
Citation: Schmidt, C.; Volz, F.;

Stojanovic, L.; Sutschet, G. Increasing

Interoperability between Digital Twin

Standards and Specifications:

Transformation of DTDL to AAS.

Sensors 2023, 23, 7742.

https://doi.org/10.3390/s23187742

Academic Editor: Yi Qin

Received: 28 July 2023

Revised: 5 September 2023

Accepted: 5 September 2023

Published: 7 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Increasing Interoperability between Digital Twin Standards
and Specifications: Transformation of DTDL to AAS
Carlos Schmidt, Friedrich Volz *, Ljiljana Stojanovic and Gerhard Sutschet

Fraunhofer IOSB, 76131 Karlsruhe, Germany; carlos.schmidt@iosb.fraunhofer.de (C.S.);
ljiljana.stojanovic@iosb.fraunhofer.de (L.S.); gerhard.sutschet@iosb.fraunhofer.de (G.S.)
* Correspondence: friedrich.volz@iosb.fraunhofer.de

Abstract: Although standards and specifications for digital twins aim to create interoperability in
Industry 4.0, each standard has its own goals, focuses and representations for digital twins. This paper
examines an approach to increasing interoperability between established digital twin specifications by
transformation. Accordingly, several specifications are presented and requirements for transformation
are examined. Following the feasibility analysis, a mapping between the Digital Twin Definition
Language (DTDL) and Asset Administration Shell (AAS) was created. To examine the feasibility
of this approach, the transformation was implemented and tested for a physical asset. This paper
demonstrates that a generic mapping between DTDL and AAS can be applied for transformation in
use cases where DTDL models are provided while AAS is required.

Keywords: Industry 4.0; interoperability; digital twin; asset administration shell; semantic transformation;
standards

1. Introduction

In recent years, several standards and specifications for digital twins have been de-
veloped by various organizations and companies with differing goals, focuses and rep-
resentations for digital twins. Consequently, these existing standards are incompatible
with each other, i.e., they do not have the same (i) syntax, (ii) mechanisms for representing
properties and behavior, (iii) communication mechanisms and languages or (iv) semantics
of properties and behavior. Whilst interoperability of digital twins is one essential feature
of digital twin technology, this is only possible if compatible communication mechanisms
are used and if the semantics of parameters and behavior are clear to all participating
digital twins.

Interoperability mechanisms among digital twins are typically proprietary within the
standards. However, as it cannot be expected that in the future there will be only one
dominant international standard used to implement digital twins, interoperability between
digital twins implemented using different standards will play a major role in digital twin
technology in the future.

There are several ways to accomplish interoperability among digital twins within
different standards. Firstly, it is important to realize a clear semantics of properties and
behavior of the digital twins which can be accomplished either by using the representa-
tion for semantics of one of the specifications/standards involved or using a third-party
representation, e.g., a common ontology. Secondly, a common communication mechanism
must be implemented which can either be achieved by using the already existing mecha-
nism of one standard or again using a third-party mechanism. The latter typically is the
costliest option, given that the implementations must be developed for each participating
specification/standard.

A simple way to handle these interoperability issues is to transform different stan-
dards into each other wherever possible. Various approaches to transformation have been
elaborated in the literature; for instance, in addition to a general transformation approach,

Sensors 2023, 23, 7742. https://doi.org/10.3390/s23187742 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23187742
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://doi.org/10.3390/s23187742
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23187742?type=check_update&version=2

Sensors 2023, 23, 7742 2 of 21

there are also specific transformations of two standards and Asset Administration Shell
(AAS) [1–4].

The main contributions of this paper are two-fold: First, the models of current relevant
standards and specifications are structurally examined and transformation possibilities into
the AAS model are investigated. The goal is to enable the transformation of two previously
incompatible standards through the definition of a transformation concept. The next step
is the development of a suitable software implementation of this concept by means of a
bidirectional mapping regarding the model elements of a standard/specification to the
respective counterpart in the AAS.

This paper is organized as follows: In Section 2, a list of requirements is presented
as well as an example, which is used for the analysis. These requirements are then used
in Section 3 to analyze five frequently used standards and specifications for digital twins.
Section 4 provides a feasibility analysis of a transformation of the Digital Twins Definition
Language (DTDL) into AAS. The metamodel elements of the DTDL are classified in terms
of their similarity with the AAS elements in Section 5. Finally, Section 6 presents an
implementation for the transformation of the DTDL into AAS.

2. Approach

In this section, the requirements for the analysis of the different digital twin specifica-
tions/standards are presented. Since the primary concern is the substitutability of standards
and specifications with the aim of transforming the models between them, and not with
their concrete implementation, aspects such as communication protocols or security aspects
of implementations are not considered.

The following general characteristics of the standards and specifications are analyzed
for an overview of the standards:

• Version: specifies the version that is analyzed in this paper;
• Context: promotes understanding of the design decisions within the standard or

specification;
• Implementations: describes relevance and widespread use of a standard or a specification;
• Serializability: describes information about the portability of models.

For the next step of analyzing the metamodel of the standards and specifications, the
following points of analysis are used:

• Structure of the metamodel: names the core elements and their functionality to provide
some basic understanding;

• Representation of data: considers the complexity of the constructs, e.g., if complex
constructs are possible or only simple datatypes;

• Semantic annotation of data: considers interpretation of data by humans and ma-
chine [5];

• Identification of model elements: considers which elements can be uniquely identified
and how this is carried out.

Following the analysis of the metamodels, the candidates were tested with respect to
the requirements. Moyne et al. [6] derived a list of requirements from an analysis of DT
definitions, some of which are also relevant for standardization and specification. These
requirements are commonly cited in the domain of DT design principles and frameworks.
Table 1 lists some of the relevant comparison requirements that were used to classify and
compare the standards and specifications.

To perform the analysis, a common example is used. It is modeled with each specifi-
cation and the results are presented in a serialized form. The example is a fictitious asset,
namely a 3D printer. In Figure 1, a schematic representation of the 3D printer is shown.
The 3D printer (also “asset”) is equipped with some functionalities and properties, which
are to be represented by a digital twin. Firstly, manufacturer-specific information about the
asset is stored, such as the dimensions of the 3D printer or a manufacturer’s specification.
The asset has two sensors (cf. 4 and 5 in Figure 1):

Sensors 2023, 23, 7742 3 of 21

• A proximity sensor, which determines the distance between the print head and the
surface;

• A temperature sensor, which is used to measure the temperature of the print head.

Table 1. Extract of requirements for modeling digital twins [6].

Requirements

1. Digital twins use models to represent aspects of their assets in a structured way.
2. The digital twin must support the entire product lifecycle of its asset, from conception,

through design and development, to its deployment and maintenance.
3. Portability and reusability, as well as scalability, must be provided.
4. Instances of digital twins must be able to interact.
5. Integration/composition of digital twins (digital sub-twins) must be supported.
6. Interchangeability of digital twin instances of the same model must be supported. (An

instance is a digital twin of the model already in use).
7. A standardized definition of the structure and basic capabilities (building blocks) of a digital

twin must be provided.
8. A digital twin must be accompanied by a standard definition of its term and a taxonomy.

Sensors 2023, 23, x FOR PEER REVIEW 3 of 21

Table 1. Extract of requirements for modeling digital twins [6].

Requirements
1. Digital twins use models to represent aspects of their assets in a structured way.
2. The digital twin must support the entire product lifecycle of its asset, from conception,

through design and development, to its deployment and maintenance.
3. Portability and reusability, as well as scalability, must be provided.
4. Instances of digital twins must be able to interact.
5. Integration/composition of digital twins (digital sub-twins) must be supported.
6. Interchangeability of digital twin instances of the same model must be supported. (An

instance is a digital twin of the model already in use).
7. A standardized definition of the structure and basic capabilities (building blocks) of a digital

twin must be provided.
8. A digital twin must be accompanied by a standard definition of its term and a taxonomy.

To perform the analysis, a common example is used. It is modeled with each
specification and the results are presented in a serialized form. The example is a fictitious
asset, namely a 3D printer. In Figure 1, a schematic representation of the 3D printer is
shown. The 3D printer (also “asset”) is equipped with some functionalities and properties,
which are to be represented by a digital twin. Firstly, manufacturer-specific information
about the asset is stored, such as the dimensions of the 3D printer or a manufacturer’s
specification. The asset has two sensors (cf. 4 and 5 in Figure 1):
• A proximity sensor, which determines the distance between the print head and the

surface;
• A temperature sensor, which is used to measure the temperature of the print head.

