
Citation: Long, H.; Li, G.; Zhou, F.;

Chen, T. Cooperative Dynamic

Motion Planning for Dual

Manipulator Arms Based on

RRT*Smart-AD Algorithm. Sensors

2023, 23, 7759. https://doi.org/

10.3390/s23187759

Academic Editor: Jesús Ureña

Received: 28 July 2023

Revised: 30 August 2023

Accepted: 5 September 2023

Published: 8 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Cooperative Dynamic Motion Planning for Dual Manipulator
Arms Based on RRT*Smart-AD Algorithm
Houyun Long, Guang Li *, Fenglin Zhou and Tengfei Chen

School of Mechanical Engineering, Hunan University of Technology, Zhuzhou 412001, China;
hut_lhy@outlook.com (H.L.)
* Correspondence: liguang@hut.edu.cn

Abstract: Intelligent manufacturing requires robots to adapt to increasingly complex tasks, and dual-
arm cooperative operation can provide a more flexible and effective solution. Motion planning serves
as a crucial foundation for dual-arm cooperative operation. The rapidly exploring random tree (RRT)
algorithm based on random sampling has been widely used in high-dimensional manipulator path
planning due to its probability completeness, handling of high-dimensional problems, scalability,
and faster exploration speed compared with other planning methods. As a variant of RRT, the
RRT*Smart algorithm introduces asymptotic optimality, improved sampling techniques, and better
path optimization. However, existing research does not adequately address the cooperative motion
planning requirements for dual manipulator arms in terms of sampling methods, path optimization,
and dynamic adaptability. It also cannot handle dual-manipulator collaborative motion planning
in dynamic scenarios. Therefore, in this paper, a novel motion planner named RRT*Smart-AD is
proposed to ensure that the dual-arm robot satisfies obstacle avoidance constraints and dynamic
characteristics in dynamic environments. This planner is capable of generating smooth motion
trajectories that comply with differential constraints and physical collision constraints for a dual-arm
robot. The proposed method includes several key components. First, a dynamic A* cost function
sampling method, combined with an intelligent beacon sampling method, is introduced for sampling.
A path-pruning strategy is employed to improve the computational efficiency. Strategies for dynamic
region path repair and regrowth are also proposed to enhance adaptability in dynamic scenarios.
Additionally, practical constraints such as maximum velocity, maximum acceleration, and collision
constraints in robotic arm applications are analyzed. Particle swarm optimization (PSO) is utilized
to optimize the motion trajectories by optimizing the parameters of quintic non-uniform rational
B-splines (NURBSs). Static and dynamic simulation experiments verified that the RRT*Smart-AD
algorithm for cooperative dynamic path planning of dual robotic arms outperformed biased RRT*
and RRT*Smart. This method not only holds significant practical engineering significance for obstacle
avoidance in dual-arm manipulators in intelligent factories but also provides a theoretical reference
value for the path planning of other types of robots.

Keywords: RRT*Smart; dual manipulator arms; dynamic motion planning; A* cost function sampling;
quintic NURBS

1. Introduction

As production tasks become increasingly complex, dual manipulator arm collaboration
can better meet practical production needs. The development of dual manipulator arm
motion planning for collaborative tasks has been a topic of significant interest.

In the existing methods for dual-arm motion planning, there are learning-based motion
planning methods, intelligent optimization algorithm methods, and sample-based methods,
among others. The use of reinforcement learning and deep learning in robotic arm path
planning is being widely applied. Reinforcement learning [1,2] is a method of learning
optimal behavior through interactions between an agent and its environment, while deep

Sensors 2023, 23, 7759. https://doi.org/10.3390/s23187759 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23187759
https://doi.org/10.3390/s23187759
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-4629-5989
https://doi.org/10.3390/s23187759
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23187759?type=check_update&version=1

Sensors 2023, 23, 7759 2 of 27

learning [3] is a machine learning technique that learns complex patterns and representa-
tions through multi-layer neural networks. However, these methods also present challenges.
Training a reliable reinforcement learning model requires a lot of experimentation, iteration,
and parameter tuning, which can be time-consuming. In addition, the training process
of deep learning models requires a large amount of data and computational resources,
making it sensitive to parameters. Therefore, suitable datasets and computing facilities
are limiting factors for the application of these methods. Researchers have incorporated
intelligent algorithms into robotic arm trajectory planning to optimize trajectories that meet
kinematic and dynamic constraints. Traditional methods like polynomial interpolation
can achieve obstacle avoidance and reasonable trajectory selection, but they lack optimal
performance. To address this, genetic algorithms [4], particle swarm algorithms [5], and
ant colony algorithms [6] have been commonly used to optimize robotic arm trajectory
planning for superior performance. Intelligence algorithms have some drawbacks. First,
they often require longer computation time due to the collaboration of multiple individuals
or particles. This can lead to delays in real-time applications, limiting their performance.
Second, these algorithms are highly sensitive to parameter settings, requiring extensive
tuning. Their results can vary, making stability and reliability a challenge. Additionally,
the random search strategy they employ can result in unstable and non-reproducible out-
comes. Lastly, while effective in larger search spaces, swarm intelligence algorithms can
suffer from reduced efficiency when dealing with complex problems. For sampling-based
path planning methods, the A* algorithm [7] is a type of heuristic search algorithm that
prioritizes selecting the optimal path by utilizing a heuristic evaluation function during
the path search process. It builds a search tree to represent possible paths and selects the
most promising nodes for expansion based on the cost of each node and estimated values
from the heuristic evaluation function. The A* algorithm performs well in finding the
shortest path problem but has lower sampling efficiency in high-dimensional spaces and
may be limited for complex robotic arm path planning problems. The APF method [8]
is prone to getting trapped in local optima during path planning. Parameters such as
the weights of goal attraction and obstacle repulsion are difficult to adjust, especially in
complex scenarios and tasks where experience or trial-and-error tuning is required. The
RRT [9] algorithm is a type of random sampling algorithm that generates nodes through
random sampling and constructs paths by connecting nodes and expanding a search tree.
The RRT algorithm has good sampling efficiency and global search capability, making it
suitable for high-dimensional and complex spatial environments. It gradually expands the
search tree through sampling and growth and optimizes and prunes the paths to obtain
robotic arm paths that satisfy the constraints.

In terms of planning the initial path of the robotic arm, the rapidly exploring random
tree (RRT) algorithm and its variants are capable of searching for efficient paths in high-
dimensional spaces and have been widely used in the field of robotic arm path planning [10].
Li Q. [11] proposed an improved informed-RRT* for obstacle avoidance path planning of a
six-degree-of-freedom robotic arm but informed-RRT* relies on ellipses for dependency-
inspired sampling, which makes it difficult to handle high-dimensional spaces. Meng
B. H. [12] proposed a W-space target-biased RRT* for robotic arms, but the exploration
is inefficient and prone to local extremes. Qi J. [13] proposes a path-planning algorithm
based on the RRT*FN for robotic manipulators. This algorithm improves the real-time
requirement of RRT*FN for path planning in robotic arms. Yi J. [14] proposed improved
P_RRT* to improve the convergence efficiency of robotic arm path planning. Existing
variant RRT* based robotic arm path planning studies still have drawbacks, such as poor
goal orientation, generating many useless nodes, and easily falling into local extremes. To
solve the above problems, this paper proposes an intelligent beacon sampling method for
sampling joint RRT*Smart with improved fusion A*’s cost function. In terms of adapting to
dynamic environments, K. Naderi et al. proposed an algorithm called Rt-RRT* [15] that can
quickly generate efficient paths in dynamic environments. However, since it only returns
partial paths, multiple path re-planning iterations are still required. Adiyatov et al. [16]

Sensors 2023, 23, 7759 3 of 27

proposed the RRT*FND algorithm, which utilizes heuristic methods for reconnecting and
regrowing to rapidly generate efficient paths in dynamic environments. GA-RRT [17]
adds target bias and a new sampling method to the RRT. It achieves motion planning for
dual manipulators, but the improved RRT does not generate optimal paths, and the path
optimization is not ideal. VT-RRT [18] improves the dynamical step size and target on the
basis of RRT, achieving path planning for dual manipulators. However, it is prone to getting
stuck in local optima, and the paths generated are not optimal. It simply utilizes RRT to
quickly find feasible paths for dual-manipulator cooperation. Spline-RRT* [19] realizes path
planning for dual manipulators, but it is not suitable for rapidly generating effective paths
in dynamic environments and has long running times. Improved RRT* [20] creates four
random trees and adds repulsive potential energy between them in the potential energy
function. This method aims to swiftly generate effective paths in dynamic environments,
but it is prone to getting stuck in local optima and has less than ideal path optimization
for manipulator arms. Shao [21] used cubic spline interpolation on the trajectory points
generated by the RRT-Connect path planning algorithm to complete the planning of dual-
arm assembly tasks. However, this method only finds feasible paths and not optimal paths,
and the effectiveness of the path optimization method is average. Chen [22] utilized the
excellent solution ability of the RRT-Connect algorithm in complex environments, but the
paths generated were not optimal, and the optimization method used cubic B-splines with
average effectiveness.

However, the paths derived based on sampling algorithms such as RRT classes need to
be trajectory optimized. Trajectory optimization is the basis for controlling the movement of
the robotic arm, and the quality of the trajectory has an important impact on the completion
of the operation. Paths based on sampling planning only have spatial information and
cannot be used as input for motion control. Trajectory planning transforms paths into
expressions about time while satisfying dynamical properties, such as velocity and accel-
eration range limits and smoothing. In addition, as a prerequisite for trajectory tracking
control, trajectory planning affects the accuracy of robot trajectory tracking control [23,24].
Cui et al. [25] utilized fifth- and sixth-order polynomial interpolation to approximate the
joint motion trajectory of a free-floating space robot. They employed sequential quadratic
programming to optimize and solve the trajectory of joint hinge motion [26]. However, to
achieve higher accuracy and smoothness, the main methods used are B-spline curves and
non-uniform rational B-spline (NURBS) curves [27]. In previous research, it was found
that polynomial interpolation trajectory planning methods can achieve effective obstacle
avoidance and rational trajectory selection for robot arms. However, these methods cannot
guarantee the attainment of trajectories with optimal performance.

The following Table 1 shows a comparative analysis of path planning in the
existing literature.

Table 1. Comparison of advantages and disadvantages of path planning methods.

Algorithms Advantages Disadvantages

Genetic algorithms [4] Parallel processing, global search
capability, and problem domain flexibility

Easy to fall into local optimality, long running time,
slow convergence, many sensitive parameters, and

poor adaptation to dynamic environment

Particle swarm algorithms [5]
Parallel processing, strong global search
capability, adaptive search strategy, and

adaptive to problem constraints

Multiple and sensitive parameters, easy to fall into
local optimal solutions, long running time, and

poor adaptability to dynamic environments

Ant colony algorithms [6]

Parallel processing, dynamic
environment adaptability, and strong

global and local search paths for
large-scale problems

Long-running time, poor convergence, many
sensitive parameters, poor solution of

high-dimensional complex problems, easy to fall
into local optimization, and the contradiction

between population diversity and convergence

Sensors 2023, 23, 7759 4 of 27

Table 1. Cont.

Algorithms Advantages Disadvantages

A* algorithm [7]
Exploring spatial completeness,

optimality, and flexibility in heuristic
function sampling

Long running time, large number of node
extensions, slow convergence, poor adaptation to

dynamic environments, poor solvability of
high-dimensional complex problems, and poor

global search capability

APF algorithm [8]
Local path optimization, dynamic

environment adaptability, and high
operational efficiency

Easy to fall into local optimization, sensitive to
parameters such as repulsive and gravitational

coefficients, poor solvability for high dimensional
complex problems, and limited scalability

RRT [9]

Efficiency in high-dimensional spaces,
probabilistic completeness, strong global

search capability, and adaptability to
complex environments

Suboptimality, poor adaptation to dynamic
environments, presence of redundant nodes,
sampling node redundancy, and insufficient

regional exploration

RRT* [10]

Efficiency in high-dimensional spaces,
strong global search capability,

adaptation to complex environments, and
asymptotically optimal solution

Poor dynamic environment adaptability, low path
optimization efficiency and long running time,

sampling node redundancy, and insufficient
regional exploration

RRT*Smart [28]

High operation efficiency, strong global
search ability, strong local optimization
ability, adapt to complex environments,

asymptotically optimal solution, and high
efficiency of path optimization with the
proposed intelligent sampling method

Poor dynamic environment adaptability, long
consumption time, sampling node redundancy,

and insufficient regional exploration

Improved informed-RRT* [11]
Application for robotic arms and

heuristic elliptic sampling to obtain
global near-optimal solutions

Because the heuristic sampling method samples in
a three-dimensional ellipse, each sample needs to
inverse the position of the end of the robotic arm;

the actual operating efficiency is low; the
expandability is extremely poor, and thus, it is not
possible to expand the flexibility of the joints of the

robotic arm; energy optimization; the dynamic
environment is poorly adapted; the operating

efficiency is low; and so on

Improved RRT* [12] Application to the W-space of a robotic
arm to add target bias sampling methods

Poor adaptability to dynamic environment, low
path optimization efficiency and long consumption

time, easy to fall into local optimum, and low
operation efficiency

Improved RRT*FN [13]

Application for robotic arms, global
approximate optimal solution, increasing

the number of fixed nodes strategy
exploration efficiency is further

improved, and dynamic
environment adaptability

Overly biased sampling and inefficient path
optimization, easy to fall into local optimum, and

low operation efficiency

P_RRT* [14]

Applications to robotic arms, global
approximate optimal solutions, partial
strategies for fusing APFs, matrix and

target deviation sampling guidance, and
dynamic environment adaptation

Easy to fall into local optimum, more sensitive
parameters, low efficiency of path optimization,

and poor scalability

Rt-RRT* [15]

The proposed online reconnection
strategy is adaptable to dynamic

environments, applicable to
high-dimensional space, and has high

operational efficiency

Sampling bias, inefficient path optimization, easy
to fall into local optima, sampling node

redundancy, insufficient regional exploration, and
no application of robotic arms

Sensors 2023, 23, 7759 5 of 27

Table 1. Cont.

