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Abstract: Cardiac disorders are a leading cause of global casualties, emphasizing the need for
the initial diagnosis and prevention of cardiovascular diseases (CVDs). Electrocardiogram (ECG)
procedures are highly recommended as they provide crucial cardiology information. Telemedicine
offers an opportunity to provide low-cost tools and widespread availability for CVD management.
In this research, we proposed an IoT-based monitoring and detection system for cardiac patients,
employing a two-stage approach. In the initial stage, we used a routing protocol that combines
routing by energy and link quality (REL) with dynamic source routing (DSR) to efficiently collect
data on an IoT healthcare platform. The second stage involves the classification of ECG images
using hybrid-based deep features. Our classification system utilizes the “ECG Images dataset of
Cardiac Patients”, comprising 12-lead ECG images with four distinct categories: abnormal heartbeat,
myocardial infarction (MI), previous history of MI, and normal ECG. For feature extraction, we
employed a lightweight CNN, which automatically extracts relevant ECG features. These features
were further optimized through an attention module, which is the method’s main focus. The model
achieved a remarkable accuracy of 98.39%. Our findings suggest that this system can effectively aid
in the identification of cardiac disorders. The proposed approach combines IoT, deep learning, and
efficient routing protocols, showcasing its potential for improving CVD diagnosis and management.

Keywords: cardiovascular diseases (CVDs); CNN; ECG; deep learning; IoT

1. Introduction

CVD is the leading chronic disease, according to the report of WHO (World Health
Organization) [1]. Similarly, Centers for Disease Control and Prevention (CDC) reported
that approximately 690,882 deaths occurred in the United States due to heart disease in
2020 [2]. However, CVD can be significantly diminished through early-stage and accurate
diagnosis. In the modern world, advanced medical science has unveiled effective solutions
for managing CVD problems, harnessing the power of information technology to handle
diseases. The tools that are advised for cardiac diagnosis are ECG, Echo, ETT, blood
testing, and angiography screening. Among these, ECG is the cheapest and most common
diagnostic procedure of screening for heart disorders [3]. Furthermore, it is considered
a standard tool for evaluating CVD in patients who live in remote areas. ECG is a non-
stationary graphical signal used to detect the electrical movement of the heart by placing
electrodes on the surface of the body. The graphical representation of normal ECG is
demonstrated in Figure 1.
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Figure 1. Illustration of normal ECG [4].

ECG signifies the probability of cardiac irregularities in their ST segments: usually, the
elevations in ST segments, variations in segments, or flipping of T waves indicate some
cardiac abnormalities [5].

The IoT refers to the interconnections of an assortment of smart devices, including
mobile phones, laptops, and sensors [6–9]. One of the most compelling areas of application
for the IoT is in the field of healthcare. The potential of the IoT has led to the development
of various applications, such as remote health monitoring, fitness programs, elderly care,
and the management of chronic ailments [10–12]. As a result, numerous medical devices,
including diagnostic tools, imaging systems, and sensors, have transitioned into smart
devices that serve as the foundation of the IoT. By utilizing IoT-based healthcare services, it
is possible to reduce costs and improve user experience and quality of life.

Recently, applications for deep learning have been found in diagnosis and prediction
across various domains [7,13,14]. Furthermore, deep learning methods notably impact
classification accuracy in numerous medical tasks [15,16]. The utilization of deep neu-
ral networks (DNNs) in modern computer-aided diagnosis (CAD) systems holds the
potential to reduce the efforts required for heart monitoring and improve predictive capa-
bilities. Integrating wearable ECG monitoring systems with deep learning could further
enhance the reliability of CAD systems for cardiac patients. Therefore, the IoT-based ECG
monitoring system could help reduce diagnostic time and provide healthcare facilities at
patients’ doorsteps.

Nevertheless, the automatic detection of heart disorders through ECG-based is faced
with several important challenges, such as:

• the properties of ECG signals that, in terms of amplitude, period, etc., vary from
individual to individual due to different demographic factors such as gender, age,
lifestyle, etc.;

• the ECG signals of a single tested person vary across different states, such as sleeping,
running, and walking;

• the noise and artifacts in the captured ECG can lead to variations and differences, as
explained in the following subsection.