An event is triggered as soon as a certain temperature is reached. In addition, the
asset has an operation that starts a print program if activated. The name of the program
can be specified as an argument, and the return value of the program can be also specified.
Finally, the filament store of the 3D printer is modeled as its own digital twin and
represents a component of the asset (cf. 3 in Figure 1). The details of the digital twin of the
filament storage system will not be discussed further; it shall be considered a “black box”.

Figure 1. Schematic representation of the 3D printer [7]: (1) print head; (2) element to be printed; (3)
proximity sensor; (4) temperature sensor; (5) filament store.

Figure 1. Schematic representation of the 3D printer [7]: (1) print head; (2) element to be printed;
(3) proximity sensor; (4) temperature sensor; (5) filament store.

An event is triggered as soon as a certain temperature is reached. In addition, the asset
has an operation that starts a print program if activated. The name of the program can be
specified as an argument, and the return value of the program can be also specified. Finally,
the filament store of the 3D printer is modeled as its own digital twin and represents a
component of the asset (cf. 3 in Figure 1). The details of the digital twin of the filament
storage system will not be discussed further; it shall be considered a “black box”.

3. Analysis of the Requirements

In this section, five frequently used standards and specifications for digital twins
with respect to the requirements (Table 1) are analyzed. The Asset Administration Shell
is presented first, since it is the chosen specification for this work, and interoperability
between it and another candidate is to be established. Thus, it should also become clear

Sensors 2023, 23, 7742 4 of 21

which properties other standards/specifications should possess in order to be considered
for transformation.

3.1. Fulfilment of the Requirements by the AAS

The Asset Administration Shell (AAS) was developed by Plattform Industry 4.0 as
part of the Industry 4.0 reference architecture model. The standard is divided into three
specification parts—the first part dealing with the metamodel and serialization of an
AAS, and the second and third parts detailing the AAS communication at runtime and the
infrastructure for provisioning AAS instances to each other, respectively [1]. The first part of
the specification series provides the relevant information about the metamodel that is vital
for a transformation. The current version 2.0.1 of the first part was released in November
2019. Furthermore, version 3.0RC01 is already available as a release candidate [8]. An asset
is described by the Industry 4.0 platform as “everything that provides a ‘connection’ for
an Industry 4.0 solution”. Additionally, the AAS is described as “implementation of the
digital twin”. Table 2 demonstrates how the AAS specification fulfils the requirements for
digital twins introduced in Table 1. Point 7 in Table 2 shows that the basic functionality
according to [5] is given. This functionality should also be available in the source/target
model to guarantee a lossless transformation. One difficulty in the transformation could be
the representation of sub-twins. These would have to be modeled as separate AASs and
then referenced by the top-level AAS.

Table 2. AAS—Compliance with the requirements.

Requirement Fulfillment Comment

1. Models Yes Metamodel of the AAS is defined in [8].

2. Product life cycle Yes Fulfilled by the concept of templates, as this allows an AAS
model to be developed at the planning stage.

3. Portability, reusability, scalability Yes

Portability: Through the .aasx format, as well as various
serialization options (e.g., JSON);
Reusability: Given by the concept of templates;
Scalability: By dividing an AAS into submodels, the
structure of a twin can be scaled as desired.

4. Interaction Yes Fulfilled by the ability to reference external AASs.

5. Composition Partially
Composition and integration of AASs in a single model is
not possible because an AAS represents only one asset [8].
However, sub-twins can be modeled by entities.

6. Interchangeability of instances Yes
Supported through standardization via submodel templates.
Submodels of different AASs can be exchanged if they use
the same template.

7. Standardized definition, capabilities Yes Standardized definition: [8]; Capabilities: functions, events,
properties can be modeled [5]

8. Definition DT, Taxonomy in model Yes Defined by the AAS metamodel [8].

3.2. Fulfilment of the Requirements by the DTDL

The Digital Twins Definition Language (DTDL) was developed by Microsoft for the
Microsoft Azure platform. The specification of the DTDL is available at [9], and it defines
the structure and design of the model components, as well as identification and semantics
of the data of a digital twin in DTDL format. DTDL is currently in its second version, which
was published in June 2020. The specification is defined as “a language, to describe models
of IoT plug and play devices, digital twins of devices, and logical digital twins” [9]. Table 3
demonstrates how DTDL fulfills the requirements for digital twins.

Sensors 2023, 23, 7742 5 of 21

Table 3. DTDL—Compliance with the requirements.

Requirement Fulfillment Comment

1. Models Yes Specification for DTDL models under [9].

2. Product life cycle Yes
Design of a digital twin is possible through DTDL models. The
implementation of the model allows usage and maintenance of
the asset, as the basic functionality of a DT is provided.

3. Portability, reusability, scalability Yes

Portability: DTDL is based on JSON-LD and models are created
in JSON format;
Reusability: a DTDL model can be reused for different assets
with equivalent capabilities;
Scalability: Scalability is provided by relationships between and
composition of digital twins in DTDL format.

4. Interaction Yes Supported through relationships between DTDL models.

5. Composition Yes Supported through components within an interface element.

6. Interchangeability of instances No
Instances of DTDL models do not always implement the same
elements (see minMultiplicity/maxMultiplicity of relationships
in [9]).

7. Standardized definition, capabilities Yes Standardized definition: [9], Capabilities: functions, events,
properties can be modeled [5].

8. Definition DT, Taxonomy in model Yes
Assets described by DTDL are “Plug & Play devices, device
digital twins, and logical digital twins” [9]. Terms of the
elements of a DTDL twin are defined in [9].

An initial work on transformation of AAS to DTDL is given in [3]. The elements of the
AAS metamodel are modeled as DTDL elements which exemplifies that a transformation of
AAS into DTDL is already possible. However, a transformation in the other direction, i.e.,
from DTDL models into the AAS metamodel does not yet exist. The basic functionalities
according to [5] are given in DTDL. It should be noted that in the DTDL implementation,
“Azure Digital Twins” (ADT) functions (commands) are not supported as modeling ele-
ments. Consequently, during transformation, some information of an AAS could be lost if
the target application is an ADT. A possible facilitator when testing a transformation is the
DTDL validator, which detects syntactic errors of a DTDL model.

3.3. Fulfilment of the Requirements by the NGSI-LD

The Next Generation Services Interface-Linked Data (NGSI-LD) standard was pub-
lished by the Context Information Management (CIM) of the ETSI Industry Specification
Group (ISG) [10]. It is based on NGSI 9 and 10 from the Open Mobile Alliance (OMA)
and NGSIv2 from FIWARE [5]. The current version 1.5.1 was released in November 2021.
Some changes to the version discussed by [5] (1.2.2) are the support for Internationalized
Resource Identifiers (IRI) and different languages (LanguageProperty). All changes since
version 1.2.10 can be found in [10]. The standard is summarized in [10] as follows: “NGSI-
LD enables users to provide, consume, and manage context information in a variety of
scenarios and involving multiple actors. Context information is modeled as attributes
(properties and relationships) of context entities, also known as ‘digital twins’, that repre-
sent real-world values”. The NGSI-LD standard is based on the JSON-LD format, and an
NGSI-LD element is “any JSON element, defined by the NGSI-LD API” [10]. The fulfillment
of the requirements for digital twins is shown in Table 4. The advantages of NGSI-LD
include serialization to the JSON-LD format and support for semantically annotated and
geographic data. Elements with historical records of their state are currently not supported
by the AAS and could present an obstacle in a transformation. In addition, operations

Sensors 2023, 23, 7742 6 of 21

cannot be modeled in NGSI-LD which, according to [5], belongs to the basic functionalities
of a digital twin.

Table 4. NGSI-LD—Compliance with the requirements.

Requirement Fulfillment Comment

1. Models Yes Specification for NGSI-LD models [10].

2. Product life cycle Yes
Ontologies provide modeling for specific application areas
(design), which can be used for the application of
digital twins.

3. Portability, reusability, scalability Yes
Portability: NGSI-LD is based on JSON-LD; Reusability:
One model can be used for any number of assets; Scalability:
Using relation-elements, larger systems can be modeled.

4. Interaction Yes Supported through relationships in the
NGSI-LD metamodel.

5. Composition Partially Sub-twins can be modeled via relationships, i.e., not directly
within the model of the twin.

6. Interchangeability of instances Yes Models define all the properties and relationships that a
twin possesses.

7. Standardized definition, capabilities Yes
Standardized definition: [10], Capabilities: Properties can be
modeled, events only by subscribing to properties.
Functions cannot be modeled [5].