Algorithms Advantages Disadvantages

RRT*FND [16]

Applied to robotic arms and the
proposed reconnection strategy and

re-growth strategy are highly adaptable
to dynamic environments

Path optimization is inefficient and easily falls into
the local optimum; the reconnection strategy can

quickly generate effective paths in dynamic
environments, but the probability is not optimal

paths; sampling node redundancy; and insufficient
regional exploration

GA-RRT [17]

GA-RRT adds target bias and a new
sampling method to improve the speed

of generating effective paths for dual-arm
motion planning

Non-optimal paths, prone to getting stuck in local
optima, and the effectiveness of the path

optimization method is average

VT-RRT [18]

The improvement of dynamic step size
and target increases the efficiency of

generating paths in complex
environments to cope with dual-arm

motion planning

Non-optimal paths, prone to getting stuck in local
optima, and the effectiveness of the path

optimization method is average

Spline-RRT* [19]
Spline has a good optimization effect on

the motion trajectory of the
manipulator arm

The running time is too long, prone to getting
stuck in local optima, and not suitable for

complex scenes

Improved RRT* [20]

Exploration efficiency is high for the
four-tree algorithm, which generates

paths quickly; adding potential energy
enables the generation of optimal paths

in local space

The generated paths may not be optimal, the
optimization algorithm’s effect on the motion of

the manipulator arm is average, and it is prone to
getting stuck in local optima and may fail to find

an effective path

[21]

Applying the fast execution efficiency of
RRT-Connect, it can be used for path

planning of dual robotic arms; this is a
simple application of the
RRT-Connect algorithm

Non-optimal paths, prone to getting stuck in local
optima, and the effectiveness of the path

optimization method is average

[22]
Applying the fast execution efficiency of

RRT-Connect, it can be used for path
planning of dual robotic arms

Non-optimal paths, are prone to getting stuck in
local optima, and the effectiveness of the path

optimization method is average

From Table 1, it can be observed that the path optimization methods of all algorithms
are relatively poor, requiring significant improvements. The dynamic path planning method
of RRT*FND is relatively advanced, but it still falls short of optimality, thus hindering
the achievement of optimal cooperation between dual robotic arms. Sampling methods,
such as random sampling or goal bias, as well as the heuristic sampling of improved
informed-RRT*, are prone to getting trapped in local optima. By addressing these issues,
effective motion planning for dual robotic arm collaboration can be quickly achieved.

The RRT*Smart [28] algorithm has good convergence and an excellent sampling
mechanism. However, it has low exploration efficiency, cannot adapt to dynamic envi-
ronments, and generates non-smooth and constraint-unaware paths for robotic arms. In
this paper, we introduce an optimal dynamic motion planning algorithm for robotic arms
called RRT*Smart-AD, which is based on the RRT*Smart algorithm. RRT*Smart-AD (rapid-
exploring random tree * smart-adaptive regional dynamics) was specifically designed
for cooperative dynamic motion planning with dual robotic arms. The improvements in
RRT*Smart-AD can be divided into three parts:

(1) In terms of initial path planning, the following enhancements were made to the
RRT*Smart algorithm:

• Dynamic A* evaluation function sampling.
• Maximum number of fixed nodes by node pruning.

(2) Adaptation to dynamic environments involves:

Sensors 2023, 23, 7759 6 of 27

• Path detection and judgment in dynamic regions.
• Path repair.
• Goal-guided regrowth.

(3) Improvements in trajectory planning include:

• Trajectory optimization using a combination of PSO and quintic non-uniform
rational B-splines (NURBSs).

The sampling mechanism of the RRT*Smart algorithm is suitable for optimizing the
original paths but has insufficient exploratory capability. Dynamic A* evaluation function
sampling has stronger exploratory capability. A maximum number of fixed nodes can be
found by deleting the nodes that do not work for the optimal path in spatial exploration
and reducing the nodes of the tree via node pruning, which improves the computational
efficiency. Path collision detection in dynamic environments can be increased, and path
repair and goal-guided regrowth can quickly generate new valid paths in dynamic envi-
ronments. With trajectory optimization using a combination of PSO and quintic NURBSs,
one can add constraints such as the maximum speed of the robotic arm to make the path
smoother and more stable.

Compared with RRT*Smart and RRT*, the solutions obtained using RRT*Smart-AD
enable robotic arms to track trajectories better, as the trajectories are straight and contain
fewer waypoints. Additionally, the speed of generating efficient paths is faster. By treating
the moving robotic arm as a dynamic obstacle to updating the effective path, RRT*Smart-
AD is more suitable for the coordination of dual robotic arms. Therefore, it provides
a more effective motion planning solution compared with RRT*Smart and RRT*. We
demonstrate the effectiveness of our algorithm on a simulated dual robotic arm motion
planning problem.

2. Robotic Arm Motion Model, Collision Detection Method, and RRT*Smart
2.1. Dual Manipulator Arms Experimental Platform

As shown in Figure 1, the base coordinate system of primary robotic arm 1 is aligned
with the world coordinate system. The base coordinate system of arm 1 in the world
coordinate system is [0, 0, 0], and its orientation quaternion is [0, 0, 0, 0]. The base coordinate
system of secondary robotic arm 2 is located at [1.3, 0.5, 0] in the world coordinate system,
and its orientation quaternion is [0, 0, 1, 0].

Sensors 2023, 23, x FOR PEER REVIEW 6 of 26

and reducing the nodes of the tree via node pruning, which improves the computational
efficiency. Path collision detection in dynamic environments can be increased, and path
repair and goal-guided regrowth can quickly generate new valid paths in dynamic envi-
ronments. With trajectory optimization using a combination of PSO and quintic NURBSs,
one can add constraints such as the maximum speed of the robotic arm to make the path
smoother and more stable.

Compared with RRT*Smart and RRT*, the solutions obtained using RRT*Smart-AD
enable robotic arms to track trajectories better, as the trajectories are straight and contain
fewer waypoints. Additionally, the speed of generating efficient paths is faster. By treating
the moving robotic arm as a dynamic obstacle to updating the effective path, RRT*Smart-
AD is more suitable for the coordination of dual robotic arms. Therefore, it provides a
more effective motion planning solution compared with RRT*Smart and RRT*. We
demonstrate the effectiveness of our algorithm on a simulated dual robotic arm motion
planning problem.

2. Robotic Arm Motion Model, Collision Detection Method, and RRT*Smart
2.1. Dual Manipulator Arms Experimental Platform

As shown in Figure 1, the base coordinate system of primary robotic arm 1 is aligned
with the world coordinate system. The base coordinate system of arm 1 in the world co-
ordinate system is [0, 0, 0], and its orientation quaternion is [0, 0, 0, 0]. The base coordinate
system of secondary robotic arm 2 is located at [1.3, 0.5, 0] in the world coordinate system,
and its orientation quaternion is [0, 0, 1, 0].

Figure 1 depicts the simulation setup in a Python environment using a pybullet, fea-
turing a conveyor belt as an obstacle. The simulation platform is a 1:1 representation of
the real-world setup, and data exchange between the simulation and the actual robotic
arm is facilitated through a computer. Table 2 and Figure 2 present the major parameters
of the robotic arm’s D-H model.

Figure 1. Experimental platform with dual manipulator arms.

Figure 1. Experimental platform with dual manipulator arms.

Figure 1 depicts the simulation setup in a Python environment using a pybullet,
featuring a conveyor belt as an obstacle. The simulation platform is a 1:1 representation of
the real-world setup, and data exchange between the simulation and the actual robotic arm
is facilitated through a computer. Table 2 and Figure 2 present the major parameters of the
robotic arm’s D-H model.

Sensors 2023, 23, 7759 7 of 27

Table 2. Nominal link parameters of the robot.

linki θi/◦ αi/◦ ai (mm) di (mm) Range of (θi/◦) Maximum Velocity (◦/s)

1 θ1 90 110 320 −170~170 180

2 θ2+90 0 290 0 −45~135 180

3 θ3 90 1210 0 −70~130 225

4 θ4 90 0 310 −170~170 300

5 θ5 90 0 0 −120~120 375

6 θ6 0 0 111.5 −360~360 500

Sensors 2023, 23, x FOR PEER REVIEW 6 of 26

and reducing the nodes of the tree via node pruning, which improves the computational
efficiency. Path collision detection in dynamic environments can be increased, and path
repair and goal-guided regrowth can quickly generate new valid paths in dynamic envi-
ronments. With trajectory optimization using a combination of PSO and quintic NURBSs,
one can add constraints such as the maximum speed of the robotic arm to make the path
smoother and more stable.

Compared with RRT*Smart and RRT*, the solutions obtained using RRT*Smart-AD
enable robotic arms to track trajectories better, as the trajectories are straight and contain
fewer waypoints. Additionally, the speed of generating efficient paths is faster. By treating
the moving robotic arm as a dynamic obstacle to updating the effective path, RRT*Smart-
AD is more suitable for the coordination of dual robotic arms. Therefore, it provides a
more effective motion planning solution compared with RRT*Smart and RRT*. We
demonstrate the effectiveness of our algorithm on a simulated dual robotic arm motion
planning problem.

2. Robotic Arm Motion Model, Collision Detection Method, and RRT*Smart
2.1. Dual Manipulator Arms Experimental Platform

As shown in Figure 1, the base coordinate system of primary robotic arm 1 is aligned
with the world coordinate system. The base coordinate system of arm 1 in the world co-
ordinate system is [0, 0, 0], and its orientation quaternion is [0, 0, 0, 0]. The base coordinate
system of secondary robotic arm 2 is located at [1.3, 0.5, 0] in the world coordinate system,
and its orientation quaternion is [0, 0, 1, 0].

Figure 1 depicts the simulation setup in a Python environment using a pybullet, fea-
turing a conveyor belt as an obstacle. The simulation platform is a 1:1 representation of
the real-world setup, and data exchange between the simulation and the actual robotic
arm is facilitated through a computer. Table 2 and Figure 2 present the major parameters
of the robotic arm’s D-H model.

Figure 1. Experimental platform with dual manipulator arms.

Figure 2. Link coordinate system.

2.2. The Obstacle Detection Methods

Collision detection is a crucial step in path planning within the simulation platform for
robotic arms. Traditional approaches often employ bounding box methods [29] to simplify
the collision detection process, but this leads to significant errors and lower precision.

To enhance the accuracy of collision detection, we utilized the open-source collision
detection library called the Flexible Collision Library (FCL) [30]. The process involves
converting the unified robot description format (URDF) model of the robotic arm into an
FCL BVH model by triangulating the STL files that represent the arm’s geometry. Joint
rotations were accounted for, and collision detection was performed by examining distances
between the triangular meshes of the individual joints. The BVH algorithm was employed
to reconstruct the robot model.

In the RRT*Smart-AD algorithm, random sampling points are generated in the joint
space and transformed into corresponding pose configurations using forward kinematics.
By updating the joint poses, collisions between the robot arm and itself, as well as obstacles,
can be detected.

Figure 3 depicts a comparison of the collision detection methods for the components of
joint 3 in the robotic arm discussed in this paper. As shown in Figure 3a, the bounding box
method was utilized, where a cylindrical and a spherical bounding volume were created
outside the robotic arm to approximate collisions. However, this method exhibits lower
precision and is not suitable for practical engineering applications. In contrast, Figure 3b
illustrates the collision detection model established using the method proposed in this
paper, which is more aligned with real-world engineering applications.

Sensors 2023, 23, 7759 8 of 27

Sensors 2023, 23, x FOR PEER REVIEW 7 of 26

Figure 2. Link coordinate system.

Table 2. Nominal link parameters of the robot.

linki θi/° αi/° ai (mm) di (mm) Range of (θi/°) Maximum Velocity (°/s)
1 1θ 90 110 320 −170~170 180
2 2θ + 90 0 290 0 −45~135 180
3 3θ 90 1210 0 −70~130 225
4 4θ 90 0 310 −170~170 300
5 5θ 90 0 0 −120~120 375
6 6θ 0 0 111.5 −360~360 500

2.2. The Obstacle Detection Methods
Collision detection is a crucial step in path planning within the simulation platform for

robotic arms. Traditional approaches often employ bounding box methods [29] to simplify
the collision detection process, but this leads to significant errors and lower precision.

To enhance the accuracy of collision detection, we utilized the open-source collision
detection library called the Flexible Collision Library (FCL) [30]. The process involves con-
verting the unified robot description format (URDF) model of the robotic arm into an FCL
BVH model by triangulating the STL files that represent the arm’s geometry. Joint rota-
tions were accounted for, and collision detection was performed by examining distances
between the triangular meshes of the individual joints. The BVH algorithm was employed
to reconstruct the robot model.

In the RRT*Smart-AD algorithm, random sampling points are generated in the joint
space and transformed into corresponding pose configurations using forward kinematics.
By updating the joint poses, collisions between the robot arm and itself, as well as obsta-
cles, can be detected.

Figure 3 depicts a comparison of the collision detection methods for the components
of joint 3 in the robotic arm discussed in this paper. As shown in Figure 3a, the bounding
box method was utilized, where a cylindrical and a spherical bounding volume were cre-
ated outside the robotic arm to approximate collisions. However, this method exhibits
lower precision and is not suitable for practical engineering applications. In contrast, Fig-
ure 3b illustrates the collision detection model established using the method proposed in
this paper, which is more aligned with real-world engineering applications.