Artifacts/Noises Affecting the ECG

The ECG signal can become mixed up with different types of unwanted sounds, each
with its own characteristics.
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• Baseline wander: This occurs when the signal changes slowly because of things like
skin contact or patient movement. It adds a slow-moving section to the ECG signal
that we do not want [17].

• Power line interference: This kind of noise is caused by electricity sources like power
lines. It tends to show up at 50 or 60 Hz, even though we cannot always know when it
will appear or how strong it will be [18].

• Motion artifacts: If the sensors move away from where they should be on the skin, it
results in these unwanted changes in the signal. These represent a problem because
we cannot predict how they will look or how often they will occur.

• Muscle noise: This occurs because of muscle movements and is similar to the ECG
signal in terms of its energy.

To ensure consistency and accuracy in the ECG readings, it is crucial for all clinical
technicians to follow the same standardized method for obtaining a 12-lead ECG. This
standardization guarantees that the ECG data collected are reliable and precise. These
high-quality ECG data then serve as the foundation for feeding into AI-based systems.

The AI-based system capitalizes on these reliable ECG data to carry out the analysis.
Employing advanced algorithms, the system can recognize patterns, anomalies, and in-
dicators within the ECG signals. This analysis yields valuable insights that can assist in
diagnosing cardiac conditions and making informed medical decisions.

2. Literature Review

Digital image processing and machine learning have a significant role in healthcare.
Recently, research has been concentrated on cardiac disease detection through deep learning,
yielding promising results [19–23]. CNN is the latest method used for the classification
and detection of heart signals with different variations [24,25]. Similarly, Xia et al. [26]
recommended a wearable ECG detection system. The model was evaluated through
ECG data acquired from a wearable patient monitoring (WPM) device and the MIT-BIH
arrhythmia database. Although the authors present good classification performance, the
WMP devices face accuracy, precision, and reliability issues [27]. Huang et al. [28] proposed
the classification of an ECG arrhythmia using two-dimensional (2D) CNN. In this technique,
the five different types of heartbeats were first converted into time–frequency spectrograms
before 2D CNN was used to classify the data. The authors presented various approaches
in [29], where the main focus was the application of a deep learning model with GRU (gated
recurrent unit) and then the use of an ELM (extreme learning machine) for the identification
of the ECG signal. Lu et al. [30] used PQRST and 2D convolutional features for the
recognition of a single heartbeat, a method called the random oversampling algorithm was
used to balance the data, and finally, a random forest classifier was applied. Ji et al. [31]
used 1D ECG signals and transformed them into a 2D image. A faster R-CNN (faster
regions with a CNN) algorithm was used for the experiment and accomplished an accuracy
of 99.21%. Fan et al. [32] used a multiscaled fusion of deep CNN using a single lead short
ECG and achieved an accuracy of 96.99%. Li et al. [33] suggested an e-health monitoring
system of CVD by combining heartbeats into a two-dimensional feature vector and then
applied CNN for efficient detection. In a research work by Naz et al. [34], deep learning
techniques were proposed for the detection of cardiac disorders in ECG signals. The signals
were transformed into images and then supplied into three different deep learning models:
AlexNet, Inception-v3, and VGG-16. Transfer learning was applied to train all these models
in the task of detecting CVD. The extracted features were combined, and the best ones were
selected through a heuristic entropy method.

As most researchers used timeseries data of ECG with signal leads, which are not
suitable for power line interface and muscle contraction, among other things. The most
appropriate method for screening cardiac disorders usually advised by cardiologists is
the use of 12-lead ECG images. The major motivation and contribution of this paper is
the development of an effective automated CVD system using 12-lead ECG images for
hospitals as well as for remote patients. In this work, we applied a lightweight CNN with
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attention module, while the results are evaluated using an accuracy, recall, precision, and
confusion matrix.

The above review is summarized in Table 1.

Table 1. Literature review conclusions.