8. Definition DT, Taxonomy in model Partially
A concrete definition of the term “digital twin” is not given
in the specification. The terms of the elements of a NGSI-LD
twin are defined in [10].

3.4. Fulfilment of the Requirements by Eclipse Vorto

The Eclipse Vorto specification was developed by the Eclipse Foundation. Vorto is
currently in version 1.0, which was released in November 2020. Vortolang is a domain-
specific language for modeling Vorto twins. Eclipse Vorto addresses the problem that
different Internet of Things (IoT) devices send and receive different types of data. Vorto
models are intended to provide a normalized API to IoT devices for easy integration
into software solutions. Digital twins are described in the Vortolang documentation as
follows: “Digital twins are models of entities in the physical world such as (multi-)sensor
devices, smart energy power plants, and other entities that participate in IoT solutions” [11].
Implementations of the specification include Eclipse Ditto or the Bosch IoT Suite. In
addition, the Eclipse Foundation provides a list of other implementations. The Vorto
metamodel was implemented in the Java programming language. Eclipse Vorto models
and components of the model can be published in a public directory (Vorto Repository)
and published models/components can be used to build other digital twins. In 2021, this
service was discontinued and all Vorto elements published until then were uploaded to [11]
(folder models). A special feature of Eclipse Vorto is that program code can be generated
directly from a created model. With this code, assets can be directly linked to a Vorto
implementation via the model. Examples of code generators can be found at [11]. Table 5
shows the requirement fulfilment of Vorto.

The lack of representation for relationships and compositions of digital twins could
present an obstacle in a transformation, as both aspects can be modeled in an AAS. In
addition, it can be argued that the discontinuation of the Eclipse Vorto Repository service
indicates limited use of the standard. Thus, a transformation with Vorto will not be relevant
in this paper.

Sensors 2023, 23, 7742 7 of 21

Table 5. Vorto—Compliance with the requirements.

Requirement Fulfillment Comment

1. Models Yes Vorto metamodel.

2. Product life cycle Yes
Design and development can be supported by creating a
Vorto model of the asset. Deployment and maintenance of
the asset are supported using the model.

3. Portability, reusability, scalability Partially

Portability: Serialization into different formats is possible
[11]; Reusability: Vorto models could be published until
2021 in an Eclipse Vorto repository [11]; Scalability:
Representation of relationships and composition of twins is
not possible.

4. Interaction No Relationships and compositions of twins are not defined in
the metamodel [11].

5. Composition No See 4.

6. Interchangeability of instances Yes
Model instances implement the same number of function
blocks. In addition, the prefix mandatory before fields
ensures that an asset must have necessary properties [11].

7. Standardized definition, capabilities Yes Standardized definition: [11], Capabilities: functions, events
and properties can be modeled

8. Definition DT, Taxonomy in model Yes
The term “digital twin” was defined in the specification of
Vortolang in [11]. The taxonomy of the metamodel is also
defined in [11].

3.5. Fulfilment of the Requirements by the (Web of Things) Thing Description

The standard Web of Things (WoT) Thing Description (TD) was developed by the
WoT Working Group of the World Wide Web Consortium (W3C) and has been an official
recommendation of the W3C since April 2020 [12]. The official version of the Thing
Description (TD) is 1.0. Version 1.1 was published as a draft in November 2020 [13].
Version 1.1 introduces the concept of the Thing Model. With a Thing Model, it is possible
to create a template of a digital twin, which, for example, gets by with fewer constraints
than an actual twin [13]. This concept is similar to the concept of submodel templates
in the AAS. In [14], the TD is described as follows: “A TD describes the metadata and
interfaces of a Thing”. A Thing is an abstraction of a physical or virtual entity that enables
and participates in interactions with the WoT. The goal here is to enable communication
between different devices and applications, by using a minimal vocabulary to describe
these things. Thing Description models are described in JSON format and are JSON-LD
compatible. The Thing Description is implemented, for example, by the Eclipse Thingweb.
In addition, several applications of WoT and TD are listed in [15]. The fulfilment of the
requirements for digital twins is shown in Table 6. In [2], a transformation from the TD
model to the AAS has already been presented and is considered for the more detailed
comparison described in this paper.

Table 6. WoT—Compliance with the requirements.

Requirement Fulfillment Comment

1. Models Yes The specification is published in [14].

2. Product life cycle (No)
The creation of templates in the form of Thing Models is
supported in version 1.1, but this is only available in draft
form [13].

Sensors 2023, 23, 7742 8 of 21

Table 6. Cont.

Requirement Fulfillment Comment

3. Portability, reusability, scalability Partially

Portability: Models are available in JSON format;
Reusability: See 2. Through templates, TD models can be
used for different twins; Scalability: Composition of twins is
not explicitly defined in the TD metamodel, but
relationships between twins can be modeled.

4. Interaction Yes Supported through the representation of relationships
between twins.

5. Composition No This functionality is not explicitly defined in the TD.

6. Interchangeability of instances (No) A unification of twins is achieved by the introduction of
Thing Models in version 1.1 [13].

7. Standardized definition, capabilities Yes The structure is defined in [14] and basic capabilities
according to [5] are available.

8. Definition DT, Taxonomy in model Yes The term “Thing”, as well as the taxonomy of the
metamodel, are defined in [14].

4. Comparison of the Digital Twin Standards and Specifications with the AAS
Specification

In the previous section, several standards and specifications for digital twins were
introduced. In this section, they will be compared with the AAS specification. For this
purpose, not only technical details of the candidates are used, but also their widespread
use and relevance are considered. The result of this section is a candidate that will be
used later in this paper for the feasibility analysis and transformation approach. Based on
the requirements, the candidates are compared with the AAS. Finally, the candidate that
performs best in the comparison is selected.

4.1. Technical Details

In the following, some technical functionalities and capabilities of digital twins are
listed, their importance, specifically in the context of Industry 4.0, is classified, and an
approximate sorting is achieved. Based on the definition of a digital twin underlying this
work, digital twins are “virtual representations of resources that organize and manage
information” [5]. In order to organize and manage information of a resource, this infor-
mation has to be recorded earlier. This is conducted by telemetry data modeling and is
supported by several elements in the AAS, including the property element. In order to
guarantee an information flow back to the resource, the so-called functions are important as
a model element in the context of Industry 4.0. An AAS could have an Operation submodel
element for this purpose. An operation can also have input parameters and return values.
Another important capability is the way models and their elements are identified. In order
to be uniquely identifiable in both the source model and the target model, both systems
should support identifiers that are as similar as possible. This is trivial in AAS, since, in
addition to Internationalized Resource Identifier (IRI) and International Registration Data
Identifier (IRDI), specifically defined identifiers are possible. To create systems of twins
that communicate with each other, references between twins are necessary. Systems of
twins are important in the context of Industry 4.0, so that entire production chains can
be interlinked via twins. Similarly, compositions of twins are also an important concept
for dividing large systems into smaller twins. Such a division is possible with the AAS
elements Entity, Relationship and Reference. Furthermore, the way in which data are
represented in the twin is generally an important issue. Without semantic annotations,
such as units, data cannot be easily interpreted by machines. For this issue, the AAS has
conceptual descriptions that allow standardized use of data types. Another capability of
digital twins includes events that are sent by the asset. Since events can also be sent by

Sensors 2023, 23, 7742 9 of 21

telemetry data, and it is up to the receiver of the data to react to an event, the capability is
not considered of fundamental importance in this work. The following functionalities and
capabilities are currently not supported by the AAS but provide a holistic view:

• Time-series data can be important for autonomous systems or machines that process
data from an asset and make predictions based on temporal relationships. Time-
series data are, at the time of writing, not explicitly supported by the AAS [16], but a
time-series submodel template will be released in the future.

• Geodata, which cannot be explicitly defined in the AAS, can be emulated by normal
properties.

• An additional useful capability of digital twins is the definition of the connection
from the digital twin to its physical asset. However, since this connection is not
standardized, it is not further considered.

• Since the security aspects of the current AAS specification are only preliminary [8], the
definition of security concepts is excluded.

Table 7 compares the AAS with the other candidates. For the purpose of comparison,
the order of the capabilities is sorted according to their importance as discussed previously.
Cells are only marked with “3” where the candidate metamodel explicitly defines this
functionality, otherwise “X” is used. When the functionality is not yet explicitly defined
or realizable with other features, “(3)” is used. The identifiers are ranked relative to the
AAS and are therefore evaluated with respect to the identification possibility, where “0”
indicates the reference (AAS). In this regard, the AAS supports the most types of identifiers.