(a) (b)

Figure 3. Comparison of collision detection methods for joint 3 components. (a) bounding box meth-
ods, (b) Triangular grid combined with FCL.

Figure 3. Comparison of collision detection methods for joint 3 components. (a) bounding box
methods, (b) Triangular grid combined with FCL.

2.3. The RRT*Smart Algorithm

The RRT algorithm is a path-planning algorithm that rapidly explores the solution
space and finds feasible paths through random sampling and tree structure expansion.
Initially, the algorithm initializes the starting point as the root node and creates an empty
tree. Then, in each iteration, the algorithm generates a random point as the target and finds
the nearest node to the target in the tree. It extends a certain distance from the nearest
node toward the target, creates a new node, and performs collision detection. If the new
node does not collide with obstacles, it is added to the tree and connected to the nearest
node. If a new node reaches the target, a path connecting the starting point and the target
is found. In this way, the RRT algorithm efficiently explores the solution space and finds
feasible paths.

RRT* is an improved version of the RRT algorithm that builds upon the original RRT
to further enhance the path quality and convergence. RRT* improves the path quality
by utilizing an optimal distance metric and selecting optimal connections. It generates
excellent path solutions by optimizing and pruning nodes in the tree. By combining node
optimization and pruning, RRT* can generate paths that are closer to the optimal solution.
In comparison with the traditional RRT, RRT* allows for node rewiring to optimize the
path. This means that RRT* can select shorter paths between nodes that do not simply
extend from a single node, but rather extend from the optimal point by searching among all
the nodes. RRT* offers improvements over RRT in terms of the path quality, convergence,
and ability to approximate optimal paths. By optimizing and pruning nodes, employing
rewiring strategies, and considering nodes from the entire tree, RRT* can generate paths
that are closer to the optimal solution.

RRT*Smart is an extension of RRT* that operates similarly to RRT* but with the
additional feature of removing redundant nodes from the initial path once it is found.
RRT*Smart has demonstrated better path convergence compared with RRT*. Furthermore,
it identifies intelligent beacon samples for path improvement. This sampling differs from
random sampling, as it is biased toward optimizing the beacon nodes along the path. It
utilizes nearby obstacle beacon nodes to set the distance for intelligent exploration around
the selected beacon. Once RRT*Smart finds a shorter path, it performs the path optimization
process again to generate new beacon nodes. The main functions for describing the
representation of robotic arm path planning are as follows:

Sample: If an initial valid path is not found, this function generates random joint angle
positions Zrand from the available joint space Zfree in the robotic arm’s collision-free joint
space. Otherwise, it searches for a random node within a distance of R around the obstacle
beacon nodes Zbeacons near the valid path.

Sensors 2023, 23, 7759 9 of 27

Nearest: This function returns the node Znearest in the tree T = (V, E) that is closest to
the node Zrand based on the cost function.

Steer: This function takes inputs Zrand and Znearest grows ∆q along the direction from
Zrand → Znearest to obtain Znew, where ∆q is the step length distance.

CollisionDetect: This function is used to detect collisions in the branches of the tree, and
it returns true if the path Z :[0, T] for all t = 0 to t = T is within the obstacle-free region Zfree.

Near: This function returns all the nodes in the tree that satisfy the condition of being
within a defined neighborhood distance β of Znew.

InsertNode: This function adds the node Znew to the tree T = (V, E) and connects it
to the node Zmin as its parent node.

PathOptimization: Input
(

T, Zinit, Zgoal

)
, where this function determines an opti-

mized path by directly connecting nodes that are mutually visible along the path and
updates the set of beacon nodes Zbeacons.

ExtractPath: This function extracts the optimal path from the collection of trees.
A pseudo-code describing RRT*Smart is shown in Algorithm 1.

Algorithm 1 T= (V, E) ← RRT*Smart(Z init)

1 T← InitializeTree()
2 T← InsertNode(f ulllengthφ, Zinit, T)
3 for i in range(N) :
4 if (i − n) % b = 0 :
5 Zrand ← Sample(i, Z beacons

)
6 else
7 Zrand ← Sample(i)
8 Znearest ← Nearest(T, Zrand) :
9 (Xnew, Unew, Tnew) ← Steer (Znearest, Zranad)
10 ifObstaclefreeX(Znew) :
11 Znear ← Near(T, Znew, |V|)
12 Zmin ← Chooseparent (Znear, Znearest, Znew, Xnew)
13 T← InsertNode(Zmin, Znew, T)
14 T← Rewire(T, Znew, Znear)
15 if InitialPathFound :
16 n = i

17 (T, directcost)← PathOptimization
(

T, Zinit, Zgoal

)
18 if directcostnew< directcostold
19 Zbeacons ← PathOptimization(T, Zinit, Zgoal);
20 return ExtractPath(T, Zinit, Zgoal)

3. RRT*Smart-AD Algorithm

The RRT*Smart-AD algorithm can be divided into three parts. First, it involves initial
cooperative obstacle avoidance path planning. Second, it detects whether the path in the
dynamic environment becomes invalid and re-plans an effective path. Third, it utilizes
quintic NURBS trajectory optimization. In the first part, the RRT*Smart algorithm is
enhanced by incorporating dynamic A* function sampling and pruning the path based on
a maximum node limit. This method improves the efficiency of finding the initial path and
reduces the algorithm’s runtime. The second and third parts determine the validity of the
path in the dynamic region. They generate new effective paths through reconnecting and
regrowing, enhancing adaptability to dynamic environments. Lastly, the RRT*Smart-AD
utilizes PSO to optimize the discrete point path generated by the RRT*Smart-AD algorithm,
resulting in a motion trajectory for the robotic arm.

Sensors 2023, 23, 7759 10 of 27

3.1. Improvements in Sampling Methods
3.1.1. Dynamic A* Evaluation Function Sampling

For most variations in the RRT* algorithm, it is not suitable to sample the goal point
with a certain probability. This is because after generating the initial path (with the goal
point already added to the tree set), the closest point in the tree to the sampled point will
always be the goal point itself (with a distance of 0). The A* algorithm’s heuristic function
can enhance the convergence efficiency of the path. To address this issue and improve
sampling thoroughness, the RRT*Smart-AD algorithm combines a dynamic A* evaluation
function sampling method.

The algorithm generates a sequence of random sampling points and sorts all nodes
based on the cost function from smallest to largest. The optimal point in this sequence
becomes the starting point for exploration. If collisions prevent expansion, a suboptimal
point is selected if the optimal point fails to expand. To prevent falling into local optima,
node sparsity [31] is employed to avoid repeatedly searching the same regions, even if
they have optimal values. By improving the sampling method, effective nodes close to
the shortest distance between start and end points can be selected, leading to convergence
toward the target. Removing duplicate values and nodes with small distances prevents
getting trapped in local search, increasing algorithm stability.

f (n) = k · g(n) + h(n) (1)

k =

(
−1 + e−2u)wmax

1 + e−2u +
wmax

2
+ wmin + b · t · sin(b · t)/i (2)

u = a · (t− c · i) (3)

In these equations, f (n) represents the cost value of the node evaluation, where a
smaller value indicates a better evaluation. g(n) represents the Euclidean distance from
the start point Zinit to the current node Znew, while h(n) represents the Euclidean distance
from the current node Znew to the goal point Zgoal. k is the dynamic forward coefficient,
where a larger value indicates a stronger bias toward the goal point. The value of k can be
determined using Formulas (2) and (3). a denotes the value of slow descent in finding the
initial path and is in the range [0.001, 0.1]; in this study, we used 0.08. b is the weight to
keep the data scale consistent and is in the range [0.01, 0.09]; in this study, we used 0.01.

The path search process of the RRT*Smart-AD algorithm can be divided into global
path search and local optimization search. Before finding a valid path, it is necessary to
find a relatively optimal valid path. In the fusion of the A* evaluation function sampling
method, stronger guidance is required, which means a larger value of the dynamic forward
coefficient k, as shown in the Figure 4f plot. When an effective path is found, it is important
to explore the shortest path thoroughly and increase the randomness of exploration. In this
case, a smaller value of the k coefficient is needed, as shown in the Figure 4c plot.

To better demonstrate the efficiency of the sampling methods proposed in this paper,
we conducted experimental comparisons of three sampling methods in a two-dimensional
setting, as shown in Figure 4. Among these three methods, the random sampling method
represents the standard RRT sampling method, where nodes are randomly generated in the
space, resulting in lower efficiency. The goal-bias method sets the target point as a sampling
node with a certain probability, which provides strong guidance but is susceptible to local
optima, and still employs random sampling when obstacles are present. The dynamic
A* evaluation function, which is based on the goal-bias method, selects more optimal
sampling points, enhancing the guidance. The addition of the node sparsity method
prevents sampling from getting stuck in local optima. In the environment depicted in
Figure 4, we conducted experiments starting from the initial point using the three different
sampling methods and stopped when reaching the target point on the right. We compared
the number of sampled nodes reached and the exploration efficiency. The blue and green
squares represent the starting and target points, respectively, while the yellow rectangles

Sensors 2023, 23, 7759 11 of 27

represent obstacles. The experimental results are shown in Figure 4, where the blue lines
represent the sampling paths.

Sensors 2023, 23, x FOR PEER REVIEW 10 of 26

shortest distance between start and end points can be selected, leading to convergence
toward the target. Removing duplicate values and nodes with small distances prevents
getting trapped in local search, increasing algorithm stability.

() () ()f n k g n h n= ⋅ + (1)

()
()

2
max max

min2

1
sin /

21

u

u

e w wk w b t b t i
e

−

−

− +
= + + + ⋅ ⋅ ⋅

+
 (2)

()a u t c i= ⋅ − ⋅ (3)

In these equations, ()f n represents the cost value of the node evaluation, where a
smaller value indicates a better evaluation. ()g n represents the Euclidean distance from the
start point initZ to the current node newZ , while ()h n represents the Euclidean distance
from the current node newZ to the goal point goalZ . k is the dynamic forward coefficient,
where a larger value indicates a stronger bias toward the goal point. The value of k can be
determined using Formulas (2) and (3). a denotes the value of slow descent in finding the
initial path and is in the range [0.001, 0.1]; in this study, we used 0.08. b is the weight to
keep the data scale consistent and is in the range [0.01, 0.09]; in this study, we used 0.01.

The path search process of the RRT*Smart-AD algorithm can be divided into global
path search and local optimization search. Before finding a valid path, it is necessary to find
a relatively optimal valid path. In the fusion of the A* evaluation function sampling method,
stronger guidance is required, which means a larger value of the dynamic forward coeffi-
cient k, as shown in the Figure 4f plot. When an effective path is found, it is important to
explore the shortest path thoroughly and increase the randomness of exploration. In this
case, a smaller value of the k coefficient is needed, as shown in the Figure 4c plot.

(a) (b) (c)

(d) (e) (f)

Figure 4. Comparison of sampling methods. (a) RRT random sampling; (b) Target bias sampling; (c)
A* sampling (k = 3); (d) A* sampling (k = 1.5); (e) A* sampling (k = 1.2); (f) A* sampling (k = 1).

To better demonstrate the efficiency of the sampling methods proposed in this paper,
we conducted experimental comparisons of three sampling methods in a two-dimensional
setting, as shown in Figure 4. Among these three methods, the random sampling method
represents the standard RRT sampling method, where nodes are randomly generated in
the space, resulting in lower efficiency. The goal-bias method sets the target point as a
sampling node with a certain probability, which provides strong guidance but is suscep-
tible to local optima, and still employs random sampling when obstacles are present. The
dynamic A* evaluation function, which is based on the goal-bias method, selects more
optimal sampling points, enhancing the guidance. The addition of the node sparsity
method prevents sampling from getting stuck in local optima. In the environment de-
picted in Figure 4, we conducted experiments starting from the initial point using the three

Figure 4. Comparison of sampling methods. (a) RRT random sampling; (b) Target bias sampling;
(c) A* sampling (k = 3); (d) A* sampling (k = 1.5); (e) A* sampling (k = 1.2); (f) A* sampling (k = 1).

From Figure 4, it can be observed that the A* evaluation function sampling method
had the fewest number of nodes and a higher exploration efficiency. The standard RRT*
sampling adopts random sampling, while the goal-bias RRT algorithm loses its guidance
when obstructed by obstacles and still employs random sampling, similar to the standard
RRT* algorithm. The proposed improved A* evaluation function sampling method consid-
ers both the sufficiency of sampling exploration and goal guidance. The larger value of the
dynamic forward coefficient ensures a more thorough exploration along the shortest path.
Increasing the coefficient strengthens the guidance without losing its effectiveness due to
obstacles. The generated iterative points after using the improved A* evaluation function
sampling method converge faster, thus improving the efficiency of the path optimization in
the iterative space.

3.1.2. Maximum Number of Fixed Nodes via Node Pruning

The RRT*FN algorithm [32] achieves node deletion by randomly removing leaf nodes
when the number of nodes reaches the predefined maximum value. This method requires
relatively less memory during the path search process, reducing the computation time.
However, it has lower convergence accuracy, and the random node deletion after reaching
the maximum number of nodes increases the computation time. To achieve higher conver-
gence performance, this proposed algorithm further improves the node deletion method.
Specifically, all the child nodes in the tree, except for the end sub-nodes on the effective
path, are deleted. Figure 5 illustrates the principle, The blue dot on the left is the start point,
the red dot on the right is the end point, the black dot is the sampling point, and the yellow
circle is the obstacle. The blue line segment is the sampling path, where (a) represents
the nodes in the tree before any deletion, and (b) shows the tree after deleting the child
nodes. By shrinking the maximum number of fixed nodes in the sampling tree, the nodes
in the tree that do not contribute to the optimal path can be reduced, thus improving the
operational efficiency of the algorithm.