Research Work Method Dataset Results

Imran et al., 2022 [14] Wearable ECG detection system
ECG data from wearable

patient monitoring device and
MIT-BIH arrhythmia database

Claimed good classification
performance

Chamatidis et al., 2017 [21] Faster R-CNN - 99.21% accuracy in detecting
ECG signals

Isin et al., 2017 [22] Multiscaled fusion of deep CNN Single lead short ECG 96.99% accuracy

Naz et al., 2021 [34]
Deep learning techniques

(AlexNet, Inception-v3, VGG-16)
+ transfer learning

- Claimed good results

The subsequent sections of this manuscript are organized as follows: Section 3 de-
lineates the proposed methodology encompassing the IoT-based framework and the au-
tomated classification of ECG images. This approach involves the use of REL and DSR
routing for data transformation, as well as the application of the lightweight CNN for
classification. In Section 4, the results and discussion are given, and finally, the conclusions
and future research directions are outlined in Section 5.

3. Proposed Method

The proposed system is implemented in a two-stage approach, i.e., IoT-based ECG
framework and the classification of ECG images.

3.1. IoT-Based ECG Framework

The system described primarily consists of three components: an electrocardiogram
(ECG) sensing system, an internet of things (IoT) cloud, and a graphical user interface
(GUI), as presented in Figure 2. The ECG sensing system often utilizes wearable sensors for
continuous monitoring, which have minimal disruption to a user’s daily life. These sensors
allow for the long-term recording of ECG data.
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As presented in Figure 2, the IoT cloud system is composed of three main components:
collection of data and transmission, ECG investigation, and disease alert. The data collection
module involves the use of portable devices to collect ECG data, which are then transmitted
to the cloud using a routing protocol. REL and DSR routing were employed for data
transformation. The ECG analysis module is liable for extracting essential features for the
identification of potential heart diseases. However, the ECG signals may be affected by
noise in the data collection and communication process, which can impact the accuracy
of the diagnosis. Consequently, the IoT cloud also presents data analysis architecture to
extract relevant features using the ECG signals. Finally, the disease alert module is critical
for protecting patients and providing an alert system to ease medical care when needed.

3.1.1. DSR Protocol

The DSR protocol operates as a source-routing mechanism within the IoT cloud net-
work, enabling the transmission of packets across multiple hops among network nodes.
This is particularly useful when the distance between nodes exceeds the range of direct
transmission. The protocol involves the initiation of a packet’s transmission via an origina-
tor node, which determines a specific sequence of nodes through which the packet must
pass to reach its intended destination.

In the DSR protocol, when a source node (S) seeks to transmit data to a destination
node (D), it first checks its route cache to determine whether a direct route to D exists.
If such a route is absent, S broadcasts a route demand message to its neighboring nodes.
These neighboring nodes, acting as intermediaries, either respond with route information
through a route reply message if they possess a suitable route to D or they forward the
request to their own neighboring nodes [35].

This iterative process continues until the route demand message reaches either D or a
node that holds a viable route to D. Upon receiving a route reply message, S stores the route
information in its cache, enabling subsequent data transmission along the established route.

It is important to note that the DSR protocol prioritizes route discovery only when
there are data to be sent to a destination. Each node maintains a list of routes in its cache,
and a node will request a route from its neighbors if it lacks a route to a specific location. The
protocol’s core mechanisms include route discovery and maintenance, and while it offers
simplicity and efficiency, it has limitations in handling large networks and susceptibility to
specific types of routing loops and attacks.

Due to its characteristics, the DSR protocol is most effective in small-scale, ad hoc
networks, where minimizing overhead takes precedence over scalability and robustness.
The operation of the DSR protocol is summarized in Figure 3, outlining the steps from
route discovery to successful data transmission, with additional nodes identified alongside
the source node (S) and destination node (D) for clarity.

• The source node (S) intends to transmit data to the destination node (D).
• S verifies its route cache to determine the availability of a route to D.
• If S does not possess a route to D in its cache, it broadcasts a route demand message to

its neighboring nodes.
• Each neighbor that receives the route request message checks its own route cache to

see whether it has a route to D. If it does, it sends a route reply message back to S with
the route information. If it does not have a route to D, it forwards the request to its
own neighbors.