Table 7. Comparison of the standards and specifications with the AAS.

Capability AAS DTDL NGSI-LD Vorto WoT TD

Telemetry data 3 3 3 3 3

Functions 3 3 X 3 3

Configuration 3 3 3 3 3

Identifiers 0 - - - -

Relations 3 3 3 X 3

Composition 3 3 X X 3

Semantic annotation 3 (3) 3 3 3

Events 3 X X 3 3

Time-series data X X 3 X X

Geo data X 3 3 X X

Asset connection X X X X 3

Security definitions (3) X X X 3

4.2. Discussion

In the previous section, the relevance and prevalence of the candidates were discussed
by examining efforts around the candidates. Furthermore, technical capabilities and func-
tionalities were sorted according to their importance for AAS to compare the candidates
with the AAS (cf. Table 7). The research regarding relevance and diffusion shows a short-
coming of the Eclipse Vorto specification since the public service “Vorto Repository” was
discontinued, as well as the integration of the TD standard into Eclipse Ditto. NGSI-LD, on
the other hand, demonstrates the use of the standard with several use cases in areas such
as Smart City and Smart Heating. Through Microsoft’s development and integration with
Azure Digital Twins, DTDL is used by a wide range of companies. Although no commercial
use cases for the reference implementation of the TD standard were found in the context
of this work, the support in Eclipse Ditto and the transformation into submodels of AAS
make TD an interoperable standard that cannot be neglected. The comparison of technical

Sensors 2023, 23, 7742 10 of 21

capabilities and functionalities in Table 7 has shown that NGSI-LD is limited in its ability to
communicate with the asset due to the lack of functions as a model element. Since Eclipse
Vorto does not support relationships and compositions of twins, larger systems cannot be
modeled, which is an important element for digital twins in the context of Industry 4.0.
DTDL is characterized by the lack of support for events; however, this is compensated
for by DTDL telemetry data. The WoT TD performs best in the comparison. Nonetheless,
it must be considered that information on connections of a TD to their assets, as well
as security definitions, cannot be used directly by AAS implementations. Since Pakala
et al. [2] have already proposed a transformation of TD into the AAS and since DTDL
transformations only include the AAS→ DTDL direction, for this work, DTDL is selected
for further feasibility analysis.

5. Feasibility Analysis of a Transformation of the DTDL into AAS

In the previous section, the digital twin standards and specifications were compared
based on various aspects, the result of which is the selection of the most suitable candidate,
DTDL. In this section, the feasibility and the extent of a transformation of DTDL version
2 into AAS version 3.0RC01 will be analyzed. In order to analyze the feasibility of a
transformation, approaches by Mayrbäurl et al. [3] and Pakala et al. [2] on transformations
between DTDL and AAS or Thing Description (TD) and AAS are examined. In particular,
the different approaches are explored to obtain ideas for transformation shown below in
this work. Thereafter, the approach for a transformation is defined and a first proposal of a
mapping of the elements is shown. For the next step, mapping rules are defined. This is
followed by a transformation of the 3D printer example which was previously modeled
in DTDL.

5.1. Existing Approaches for Transformations

In [4], the authors describe the mapping of a DT description framework to AAS. The
approach is based on a smart clamp drilling machine example. In comparison, this paper
compares existing DT standards and specifications with the goal of transforming DTDL
to AAS.

In [17], the authors presented a solution for mapping DTDL to the OPC UA information
model which allows the transformation of each DTDL element into a corresponding OPC
UA element. Compared to our transformation, specific mapping rules must be defined,
as the AAS metamodel differs from the OPC UA metamodel. Furthermore, the AAS
metamodel provides support for many serialization formats, OPC UA being one of them,
which further increases the complexity. Finally, an AAS service could provide an HTTP
REST endpoint in addition to an OPC UA endpoint, which increases the complexity of the
mapping rules.

The lack of interoperability between digital twins of different companies was studied
in [1]. To achieve interoperability between digital twins, the authors proposed a flexible
approach to transform their information models and applied the proposed solution to a
real application scenario in an industrial context by transforming ABB Ability digital twins
into AAS. On a conceptual level, the approach in [1] is similar to the approach taken in
this paper, as both approaches consider meta-level mapping. Nonetheless, while [1] maps
ABB Ability digital twins as the source model, in this paper DTDL models are targeted.
Mapping different source metamodels to AAS results in completely different mapping
rules and challenges in their implementation.

Mayrbäurl et al. [3] have carried out a transformation of the AAS metamodel into the
DTDL metamodel. In this process, each of the elements of the AAS was projected onto
DTDL interface elements. Figure 2 provides an example that illustrates the mapping of the
AAS identifier element into the DTDL model. The left side shows the identifier of the AAS
and the right side shows the mapping into the DTDL model. Thus, the information about
the identifier is not lost, although DTDL’s identifier, the Digital Twin Model Identifier, is
only a subset of the identifiers supported by the AAS.

Sensors 2023, 23, 7742 11 of 21

Sensors 2023, 23, x FOR PEER REVIEW 10 of 21

this work. Thereafter, the approach for a transformation is defined and a first proposal of
a mapping of the elements is shown. For the next step, mapping rules are defined. This is
followed by a transformation of the 3D printer example which was previously modeled
in DTDL.

5.1. Existing Approaches for Transformations
In [4], the authors describe the mapping of a DT description framework to AAS. The

approach is based on a smart clamp drilling machine example. In comparison, this paper
compares existing DT standards and specifications with the goal of transforming DTDL
to AAS.

In [17], the authors presented a solution for mapping DTDL to the OPC UA infor-
mation model which allows the transformation of each DTDL element into a correspond-
ing OPC UA element. Compared to our transformation, specific mapping rules must be
defined, as the AAS metamodel differs from the OPC UA metamodel. Furthermore, the
AAS metamodel provides support for many serialization formats, OPC UA being one of
them, which further increases the complexity. Finally, an AAS service could provide an
HTTP REST endpoint in addition to an OPC UA endpoint, which increases the complexity
of the mapping rules.

The lack of interoperability between digital twins of different companies was studied
in [1]. To achieve interoperability between digital twins, the authors proposed a flexible
approach to transform their information models and applied the proposed solution to a
real application scenario in an industrial context by transforming ABB Ability digital
twins into AAS. On a conceptual level, the approach in [1] is similar to the approach taken
in this paper, as both approaches consider meta-level mapping. Nonetheless, while [1]
maps ABB Ability digital twins as the source model, in this paper DTDL models are tar-
geted. Mapping different source metamodels to AAS results in completely different map-
ping rules and challenges in their implementation.

Mayrbäurl et al. [3] have carried out a transformation of the AAS metamodel into the
DTDL metamodel. In this process, each of the elements of the AAS was projected onto
DTDL interface elements. Figure 2 provides an example that illustrates the mapping of
the AAS identifier element into the DTDL model. The left side shows the identifier of the
AAS and the right side shows the mapping into the DTDL model. Thus, the information
about the identifier is not lost, although DTDL’s identifier, the Digital Twin Model Iden-
tifier, is only a subset of the identifiers supported by the AAS.

Figure 2. Mapping of the AAS identifier element into the DTDL model. Figure 2. Mapping of the AAS identifier element into the DTDL model.

In addition, the submodel template “Technical Data” [18] was modeled in DTDL. The
four submodel collections that make up the submodel were each projected onto individual
DTDL interfaces and their submodel elements were either modeled as DTDL properties
or referenced per DTDL component, as shown in Figure 2. For this approach, the AAS
elements were projected onto DTDL interface elements. For example, an AAS operation
was not mapped to the DTDL equivalent, the command. This approach is most relevant if
the target platform of the transformation does not support the Command element, which is
the case for Azure Digital Twins.

In [2], the Thing Description of the Web of Things was transformed to AAS. More
specifically, a Thing Description model can be imported into an AAS in the form of a
submodel. To achieve this, the Thing Description model must be in Javascript Object
Notation (JSON) format and the AAS must be used with the AASX Package Manager tool.

The approach is as follows: First, the Thing object is mapped to a submodel. The
complex types object, list, array and map of the TD model are grouped into subelement
collections (e.g., “properties”) and then mapped onto their own submodel collections. The
primitive types string, float, integer and boolean are mapped as AAS qualifiers of the parent
element. There are some exceptions to these mapping rules, which can be found in [2]. For
example, the Thing identifier was mapped to the submodel identifier.

