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Abstract: Machine learning deployment on edge devices has faced challenges such as computational
costs and privacy issues. Membership inference attack (MIA) refers to the attack where the adversary
aims to infer whether a data sample belongs to the training set. In other words, user data privacy
might be compromised by MIA from a well-trained model. Therefore, it is vital to have defense
mechanisms in place to protect training data, especially in privacy-sensitive applications such as
healthcare. This paper exploits the implications of quantization on privacy leakage and proposes
a novel quantization method that enhances the resistance of a neural network against MIA. Recent
studies have shown that model quantization leads to resistance against membership inference
attacks. Existing quantization approaches primarily prioritize performance and energy efficiency;
we propose a quantization framework with the main objective of boosting the resistance against
membership inference attacks. Unlike conventional quantization methods whose primary objectives
are compression or increased speed, our proposed quantization aims to provide defense against
MIA. We evaluate the effectiveness of our methods on various popular benchmark datasets and
model architectures. All popular evaluation metrics, including precision, recall, and F1-score, show
improvement when compared to the full bitwidth model. For example, for ResNet on Cifar10, our
experimental results show that our algorithm can reduce the attack accuracy of MIA by 14%, the true
positive rate by 37%, and F1-score of members by 39% compared to the full bitwidth network. Here,
reduction in true positive rate means the attacker will not be able to identify the training dataset
members, which is the main goal of the MIA.

Keywords: membership inference attack; model quantization; deep neural network; privacy; security

1. Introduction

Machine learning is an evolving field that has recently gained significant attention and
importance. With the exponential growth of data and advancements in computing power,
machine learning has become a powerful tool for extracting valuable insights, making
predictions, and automating complex tasks. Significant advancements in machine learning
have led to the remarkable performance of neural networks in a wide range of tasks [1,2].
As the demand for real-time processing and low-latency applications continues to rise, the
importance of efficient hardware implementations of machine learning algorithms becomes
evident. Hardware acceleration plays a crucial role in meeting the computational require-
ments and enabling the deployment of machine learning models in resource-constrained
environments.

To facilitate the efficient deployment of machine learning models on hardware plat-
forms, scientists and researchers have proposed compression techniques to accelerate
training and inference processes. To this end, one of the promising techniques in model
compression is quantization. Quantization methods [3–5] accelerate the computation by
executing the operations with reduced precision. These methodologies have achieved
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performance levels comparable to those of full bitwidth networks while remaining compat-
ible with resource-constrained devices. These methods also enable broader possibilities
for machine learning applications, particularly in sectors that handle sensitive data on
the edge.

This approach also proves valuable in various use cases, such as medical imaging [6],
autonomous driving [7], facial recognition [8], and natural language processing [2], where
the data privacy is of utmost importance. However, as these technologies become increas-
ingly intertwined with daily life, they must be continuously evaluated for vulnerabilities
and privacy concerns. For example, as shown in Figure 1, patient data can be used to train
neural networks. In most cases, hospitals or healthcare providers gather a large amount of
data regarding patients’ identity, health, insurance, and finance information. An adversary
may attempt to gain access to this information at every step of this process, compromising
user data privacy in machine learning applications.

Insurance
company

Bank

HospitalHospital

Figure 1. A patient medical and personal information is valuable in the field of machine learning.
An adversary can jeopardize patient privacy from the machine learning models that are trained on
the data.

Unfortunately, recent studies have demonstrated that machine learning models are
quite vulnerable to well-crafted adversarial attacks [9–11]. For instance, adversarial attacks
can easily use undetectable perturbations to deceive the models and cause misclassification.
Researchers have investigated these attacks and their impact on quantized models [12,13].
It is reported in [14] that model quantization can help improve the robustness of the model
against certain adversarial attacks or even be used as a defensive countermeasure. The
effect of model quantization on backdoor and poisoning attacks has also been recently
studied [15,16]. The extent of security and privacy risks of neural networks is not limited to
adversarial attacks. On the other hand, user privacy is also of great importance to practical
model deployment. In particular, membership inference attacks (MIA) can compromise
the trustworthiness of a model by identifying its training dataset. MIA attack is designed
to extract information regarding the training data. In a sensitive area where the training
data are valuable and, in many cases, private, the MIA can lead to data leakage. Therefore,
it is important to defend against MIA and limit training data leakage. To the best of our
knowledge, the influence of quantized neural networks on the resistance against MIA has
not been studied before.