• This procedure carries on until the request is received by either D or a node with a
route to D.

• When a route reply message is received by S, it records the route in its cache and uses
it to send the data to D.
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3.1.2. REL Protocol

REL protocol is commonly used in wireless sensor networks (WSNs) and IoT ap-
plications such as smart cities, environmental monitoring, healthcare, and comfortable
offices and homes. It uses residual energy and link quality to find routes that improve
the system’s QoS (quality of service) reliability and support and incorporates an event-
driven mechanism for load balancing and the prevention of early node death [36]. In WSN
communication, links are often unreliable due to low-powered radios that are vulnerable
to multipath distortion, noise, and interference. The effectiveness of route selection de-
pends on the accuracy of the link quality estimate to improve reliability. Generally, a LQE
(single link quality estimator) value such as LQI (link quality indicator) or RSSI (received
signal strength indicator) is used to represent the link quality at a specific time, but it
does not provide additional information about the end-to-end link quality, hop count, or
residual energy.

The REL protocol has a number of advantages over purely reactive protocols like
DSR. It has lower latency and overheads, since routes are maintained proactively rather
than being discovered on an as-needed basis. It also has better scalability, since it can
handle larger networks more efficiently. However, it does have some drawbacks, such as
higher energy consumption and the potential for routing loops if the proactive flooding
mechanism is not implemented carefully.

Thus, a hybrid approach of routing protocol is used, which combines elements of
both DSR and REL. The hybrid protocol uses a REL to maintain routes to commonly used
destinations, while using a DSR to discover routes to less frequently-used destinations on
an as-needed basis.

3.2. Classification of ECG Images

A typical ECG consists of P and T waves, PR and ST segments, PR and QT intervals,
as well as the QRS complex. The dataset employed in this work consisted of 12-lead ECG
images and is publicly available [37]. All these features have been considered using the
lightweight CNN model to ensure that it is equipped with the necessary information to
accurately classify ECG signals into their respective categories. The details of the proposed
methodology are shown in Figure 4.
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3.2.1. Dataset

We utilized a publicly accessible dataset in this study known as the “ECG Images
dataset of Cardiac Patients” [37]. This dataset comprises 12-lead ECG images categorized
into four groups: normal, myocardial infarction (MI), abnormal heartbeat, and previous
history of MI. The detailed description of the 12-lead ECG Images dataset used in the
proposed model is provided in Table 2, while the distribution of images within the dataset
is illustrated in Figure 5.

Table 2. Image distributions based on classes.

S/No. Activities

Normal 284
Myocardial infarction (MI) 240

Previous history of MI 172
Abnormal heartbeat 233
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To provide a clearer description of the dataset, we have chosen random sample from
abnormal heartbeat and myocardial infarction (MI), as illustrated in Figure 6.
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3.2.2. Lightweight CNN

The proposed lightweight CNN consists of several components, as depicted in Figure 7.
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Four-Layer Lightweight CNN

The initial component of the model is responsible for processing the input ECG
data and extracting appropriate features from it. This lightweight CNN usually includes
multiple convolutional layers, as well as pooling layers and activation functions. The
purpose of the four-layer CNN is to effectively capture important patterns from the ECG
data. The proposed lightweight CNN is employed to automatically extract ECG features.
This CNN focuses on feature extraction and leaves feature optimization to the attention
module, which is the method’s main focus. Additionally, the inclusion of a BatchNormal-
ization (BN) layer and a ReLU layer in the CNN helps to improve the training process and
avoid overfitting.

Attention Module

The attention module is a crucial component of the proposed method that enhances
the characteristics appropriate to the identification category. This module is based on two
primary strategies.

The contextual encoding layer: This method enables the model to discover contextual
connections between various input data [38], which is helpful for identifying dependencies
in sequences. By understanding contextual relationships, the model can better capture
dependencies and patterns in the ECG data.

The depthwise separable convolution: This method is used to reduce the model’s
number of parameters. A lighter model with fewer parameters is produced via depthwise
separable convolution, which separates the spatial and channel-wise processes [39]. This
makes the model more effective for use in practical applications.