The use of appropriate AAS elements was avoided (e.g., the operation) for mappings
to “avoid a huge hierarchical structure and visual complexity in the representation in the
AASX Package Explorer” [2]. Moreover, this avoided “complex mapping rules and enabled
an underlying base rule” [2].

5.2. Proposed Approach

The structures of the DTDL and AAS metamodels are primarily considered to deter-
mine the approach of the transformation. In addition, the approaches of the previous efforts
(see previous section) are used to generate a draft. The structure of the DTDL metamodel is
similar to that of the TD metamodel in that the functionality is encapsulated in an element.
The elements within the parent element are not further grouped in the DTDL metamodel
but are represented in a flat hierarchy. In the TD metamodel, the properties, operations
and events are grouped. Due to the similarity in structure, the approach of Pakala et al. [2]
is adapted in this work. The superordinate element of the DTDL metamodel interface is
mapped to the submodel of the AAS. In addition, the elements contained in the interface
are mapped directly to submodel elements within the submodel. A schematic illustration
can be found in Figure 3.

Sensors 2023, 23, 7742 12 of 21

Sensors 2023, 23, x FOR PEER REVIEW 11 of 21

In addition, the submodel template “Technical Data” [18] was modeled in DTDL. The
four submodel collections that make up the submodel were each projected onto individual
DTDL interfaces and their submodel elements were either modeled as DTDL properties
or referenced per DTDL component, as shown in Figure 2. For this approach, the AAS
elements were projected onto DTDL interface elements. For example, an AAS operation
was not mapped to the DTDL equivalent, the command. This approach is most relevant if
the target platform of the transformation does not support the Command element, which
is the case for Azure Digital Twins.

In [2], the Thing Description of the Web of Things was transformed to AAS. More
specifically, a Thing Description model can be imported into an AAS in the form of a sub-
model. To achieve this, the Thing Description model must be in Javascript Object Notation
(JSON) format and the AAS must be used with the AASX Package Manager tool.

The approach is as follows: First, the Thing object is mapped to a submodel. The
complex types object, list, array and map of the TD model are grouped into subelement
collections (e.g., “properties”) and then mapped onto their own submodel collections. The
primitive types string, float, integer and boolean are mapped as AAS qualifiers of the par-
ent element. There are some exceptions to these mapping rules, which can be found in [2].
For example, the Thing identifier was mapped to the submodel identifier.

The use of appropriate AAS elements was avoided (e.g., the operation) for mappings
to “avoid a huge hierarchical structure and visual complexity in the representation in the
AASX Package Explorer” [2]. Moreover, this avoided “complex mapping rules and ena-
bled an underlying base rule” [2].

5.2. Proposed Approach
The structures of the DTDL and AAS metamodels are primarily considered to deter-

mine the approach of the transformation. In addition, the approaches of the previous ef-
forts (see previous section) are used to generate a draft. The structure of the DTDL meta-
model is similar to that of the TD metamodel in that the functionality is encapsulated in
an element. The elements within the parent element are not further grouped in the DTDL
metamodel but are represented in a flat hierarchy. In the TD metamodel, the properties,
operations and events are grouped. Due to the similarity in structure, the approach of
Pakala et al. [2] is adapted in this work. The superordinate element of the DTDL meta-
model interface is mapped to the submodel of the AAS. In addition, the elements con-
tained in the interface are mapped directly to submodel elements within the submodel. A
schematic illustration can be found in Figure 3.

Figure 3. First proposal of a mapping from DTDL to AAS. Figure 3. First proposal of a mapping from DTDL to AAS.

Additionally, Figure 3 already contains an initial proposal for mapping the DTDL
elements to AAS counterparts. Here both the DTDL telemetry and the DTDL property
were assigned to the AAS property. The DTDL property was assigned to the AAS property
because the property of the AAS was defined abstractly enough to be suitable for both
configuration properties and telemetry data. Fields in AAS elements, which are not a
target of a mapping, shall not be set in a transformation unless they have been marked as
required in the metamodel. Otherwise, default values should be used to not restrict the
respective element.

6. Classification of Elements and Definition of Mapping Rules

In this section, the metamodel elements of the DTDL are classified in terms of their
similarity. The proposal of a mapping for the elements in the last section (see Figure 3)
is considered in more detail. Furthermore, it defines how the identifiers are mapped to
DTDL models. In a mapping, elements that occur in the AAS but not in the DTDL are to
be neglected, since a mapping of a smaller set into a larger one does not result in a loss
of information. The DTDL interface is considered separately as a superordinate element
of a model and the remaining DTDL elements are divided into data elements and other
elements. The data elements include Telemetry, Property and CommandPayload. The
remaining elements are Command, Relationship and Component.

6.1. Identification

The DTDL interface is mapped to the submodel of the AAS. The submodel is a so-
called identifiable in the AAS hierarchy as a result of its identification by a global identifier,
namely the Digital Twin Modeling Identifier (DTMI) of the interface. The remaining DTDL
elements are mapped to Referables. Referables are uniquely identified by their idShort
within an identifiable and do not have a global identifier. Because this idShort should be
unique within a submodel, a mapping of the DTDL field “name” to the idShort field is
performed. According to [9], this field is “unique for all content of the interface[-element]”.
The mapping of the name field to an idShort is as follows: an idShort always starts with a
letter, has at least two characters, and consists of both upper- and lower-case letters, digits
from zero to nine, and underscores. A name also starts with a letter and consists of upper-
and lower-case letters, numbers from zero to nine and underscores. However, a name can
consist of only one letter, so another character must be added when mapping to an idShort.
This character is defined as an underscore, which is added to the end of each mapped name.
This mapping is injective due to the trivial mapping rule and leads to no conflicts.

Sensors 2023, 23, 7742 13 of 21

6.2. DTDL Interface and AAS Submodel

As shown in Table 8, an interface and a submodel possess many similar fields which
simplify the interface mapping into a submodel. The identifier of the interface element
can be mapped to an AAS identifier by setting the idType to “custom”. Elements, such as
a comment or the context of the interface element, which do not have a counterpart, are
mapped to generic qualifiers (cf. Section 5.2). The idShort field of the submodel receives
a generic identifier, such as “DTDLModel”. Complex data types defined by the schemas
field are not mapped at this point but are created within the AAS property elements.

Table 8. Mapping of the DTDL interface element.

Field of the Data Element: Data Type Submodel Field
@id: DTMI
@type = “Interface”
@context = “dtmi:dtdl:context;2”
comment: String
contents
description: String
displayName: String
extends: Interfaces
schemas: Interface Schemas

Identifier
modelType = “Submodel”
qualifier
qualifier
SubmodelElements
Description
displayName
semanticId
-

6.3. Data Elements

The mapping rules of the complex DTDL data types to the data format of the AAS
will be discussed in this section. In DTDL models, any complex data type such as an object,
array, enumeration or map can be defined. In the AAS data store, a value field is provided,
which can be contextualized by units and data type definitions. Primitive data types of the
DTDL can be mapped to the value field of the AAS property. Due to the rigid structure,
a DTDL object can be mapped to a submodel collection (SubmodelElementCollection).
Since the elements of an object also have primitive or complex data types, they are mapped
as separate elements within the SubmodelElementCollection. A DTDL enumeration is
also a rigid construct (cf. required field enumValues of an enumeration in [9]). As such,
SubmodelElementCollection can also be used to map DTDL enumerations. Since the
elements of an enumeration can be numbers or strings, they can be modeled by AAS
property elements. Figure 4 shows an exemplary transformation of a DTDL complex type.

Sensors 2023, 23, x FOR PEER REVIEW 13 of 21

Table 8. Mapping of the DTDL interface element.

Field of the Data Element: Data Type Submodel Field
@id: DTMI
@type = “Interface”
@context = “dtmi:dtdl:context;2”
comment: String
contents
description: String
displayName: String
extends: Interfaces
schemas: Interface Schemas

Identifier
modelType = “Submodel”
qualifier
qualifier
SubmodelElements
Description
displayName
semanticId
-

6.3. Data Elements
The mapping rules of the complex DTDL data types to the data format of the AAS

will be discussed in this section. In DTDL models, any complex data type such as an object,
array, enumeration or map can be defined. In the AAS data store, a value field is provided,
which can be contextualized by units and data type definitions. Primitive data types of
the DTDL can be mapped to the value field of the AAS property. Due to the rigid structure,
a DTDL object can be mapped to a submodel collection (SubmodelElementCollection).
Since the elements of an object also have primitive or complex data types, they are mapped
as separate elements within the SubmodelElementCollection. A DTDL enumeration is
also a rigid construct (cf. required field enumValues of an enumeration in [9]). As such,
SubmodelElementCollection can also be used to map DTDL enumerations. Since the ele-
ments of an enumeration can be numbers or strings, they can be modeled by AAS property
elements. Figure 4 shows an exemplary transformation of a DTDL complex type.