Following the direction of this prior work, this paper proposes a novel quantization
algorithm designed to enhance the resistance against MIA. The key idea is to reduce
overfitting during the quantization, as MIA leverages the confidence gap between the
training data and unseen data to determine the membership of a sample. To this end,
our method specifically avoids overfitting and does not quantize the activations, which
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helps the quantized model to be more generalizable. We evaluate our method for popular
model architectures on several benchmark datasets, as demonstrated in our experiment
section. The quantization is performed during the backpropagation, and the algorithm
uses operations such as round and clamp to constrain the weights in a predefined range.
The quantization algorithm does not slow down the training phase and provides resistance
to MIA.

We demonstrate that quantization not only provides increased speed but also provides
resistance against MIA. Various quantization methods already exist for commercial neural
network training and inference, which can facilitate the deployment of neural networks on
edge devices. In practice, our method will be especially suitable for machine learning ap-
plications dealing with sensitive data before model deployment. The paper is an extended
version of our previous conference paper [17]. The main contributions of this paper are
summarized as follows.

• We extend our preliminary study in [17] to investigate the impact of model quantiza-
tion on machine learning privacy. We demonstrate a 7 to 9 point accuracy drop in the
precision of MIA attacks on quantized models compared to their corresponding full
precision models.

• We propose a novel quantization algorithm where the primary goal is to enhance the
resistance to MIA while also boosting efficiency.

• In our preliminary study [17], we tested the impact of quantization by using a thresh-
old to perform MIA. In this paper, we comprehensively evaluate the proposed algo-
rithm with a stronger form of MIA attack and training shadow models. We demon-
strate that our algorithm can improve the resistance of the model to MIA in comparison
to the full precision model.

The rest of the paper is organized as follows: In Section 2, we review the background
of MIA and related prior work in model quantization and MIA defense. In Section 3,
we discuss the MIA attack, our threat model, and our proposed quantization algorithm.
Section 4 evaluates the proposed algorithm and presents the experimental results. Finally,
we conclude the paper in Section 5.

2. Background and Related Work
2.1. Background

The issue of privacy attacks in neural network training applications has raised sig-
nificant concerns, particularly in sensitive scenarios [18]. Extensive research has been
conducted to address the privacy implications associated with training data, focusing on
various aspects such as data leakage, prevention of memorization, and evaluation of the
privacy efficacy of proposed defense mechanisms. Among these, MIA has emerged as a
critical concern to user data privacy in machine learning applications, as it has been shown
that MIA can effectively determine whether a data sample belongs to the training set. Such
MIA methods are able to extract the user data information contained in the overparameter-
ized model. The high-level overview of MIA is shown in Figure 2. An adversary passes a
data sample x to the target model using some analysis tools to determine the membership
of this data sample.

Attacker passes 

a data sample x 

Member

Non-member
Attacker tools

Target model 

queried

Attacker determines 

the membership of x

X belonged to 

training dataset ?

Figure 2. Overview of MIA attack. Here x is a data sample which the attacker wants to determine
its membership.
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The first MIA approach [19] uses shadow models that are trained on the same (or a
similar) distribution as the training data. The method assigns membership to input and
constructs a new dataset to train the classifier. Subsequently, various MIA attacks were
developed considering different threat models and application scenarios. The work in [20]
proves that when the adversary has data from a different but similar task, the shadow
models are not needed, while a threshold reaching max prediction confidence can provide
satisfactory results. The results in [21] find that the training process of ML models is the
key to implementing a successful MIA. As the goal is to minimize losses associated with
the training samples, members in general tend to have smaller losses than non-member
samples. It has been shown that the effectiveness of MIA can be improved by using inputs
from query methods [22]. The vulnerability of adversarially trained models to MIA attacks
has also been exploited [23].

2.2. Related Work

Because we use the quantization method as a defense against MIA, we go over the
state-of-the-art quantization methods and then discuss the existing defense technique
against MIA.

2.2.1. Model Quantization

Quantization methods have been shown to be promising in reducing the memory
footprint, computational complexity, and energy consumption of neural networks. They
focus on converting floating-point numbers into representations with lower bitwidth.
For example, quantization can be used to reduce the model size by converting all the
parameters’ precision from 32 bits to 8 bits or lower for achieving a higher compression
rate or acceleration [24]. Extreme quantization is also possible where the model weights
can be binary [25] or ternary [26]. In general, quantization methods can be divided into
three categories.