Flattening and SoftMax Classifier

The improved features are flattened into a one-dimensional vector after going through
the attention module, turning the 2D or 3D tensor into a linear array. The SoftMax classifier
is then fed this one-dimensional vector. A common option for multi-class classification tasks
is the SoftMax classifier, which determines the probability of each identity category based
on the ECG data retrieved by the preceding layers. The input ECG sequence’s anticipated
identity is the class with the highest probability.

When an ECG image is input, the model goes through three stages of the lightweight
CNN model to produce a label for the image based on the identified features. The model
was trained using specific parameters listed in Table 3. The loss function employed for
the model is categorical cross entropy, a common choice for multiclass classification tasks.
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The rate of learning is set at 0.001, determining the step size of the optimizer during
training. The model employs the Adam optimizer, a widely used optimization algorithm
that updates model weights based on the gradient of the loss function. The training process
spans 70 epochs, indicating that the complete dataset passes through the model 70 times.
The dataset is divided into training and testing sets of 80% and 20%, respectively. The
batch size used is 16, meaning that 16 samples are utilized to adjust model weights in
each iteration of training. Finally, the activation function in the output layer is SoftMax, a
standard choice for obtaining the probability distribution of expected classes in multiclass
classification tasks.

Table 3. Proposed parameters for lightweight CNN.

Name Description

Batch size 16
Optimizer Adam
Training 80%
Loss Function Categorical cross-entropy
Epochs 70
Learning rate 0.001
Testing 20%
Activation SoftMax

The pseudo-code of the proposed system, focusing on the IoT-based ECG framework
and the classification of ECG images, is described below:

A. IoT-based ECG Framework

a. Initialization:

i. Initialize ECG sensing system (wearable sensors) for continu-
ous monitoring.

ii. Initialize IoT cloud for data collection, transmission, analysis, and
disease alert.

b. Data Collection and Transmission:

i. Read ECG data from wearable sensors continuously.
ii. Send the collected ECG data to the IoT cloud using DSR or REL

routing protocol.

c. ECG Investigation:

i. IoT cloud receives the ECG data and stores them.
ii. IoT cloud performs data analysis to achieve essential features using the

ECG signals.

d. Disease Alert:

i. IoT cloud processes the extracted features and detects potential
heart diseases.

ii. If a potential heart disease is detected, the disease alert module
is triggered.

iii. The disease alert module sends alerts to relevant parties (medical per-
sonnel, patients) for immediate medical care.

e. Route Discovery (DSR Protocol):

i. When a source node (S) wants to send data to a destination node (D)
and does not have a route in its cache:

ii. S broadcasts a route request message to its neighboring nodes.
iii. Each neighbor receiving the request checks its own cache for a route to D.
iv. If a route is found, the neighbor sends a route reply message back to S

with the route information.
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v. If no route is found, the neighbor forwards the request to its
own neighbors.

f. Route Maintenance (DSR Protocol):

i. When a route reply message is received by S, it records the route in its
cache for future use.

ii. The route is also saved in the route caches of all nodes that helped find it.

g. Route Selection (REL protocol):

i. REL protocol uses residual energy and link quality to find routes for
improved QoS reliability.

ii. Links are selected based on LQE values (e.g., LQI, RSSI) and resi-
dual energy.

B. Classification of ECG Images

h. Dataset Preparation:

i. Load the “ECG Images dataset of Cardiac Patients”, consisting of
12-lead-based ECG images and four classes (normal, myocardial in-
farction, previous history of MI, abnormal heartbeat).

ii. Split the dataset.

i. Lightweight CNN Model:

i. Input layer for processing the ECG data.
ii. Multiple convolutional layers with pooling and activation functions

to capture important patterns.
iii. Contextual encoding layer: discover contextual connections in input

data for identifying dependencies in sequences.
iv. Depthwise separable convolution: reduce model parameters

for efficiency.
v. Flattening: flatten the improved features into a one-dimensional vector.
vi. SoftMax classifier: determine the probability of each identity category

based on the extracted ECG data.