Figure 4. Transformation example of a complex DTDL data type.

Due to the variable number of their elements, arrays and maps must be considered
separately. While an array with elements of a primitive data type is easily serializable, an
array with values of complex data types cannot be serialized in a trivial way. It is possible
to map the array to a SubmodelElementCollection and treat the elements separately, as
seen with the DTDL object. Given the variable number of array elements at runtime and
the fact that the AAS model would have to react to changes in the DTDL model, this ap-
proach is not selected. The same issue also exists with DTDL maps because entries can be
added at runtime, which would lead to a structural change in the AAS. Finally, DTDL

Figure 4. Transformation example of a complex DTDL data type.

Due to the variable number of their elements, arrays and maps must be considered
separately. While an array with elements of a primitive data type is easily serializable, an
array with values of complex data types cannot be serialized in a trivial way. It is possible
to map the array to a SubmodelElementCollection and treat the elements separately, as seen

Sensors 2023, 23, 7742 14 of 21

with the DTDL object. Given the variable number of array elements at runtime and the fact
that the AAS model would have to react to changes in the DTDL model, this approach is
not selected. The same issue also exists with DTDL maps because entries can be added
at runtime, which would lead to a structural change in the AAS. Finally, DTDL supports
geographic data, such as points that can be represented in a coordinate system. These
geographical data types are based on arrays with primitive data types and can therefore be
mapped to the AAS value in serialized form.

Due to the similarity of the fields of Telemetry, Property and CommandPayload,
the mapping tables are combined. Fields marked with a (P) or (P, T) exist only in the
respective elements (P)roperty and (T)elemetry. The type field (@type) of a data element
can contain a semantic type (e.g., “Temperature”) in addition to the values “Telemetry”
and “Property”. In this case, the data type of the element must be a primitive number
type [9] for semantically annotated data elements to be transformed into AAS properties.
Furthermore, a concept description must be created for the semantic type.

The DTDL component contains a reference to an interface element, a unique name
and further optional fields. The AAS Entity element of the proposal from Figure 3 is not
suitable for transformation, since it contains a reference to an instance of a sub-twin. On
the other hand, the component contains a reference to a model. Consequently, the AAS
element ReferenceElement is used for this mapping. The DTDL Command is transformed
into an AAS operation, where it should be noted that the field CommandType is obsolete
and is therefore only mapped to a qualifier.

Finally, the Relationship element is transformed into the AAS AnnotatedRelationship
element. This decision is based on the fields of the DTDL Relationship element, which
defines the minimum and maximum number of targets for a relationship, as well as the
properties that can be attached to a DTDL relationship to describe it. It should also be noted
that the DTDL relationship is a reference to a model and not a concrete instance. Hence, the
target of an AAS relationship is always a reference element. Furthermore, the first element
of an AAS relationship is a reference to its own submodel and the minimum and maximum
number of targets of the relationship is stored in a range element.

For verification, all mapping rules were applied to the 3D printer introduced in
Section 2. Listing 1 shows this example for the DTDL interface.

For this purpose, the DTDL model of the 3D printer is divided into different elements
and then transformed according to the previous rules. The transformed model was val-
idated by integrating it into a model of the AAS created in the programming language
Java.

Each element of the DTDL metamodel was mapped to an element of the AAS. How-
ever, some changes were made to the first proposal in Figure 3, which have been updated
in the following Figure 5.

Sensors 2023, 23, x FOR PEER REVIEW 15 of 21

25. “text “: “3D-Drucker”
26. }
27.],
28. “descriptions”: [
29. {
30. “language”: “en”,
31. “text “: “Example model of a 3D printer.”
32. }
33.],
34. “modelType”: {
35. “name”: “Submodel”
36. },
37. “kind”: “Instance”,
38. “submodelElements”: []
39. }

For this purpose, the DTDL model of the 3D printer is divided into different elements
and then transformed according to the previous rules. The transformed model was vali-
dated by integrating it into a model of the AAS created in the programming language
Java.

Each element of the DTDL metamodel was mapped to an element of the AAS. How-
ever, some changes were made to the first proposal in Figure 3, which have been updated
in the following Figure 5.

Figure 5. Mapping of the elements, final version.

7. Implementation
This section describes an implementation to transform Digital Twins Definition Lan-

guage (DTDL) version 2 into AAS version 3.0RC01. For this, the approach defined in Sec-
tion 5 as well as the classification and mapping rules are used. The chosen programming
language for the implementation is Java.

The goal of the implementation is validation of the mapping rules defined in Section
5. To ensure the correct transformation of a DTDL element, the following precondition
applies: the DTDL element must conform to the format of DTDL metamodel version 2.
This precondition can be checked by validation with the DTDL validator [9]. The result of
the transformation is an AAS element, which corresponds to the format of the AAS meta-
model version 3.0RC01. Optionally the result can be validated by integrating the trans-
formed element into a reference implementation of the AAS.

Figure 5. Mapping of the elements, final version.

Sensors 2023, 23, 7742 15 of 21

Listing 1: Transformation of DTDL interface to AAS submodel.

1. {
2. “qualifiers “: [
3. {
4. “ type”: “@context”,
5. “ valueType”: “string”,
6. “ value”: “ dtmi:dtdl:context;2”,
7. “ modelType”: {
8. “ name “: “Qualifier”
9. }
10. }
11.],
12. “identification”: {
13. “idType”: “Custom”,
14. “id”: “dtmi:com:example:My3DPrinter;1”
15. },
16. “idShort”: “DTDLModel”,
17. “category”: “VARIABLE”,
18. “displayName”: [
19. {
20. “language”: “en”,
21. “text”: “3D−Printer”
22. },
23. {
24. “language”: “de”,
25. “text “: “3D-Drucker”
26. }
27.],
28. “descriptions”: [
29. {
30. “language”: “en”,
31. “text “: “Example model of a 3D printer.”
32. }
33.],
34. “modelType”: {
35. “name”: “Submodel”
36. },
37. “kind”: “Instance”,
38. “submodelElements”: []
39. }

7. Implementation

This section describes an implementation to transform Digital Twins Definition Lan-
guage (DTDL) version 2 into AAS version 3.0RC01. For this, the approach defined in
Section 5 as well as the classification and mapping rules are used. The chosen programming
language for the implementation is Java.

The goal of the implementation is validation of the mapping rules defined in Section 5.
To ensure the correct transformation of a DTDL element, the following precondition applies:
the DTDL element must conform to the format of DTDL metamodel version 2. This
precondition can be checked by validation with the DTDL validator [9]. The result of the
transformation is an AAS element, which corresponds to the format of the AAS metamodel
version 3.0RC01. Optionally the result can be validated by integrating the transformed
element into a reference implementation of the AAS.

Figure 6 presents a flow chart in which the decision paths for selecting the correct
input are shown. Following a separation of the elements according to the classification
from Section 5, any child elements are handled and the correct mapping configuration is
loaded. Finally, each input element is transformed using the mapping configuration. In the

Sensors 2023, 23, 7742 16 of 21

case of child elements, the same transformation is applied recursively to these elements,
and the transformed child elements are inserted into the transformed parent element.

Sensors 2023, 23, x FOR PEER REVIEW 16 of 21

Figure 6 presents a flow chart in which the decision paths for selecting the correct
input are shown. Following a separation of the elements according to the classification
from Section 5, any child elements are handled and the correct mapping configuration is
loaded. Finally, each input element is transformed using the mapping configuration. In
the case of child elements, the same transformation is applied recursively to these ele-
ments, and the transformed child elements are inserted into the transformed parent ele-
ment.

Figure 6. Program flowchart: Selection of the mapping rules.

For the mapping of DTDL elements, the mapping configurations are defined in JSON
format. They follow the structure of the AAS element into which the transformation shall
lead. In addition, there are JSONPath expressions for the fields which are to be described.
These expressions describe the position in the source element where the searched value is
located. This value is then substituted for the expression. The JSONPath expressions are
prefixed with “$” to recognize the JSONPath expressions. For example, the “comment”
field of the DTDL component is mapped to an AAS qualifier, which has “comment” as its
key and the comment as its value. The JSONPath expression $.[‘comment’] would be eval-
uated on the JSON element {“comment”: “Hello World”} and generate the output [“Hello
World”].