Traditional quantization. In these methods, all weights and activations would be
quantized. For instance, a non-uniform quantization method uses reduced bitwidth for
the majority of data while a small amount of data are handled with high bitwidth [27].
A different approach in the same category utilizes a quantizer that dynamically adapts
to the distribution of the parameters [28]. A quantization algorithm is developed by
approximating the gradient to the quantizer step size, which can perform comparably
to the full bitwidth model [29]. In [30], the proposed quantization function is a linear
combination of several sigmoid functions with learnable biases and scales. The method
proposed in [25] restricts weights and activations to binary values (−1, 1), enabling further
reduction in memory footprint and efficient hardware implementation. A more stringent
quantization method uses three levels (−1, 0, 1) to represent weights and activations,
striking a balance between binary quantization and full bitwidth.

Mixed-precision quantization. To avoid performance deterioration, some studies
suggest using mixed-precision quantization instead of compressing all the layers to the
same bidwidth. Mixed-precision quantization typically involves dividing the network into
layers or blocks and applying different bitwidths to each part based on its importance
and sensitivity to quantization. For example, the quantization bitwidths can be obtained
by exploiting second-order (Hessian matrix) information [31]. Differentiable architecture
search is also employed by [32,33] to perform mixed-precision quantization.

Dynamic inference quantization. Dynamic inference quantization offers several ben-
efits, including improved flexibility, enhanced adaptability to varying run-time conditions,
and potentially better accuracy than quantization with fixed bitwidth. By adjusting the
quantization bitwidth on the fly, dynamic inference quantization enables efficient de-
ployment of deep neural network models in resource-constrained environments without
sacrificing accuracy. To this end, one approach is to use a bit-controller trained jointly with
the given neural network for dynamic inference quantization [34]. Another study [35]
proposes dynamically adjusting the quantization interval based on time step information.
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An algorithm developed by [36] detects sensitive regions and proposes an architecture that
employs a flexible variable-speed mixed-precision convolution array.

In this paper, we develop a novel quantization method for enhancing privacy in the
traditional quantization category. As the goal is to use quantization as a defense mechanism,
we can ease some of the restrictions in other categories to avoid accuracy degradation.
Enhancing the resistance against MIA using different quantization categories is left for
future work.

Table 1. Prior of each table appears in numerical order. research on defense against MIA.

Reference
Attack

Knowledge
Corresponding

Attack
Defense

Mechanism

1 [37] Black-box Shadow training Differential privacy

2 [38]
Black-box and

White-box
Classifier based and

Prediction loss Distillation

3 [39] Black-box
Classifier based and

Prediction correctness
Prediction

purification

4 [40] Black-box Shadow training Regularization

5 [41] Black-box Shadow training Regularization

6 [42] Black-box Classifier based MemGuard

2.2.2. Defense against MIA

A defense mechanism against MIA, named MemGuard, was developed [42], which
can evade the attacker’s membership classification and transform the prediction scores
into an adversarial example. MemGuard adds a carefully crafted noise vector to the
prediction vector and turns it into an adversarial example of the attack model. Differential
privacy [43,44], which can provide a probabilistic guarantee of privacy, has also been
shown to be effective in enhancing resistance against MIA [37]. However, differential
privacy is costly to implement, and the accuracy reduction makes the method impractical.
Distillation for membership privacy (DMP) is a method proposed by [38]. DMP first trains
a teacher model and uses it to label data records in the unlabeled reference dataset. The
teacher method has no defense mechanism. DMP requires a private training dataset and an
unlabeled reference dataset. The purifier framework [39], where the confidence scores of
the target model are used as input and are purified by reducing the redundant information
in the prediction score, has also been proposed to defend against MIA.

On the other hand, regularization methods designed to reduce overfitting in machine
learning models can be employed as defense strategies against MIAs. Adversarial regu-
larization [40] and Mixup + MMD [41] are specific regularization techniques intended to
mitigate MIAs. Using regularization, the model generalization is improved and the gap
between member and non-member data samples is reduced. However, the privacy risks
after implementing these methods are still high [45]. In Table 1, we summarized prior
work based on attack knowledge, MIA attack, and defense mechanism. To the best of
our knowledge, using quantization to enhance the resistance against MIA has not been
investigated before.