Sensors 2023, 23, 7759 12 of 27

Sensors 2023, 23, x FOR PEER REVIEW 11 of 26

different sampling methods and stopped when reaching the target point on the right. We
compared the number of sampled nodes reached and the exploration efficiency. The blue
and green squares represent the starting and target points, respectively, while the yellow
rectangles represent obstacles. The experimental results are shown in Figure. 4, where the
blue lines represent the sampling paths.

From Figure 4, it can be observed that the A* evaluation function sampling method
had the fewest number of nodes and a higher exploration efficiency. The standard RRT*
sampling adopts random sampling, while the goal-bias RRT algorithm loses its guidance
when obstructed by obstacles and still employs random sampling, similar to the standard
RRT* algorithm. The proposed improved A* evaluation function sampling method con-
siders both the sufficiency of sampling exploration and goal guidance. The larger value of
the dynamic forward coefficient ensures a more thorough exploration along the shortest
path. Increasing the coefficient strengthens the guidance without losing its effectiveness
due to obstacles. The generated iterative points after using the improved A* evaluation
function sampling method converge faster, thus improving the efficiency of the path op-
timization in the iterative space.

3.1.2. Maximum Number of Fixed Nodes via Node Pruning
The RRT*FN algorithm [32] achieves node deletion by randomly removing leaf nodes

when the number of nodes reaches the predefined maximum value. This method requires
relatively less memory during the path search process, reducing the computation time.
However, it has lower convergence accuracy, and the random node deletion after reaching
the maximum number of nodes increases the computation time. To achieve higher con-
vergence performance, this proposed algorithm further improves the node deletion
method. Specifically, all the child nodes in the tree, except for the end sub-nodes on the
effective path, are deleted. Figure 5 illustrates the principle, The blue dot on the left is the
start point, the red dot on the right is the end point, the black dot is the sampling point,
and the yellow circle is the obstacle. The blue line segment is the sampling path, where (a)
represents the nodes in the tree before any deletion, and (b) shows the tree after deleting
the child nodes. By shrinking the maximum number of fixed nodes in the sampling tree,
the nodes in the tree that do not contribute to the optimal path can be reduced, thus im-
proving the operational efficiency of the algorithm.

(a) (b)

Figure 5. Before and after tree downsizing. (a) Before downsizing; (b) After downsizing.

3.2. Dynamic Motion Planning Strategy
This subsection describes methods for determining the detection of path invalidation

and for quickly generating a new valid path after the original path has failed.

3.2.1. Path Detection in Dynamic Regions
In dual-arm systems, dynamic path-planning methods can coordinate the motion of

each robot arm to ensure their collaboration and cooperative work. Among the existing
methods for detecting path failure in dynamic path planning algorithms, the RRT*FND
algorithm detects whether the entire path is valid and generates new paths in real time.
However, real-time collision detection along the entire path can greatly impact the effi-
ciency of reaching the target point, as failure in the latter part of the path does not neces-
sarily affect tracking the unaffected path in the front. Additionally, in scenarios with long

Figure 5. Before and after tree downsizing. (a) Before downsizing; (b) After downsizing.

3.2. Dynamic Motion Planning Strategy

This subsection describes methods for determining the detection of path invalidation
and for quickly generating a new valid path after the original path has failed.

3.2.1. Path Detection in Dynamic Regions

In dual-arm systems, dynamic path-planning methods can coordinate the motion of
each robot arm to ensure their collaboration and cooperative work. Among the existing
methods for detecting path failure in dynamic path planning algorithms, the RRT*FND
algorithm detects whether the entire path is valid and generates new paths in real time.
However, real-time collision detection along the entire path can greatly impact the efficiency
of reaching the target point, as failure in the latter part of the path does not necessarily
affect tracking the unaffected path in the front. Additionally, in scenarios with long paths
and numerous obstacles, regrowth is required for almost every tracking step of the path.
To address this, a dynamic region path recovery and regrowth method is proposed. It
determines whether path recovery and regrowth are necessary within the tracked point’s
region. The initially planned path primarily serves as a guiding path and a means to
determine whether a valid path can reach the target point. The flowchart for dynamic
region path recovery and regrowth within the region is shown in Figure 6.

Sensors 2023, 23, x FOR PEER REVIEW 12 of 26

paths and numerous obstacles, regrowth is required for almost every tracking step of the
path. To address this, a dynamic region path recovery and regrowth method is proposed.
It determines whether path recovery and regrowth are necessary within the tracked
point’s region. The initially planned path primarily serves as a guiding path and a means
to determine whether a valid path can reach the target point. The flowchart for dynamic
region path recovery and regrowth within the region is shown in Figure 6.

Figure 6. The flowchart of the Dynamic motion planning strategy.

Assume the optimized motion path of the robotic arm for a single joint is
1 2 p, ,..., X x x x = . R represents the initial path angle distance. ir is the weight of R ,

which ensures the length of the tracked path and ranges between [0.2, 0.4], with a value
of 0.3 in this case. For a given point during the motion, if the number of predicted positions
within a distance Rir is n, then for that point, there exists a set []1, ,...,i i i nU x x x+ += . The col-
lision detection method described in Section 2.2 is used to determine whether the paths
within the region defined by []1, ,...,i i i nU x x x+ += are valid or not.

The idea of determining path failure in a dynamic region is to avoid tracking the entire
path and instead focus on a portion of the path defined by the initial joint path distance. The
joint path distance refers to the sum of the angle changes of the robot arm’s joints from the
starting point to the endpoint. This method sacrifices the predictive distance to reduce the
computational complexity and improve the path execution efficiency. Experimental results
showed that this method has better performance in dynamic path planning. As shown in
Figure 7, the green path represents the initial path, while the red path indicates the dynamic
region-based path failure detection. The yellow sphere is a moving obstacle. In Figure 7a,
no path failure is detected, and the path can be continued to be tracked. However, in Figure
7b, path failure is detected, requiring path repair or regrowth to generate a new feasible path
at that point.

Figure 6. The flowchart of the Dynamic motion planning strategy.

Assume the optimized motion path of the robotic arm for a single joint is
X =

[
x1, x2, . . . , xp

]
. R represents the initial path angle distance. ri is the weight of

Sensors 2023, 23, 7759 13 of 27

R, which ensures the length of the tracked path and ranges between [0.2, 0.4], with a value
of 0.3 in this case. For a given point during the motion, if the number of predicted positions
within a distance riR is n, then for that point, there exists a set U = [xi, xi+1, . . . , xi+n]. The
collision detection method described in Section 2.2 is used to determine whether the paths
within the region defined by U = [xi, xi+1, . . . , xi+n] are valid or not.

The idea of determining path failure in a dynamic region is to avoid tracking the entire
path and instead focus on a portion of the path defined by the initial joint path distance.
The joint path distance refers to the sum of the angle changes of the robot arm’s joints from
the starting point to the endpoint. This method sacrifices the predictive distance to reduce
the computational complexity and improve the path execution efficiency. Experimental
results showed that this method has better performance in dynamic path planning. As
shown in Figure 7, the green path represents the initial path, while the red path indicates
the dynamic region-based path failure detection. The yellow sphere is a moving obstacle. In
Figure 7a, no path failure is detected, and the path can be continued to be tracked. However,
in Figure 7b, path failure is detected, requiring path repair or regrowth to generate a new
feasible path at that point.

Sensors 2023, 23, x FOR PEER REVIEW 13 of 26

(a) (b)

Figure 7. Dynamic area range to determine whether the path is invalid. (a) no collision at dynamic
detection distance, (b) collision at dynamic detection distance.

3.2.2. Path Repair
In Section 3.2.1, when the collision detection method detects a failure in the path, a

new valid path needs to be generated. When the path collides with an obstacle and the
failure is relatively simple, a simple and effective method is proposed to handle the failure
of short-distance, simple paths.

First, the failure point node of the path is identified to determine whether it meets
the conditions for path repair: the number of path repairs and the distance to be repaired
are calculated. The path repair condition is met when r rN P≤ and rD < Rir , where rP
represents the maximum number of repairs allowed (ranging from 2 to 5, with a value of
2 in this study). To ensure that the repair distance is not too large, ir was set to 0.1. Path
repair significantly reduces the time required to obtain a new valid path. The principle is
illustrated in Figure 8a, where a single breakpoint path repair is performed in a two-di-
mensional space.

Step 1: The blue path starts from the blue square on the left and ends at the green
square on the right. When a path disruption occurs within the tracking point area due to
an obstacle (yellow circle), the disrupted path is shown in red. The invalid nodes that in-
tersect with the obstacle are disconnected from the other valid nodes, and these invalid
nodes are discarded.

Step 2: Two failure points in the invalid path are selected, the distance between them
is calculated, and a path repair is performed, resulting in the green path segment.

Step 3: The process continues by searching for path breakpoints and repeating step 2
until the path is repaired. This repair process may introduce redundant nodes. To elimi-
nate these redundant nodes, a greedy strategy is applied, resulting in the black path. The
greedy strategy is applied from the start to the endpoint.

(a) (b)

Figure 8. Path repair principle and robotic arm simulation path repair. (a) Demonstration of the
principle of path repair. (b) Demonstration of the principle of path repair 6-dof robotic arm.

Figure 7. Dynamic area range to determine whether the path is invalid. (a) no collision at dynamic
detection distance, (b) collision at dynamic detection distance.

3.2.2. Path Repair

In Section 3.2.1, when the collision detection method detects a failure in the path, a
new valid path needs to be generated. When the path collides with an obstacle and the
failure is relatively simple, a simple and effective method is proposed to handle the failure
of short-distance, simple paths.

First, the failure point node of the path is identified to determine whether it meets
the conditions for path repair: the number of path repairs and the distance to be repaired
are calculated. The path repair condition is met when Nr ≤ Pr and Dr < riR, where Pr
represents the maximum number of repairs allowed (ranging from 2 to 5, with a value of
2 in this study). To ensure that the repair distance is not too large, ri was set to 0.1. Path
repair significantly reduces the time required to obtain a new valid path. The principle
is illustrated in Figure 8a, where a single breakpoint path repair is performed in a two-
dimensional space.

Sensors 2023, 23, 7759 14 of 27

Sensors 2023, 23, x FOR PEER REVIEW 13 of 26

(a) (b)

Figure 7. Dynamic area range to determine whether the path is invalid. (a) no collision at dynamic
detection distance, (b) collision at dynamic detection distance.

3.2.2. Path Repair
In Section 3.2.1, when the collision detection method detects a failure in the path, a

new valid path needs to be generated. When the path collides with an obstacle and the
failure is relatively simple, a simple and effective method is proposed to handle the failure
of short-distance, simple paths.

First, the failure point node of the path is identified to determine whether it meets
the conditions for path repair: the number of path repairs and the distance to be repaired
are calculated. The path repair condition is met when r rN P≤ and rD < Rir , where rP
represents the maximum number of repairs allowed (ranging from 2 to 5, with a value of
2 in this study). To ensure that the repair distance is not too large, ir was set to 0.1. Path
repair significantly reduces the time required to obtain a new valid path. The principle is
illustrated in Figure 8a, where a single breakpoint path repair is performed in a two-di-
mensional space.

Step 1: The blue path starts from the blue square on the left and ends at the green
square on the right. When a path disruption occurs within the tracking point area due to
an obstacle (yellow circle), the disrupted path is shown in red. The invalid nodes that in-
tersect with the obstacle are disconnected from the other valid nodes, and these invalid
nodes are discarded.

Step 2: Two failure points in the invalid path are selected, the distance between them
is calculated, and a path repair is performed, resulting in the green path segment.

Step 3: The process continues by searching for path breakpoints and repeating step 2
until the path is repaired. This repair process may introduce redundant nodes. To elimi-
nate these redundant nodes, a greedy strategy is applied, resulting in the black path. The
greedy strategy is applied from the start to the endpoint.

(a) (b)

Figure 8. Path repair principle and robotic arm simulation path repair. (a) Demonstration of the
principle of path repair. (b) Demonstration of the principle of path repair 6-dof robotic arm.
Figure 8. Path repair principle and robotic arm simulation path repair. (a) Demonstration of the
principle of path repair. (b) Demonstration of the principle of path repair 6-dof robotic arm.

Step 1: The blue path starts from the blue square on the left and ends at the green
square on the right. When a path disruption occurs within the tracking point area due to an
obstacle (yellow circle), the disrupted path is shown in red. The invalid nodes that intersect
with the obstacle are disconnected from the other valid nodes, and these invalid nodes
are discarded.

Step 2: Two failure points in the invalid path are selected, the distance between them
is calculated, and a path repair is performed, resulting in the green path segment.

Step 3: The process continues by searching for path breakpoints and repeating step 2
until the path is repaired. This repair process may introduce redundant nodes. To eliminate
these redundant nodes, a greedy strategy is applied, resulting in the black path. The greedy
strategy is applied from the start to the endpoint.

Figure 8b shows a simulation of path repair for a robotic arm. The green path rep-
resents the initial path, the red path indicates the dynamic region-based path failure, the
yellow path represents the sampled points, and the blue path represents the repaired path.

3.2.3. Regrowth

In the RRT variation algorithm, Extend-RRT [26] proposes a method for addressing
path failures by removing the failed nodes in the original search tree and regrowing the
path. Rt-RRT* introduces an online tree rewiring strategy that allows the tree root to
move with the agent without discarding previously sampled paths. RRT*FND extends
this method by assigning node numbers for invoking the unaffected nodes to generate
new valid paths. Building upon this, a regrowth method is proposed that incorporates the
original path guidance.

