in noisy situations with SNR values ranging from −10 dB to
10 dB. The red line in Figure 14 shows classification effectiveness during a noisy environ-
ment with SNR values between −10 dB and 10 dB, while the blue line shows classification
performance in the same environment with the same SNR values. However, even in a noisy
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environment with SNR = −10 dB, the proposed system exhibits a high accuracy of 96.50%
on the CWRU dataset and 95.40% on the MFPT dataset. The outcomes of this experiment
indicate that the proposed system is strong and capable of handling noisy environments.
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3.2.4. Performance Evaluation with Various Loads

Machines and their bearings have to operate under a variety of load conditions in
the field or in real-world applications. It is more difficult to diagnose faults when the
vibration signal’s characteristics alter in response to variations in load. Vibration signals
under various loads of 0 kW (0 hp), 0.746 kW (1 hp), 1.492 kW (2 hp), and 2.238 kW (3 hp)
are used to evaluate the proposed system after training. The achieved findings are highly
efficient, with accuracy ranging from 98.10% to 99.60%. The results are shown in Figure 15.
The results obtained indicate that the proposed system performs superiorly under various
loading situations.
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4. Conclusions

Systems for machine fault detection and diagnosis have widely used DL models.
However, the fully connected layer of AlexNet has the problem of too many training
parameters, which increases the training and testing time and causes overfitting. The
effectiveness of intelligent defect diagnosis techniques suffers significantly due to the
constantly shifting working load and the inevitable noise from the location of operation. In
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the proposed technique, the best pre-trained CNN model is selected for the bearing fault
diagnosis. The AlexNet model is modified by replacing the FC layer with a GAP layer
and adding some BN layers to prevent this internal covariate shifting, which effectively
decreases the parameter quantity, overfitting, and calculating the time of the CNN model.
Additionally, a hybrid model concept is made to achieve the best performance. The
proposed modified AlexNet–SVM hybrid model can achieve an accuracy of 99.60% on the
CWRU and can accurately identify bearing faults under various load conditions as well
as noisy environments with changing SNR values. The proposed approach is capable of
classifying bearing defects under various load conditions as well as in noisy situations.
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