3. Proposed Defense to MIA

We found quantization could help improve the resistance against MIA in our prior
work [17]. Our results showed that quantized models would have a lower MIA attack
accuracy compared to the corresponding full bitwidth models. We also demonstrated that
using a quantization method can reduce the precision of the attack while recall stays similar.
The results are even more pronounced when we deal with more complicated tasks. We
showed that the F1-score of MIA can be reduced by 7% after quantization. Built upon our
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prior findings, in this section we propose a novel quantization method that can further
improve the resistance against MIA.

3.1. Threat Model

In membership inference attacks given sample data x, an adversary tries to infer
whether x is a member of the training dataset. We consider a threat model that is consistent
with prior work on MIA [21,46–48]:

• Access the target model: We assume the adversary could only access the target model
output. This is referred to as black-box access [41].

• Access to the data: Although the adversary does not have access to the training data,
we assume the adversary can sample from the available pool of data that has the same
distribution as the training data.

The model will be quantized using our proposed method after training. The adversary
then might perform MIA against the quantized model.

3.2. MIA Algorithm

All the symbols and their definitions are summarized in Table 2. Conventionally, to
perform an MIA, the adversary has access to a dataset Ds with similar distribution to the
target model training dataset Dt. Using the dataset Ds, the adversary trains their shadow
model fs in a way that the shadow model has a similar behavior as ft. The adversary then
uses the shadow model’s confidence vector to train a binary classifier fa, which typically
is a multi-layer perception (MLP). This model fa is trained on the confidence vectors and
label ∈ (0, 1), where 0 and 1 represent non-member and member, respectively. To determine
the membership, the data sample x is given to the shadow model fs, then the confidence
vector is given to the attack model fa.

Table 2. The notations used in the paper.

Symbol Definition

fs Shadow model

ft Target model

fa Attack model (binary classifier)

Ds Shadow model dataset

Dt Target training dataset

An alternate way to implement the MIA attack is to use the confidence vector of the ft
and predict highly confidant samples x as members using confidence thresholding T . We
used this method in our prior work [17]. However, this method focuses on the confidence
vector of the target model ft. As discussed in Section 2.2.2, several prior defensive methods
have shown significant resistance against this type of attack. Thus, we use the shadow
model method to predict the membership of sample x in this paper.

3.3. Proposed Quantization Scheme

To deploy neural network models on edge devices, model quantization is used to
replace floating point values with lower bitwidth representations. Our setting is shown
in Figure 3. The key of our proposed method is to reduce overfitting during the quanti-
zation, as MIA leverages the confidence gap between the training data and unseen data
to determine the membership of a sample. To this end, our method specifically avoids
overfitting and does not quantize the activations, which helps the quantized model to be
more generalizable.
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Quantized model

Full bitwidth model

Shadow model

Shadow model

Initial model

Binary classifier

Binary classifier

Not from training set 

x ∉ 𝐷𝑡

Sample from training set

x ∈ 𝐷𝑡  

Non-Member

Non-Member

Non-Member

Member

Figure 3. Overview of the quantization and the MIA attack setup. The top represents the quantized
model, and the bottom represents the full bitwidth model. The shadow model is trained to imitate
the target model. The final layer of the shadow model provides the confidence vector, which is
then used to train a binary classifier that provides the final membership decision. The goal is to
leverage quantization to enhance the resistance against MIA. For example, a training sample will
be identified by MIA on the full bitwidth model, whereas it might not be recognized as a member
after quantization.

A neural network model is denoted as f (x; W), consisting of n layers represented by
L1, L2, . . . , Ln. We can perform quantization on the weights W = W1, . . . , Wn, where each
layer Li has a set of weights Wi. The quantization function can be defined as follows:

Q(wi) = γj ∀wi ∈ (pj, pj+1] (1)

In Equation (1), (pj, pj+1] represents a real number interval, where j ranges from 1 to
2b, and b corresponds to the quantization bitwidth. The values of wi to be quantized can be
tensors with floating-point values. The quantization function maps all wi values within the
defined range to a specific quantized value γj.