When there are frequent path repair attempts and the repair distance is long, the
probability of obtaining an optimal or suboptimal path using path repair methods becomes
small. In such cases, the valid nodes in the original tree are retained, and regrowth is
performed on the unaffected nodes. The invalid nodes that intersect with obstacles in the
disrupted path are disconnected from the other valid nodes and discarded. The failed
path still serves as a guide by incorporating the unaffected points from the initially failed
path into the target bias for path guidance. The regrowth principle is demonstrated in
a two-dimensional visual representation in Figure 9a. When the initial path (blue path)
encounters a new obstacle (red circle), and thus, fails, the failed nodes are removed, and
the original tree is explored in space until a valid path is found. The green path represents
the unaffected nodes, while the orange path represents the regrown nodes.

Sensors 2023, 23, 7759 15 of 27

Sensors 2023, 23, x FOR PEER REVIEW 14 of 26

Figure 8b shows a simulation of path repair for a robotic arm. The green path repre-
sents the initial path, the red path indicates the dynamic region-based path failure, the
yellow path represents the sampled points, and the blue path represents the repaired path.

3.2.3. Regrowth
In the RRT variation algorithm, Extend-RRT [26] proposes a method for addressing

path failures by removing the failed nodes in the original search tree and regrowing the
path. Rt-RRT* introduces an online tree rewiring strategy that allows the tree root to move
with the agent without discarding previously sampled paths. RRT*FND extends this
method by assigning node numbers for invoking the unaffected nodes to generate new
valid paths. Building upon this, a regrowth method is proposed that incorporates the orig-
inal path guidance.

When there are frequent path repair attempts and the repair distance is long, the
probability of obtaining an optimal or suboptimal path using path repair methods be-
comes small. In such cases, the valid nodes in the original tree are retained, and regrowth
is performed on the unaffected nodes. The invalid nodes that intersect with obstacles in
the disrupted path are disconnected from the other valid nodes and discarded. The failed
path still serves as a guide by incorporating the unaffected points from the initially failed
path into the target bias for path guidance. The regrowth principle is demonstrated in a
two-dimensional visual representation in Figure 9a. When the initial path (blue path) en-
counters a new obstacle (red circle), and thus, fails, the failed nodes are removed, and the
original tree is explored in space until a valid path is found. The green path represents the
unaffected nodes, while the orange path represents the regrown nodes.

(a) (b)

Figure 9. Path regrowth 2D simulation and path regrowth of robotic arm. (a) Demonstration of the
principle of path Regrowth. (b) Demonstration of the principle of path Regrowth 6-dof robotic arm.

In Figure 9b, the regrowth process is demonstrated in a simulated space for a robotic
arm. The green path represents the original tree collection. After the appearance of a red
spherical obstacle, the original tree collection and path become invalid. Utilizing the path
regrowth method with guidance effect, a new valid tree collection is generated based on
the original failed tree, as shown in blue.

When the dual robotic arms collaborate and a collision is predicted after the robot
arms have moved to a trajectory point, it is necessary to disconnect the tracked points and
their connected child nodes, as well as the invalid nodes that collide with obstacles (such
as the moving robotic arm 2). As shown in Figure 10, the green paths represent the initial
path sampling points, the gold points represent the preserved sampling points from the
old tree after collision prediction, and the red points represent the new sampling points
generated during regrowth. The regrowth method avoids duplicating nodes and fully uti-
lizes the information from the old tree.

Figure 9. Path regrowth 2D simulation and path regrowth of robotic arm. (a) Demonstration of the
principle of path Regrowth. (b) Demonstration of the principle of path Regrowth 6-dof robotic arm.

In Figure 9b, the regrowth process is demonstrated in a simulated space for a robotic
arm. The green path represents the original tree collection. After the appearance of a red
spherical obstacle, the original tree collection and path become invalid. Utilizing the path
regrowth method with guidance effect, a new valid tree collection is generated based on
the original failed tree, as shown in blue.

When the dual robotic arms collaborate and a collision is predicted after the robot
arms have moved to a trajectory point, it is necessary to disconnect the tracked points and
their connected child nodes, as well as the invalid nodes that collide with obstacles (such as
the moving robotic arm 2). As shown in Figure 10, the green paths represent the initial path
sampling points, the gold points represent the preserved sampling points from the old tree
after collision prediction, and the red points represent the new sampling points generated
during regrowth. The regrowth method avoids duplicating nodes and fully utilizes the
information from the old tree.

Sensors 2023, 23, x FOR PEER REVIEW 15 of 26

Figure 10. Re-growth with double robotic arm cooperation.

3.3. PSO Combined with Quintic-NURBS-Optimized Trajectories
To ensure that the generated path meets the practical requirements of a robotic arm,

a combined approach of the PSO algorithm and quintic NURBS optimization for robotic
arm trajectory is proposed. The discrete point path obtained from the RRT*SMART-AD
algorithm is smoothed. The method combines quintic NURBS curves and the particle
swarm optimization (PSO) algorithm to generate functions for the parameters of the joints,
considering the constraints of the robotic arm. This approach aims to obtain a high-order
continuous motion trajectory. Additionally, while optimizing the path for smoothness, the
algorithm also minimizes the operational distance of the robotic arm.

In robotic arm path planning, the quintic B-spline curve has higher-order continuity,
i.e., the curvature changes between the nodes on the curve are continuously smooth. The
smoothness and continuity of the robotic arm during its motion are very important. Robotic
arm path planning usually needs to consider the joint constraints and motion limitations of
the robotic arm, and the use of the quintic B-spline curve with higher degrees of freedom
can better meet these constraints and limitations. The shape of the quintic B-spline curve can
be flexibly controlled by adjusting the positions and weights of the control points. In the
robotic arm path planning, the parameters of the control points can be adjusted to achieve
the fine-tuning and optimization of the path so that the robotic arm can reach the target
position more accurately and smoothly without collision during the movement.

3.3.1. The Quintic NURBS Principle
In the path planning of a robotic arm, B-spline curves exhibit high-order continuity,

meaning that the curvature changes between each node on the curve are continuously
smooth. The smoothness and continuity of the robotic arm’s motion are crucial [33]. Fur-
thermore, path planning for the robotic arm typically needs to consider the joint con-
straints and motion limitations of the arm. Using quintic B-spline curves with higher de-
grees of freedom can better satisfy these constraints and limitations. The shape of the fifth-
degree B-spline curve can be flexibly controlled by adjusting the positions and weights of
the control points [34]. This enables the robotic arm to move smoothly and precisely with-
out collisions, reaching the desired positions.

Figure 10. Re-growth with double robotic arm cooperation.

3.3. PSO Combined with Quintic-NURBS-Optimized Trajectories

To ensure that the generated path meets the practical requirements of a robotic arm,
a combined approach of the PSO algorithm and quintic NURBS optimization for robotic

Sensors 2023, 23, 7759 16 of 27

arm trajectory is proposed. The discrete point path obtained from the RRT*SMART-AD
algorithm is smoothed. The method combines quintic NURBS curves and the particle
swarm optimization (PSO) algorithm to generate functions for the parameters of the joints,
considering the constraints of the robotic arm. This approach aims to obtain a high-order
continuous motion trajectory. Additionally, while optimizing the path for smoothness, the
algorithm also minimizes the operational distance of the robotic arm.

In robotic arm path planning, the quintic B-spline curve has higher-order continuity,
i.e., the curvature changes between the nodes on the curve are continuously smooth. The
smoothness and continuity of the robotic arm during its motion are very important. Robotic
arm path planning usually needs to consider the joint constraints and motion limitations of
the robotic arm, and the use of the quintic B-spline curve with higher degrees of freedom
can better meet these constraints and limitations. The shape of the quintic B-spline curve
can be flexibly controlled by adjusting the positions and weights of the control points. In
the robotic arm path planning, the parameters of the control points can be adjusted to
achieve the fine-tuning and optimization of the path so that the robotic arm can reach the
target position more accurately and smoothly without collision during the movement.

3.3.1. The Quintic NURBS Principle

In the path planning of a robotic arm, B-spline curves exhibit high-order continuity,
meaning that the curvature changes between each node on the curve are continuously
smooth. The smoothness and continuity of the robotic arm’s motion are crucial [33]. Fur-
thermore, path planning for the robotic arm typically needs to consider the joint constraints
and motion limitations of the arm. Using quintic B-spline curves with higher degrees of
freedom can better satisfy these constraints and limitations. The shape of the fifth-degree
B-spline curve can be flexibly controlled by adjusting the positions and weights of the
control points [34]. This enables the robotic arm to move smoothly and precisely without
collisions, reaching the desired positions.

The basis functions in NURBSs [35] are described as Equations (4) and (5):

C(ξ) =
1

∑ n
i=0Ni,p(ξ)wi

n

∑
i=0

Ni,p(ξ)wiPi (4)

Ni,0(ξ) =

{
1 if ξi ≤ ξ ≤ ξi+1
0 otherwise

Ni,p(ξ) =
ξ − ξi

ξi+p − ξi
Ni,p−1(ξ) +

ξi+p − ξi

ξi+p+1 − ξi+1
Ni+1,p−1(ξ)

(5)

In these equations, p represents the dimension of the spline. ξ denotes the node value.
Ni,p−1(ξ) represents the i-th basis function. Pi corresponds to the control points, while wi
denotes the weight values. The weight values determine the degree of control that the
control points have on the curve.

3.3.2. Particle Swarm Optimization Algorithm

The PSO algorithm is a multi-parameter optimization technique based on swarm
intelligence. It draws inspiration from artificial life and evolutionary computation theories.
The PSO algorithm simulates the migration and learning process of particles in the search
space to find the optimal combination of parameters. During the iteration process of PSO,
the particle swarm gradually moves closer to the target area, searching for the optimal
solution through information exchange and collaborative behavior. Each particle optimizes
its search by tracking the best solution it has found so far and the best solution found by the
entire swarm. The PSO algorithm is simple to implement and does not rely on the gradient
information of the objective function, making it suitable for various types of optimization
problems. Figure 11 shows the flowchart of the PSO algorithm:

Sensors 2023, 23, 7759 17 of 27

Sensors 2023, 23, x FOR PEER REVIEW 16 of 26

The basis functions in NURBSs [35] are described as Equations (4) and (5):

()
()

(),
00 ,

1
n

i p in
i p

i
iii

C N P
N

w
w

ξ ξ
ξ ==

=

 (4)

()

() () ()

1
,0

, , 1 1, 1
1 1

1 if
0

otherwise
i i

i

i p ii
i p i p i p

i p i i p i

N

N N N

ξ ξ ξ
ξ

ξ ξξ ξξ ξ ξ
ξ ξ ξ ξ

+

+
− + −

+ + + +

≤ ≤
=

−−= +
− −

 (5)

In these equations, p represents the dimension of the spline. ξ denotes the node
value. (), 1i pN ξ− represents the i -th basis function. iP corresponds to the control points,
while iw denotes the weight values. The weight values determine the degree of control
that the control points have on the curve.

3.3.2. Particle Swarm Optimization Algorithm
The PSO algorithm is a multi-parameter optimization technique based on swarm in-

telligence. It draws inspiration from artificial life and evolutionary computation theories.
The PSO algorithm simulates the migration and learning process of particles in the search
space to find the optimal combination of parameters. During the iteration process of PSO,
the particle swarm gradually moves closer to the target area, searching for the optimal
solution through information exchange and collaborative behavior. Each particle opti-
mizes its search by tracking the best solution it has found so far and the best solution
found by the entire swarm. The PSO algorithm is simple to implement and does not rely
on the gradient information of the objective function, making it suitable for various types
of optimization problems. Figure 11 shows the flowchart of the PSO algorithm:

Figure 11. The flowchart of the PSO algorithm.

Figure 11. The flowchart of the PSO algorithm.

3.3.3. PSO Combined with Quintic NURBSs to Optimize the Robotic Arm Trajectory

The optimization approach is as follows:
(1) Introducing constraint conditions: In practical applications, a robotic arm needs

to satisfy a series of constraint conditions, such as collision avoidance, maximum joint
acceleration limits, and maximum velocity limits. By incorporating these constraint condi-
tions into the optimization of quintic NURBSs, the resulting trajectory can better adhere to
real-world application requirements.

(2) Number of control points: In quintic NURBSs, the more control points used, the
more accurately the curve can match the target shape. However, this can also lead to
overfitting and increased complexity of the curve. Therefore, a balance needs to be struck
in selecting the number of control points.

(3) Adjustment of weight values: In quintic NURBSs, each control point contributes to
the shape of the curve, and the extent of this influence is determined by the weight value
assigned to that control point. Optimizing the weight values ensures a more reasonable
and balanced contribution of control points toward the desired trajectory.

To determine the appropriate number of control points and weight values that satisfy
the external constraints of the robotic arm and obtain an optimal robotic arm trajectory with
a minimized distance, the PSO is employed as a multi-objective parameter optimization
algorithm. It utilizes the PSO in conjunction with the RRT*Smart-AD algorithm to generate
efficient paths (discrete points) and search for the optimal solutions of the two sets of values
for the quintic NURBSs, thereby obtaining a distance-minimized path that satisfies the
motion constraints of the robotic arm.

Due to the limited constraints of maximum velocity and acceleration in the robotic
arm used in this study, only the first-derivative velocity curve and second-derivative
acceleration curve of the quintic NURBSs were obtained via differentiation. The set of first-
derivative velocity values is denoted as C1(ξ), and the set of second-derivative acceleration
values is denoted as C2(ξ). The maximum acceleration limit for each joint is denoted as am,
and the maximum velocity limit is denoted as vm. The joint distance of the path C(ξ) is
obtained to form S(C(ξ)). The Q value is constructed, and when the points in C(ξ) fail the
collision detection or when the maximum values of the velocity set C1(ξ) and acceleration

Sensors 2023, 23, 7759 18 of 27

set C2(ξ) exceed the limits of the robotic arm itself, Q is assigned a very high value. The
fitness function of the PSO is given as Equation (6):

F(x) = S(C(ξ)) + Q

Q =

{
sys.maxsize, i f max

(
C1(ξ)

)
> vm or max

(
C2(ξ)

)
> am or Path_invalid

0, otherwise

(6)

The maximum value sys.maxsize mentioned in the equation is the predefined maxi-
mum value in Python.