To illustrate the mapping rules, an example of a transformation was carried out on
the 3D printer example. Listing 2 shows the DTDL component.

Figure 6. Program flowchart: Selection of the mapping rules.

For the mapping of DTDL elements, the mapping configurations are defined in JSON
format. They follow the structure of the AAS element into which the transformation shall lead.
In addition, there are JSONPath expressions for the fields which are to be described. These
expressions describe the position in the source element where the searched value is located.
This value is then substituted for the expression. The JSONPath expressions are prefixed with
“$” to recognize the JSONPath expressions. For example, the “comment” field of the DTDL
component is mapped to an AAS qualifier, which has “comment” as its key and the comment
as its value. The JSONPath expression $.[‘comment’] would be evaluated on the JSON element
{“comment”: “Hello World”} and generate the output [“Hello World”].

To illustrate the mapping rules, an example of a transformation was carried out on the
3D printer example. Listing 2 shows the DTDL component.

Listing 2: DTDL-Component-Element.

1. {
2. “@type”: “Component”,
3. “name”: “filamentStorage”,
4. “schema”: “dtmi:com:example:FilamentStorage;1”,
5. “@id”: “dtmi:com:example:FilamentStorageComponent;1”,
6. “comment”: “A filamentstorage component element”,
7. “displayName”: “FilamentStorage”,
8. “description”: “Filament storage as material source for this printer.”
9. }

Sensors 2023, 23, 7742 17 of 21

Listing 3 shows the transformed output of the program.

Listing 3: AAS ReferenceElement.

1. {
2. “value”: {
3. “keys”: [
4. {
5. “type”: “Submodel”,
6. “local”: “false”,
7. “value”: “dtmi:com:example:FilamentStorage;1”,
8. “index”: “0”,
9. “idType”: “Custom”
10. }
11.]
12. },
13. “constraints”: [
14. {
15. “type”: “@id”,
16. “valueType”: “string”,
17. “value”: “dtmi:com:example:FilamentStorageComponent;1”,
18. “modelType”: {
19. “name”: “Qualifier”
20. }
21. },
22. {
23. “type”: “comment”,
24. “valueType”: “string”,
25. “value”: “A filament storage component element”,
26. “modelType”: {
27. “name”: “Qualifier”
28. }
29. }
30.],
31. “idShort”: “filamentStorage”,
32. “category”: “CONSTANT”,
33. “modelType”: {
34. “name”: “ReferenceElement”
35. },
36. “kind”: “Instance”,
37. “displayName”: [
38. {
39. “language”: “en”,
40. “text”: “FilamentStorage”
41. }
42.],
43. “descriptions”: [
44. {
45. “language”: “en”,
46. “text”: “Filament storage as material source for this printer.”
47. }
48.]
49. }

The flow chart in Figure 7 outlines the program flow while transforming a DTDL
property.

Sensors 2023, 23, 7742 18 of 21

Sensors 2023, 23, x FOR PEER REVIEW 18 of 21

41. }
42.],
43. “descriptions”: [
44. {
45. “language”: “en”,
46. “text”: “Filament storage as material source for this printer.”
47. }
48.]
49. }

The flow chart in Figure 7 outlines the program flow while transforming a DTDL
property.

Figure 7. Flow chart of transformation.
Figure 7. Flow chart of transformation.

The program developed in this paper transforms the entire DTDL model as well as
individual subelements to AAS. The source code of the program is available in [19]. It is
worth noting that data elements with a complex datatype array or map cannot be trans-
formed as is, because they cannot be mapped into the AAS using a generic approach. For a
given complex type, the code of the program could be extended to define a specific map-
ping of the complex type into the AAS. The release of AAS model version 3.0 introduced
the new element SubmodelElementList, which allows the creation of two-dimensional
array lists [20]. This element may present a possible solution for handling maps but was
unavailable at the time of implementation. In future work, handling of maps with the
new element SubmodelElementList should be attempted. In addition, although there is
a mapping rule for concept descriptions, the current state of the program cannot output
them, resulting in semantically annotated data elements being transformed without an

Sensors 2023, 23, 7742 19 of 21

associated concept description. This is a structural problem that can be solved, for example,
with a separate output of the concept description but requires significant time investment
to implement in the program.

The extension and structural change in the transformation via the mapping configura-
tions is not possible without also making changes to the program code. Subsequently, these
changes to the metamodel of DTDL and AAS would result in a change to the program
code. A more complex program could load mapping rules from a mapping file to prevent
program code changes if mapping rules need to be changed.

Furthermore, a reverse transformation of the transformed AAS into the DTDL is
currently not implemented. The approach of Mayrbäurl et al. [3] cannot be used for the
reverse transformation since all elements of the AAS are mapped to variations of the DTDL
interface element resulting in two successive transformations not producing the same
element. Further work in this area could result in the development of a more general
approach to a transformation or a feasibility analysis of a transformation in the other
direction. However, real usage scenarios in which one model is usually transformed into
another without reverse transformations are not limited by this. A practical example
consists of an IoT device with a DTDL model that is sold to a customer. This customer
chooses to operate the device digital twin with AAS models and tools instead of DTDL.
With the implemented program, an AAS output file can be generated from the DTDL model.
If the model did not include complex types or maps, then the output file can be used as
is. Otherwise, the customer must transform the complex types and maps manually into
the AAS.

The transformation of DTDL to AAS was tested with several DTDL input files and
resulted in complete machine-readable AAS files. Since the transformation is a generic,
repeatable process, the quality of the output model is dependent on the quality of the input.

8. Summary and Conclusions

This paper demonstrated that each element of the DTDL metamodel can be mapped
to an element of the AAS. The chosen approach is inspired by the work of Pakala et al. [2]
since there are structural similarities between the DTDL metamodel and that of the Thing
Description. The classification of the DTDL metamodel elements has contributed to a clearer
proposal of a transformation by unifying the mapping rules. In addition, the examples of
transformations provided in the previous section have demonstrated that the defined rules
produce valid AAS elements. Limitations currently exist in the form of mapping elements
with complex types and maps into the AAS.

The topic of digital twins is still evolving, and various standards have emerged to
address different use cases and domains. Each of these standards provides a common
language and structure for communicating information about the physical assets and their
digital representations. The choice of a digital twin standard depends on the domain,
requirements and context in which it will be applied. To realize the full potential of digital
twins and to ensure interoperability, mapping between different digital twin standards is
essential. Additionally, the entities specifying digital twin standards should analyze other
relevant standards to enable easier mappings.

In this paper, the relevant standards and specifications from a structural point of view
were analyzed and the possibility of their transformation into the AAS specification was
examined. To perform the analysis, a common example was used to model DTs in all
considered DT standards. Based on the requirements, the DTDL standard was selected as
the most feasible for transformation into the AAS.

Additionally, a concept for mapping DTDL to AAS at the metamodel level was pro-
posed and a solution to transform a DTDL-compliant DT into an AAS-compliant DT was
developed. This will enable the provisioning of a DTDL entity in the form of an AAS so
that a DTDL DT can be used with AAS tools and thus support AAS use cases.

The proposed solution can enable seamless communication and integration between
DTs using these two standards and will facilitate the exchange of data across different sys-

Sensors 2023, 23, 7742 20 of 21

tems, e.g., applications based on Microsoft Azure Digital Twin and the Industry 4.0 domain.
The next step will include the extension of the proposed approach to ensure bidirectional
mapping. Furthermore, DTDL and AAS are evolving standards whose specifications may
be extended or changed, requiring the mapping to also be updated in the program code.

Author Contributions: Conceptualization, C.S.; methodology, C.S.; software, C.S.; validation, C.S.;
writing—original draft preparation, C.S., F.V, L.S. and G.S.; writing—review and editing, F.V., L.S.
and G.S.; supervision, L.S.; project administration, L.S.; funding acquisition, L.S. All authors have
read and agreed to the published version of the manuscript.