Conventionally, researchers often employ a unified quantization function that divides
the range equally into intervals. This approach ensures that the step size, denoted as s, is
calculated as the range of values divided by the number of intervals. Mathematically, the
quantization process can be expressed as:

Wr = R
(w

s

)
, (2)

s.t. s =
r1 − r0

2b (3)

where R represents the rounding function, which rounds the result of w
s to the nearest

integer. The initial range (r0, r1) is divided into 2b intervals. In quantization, s and b can
significantly impact the training. We chose the interval by clamping the r1 to 2b − 1; the
final step can be written as:

WQ = min(max(Wr, r0), r1). (4)
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The layerwise operation of the proposed method is shown in Figure 4. During the
training of the model f (x; W), the weights WLi of each layer Li get updated. To ensure
a smooth training process, we apply quantization to each WLi in a manner that does not
disrupt the training. It is crucial to avoid any disturbance to the training process because
doing so would require retraining the model with the same dataset, increasing the risk of
overfitting and eventually MIA. We present the process flow in Algorithm 1.

Layer n quantizer

Layer n 

weights

Layer n−1

Conv ActivationBatch 

norm 

Define quantization 

range

Inputs Layer n
Quantize

d outputs

Round function

Clamp function

Layer n+1

Figure 4. Overview of the proposed methodology. Each layer’s weight is passed through the
quantizer. After defining the quantization range, the parameters are passed through two functions
(round and clamp).

Our algorithm is a uniform weight-only quantization. Given the model f (x, W), at
each stage of training t, we perform quantization for each input. We find r1, which is
referred to as nbins in Algorithm 1. In the next step, we calculate WLi

C , where C stands for
clamped weights, which is the operation described in Equation (4). Using zero point z, we
can offset the range. We use zero point z = 2 for our experiment, as we find it empirically
works well against MIA.

Algorithm 1 The training procedure of the proposed quantization scheme.

Require: Original DNN parameterized f(x;W), b, s, z, L
Set epochs T for training
for T do

nbins = pow(2, nbits) + 1
for i in L do

WLi
C = clamp(R(WLi /s) + z, min = 0, max = nbins)

WLi
Q = s ∗ (WLi

C − z) . After backpropagation weights for each layer are quantized
end for

end for

4. Experimental Results
4.1. Experimental Settings

For evaluation, we use the widely used datasets, neural network architectures, and
optimization approaches following recent work in MIA [21,23]. The experimental settings,
including the selections of model architectures and datasets, are consistent with prior work
on MIA [19,21,23]. We compare our method to full bitwidth networks, whose weights are
represented in 32-bit floating point values.
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4.1.1. Datasets

Fashion MNIST [49]. Fashion MNIST consists of a training set of 60,000 images. Each
image is a 28 × 28 grayscale, with labels from 10 classes. The dataset has 10,000 images for
testing. We applied several data augmentation techniques, including random cropping and
random rotation, for the training process.

Cifar10 [50]. Cifar10 is a widely used benchmark dataset for image classification. The
Cifar10 dataset consists of 60,000 color images with dimensions of 32× 32 pixels distributed
across 10 distinct classes. Each class contains 6000 images.

4.1.2. Model Architectures

ResNet: We use the ResNet architecture [51] to train the target and shadow models on
Cifar10. We perform our experiments in both ResNet-20 and ResNet-50; the numbers refer
to the depth of the ResNet architecture. We use an MLP binary classifier with one hidden
layer for the attack model.

LeNet: For Fashion MNIST, we use LeNet [52] to train the target and shadow models.

4.1.3. MIA Algorithms

As discussed in Section 2.1, we perform the attack using a shadow model. We use
15,000 samples of the dataset (Cifar10 or Fashion MNIST) to train the ftarget, and another
15,000 samples to train the shadow model fshadow. Two sets of 15,000 samples are used for
testing in the MIA attack. We use the trained shadow model to make the training feature
dataset for the MLP.

4.1.4. Baseline Quantization Method

We utilize the method developed in [4], DoReFa-Net, for baseline comparison. Al-
though DoReFa-Net was tested only on AlexNet in the original paper, it has excellent
performance on ResNet. The method first limits the values of the weights to [−1, 1] and
then quantizes them to the desired bitwidth within the range [0, 1]. DoReFa-Net quantizes
both weights and activations.