The quintic NURBSs curve is employed as a representation of the motion trajectory.
It generates high-order continuous curves that comply with the constraints of the robotic
arm, making it suitable for arm planning. The PSO algorithm is utilized to optimize the
parameter search process, with the aim of finding the optimal combination of parameters
and achieving desirable motion effects. By combining these two methods, an effective and
continuous fifth-order motion trajectory is obtained, enabling smoother and more stable
arm movements.

3.4. Flowchart of the RRT*Smart-AD Algorithm

Figure 12 shows the flowchart of the RRT*Smart-AD algorithm:

Sensors 2023, 23, x FOR PEER REVIEW 18 of 26

Figure 12. RRT*Smart-AD algorithm flow chart.

The process of RRT*Smart-AD is outlined in Algorithm 2.

Algorithm 2 init= (V,E) (Z)←T RRT*Smart - AD
()

()
()

()

init

rand beacons

rand

1

8

 InitializeTree
2 InsertNode(, Z ,)

4 i n % b = 0 :
5 Z Sample(i,Z)
6
7 Z A*_Sampling_functi

3 i in range N :

on m i

φ
←
←

−
←

←

 Τ
 T T

f
 if

 else

or

 ，

() ()
()

nearest rand

new new new nearest r

n

anad

nea

ew

ne

n res

ar new

nin ear newt

11 Near(, , V)
12 Chooseparent(, , ,

 Z Nearest(, Z):
9 X , U Steer Z , Z

10 ObstaclefreeX Z

Z Z
Z Z Z Z

←
←

←
←

T

T
if

T

，

：

()

() ()

new

min new

near new

init goal

)
13 InsertNode(, ,)
14 , Z , Z
15 InitialPathFound:
16 n = i

17 ,directcost PathOptimization Z , Z

18 directcos

Rewire

X
Z Z←

←

←

 T T
 T T
 if

 T T

 if

，

()
()

new old

beacons init goal

init goal

t < directcost
19 Z PathOptimization(, ,);

20 < F

z

l

2

en N :
21 TreeFineBranchNodeRemoval

2 path ExtractPath(, ,)

23 Initiali

Z Z

Z Z

←

←
←

 T

 if T
 T T
 T

()

init goal

init goal

eRobotic_arm arm1 arm2
24 while Path_detection (path)
25 R :
26 path Path_repair(, ,)

27 :
28 path Path_regrowth(, ,)

2

 and r r r i

Z

N P D r
Z Z

Z

≤

←

≤
←

 if
 T

 else
 T

，

：

9 path PSO_NURBS(5, Path)←

Figure 12. RRT*Smart-AD algorithm flow chart.

The process of RRT*Smart-AD is outlined in Algorithm 2.

Sensors 2023, 23, 7759 19 of 27

Algorithm 2 T= (V, E) ← RRT*Smart−AD(Z init)

1 T← InitializeTree()
2 T← InsertNode(f ulllengthφ, Zinit, T)
3 for i in range(N) :
4 if (i − n) % b = 0 :
5 Zrand ← Sample(i, Z beacons

)
6 else
7 Zrand ← A ∗ _Sampling _function(m, i)
8 Znearest ← Nearest(T, Zrand) :
9 (Xnew, Unew, Tnew) ← Steer (Znearest, Zranad)
10 if ObstaclefreeX(Znew) :
11 Znear ← Near(T, Znew, |V|)
12 Znin ← Chooseparent (Znear, Znearest, Znew, Xnew)
13 T← InsertNode(Zmin, Znew, T)
14 T← Rewire(T, Znear, Znew)
15 if InitialPathFound :
16 n = i

17 (T, directcost)← PathOptimization
(

T, Zinit, Zgoal

)
18 if directcostnew< directcostold
19 Zbeacons ← PathOptimization(T, Zinit, Zgoal);
20 if len(T)< FN :
21 T← TreeFineBranchNodeRemoval(T)
22 path← ExtractPath(T, Zinit, Zgoal)

23 InitializeRobotic_arm(arm1, arm2)
24 while Path_detection (path) :
25 if Nr ≤ Pr and Dr ≤ riR :
26 path← Path_repair(T, Zinit, Zgoal)

27 else :
28 path← Path_regrowth(T, Zinit, Zgoal)

29 path← PSO_NURBS(5, Path)

4. Experimental Validation and Analysis of the RRT*Smart-AD Algorithm

Path planning algorithms for robotic arms involve sampling in a six-dimensional space
of one-dimensional joints. In contrast, two-dimensional simulations involve sampling
in two one-dimensional spaces, offering more intuitive results. To fully demonstrate
the superiority of the RRT*Smart-AD algorithm, we designed static and dynamic two-
dimensional simulations for the robotic arm. These experiments were compared against
other excellent improved RRT*-based algorithms.

To facilitate analysis and ensure practicality, we controlled other unrelated variables
to remain consistent while focusing on the algorithm itself. To mitigate the impact of
randomness in the RRT sampling algorithms, we performed 50 experiments and compared
and analyzed the results.

The computer setup consisted of a 64-bit Windows 10 Professional operating system,
an AMD Ryzen 5 2600X six-core processor, a Radeon RX580 graphics card, and a Python
programming environment.

4.1. Algorithm Performance Comparison

Setting a complex two-dimensional map (800 × 520) for validating the RRT*Smart-AD
algorithm: To verify the performance of the RRT*Smart-AD algorithm and other algorithms
in a static obstacle environment, we constructed a complex two-dimensional map with
dimensions of 800 × 520. The map is located in the first quadrant, with the start point at
[20, 20] and the goal point at [780, 500]. All algorithms shared the same parameters, with a
step size of 8 and a goal bias of 0.2. The path planning results of the Bais RRT*, RRT*FND,
RRT*Smart, informed-RRT*, FMT*, and RRT*Smart-AD algorithms are shown in Figure 13.
The sampled point paths are represented in blue, circles and rectangles are obstacles, and

Sensors 2023, 23, 7759 20 of 27

the final solution paths are marked in red, the orange ellipse circle is the dynamic sampling
area of Informed-RRT*. For a visual comparison, the average path lengths and runtimes
from 50 experiments are listed in Table 3.

Sensors 2023, 23, x FOR PEER REVIEW 19 of 26

4. Experimental Validation and Analysis of the RRT*Smart-AD Algorithm
Path planning algorithms for robotic arms involve sampling in a six-dimensional

space of one-dimensional joints. In contrast, two-dimensional simulations involve sam-
pling in two one-dimensional spaces, offering more intuitive results. To fully demonstrate
the superiority of the RRT*Smart-AD algorithm, we designed static and dynamic two-
dimensional simulations for the robotic arm. These experiments were compared against
other excellent improved RRT*-based algorithms.

To facilitate analysis and ensure practicality, we controlled other unrelated variables
to remain consistent while focusing on the algorithm itself. To mitigate the impact of ran-
domness in the RRT sampling algorithms, we performed 50 experiments and compared
and analyzed the results.

The computer setup consisted of a 64-bit Windows 10 Professional operating system,
an AMD Ryzen 5 2600X six-core processor, a Radeon RX580 graphics card, and a Python
programming environment.

4.1. Algorithm Performance Comparison
Setting a complex two-dimensional map (800 × 520) for validating the RRT*Smart-

AD algorithm: To verify the performance of the RRT*Smart-AD algorithm and other al-
gorithms in a static obstacle environment, we constructed a complex two-dimensional
map with dimensions of 800 × 520. The map is located in the first quadrant, with the start
point at [20, 20] and the goal point at [780, 500]. All algorithms shared the same parame-
ters, with a step size of 8 and a goal bias of 0.2. The path planning results of the Bais RRT*,
RRT*FND, RRT*Smart, informed-RRT*, FMT*, and RRT*Smart-AD algorithms are shown
in Figure 13. The sampled point paths are represented in blue, circles and rectangles are
obstacles, and the final solution paths are marked in red, the orange ellipse circle is the
dynamic sampling area of Informed-RRT*. For a visual comparison, the average path
lengths and runtimes from 50 experiments are listed in Table 3.

Bais RRT* RRT*FND Informed-RRT*

FMT* RRT*Smart RRT*Smart-AD

Figure 13. Comparison of static two-dimensional space algorithm path planning.

From the comparison in Figure 13, it can be observed that for all RRT*-based algo-
rithms without goal bias, when there were many obstacles in the way, algorithms such as
RRT*smart, informed-RRT*, and RRT*FND relied on random sampling and struggled to
find the optimal path. The RRT*Smart-AD algorithm, on the other hand, demonstrated a
clearer goal-directedness and reduced the number of redundant nodes. By using the dy-
namic A* heuristic function and intelligent beacon sampling strategy, the overall path cost
was further minimized, and the time required to reach the goal point was reduced.

Figure 13. Comparison of static two-dimensional space algorithm path planning.

Table 3. Experimental results of static path planning in two-dimensional space.

Algorithms Cost (mm) Time (s)

Bias RRT* 1231.48 80.97
RRT*Smart 1226.88 86.98

Inform RRT* 1201.87 91.19
RRT*FN 1282.98 46.34

FMT* 1194.27 52.84
RRT*Smart-AD 790.22 44.68

From the comparison in Figure 13, it can be observed that for all RRT*-based algo-
rithms without goal bias, when there were many obstacles in the way, algorithms such as
RRT*smart, informed-RRT*, and RRT*FND relied on random sampling and struggled to
find the optimal path. The RRT*Smart-AD algorithm, on the other hand, demonstrated
a clearer goal-directedness and reduced the number of redundant nodes. By using the
dynamic A* heuristic function and intelligent beacon sampling strategy, the overall path
cost was further minimized, and the time required to reach the goal point was reduced.
According to Table 3, in the 50 experiments conducted, the RRT*Smart-AD algorithm
exhibited a better average path length and runtime compared with the other algorithms.

The time recorded in Table 3 includes both the planning time and angle distance
cost. Compared with RRT*Smart-AD, our method had a shorter planning time and pro-
duced significantly better sampling nodes and random tree scales. Figure 14 shows the
iterative process and running time relationships of the path solution parameters for all
asymptotically optimal algorithms investigated in this study.

From Figure 14a, we found the initial path to calculate the path costs. It can be
observed that the RRT*Smart-AD algorithm quickly found an efficient path and optimized
it. The RRT*Smart-AD algorithm outperformed the other algorithms in terms of the number
of iterations, search duration, and path distance. Due to the improvement in the dynamic
A* random sequence sampling method, the RRT*Smart-AD algorithm could quickly find a
relatively optimal path within around 500 iterations.

Sensors 2023, 23, 7759 21 of 27

Sensors 2023, 23, x FOR PEER REVIEW 20 of 26

According to Table 3, in the 50 experiments conducted, the RRT*Smart-AD algorithm ex-
hibited a better average path length and runtime compared with the other algorithms.

Table 3. Experimental results of static path planning in two-dimensional space.

Algorithms Cost (mm) Time (s)
Bias RRT* 1231.48 80.97

RRT*Smart 1226.88 86.98
Inform RRT* 1201.87 91.19

RRT*FN 1282.98 46.34
FMT* 1194.27 52.84

RRT*Smart-AD 790.22 44.68

The time recorded in Table 3 includes both the planning time and angle distance cost.
Compared with RRT*Smart-AD, our method had a shorter planning time and produced
significantly better sampling nodes and random tree scales. Figure 14 shows the iterative
process and running time relationships of the path solution parameters for all asymptoti-
cally optimal algorithms investigated in this study.

From Figure 14a, we found the initial path to calculate the path costs. It can be ob-
served that the RRT*Smart-AD algorithm quickly found an efficient path and optimized
it. The RRT*Smart-AD algorithm outperformed the other algorithms in terms of the num-
ber of iterations, search duration, and path distance. Due to the improvement in the dy-
namic A* random sequence sampling method, the RRT*Smart-AD algorithm could
quickly find a relatively optimal path within around 500 iterations.

(a) (b)

Figure 14. Comparative performance analysis of each algorithm. (a) Comparison of Algorithms It-
eration-Cost. (b) Comparison of Algorithms Iteration-time.

From Figure 14b, it can be observed that the FN-based RRT*FN algorithms, which
involve node pruning, exhibited a linearly increasing trend in iteration time after a certain
number of nodes, while other algorithms showed a concave increasing trend. The dy-
namic cost-to-come coefficient in the A* evaluation function, coupled with the intelligent
beacon sampling used in the RRT*Smart-AD algorithm, further reduced the overall path
cost and facilitated faster pathfinding.

4.2. Static Simulation Experiment of the Robotic Arm
To demonstrate the efficiency of the RRT*Smart-AD algorithm, static obstacle avoid-

ance experiments were conducted using robotic arm 2 as a stationary obstacle. The robotic
arm’s joint configuration space was considered to be a six-dimensional vector, denoted as
[]1 2 3 4 5 6θ θ θ θ θ θ， ， ， ， ， . The mapping between the joint configuration space and the

Figure 14. Comparative performance analysis of each algorithm. (a) Comparison of Algorithms
Iteration-Cost. (b) Comparison of Algorithms Iteration-time.

From Figure 14b, it can be observed that the FN-based RRT*FN algorithms, which
involve node pruning, exhibited a linearly increasing trend in iteration time after a certain
number of nodes, while other algorithms showed a concave increasing trend. The dynamic
cost-to-come coefficient in the A* evaluation function, coupled with the intelligent beacon
sampling used in the RRT*Smart-AD algorithm, further reduced the overall path cost and
facilitated faster pathfinding.