Funding: This research was partly funded by the Horizon Europe MODAPTO project, which has
received funding from the European Union’s Horizon Europe research and innovation program
under grant agreement No. 101091996.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Platenius-Mohr, M.; Malakuti, S.; Gruner, S.; Goldschmidt, T. Interoperable Digital Twins in IIoT Systems by Transformation of

Information Models: A Case Study with Asset Administration Shell. In Proceedings of the 9th International Conference on the
Internet of Things, IoT 2019, Bilbao, Spain, 22–25 October 2019; Association for Computing Machinery: New York, NY, USA, 2019.
[CrossRef]

2. Pakala, H.K.; Kumar, H.; Christian, D.; Kazeem, O.; Sebastian, K. Integration of Asset Administration Shell and Web of Things.
Kommun. Der Autom. (KommA) 2021. [CrossRef]

3. Mayrbäurl, J.; Niedung, O. Open Digital Twins Ontology for the Industrie. 4.0 Asset Administration Shell. Available online:
https://github.com/JMayrbaeurl/opendigitaltwins-assetadminstrationshell (accessed on 22 February 2023).

4. Oakes, B.J.; Parsai, A.; Meyers, B.; David, I.; Van Mierlo, S.; Demeyer, S.; Denil, J.; De Meulenaere, P.; Vangheluwe, H. A
Digital Twin Description Framework and its Mapping to Asset Administration Shell. In International Conference on Model-Driven
Engineering and Software Development; Springer: Cham, Switzerland, 2021; pp. 1–24. [CrossRef]

5. Jacoby, M.; Usländer, T. Digital Twin and Internet of Things–Current Standards Landscape. Appl. Sci. 2020, 10, 18. [CrossRef]
6. Moyne, J.; Yassine, Q.; Efe, C.B.; Ilya, K.; John, F.; Kira, B.; Dawn, M.T. A Requirements Driven Digital Twin Framework:

Specification and Opportunities. IEEE Access 2020, 8, 107781–107801. [CrossRef]
7. Kroschel, S. 3D Printer Model. Available online: https://pixabay.com/images/id-1248284/ (accessed on 11 May 2023).
8. Plattform Industrie 4.0. Details of the Asset Administration Shell—Part 1. Available online: https://www.plattform-i40.de/IP/

Redaktion/DE/Downloads/Publikation/Details_of_the_Asset_Administration_Shell_Part1_V3.html (accessed on 6 January 2023).
9. Microsoft Azure. Digital Twins Definition Language. 2020. Available online: https://github.com/Azure/opendigitaltwins-dtdl/

blob/master/DTDL/v2/dtdlv2.md (accessed on 11 January 2023).
10. Context Information Management (CIM). ETSI Industry Specification Group (ISG). NGSI-LD. 2021. Available online: https:

//www.etsi.org/deliver/etsi_gs/CIM/001_099/009/01.05.01_60/gs_cim009v010501p.pdf (accessed on 10 February 2023).
11. Eclipse Foundation. Eclipse Vorto. 14. 2022. Available online: https://github.com/eclipse/vorto/ (accessed on 25 January 2023).
12. World Wide Web Consortium. Web of Things (WoT) Thing Description Publication History–W3C. Available online: https:

//www.w3.org/standards/history/wot-thingdescription10 (accessed on 23 March 2023).
13. Kaebisch, S.; McCool, M.; Korkan, E. Web of Things (WoT) Thing Description 1.1. 2021. Available online: https://www.w3.org/

TR/2021/WD-wot-thing-description11-20210607/ (accessed on 7 February 2023).
14. Kaebisch, S.; McCool, M.; Korkan, E. Web of Things (WoT) Thing Description 1.0. 2020. Available online: https://www.w3.org/

TR/wot-thing-description/ (accessed on 11 February 2023).
15. Lagally, M.; McCool, M.; Matsukura, R.; Mizushima, T. Web of Things (WoT): Use Cases and Requirements. Available online:

https://www.w3.org/TR/wot-usecases (accessed on 7 March 2022).
16. Industrial Digital Twin Association (IDTA). IDTA–AAS Submodel Templates. IDTA English. Available online: https://

industrialdigitaltwin.org/en/content-hub/submodels (accessed on 7 February 2023).
17. Cavalieri, S.; Gambadoro, S. Proposal of Mapping Digital Twins Definition Language to Open Platform Communications Unified

Architecture. Sensors 2023, 23, 2349. [CrossRef]
18. Plattform Industrie 4.0 (PI). Submodel Template: Technical Data. 2022. Available online: https://github.com/admin-shell-io/

submodel-templates/blob/2f7aeeb10ba4345a6cdf7ebbadf9200d31a251de/published/Technical_Data/1/1/SMT_Technical_
Data_V11.pdf (accessed on 9 April 2023).

https://doi.org/10.1145/3365871.3365873
https://doi.org/10.25673/39570
https://github.com/JMayrbaeurl/opendigitaltwins-assetadminstrationshell
https://doi.org/10.48550/arXiv.2209.12661
https://doi.org/10.3390/app10186519
https://doi.org/10.1109/ACCESS.2020.3000437
https://pixabay.com/images/id-1248284/
https://www.plattform-i40.de/IP/Redaktion/DE/Downloads/Publikation/Details_of_the_Asset_Administration_Shell_Part1_V3.html
https://www.plattform-i40.de/IP/Redaktion/DE/Downloads/Publikation/Details_of_the_Asset_Administration_Shell_Part1_V3.html
https://github.com/Azure/opendigitaltwins-dtdl/blob/master/DTDL/v2/dtdlv2.md
https://github.com/Azure/opendigitaltwins-dtdl/blob/master/DTDL/v2/dtdlv2.md
https://www.etsi.org/deliver/etsi_gs/CIM/001_099/009/01.05.01_60/gs_cim009v010501p.pdf
https://www.etsi.org/deliver/etsi_gs/CIM/001_099/009/01.05.01_60/gs_cim009v010501p.pdf
https://github.com/eclipse/vorto/
https://www.w3.org/standards/history/wot-thingdescription10
https://www.w3.org/standards/history/wot-thingdescription10
https://www.w3.org/TR/2021/WD-wot-thing-description11-20210607/
https://www.w3.org/TR/2021/WD-wot-thing-description11-20210607/
https://www.w3.org/TR/wot-thing-description/
https://www.w3.org/TR/wot-thing-description/
https://www.w3.org/TR/wot-usecases
https://industrialdigitaltwin.org/en/content-hub/submodels
https://industrialdigitaltwin.org/en/content-hub/submodels
https://doi.org/10.3390/s23042349
https://github.com/admin-shell-io/submodel-templates/blob/2f7aeeb10ba4345a6cdf7ebbadf9200d31a251de/published/Technical_Data/1/1/SMT_Technical_Data_V11.pdf
https://github.com/admin-shell-io/submodel-templates/blob/2f7aeeb10ba4345a6cdf7ebbadf9200d31a251de/published/Technical_Data/1/1/SMT_Technical_Data_V11.pdf
https://github.com/admin-shell-io/submodel-templates/blob/2f7aeeb10ba4345a6cdf7ebbadf9200d31a251de/published/Technical_Data/1/1/SMT_Technical_Data_V11.pdf

Sensors 2023, 23, 7742 21 of 21

19. Schmidt, C. DTDL to AAS Source Code. Available online: https://github.com/carlos-schmidt/dtdl-to-aas (accessed on 24
August 2023).

20. Industrial Digital Twin Association. Asset Administration Shell Part 1: Metamodel. Available online: https://industrialdigitaltwin.
org/wp-content/uploads/2023/06/IDTA-01001-3-0_SpecificationAssetAdministrationShell_Part1_Metamodel.pdf (accessed
on 24 August 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://github.com/carlos-schmidt/dtdl-to-aas
https://industrialdigitaltwin.org/wp-content/uploads/2023/06/IDTA-01001-3-0_SpecificationAssetAdministrationShell_Part1_Metamodel.pdf
https://industrialdigitaltwin.org/wp-content/uploads/2023/06/IDTA-01001-3-0_SpecificationAssetAdministrationShell_Part1_Metamodel.pdf

	Introduction
	Approach
	Analysis of the Requirements
	Fulfilment of the Requirements by the AAS
	Fulfilment of the Requirements by the DTDL
	Fulfilment of the Requirements by the NGSI-LD
	Fulfilment of the Requirements by Eclipse Vorto
	Fulfilment of the Requirements by the (Web of Things) Thing Description

	Comparison of the Digital Twin Standards and Specifications with the AAS Specification
	Technical Details
	Discussion

	Feasibility Analysis of a Transformation of the DTDL into AAS
	Existing Approaches for Transformations
	Proposed Approach

	Classification of Elements and Definition of Mapping Rules
	Identification
	DTDL Interface and AAS Submodel
	Data Elements

	Implementation
	Summary and Conclusions
	References