4.2. Results

As discussed in [53], it is essential to evaluate MIA results comprehensively to show
the effectiveness of the method. The model’s accuracy does not provide enough insights to
judge the effectiveness of the attack or defense performance. We report the target model
accuracy, shadow model accuracy, and attack model accuracy in Table 3. We report each
class’s precision, recall, and F1-score in Table 4. To have more insight into the performance
of the proposed algorithm, we present attack accuracy, true positive, true negative, false
positive, and false negative rate in Table 5. We train the target model for 50 epochs and
divide the data between training the target model and the shadow model. The results
in Tables 3–5 are reported when the target model is quantized, but the shadow model is
trained with full bitwidths.

As shown in Table 3, we quantize our algorithm with two different bitwidths of 4
and 8. In the case of ResNet-50, the quantized model has a better target model accuracy
than the full bitwidth model. However, the attack accuracy drops when compared to the
quantized model. As we can see from Table 3, the shadow model of the full bitwidth model
has higher accuracy than its quantized counterpart on Fashion MNIST, whereas that is not
the case for Cifar10. When the shadow model is being trained, the goal is to imitate the
behavior of the target model, instead of achieving the best accuracy. In our experiments,
the shadow model fails to learn the behavior of the quantized model, but it achieves a
higher accuracy for the Cifar10 data. In contrast, the shadow model learns the behavior
of the full bitwidth model, and the attack model accuracy demonstrates the effectiveness
of the attack. We also find that the attack model accuracy is lower on Fashion MNIST
than on Cifar10. However, the shadow model accuracy is higher for Cifar10. We test three
quantized networks with bitwidths of 4, 8, and 16. Out of all quantized networks, 16-bit
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quantization behaves similarly to the full bitwidth model. However, the attack model
accuracy is still lower than for the full bitwidth model.

Table 3. The accuracy of the shadow and attack models.

Model Bitwidth Shadow Model
Accuracy

Attack Model
Accuracy

LeNet
4 82.39% 50.07%
8 83.20% 50.21%

16 83.02% 50.20%
full 88.26% 53.40%

ResNet-20
4 51.22% 69.50%
8 51.38% 72.50%

16 70.62% 66.87%
full 60.58% 72.30%

ResNet-50
4 58.90% 64.10%
8 60.38% 59.38%

16 67.70% 56.89%
full 54.01% 71.10%

Table 4. F1-score, precision, and recall of the full bitwidth model and quantized model.

Model Bitwidth Class Precision Recall F1-Score

LeNet

4 Non-Member 0.51 0.06 0.11
Member 0.50 0.94 0.65

8 Non-Member 0.51 0.16 0.24
Member 0.50 0.85 0.63

16 Non-Member 0.50 0.23 0.31
Member 0.50 0.78 0.61

full Non-Member 0.64 0.23 0.34
Member 0.53 0.87 0.66

ResNet-20

4 Non-Member 0.52 0.82 0.64
Member 0.58 0.26 0.36

8 Non-Member 0.57 0.73 0.64
Member 0.62 0.44 0.52

16 Non-Member 0.76 0.49 0.60
Member 0.62 0.85 0.72

full Non-Member 1.00 0.35 0.52
Member 0.61 1.00 0.75

ResNet-50

4 Non-Member 0.59 0.50 0.54
Member 0.57 0.65 0.61

8 Non-Member 0.65 0.41 0.50
Member 0.57 0.78 0.66

16 Non-Member 0.56 0.60 0.58
Member 0.57 0.54 0.55

full Non-Member 0.95 0.37 0.54
Member 0.61 0.98 0.75
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Table 5. Attack accuracy, TN, FP, FN, and TP for full bitwidth and quantized networks.

Model Bitwidth Attack
Accuracy TN FP FN TP

LeNet

4 50.07% 03.24% 46.76% 3.17% 46.82%
8 50.21% 07.79% 42.21% 7.57% 42.42%
16 50.20% 11.29% 38.70% 11.09% 38.90%

full 54.89% 11.50% 38.50% 6.61% 43.39%

ResNet-20
4 53.59% 40.76% 9.23% 37.18% 12.82%
8 65.88% 36.30% 13.69% 27.86% 22.13%
16 66.84% 23.50% 26.49% 06.66% 43.33%

full 67.54% 17.56% 32.43% 0.02% 49.97%

ResNet-50

4 57.66% 25.09% 24.90% 17.43% 32.56%
8 59.38% 20.47% 29.52% 11.09% 38.90%
16 56.89% 30.13% 19.86% 23.24% 26.75%

full 67.69% 18.68% 31.32% 1.02% 49.00%

In Table 4, we present more evaluation metrics, including precision, recall, and F1-score
for both member and non-member classes. Here, recall refers to:

Recall =
TP

TP + FN
. (5)

Precision is defined as:
Precision =

TP
TP + FP

. (6)

Finally, F1-score refers to:

F1-score =
2 ∗ Precision ∗ Recall

Precision + Recall
. (7)

We can see a significant drop in all three metrics when we compare the member class
of the ResNet-50 full bitwidth model to the quantized models. The same trend can also be
observed for ResNet-20 and the simpler LeNet model.

We evaluate true negative (TN), false positive (FP), false negative (FN), and true
positive (TP) to show the effectiveness of our method in Table 5. Here, true negative refers
to instances where non-members are correctly identified as non-members. A false positive
occurs when non-members are incorrectly identified as members. A false negative happens
when members are mistakenly identified as non-members. Finally, true positive denotes
instances where members are correctly identified as members.

It can be seen that the true positive rates are lower after employing our quantization,
which shows the effectiveness of our proposed scheme. Furthermore, although we observe
only a small difference in attack accuracy for the 8-bit quantized network on ResNet-20,
compared to the full bitwidth network, there is a nearly 30-point reduction in TP value.
This means that the attacker can only determine non-members, and it is falsely classifying
members of training sets as non-members. This can also be indicated from the FN of the
8-bit quantized network, which shows the effectiveness of our method.

In addition, we provide the ROC curve of MIA, as shown in Figure 5. It can be
seen that the MIA on the full bitwidth model is successful while behaving as a random
classification on the quantized model.

Finally, we compare our algorithm to DoReFa-Net [4] in Table 6. We can see the impact
of MIA is significantly reduced in both quantization methods. Compared to DoReFa-Net,
our method achieves further reductions in all three metrics, verifying the advantages of our
method. For instance, our method achieves over 28% reduction in F1-score compared to
DoReFa-Net for the 4-bit quantization. We can see the DoReFa-Net reduces the effectiveness
of the MIA. However, compared to DoReFa-Net, our method achieves further reductions
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in all three metrics, verifying the advantages of our method. For instance, our method
achieves over 28% reduction in F1-score compared to DoReFa-Net for the 4-bit quantization.
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False Positive Rate
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Full bitwidth Model

Figure 5. ROC of quantized ResNet-20 and the corresponding full bitwidth model.

Table 6. Performance comparison of DoReFa-Net and our quantization algorithm MIA on ResNet-20.

Method Bitwidth F1-Score Precision Recall

DoReFa-Net 4 70.12 54.00 100.00
16 71.79 56.00 100.00

Proposed
4 50.00 55.00 64.00
8 58.00 59.05 59.50

16 66.00 88.05 67.00

full 77.30 63.00 100.00

We also conducted an ablation study to determine if our method can still provide
protection against MIA when we only partially quantize the model network. We present
the results on ResNet-20 in Figure 6. This network has 42 layers with weights that can be
quantized. In this experiment, we only quantize the last 5 layers to 4-bit. It can be seen that
in both members and non-members, the partially quantized network has lower F1-score,
precision, and recall. We can see a significant drop in Precision for the non-member class,
which also leads to greatly reduced TP values in the partially quantized model.

Precision Recall F1-Score
0

0.2

0.4

0.6

0.8

1
Full Bitwidth
Partially Quantized Network

(a) Non-member

Precision Recall F1-Score
0

0.2

0.4

0.6

0.8

1
Full Bitwidth
Partially Quantized
Network

(b) Member
Figure 6. The effectiveness of MIA, when ResNet-20 is partially quantized in comparison to the full
bitwidth model.
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5. Conclusions

This paper presented a novel quantization method for defending against MIA. Quan-
tization has been shown to be effective in model compression and efficiency improvement.
We demonstrated that quantization techniques can also be used as a countermeasure
against user data privacy leakage in neural networks. We showed that our proposed
algorithm could specifically reduce the effectiveness of MIA by lowering the true positive
and increasing the false negative rate.
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