4.2. Static Simulation Experiment of the Robotic Arm

To demonstrate the efficiency of the RRT*Smart-AD algorithm, static obstacle avoid-
ance experiments were conducted using robotic arm 2 as a stationary obstacle. The robotic
arm’s joint configuration space was considered to be a six-dimensional vector, denoted as
[θ1, θ2, θ3, θ4, θ5, θ6]. The mapping between the joint configuration space and the workspace
was achieved through kinematic forward and inverse solutions. The RRT*Smart-AD algo-
rithm was applied to find paths within the six joint configuration spaces.

For comparison, the RRT*Smart-AD algorithm was compared against the goal-biased
RRT* and RRT*Smart algorithm. The initial joint poses and target joint poses for robotic
arm 1 were as follows:

xstart = [−65◦,−90◦,−60◦, 0, 0, 0], xgoal = [60◦, 10◦,−10◦, 60◦, 60◦, 120◦].

For all the compared algorithms, the parameters remained consistent. The step size
was set to 3◦, and the goal bias was set to 0.18. The population size for the PSO optimization
was the number of initial path discrete points, and the number of iterations was 30. The
joint poses for the stationary robotic arm were as follows:

xStatic = [20◦, 45◦,−30◦,−60◦,−60◦,−60◦]

In the planning path process results of the robotic arm shown in Figure 15, the yellow
paths represent the sampled nodes, while the red path represents the final path. It can be ob-
served that compared with the biased RRT* and RRT*Smart algorithms, the RRT*Smart-AD
algorithm generated shorter and smoother paths. Additionally, the number of unnecessary
search nodes was reduced, leading to an increased tendency toward the goal.

Sensors 2023, 23, 7759 22 of 27

Sensors 2023, 23, x FOR PEER REVIEW 21 of 26

workspace was achieved through kinematic forward and inverse solutions. The
RRT*Smart-AD algorithm was applied to find paths within the six joint configuration
spaces.

For comparison, the RRT*Smart-AD algorithm was compared against the goal-biased
RRT* and RRT*Smart algorithm. The initial joint poses and target joint poses for robotic
arm 1 were as follows:

[]65 , 90 , 60 ,0,0,0startx = − ° − ° − ° , []60 ,10 , 10 ,60 ,60 ,120goalx = ° ° − ° ° ° ° .

For all the compared algorithms, the parameters remained consistent. The step size
was set to 3°, and the goal bias was set to 0.18. The population size for the PSO optimiza-
tion was the number of initial path discrete points, and the number of iterations was 30.
The joint poses for the stationary robotic arm were as follows:

[]Static 20 , 45 , 30 , 60 , 60 , 60x = ° ° − ° − ° − ° − °

In the planning path process results of the robotic arm shown in Figure 15, the yellow
paths represent the sampled nodes, while the red path represents the final path. It can be
observed that compared with the biased RRT* and RRT*Smart algorithms, the
RRT*Smart-AD algorithm generated shorter and smoother paths. Additionally, the num-
ber of unnecessary search nodes was reduced, leading to an increased tendency toward
the goal.

Bais RRT* RRT*Smart RRT*Smart-AD

Figure 15. Robotic arm static path planning process.

In Figure 16, during the motion process of the path generated by the RRT*Smart-AD
algorithm, there are abrupt changes in the paths of goal-biased RRT* and RRT*Smart.
However, when using the joint angles, joint angular velocities, and joint angular acceler-
ations obtained by applying the PSO combined with quintic NURBS curve fittings, the
robotic arm exhibited smooth and uninterrupted motion. According to Table 4,
RRT*Smart-AD improves search efficiency and reduces Cost.

Table 4. Comparison of static path planning results of the robotic arm.

Algorithms Bias RRT* RRT*Smart RRT*Smart-AD
Cost (°) 1466.59 1230.75 1177.95
Time (s) 510.38 530.39 186.16

Figure 15. Robotic arm static path planning process.

In Figure 16, during the motion process of the path generated by the RRT*Smart-AD
algorithm, there are abrupt changes in the paths of goal-biased RRT* and RRT*Smart. How-
ever, when using the joint angles, joint angular velocities, and joint angular accelerations
obtained by applying the PSO combined with quintic NURBS curve fittings, the robotic
arm exhibited smooth and uninterrupted motion. According to Table 4, RRT*Smart-AD
improves search efficiency and reduces Cost.

Table 4. Comparison of static path planning results of the robotic arm.

Algorithms Bias RRT* RRT*Smart RRT*Smart-AD

Cost (◦) 1466.59 1230.75 1177.95
Time (s) 510.38 530.39 186.16

4.3. Dual-Robotic-Arm Collaborative Simulation Experiment

To demonstrate the reliability of this method, a dual-robot collaborative experiment
was designed. The initial path was generated using the RRT*Smart-AD algorithm. During
the tracking process, a dynamic region-based collision detection method was employed.
Specifically, as each robot arm moved to an interpolated point, the model was used to
predict and assess whether there would be a collision between the interpolated points of
the two robot arms within a certain future time range. If a collision was predicted, the
RRT*Smart-AD algorithm was used to repair or regrow the path during the robot arm
operation to generate a valid path.

The initial joint poses and target joint poses of the main robot arm 1 were as follows:

xstart = [−33.0◦ − 43.5◦ 10.0◦ 0.0◦ 0.0◦ − 40.0◦], xgoal = [60.0◦, 59.0◦ ,50.0◦, 60.0◦, 60.0◦, 60.0◦].

The parameters of all the compared algorithms were kept the same, with a step size of
3◦ and an objective bias of 0.2, and the PSO algorithm performed the optimization with
a population size of the number of discrete path nodes, with a number of iterations of 30,
and from the joint position of the robotic arm 2 as follows:

xstart = [−33.0◦, 59.0◦, 10.0◦, 0.0◦, 0.0◦, 0.0◦], xgoal = [55.0◦, 59.0◦, 40.0◦, 0.0◦, 0.0◦, 0.0◦].

During the algorithm planning process, as shown in Figure 17, dual-arm cooperation
interfered with the initially planned path. In Figure 17, two robotic arms are engaged in
collaborative planning. The conveyor belt in the middle serves as an obstacle. The yellow
path represents the sampled path, the green line segments indicate the dynamic detection
area, and the purple path represents the motion trajectory. Both RRT* and RRT*Smart
abandoned all path nodes after the collision point in the original path and planned to
directly reach the goal. Because these two plans were based on RRT, they were not only
time-consuming but also tortuous. The search algorithm used in the path repair and

Sensors 2023, 23, 7759 23 of 27

regeneration process of RRT*Smart-AD could quickly generate valid new paths, making the
path more stable and sometimes more effective. Compared with RRT* and RRT*Smart, the
generated sample points occupied more space. According to Table 5, across 50 simulation
experiments, RRT*Smart-AD demonstrated better performance in terms of time and path
cost. The generated initial discrete point paths were smoothed using quintic NURBSs, and
the joint PSO performed robotic arm optimization trajectories on the generated quintic
NURBSs. Dynamic-area path repair and regrowth were used to be more adaptive to
dynamic obstacle environments.

Sensors 2023, 23, x FOR PEER REVIEW 22 of 26

Bais RRT* RRT*Smart RRT*Smart-AD

(a)

Bais RRT* RRT*Smart RRT*Smart-AD

(b)

Bais RRT* RRT*Smart RRT*Smart-AD

(c)

Figure 16. Comparison of joint angle, joint angular velocity, and joint angular acceleration. (a) Com-
parison of joint angle; (b) Joint angular velocity comparison; (c) Comparison of joint angular accel-
eration.

4.3. Dual-Robotic-Arm Collaborative Simulation Experiment
To demonstrate the reliability of this method, a dual-robot collaborative experiment

was designed. The initial path was generated using the RRT*Smart-AD algorithm. During
the tracking process, a dynamic region-based collision detection method was employed.
Specifically, as each robot arm moved to an interpolated point, the model was used to
predict and assess whether there would be a collision between the interpolated points of
the two robot arms within a certain future time range. If a collision was predicted, the
RRT*Smart-AD algorithm was used to repair or regrow the path during the robot arm
operation to generate a valid path.

The initial joint poses and target joint poses of the main robot arm 1 were as follows:

[]33.0 43.5 10.0 0.0 0.0 40.0startx °− − ° −= ° ° ° ° , []60.0 ,59.0 ,50.0 , 60.0 , 60.0 , 60.0goalx = ° ° ° ° ° ° .

The parameters of all the compared algorithms were kept the same, with a step size
of 3° and an objective bias of 0.2, and the PSO algorithm performed the optimization with

Figure 16. Comparison of joint angle, joint angular velocity, and joint angular acceleration. (a) Compari-
son of joint angle; (b) Joint angular velocity comparison; (c) Comparison of joint angular acceleration.

Sensors 2023, 23, 7759 24 of 27

Sensors 2023, 23, x FOR PEER REVIEW 23 of 26

a population size of the number of discrete path nodes, with a number of iterations of 30,
and from the joint position of the robotic arm 2 as follows:

[]33.0 59.0 10.0 0.0 0.0 0.0, , , , ,startx ° ° ° ° °−= ° , []55.0 59.0 40.0 0.0 0. ., , , 0 0, , 0goalx = ° ° ° ° ° ° .

During the algorithm planning process, as shown in Figure 17, dual-arm cooperation
interfered with the initially planned path. In Figure 17, two robotic arms are engaged in
collaborative planning. The conveyor belt in the middle serves as an obstacle. The yellow
path represents the sampled path, the green line segments indicate the dynamic detection
area, and the purple path represents the motion trajectory. Both RRT* and RRT*Smart
abandoned all path nodes after the collision point in the original path and planned to
directly reach the goal. Because these two plans were based on RRT, they were not only
time-consuming but also tortuous. The search algorithm used in the path repair and re-
generation process of RRT*Smart-AD could quickly generate valid new paths, making the
path more stable and sometimes more effective. Compared with RRT* and RRT*Smart,
the generated sample points occupied more space. According to Table 5, across 50 simu-
lation experiments, RRT*Smart-AD demonstrated better performance in terms of time and
path cost. The generated initial discrete point paths were smoothed using quintic
NURBSs, and the joint PSO performed robotic arm optimization trajectories on the gener-
ated quintic NURBSs. Dynamic-area path repair and regrowth were used to be more adap-
tive to dynamic obstacle environments.

(a)

(b)

(c)

Figure 17. Comparison of dynamic path planning algorithms for robotic arms. (a) Bais RRT*.
(b) RRT*Smart. (c) RRT*Smart-AD.

Table 5. Comparison of path planning results of the robotic arm.

Algorithms Bias RRT* RRT*Smart RRT*Smart-AD

Cost (◦) 1582.66 1534.37 1272.19
Time (s) 669.64 761.18 203.61

The experimental data in Figure 17 was used for a dual robotic arm prototype
demonstration, which showed the accuracy and effectiveness of the algorithm, as shown
in Figure 18.

Sensors 2023, 23, 7759 25 of 27

Sensors 2023, 23, x FOR PEER REVIEW 24 of 26

Figure 17. Comparison of dynamic path planning algorithms for robotic arms. (a) Bais RRT*. (b)
RRT*Smart. (c) RRT*Smart-AD.

Table 5. Comparison of path planning results of the robotic arm.

Algorithms Bias RRT* RRT*Smart RRT*Smart-AD
Cost (°) 1582.66 1534.37 1272.19
Time (s) 669.64 761.18 203.61

The experimental data in Figure 17 was used for a dual robotic arm prototype demon-
stration, which showed the accuracy and effectiveness of the algorithm, as shown in Fig-
ure 18.

Figure 18. Dual-robotic-arm physics demonstration experiment.

5. Conclusions
The proposed RRT*Smart-AD motion planner aims to address the cooperative dy-

namic motion planning problem of dual manipulator arms. This method was designed
for six-DOF dual-arms cooperation in complex scenarios, to obtain cooperative motion
trajectories that adhere to joint ranges, differential constraints, and physical collision con-
straints. The effectiveness of the algorithm was validated through simulation comparisons
and real robot experiments. These experiments demonstrated that the robotic arm could
effectively navigate static global obstacles and execute dynamic dual-robot cooperative
trajectory planning, showcasing a motion process characterized by exceptional smooth-
ness, intelligence, and flexibility.

Previous research failed to address the cooperative motion planning of dual manip-
ulator arms in terms of sampling methods, path optimization, and dynamic adaptability.
The proposed RRT*Smart-AD motion planner addresses these issues. In the motion plan-
ner, to enhance efficiency, a dynamic A* cost function sampling method is introduced in
combination with an intelligent beacon sampling method. Compared with traditional
methods, like random sampling and goal-biased sampling in RRT, this approach signifi-
cantly accelerates the discovery of effective paths, thereby improving the exploration
speed and efficiency. Additionally, dynamic regional path repair and regrowth strategies
are proposed to enhance adaptability in dynamic scenarios. These strategies prevent the
discarding of original path nodes and enable the rapid generation of new paths within
dynamic environments. PSO optimizes the motion trajectory by optimizing the parame-
ters of the quintuple NURBSs for path-smoothing interpolation to avoid collision prob-
lems. The use of higher-order spline functions ensures the continuity of acceleration and
bumps during the smoothing process.

However, there are certain limitations to this approach. First, in scenarios involving
dual manipulators working together, the manipulators are categorized as primary and
secondary. Although the obtained results generate optimal trajectories for the primary
manipulator, the motion trajectory of the secondary arm is catered to the motion trajectory
of the primary arm by sacrificing the optimality of the secondary arm. In future research,
it would be worthwhile to explore strategies for achieving equal optimization of both ma-
nipulators, such as equipartition and mutual avoidance in dual manipulator collabora-
tion. Second, the use of maximum curvature could be further investigated in a wider range

Figure 18. Dual-robotic-arm physics demonstration experiment.

5. Conclusions

The proposed RRT*Smart-AD motion planner aims to address the cooperative dy-
namic motion planning problem of dual manipulator arms. This method was designed
for six-DOF dual-arms cooperation in complex scenarios, to obtain cooperative motion
trajectories that adhere to joint ranges, differential constraints, and physical collision con-
straints. The effectiveness of the algorithm was validated through simulation comparisons
and real robot experiments. These experiments demonstrated that the robotic arm could
effectively navigate static global obstacles and execute dynamic dual-robot cooperative
trajectory planning, showcasing a motion process characterized by exceptional smoothness,
intelligence, and flexibility.

Previous research failed to address the cooperative motion planning of dual manipula-
tor arms in terms of sampling methods, path optimization, and dynamic adaptability. The
proposed RRT*Smart-AD motion planner addresses these issues. In the motion planner, to
enhance efficiency, a dynamic A* cost function sampling method is introduced in combina-
tion with an intelligent beacon sampling method. Compared with traditional methods, like
random sampling and goal-biased sampling in RRT, this approach significantly accelerates
the discovery of effective paths, thereby improving the exploration speed and efficiency.
Additionally, dynamic regional path repair and regrowth strategies are proposed to enhance
adaptability in dynamic scenarios. These strategies prevent the discarding of original path
nodes and enable the rapid generation of new paths within dynamic environments. PSO
optimizes the motion trajectory by optimizing the parameters of the quintuple NURBSs for
path-smoothing interpolation to avoid collision problems. The use of higher-order spline
functions ensures the continuity of acceleration and bumps during the smoothing process.

However, there are certain limitations to this approach. First, in scenarios involving
dual manipulators working together, the manipulators are categorized as primary and
secondary. Although the obtained results generate optimal trajectories for the primary
manipulator, the motion trajectory of the secondary arm is catered to the motion trajectory
of the primary arm by sacrificing the optimality of the secondary arm. In future research, it
would be worthwhile to explore strategies for achieving equal optimization of both ma-
nipulators, such as equipartition and mutual avoidance in dual manipulator collaboration.
Second, the use of maximum curvature could be further investigated in a wider range of
trajectory optimization applications to ensure the generality of PSO in conjunction with the
quintic NURBSs optimization method.

Author Contributions: Conceptualization, H.L. and G.L.; Methodology, H.L.; Software, H.L. and
F.Z.; Validation, H.L.; Formal analysis, H.L.; Investigation, T.C. All authors have read and agreed to
the published version of the manuscript.

Funding: This research was funded by the Natural Science Foundation of Hunan Province (grant
number 2021JJ30211).

Data Availability Statement: Data sharing not applicable. No new data were created or analyzed in
this study. Data sharing is not applicable to this article.

Conflicts of Interest: The authors declare no conflict of interest.

Sensors 2023, 23, 7759 26 of 27

References
1. Wang, S.; Cao, Y.; Zheng, X. A learning system for motion planning of free-float dual-arm space manipulator towards non-

cooperative object. Aerosp. Sci. Technol. 2022, 131, 107980. [CrossRef]
2. Xu, W.; Lu, S. Research on path planning of space robotic arm based on Sarsa (λ) reinforcement learning. J. Astronaut. 2019, 40,

435–443.
3. Kim, H.; Ohmura, Y.; Kuniyoshi, Y. Transformer-based deep imitation learning for dual-arm robot manipulation. In Proceedings

of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Prague, Czech Republic, 27 September–1
October 2021; pp. 8965–8972.

4. Nonoyama, K.; Liu, Z.; Fujiwara, T.; Alam, M.; Nishi, T. Energy-efficient robot configuration and motion planning using genetic
algorithm and particle swarm optimization. Energies 2022, 15, 2074. [CrossRef]

5. Ekrem, Ö.; Aksoy, B. Trajectory planning for a 6-axis robotic arm with particle swarm optimization algorithm. Eng. Appl. Artif.
Intell. 2023, 122, 106099. [CrossRef]

6. Huadong, Z.; Chaofan, L.; Nan, J. A path planning method of robot arm obstacle avoidance based on dynamic recursive ant
colony algorithm. In Proceedings of the 2019 IEEE International Conference on Power, Intelligent Computing and Systems
(ICPICS), Shenyang, China, 12–14 July 2019; pp. 549–552.

7. Li, F.; Huang, Z.; Xu, L. Path planning of 6-DOF venipuncture robot arm based on improved a-star and collision detection
algorithms. In Proceedings of the 2019 IEEE International Conference on Robotics and Biomimetics (ROBIO), Dali, China, 6–8
December 2019; pp. 2971–2976.

8. Byrne, S.; Naeem, W.; Ferguson, S. Improved APF strategies for dual-arm local motion planning. Trans. Inst. Meas. Control. 2015,
37, 73–90. [CrossRef]

9. Kim, D.H.; Lim, S.J.; Lee, D.H.; Lee, J.Y.; Han, C.S. A RRT-based motion planning of dual-arm robot for (Dis) assembly tasks. In
Proceedings of the 2013 44th International Symposium on Robotics (ISR), Seoul, Republic of Korea, 24–26 October 2013; pp. 1–6.

10. Wei, K.; Ren, B. A method of dynamic path planning for robotic manipulator autonomous obstacle avoidance based on an
improved RRT algorithm. Sensors 2018, 18, 571. [CrossRef] [PubMed]

11. Li, Q.; Li, N.; Miao, Z.; Sun, T.; He, C. Path Planning of Manipulator Based on Improved Informed-RRT* Algorithm. In Proceedings
of the Intelligent Equipment, Robots, and Vehicles: 7th International Conference on Life System Modeling and Simulation,
LSMS 2021 and 7th International Conference on Intelligent Computing for Sustainable Energy and Environment, ICSEE 2021,
Hangzhou, China, 22–24 October 2021; Proceedings, Part III 7. Springer: Singapore, 2021; pp. 501–510.

12. Meng, B.H.; Godage, I.S.; Kanj, I. RRT*-based path planning for continuum arms. IEEE Robot. Autom. Lett. 2022, 7, 6830–6837.
[CrossRef] [PubMed]

13. Qi, J.; Yuan, Q.; Wang, C.; Du, X.; Du, F.; Ren, A. Path planning and collision avoidance based on the RRT* FN framework for a
robotic manipulator in various scenarios. Complex Intell. Syst. 2023, 1–20. [CrossRef]

14. Yi, J.; Yuan, Q.; Sun, R.; Bai, H. Path planning of a manipulator based on an improved P_RRT* algorithm. Complex Intell. Systems
2022, 8, 2227–2245. [CrossRef] [PubMed]

15. Naderi, K.; Rajamäki, J.; Hämäläinen, P. RT-RRT*: A real-time path planning algorithm based on RRT. In Proceedings of the ACM
SIGGRAPH Conference on Motion in Games, Paris, France, 16–18 November 2015; pp. 113–118.

16. Adiyatov, O.; Varol, H.A. A novel RRT-based algorithm for motion planning in Dynamic environments. In Proceedings of the 2017
IEEE International Conference on Mechatronics and Automation (ICMA), Takamatsu, Japan, 6–9 August 2017; pp. 1416–1421.

17. Shi, W.; Wang, K.; Zhao, C.; Tian, M. Obstacle avoidance path planning for the dual-arm robot based on an improved RRT
algorithm. Appl. Sci. 2022, 12, 4087. [CrossRef]

18. Li, Z.; Ma, H.; Zhang, X.; Fei, Q. Path planning of the dual-arm robot based on VT-RRT algorithm. In Proceedings of the 2019
Chinese Control Conference (CCC), Guangzhou, China, 27–30 July 2019; pp. 4359–4364.

19. Yu, M.; Luo, J.; Wang, M.; Gao, D. Spline-RRT*: Coordinated motion planning of dual-arm space robot. IFAC Pap. OnLine 2020, 53,
9820–9825. [CrossRef]

20. Zhang, J.; Wang, H.; Guo, Y.; Zhao, S. Research on Dual-Arm Robot Assembly Path Planning Based on Improved RRT* Algorithm.
In Proceedings of the Chinese Intelligent Systems Conference; Springer Nature Singapore: Singapore, 2022; pp. 786–798.

21. Shao, J.; Gan, Y.; Dai, X. Autonomous Path Planning and Realization for Dual Robot Cooperation Based on ROS Framework. In
Proceedings of the 2023 International Conference on Advanced Robotics and Mechatronics (ICARM), Sanya, China, 8–10 July
2023; pp. 1065–1070.

22. Chen, X.; You, X.; Jiang, J.; Ye, J.; Wu, H. Trajectory planning of dual-robot cooperative assembly. Machines 2022, 10, 689. [CrossRef]
23. Wang, M.Y.; Li, J. Research on trajectory planning algorithm for six-degree-of-freedom industrial robots. Precis. Manuf. Autom.

2017, 4, 47–49+62.
24. Cao, Z.Y.; Wang, H.; Wu, W.R. Time-optimal and pulsation-optimal trajectory planning for slurry spraying manipulator. J. Cent.

South Univ. 2013, 44, 114–121.
25. Cui, H. Polynomial interpolation method for motion planning of free-floating space robots. J. Beijing Inf. Sci. Technol. Univ. 2019,

34, 8.
26. Guo, T.Y.; Li, F.; Huang, K.; Zhang, F.Z.; Feng, Q. Application of optimal algorithm on trajectory planning of mechanical arm

based on B-Spline curve. Appl. Mech. Mater. 2013, 376, 253–256. [CrossRef]

https://doi.org/10.1016/j.ast.2022.107980
https://doi.org/10.3390/en15062074
https://doi.org/10.1016/j.engappai.2023.106099
https://doi.org/10.1177/0142331214532002
https://doi.org/10.3390/s18020571
https://www.ncbi.nlm.nih.gov/pubmed/29438320
https://doi.org/10.1109/LRA.2022.3174257
https://www.ncbi.nlm.nih.gov/pubmed/36532612
https://doi.org/10.1007/s40747-023-01131-2
https://doi.org/10.1007/s40747-021-00628-y
https://www.ncbi.nlm.nih.gov/pubmed/35079563
https://doi.org/10.3390/app12084087
https://doi.org/10.1016/j.ifacol.2020.12.2685
https://doi.org/10.3390/machines10080689
https://doi.org/10.4028/www.scientific.net/AMM.376.253

Sensors 2023, 23, 7759 27 of 27

27. Wang, Z.; Li, Y.; Sun, P.; Luo, Y.; Chen, B.; Zhu, W. A multi-objective approach for the trajectory planning of a 7-DOF serial-parallel
hybrid humanoid arm. Mech. Mach. Theory 2021, 165, 104423. [CrossRef]

28. Noreen, I.; Khan, A.; Habib, Z. A comparison of RRT, RRT*, and RRT*-smart path planning algorithms. Int. J. Comput. Sci. Netw.
Secur. IJCSNS 2016, 16, 20.

29. Zeng, C. Research on Space Robotic Arm Motion and Mission Planning Methods for On-Orbit Services. Ph.D. Thesis, Dalian
University of Technology, Dalian, China, 2013.

30. Pan, J.; Chitta, S.; Manocha, D. FCL: A general purpose library for collision and proximity queries. In Proceedings of the 2012
IEEE International Conference on Robotics and Automation, Saint Paul, MN, USA, 14–18 May 2012; pp. 3859–3866.

31. Adiyatov, O.; Varol, H.A. Rapidly-exploring random tree based memory efficient motion planning. In Proceedings of the 2013
IEEE International Conference on Mechatronics and Automation; 2013; pp. 354–359.

32. Bruce, J.; Veloso, M. Real-time randomized path planning for robot navigation. In Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems, Lausanne, Switzerland, 30 September–4 October 2002; Volume 3, pp. 2383–2388.

33. Wu, G.; Zhao, W.; Zhang, X. Optimum time-energy-jerk trajectory planning for serial robotic manipulators by reparameterized
quintic NURBS curves. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2021, 235, 4382–4393. [CrossRef]

34. Jiang, M.; Yang, Z.; Li, Y.; Sun, Z.; Zi, B. Smooth Trajectory Planning for a Cable-Driven Waist Rehabilitation Robot Using Quintic
NURBS. In Proceedings of the Intelligent Robotics and Applications: 14th International Conference (ICIRA 2021), Yantai, China,
22–25 October 2021; Proceedings, Part I 14. Springer International Publishing: Cham, Switzerland, 2021; pp. 555–563.

35. Piegl, L.; Tiller, W. The NURBS Book; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.mechmachtheory.2021.104423
https://doi.org/10.1177/0954406220969734

	Introduction
	Robotic Arm Motion Model, Collision Detection Method, and RRT*Smart
	Dual Manipulator Arms Experimental Platform
	The Obstacle Detection Methods
	The RRT*Smart Algorithm

	RRT*Smart-AD Algorithm
	Improvements in Sampling Methods
	Dynamic A* Evaluation Function Sampling
	Maximum Number of Fixed Nodes via Node Pruning

	Dynamic Motion Planning Strategy
	Path Detection in Dynamic Regions
	Path Repair
	Regrowth

	PSO Combined with Quintic-NURBS-Optimized Trajectories
	The Quintic NURBS Principle
	Particle Swarm Optimization Algorithm
	PSO Combined with Quintic NURBSs to Optimize the Robotic Arm Trajectory

	Flowchart of the RRT*Smart-AD Algorithm

	Experimental Validation and Analysis of the RRT*Smart-AD Algorithm
	Algorithm Performance Comparison
	Static Simulation Experiment of the Robotic Arm
	Dual-Robotic-Arm Collaborative Simulation Experiment

	Conclusions
	References