4. Experimentation
4.1. Performance Matrices

The performance of the model employed in the work was evaluated using various
metrics, including the accuracy, precision, recall, and confusion matrix [40–42].

• Accuracy measures the proportion of correct predictions made by the model.
• Sensitivity or recall is the measure to predict true positives out of all positive
• instances.
• Precision is a measure of the ability to predict true positives from actual posi-

tive instances.
• The confusion matrix is a table that summarizes the presentation of a classifier by

comparing the actual and predicted classifications.

The aim of the research was to classify various types of cardiac disorders, and
the outcomes of this classification are reported in Table 4. These evaluations were car-
ried out in order to determine how well the models were able to correctly classify the
different disorders.

Table 4. Prediction outcomes.

Outcome Definition

T− Correct identification of negative data
T+ Correct identification of positive data
F− Incorrect identification of negative data
F+ Incorrect identification of positive data
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To classify ECG images, the following terms are used to evaluate the parameters:
T+ signifies true positive, F+ is false positive, T− is true negative, and F− signifies false
negative. The formulas of accuracy, recall, and precision are obtained based on Table 4, and
are given as Equations (1)–(3).

Accuracy =
(T+ + T−)

(T+ + F−) + (F+ + T−)
(1)

Sensitivity or Recall =
(T+)

(T+ + F−)
(2)

Precision =
(T+)

(T+ + F+)
(3)

4.2. Results and Discussion

The description of the lightweight model’s parameters is depicted in Table 5. The Table
provides a comprehensive summary of the model’s architecture, including the number of
float operations and the input shape for each layer.

Table 5. Float operations.

Layer Float Operations Input Shape

Conv2D 7,962,624 1, 288, 432, 1
Conv2D 7,077,888 1, 24, 72, 32
MatMul 786,432 1, 3072
BiasAdd 442,368 1, 96, 144, 32
MaxPool 442,368 1, 96, 144, 32
BiasAdd 12,288 1, 8, 24, 64
MaxPool 12,288 1, 8, 24, 64
MatMul 1024 1, 128
BiasAdd 128 1, 128
SoftMax 20 1, 4
BiasAdd 4 1, 4

All Layers 16,737,432

The proposed lightweight CNN model has achieved an impressive accuracy with
the possibility of further enhancement through the fine-tuning of hyper-parameters. The
results in Table 6 display the performance of the model. The accuracy, which is 98.39%,
represents the portion of correct predictions. Precision, given as 0.985, indicates that about
98.5% of the positive predictions made by the model were accurate. Recall, at 0.98, signifies
that the model identified around 98% of all actual positive cases.

Table 6. Obtained results.

Accuracy (%) Precision Recall

98.39 0.985 0.98

The results are presented graphically in Figure 8, illustrating the loss and accuracy
trends across each epoch during the training phase. The graph distinctly illustrates that the
model’s accuracy improved with the progression of training epochs. This outcome gains
further validation through the utilization of a confusion matrix (Figure 9). This matrix offers
a concise overview of how well the model performed in terms of its projected and actual
classifications. Notably, it is important to mention that the confusion matrix displayed in
Figure 9 is derived exclusively from the test data, constituting 20% of the total dataset.
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Clearly, these results show that the model’s ability to comprehend hierarchical fea-
tures from a limited dataset underscores its potential to capture intricate patterns and
representations within the data, resulting in enhanced performance in tasks characterized
by data scarcity. Furthermore, its deliberate design prioritizes computational efficiency,
distinguishing it from deeper and more intricate CNN architectures. This efficiency renders
the lightweight CNN particularly suitable for resource-constrained scenarios, such as IoT
devices and wearable sensors, where computational resources may be restricted. The
advantage of a lightweight CNN lies in its automatic feature learning capability from the
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raw ECG data. By directly capturing abstract patterns and representations from the data,
it enhances the potential for better discrimination between different classes. This feature
extraction process removes the requirement for manual feature engineering, simplifying
the model’s architecture, and contributing to its overall interpretability.

This manuscript discusses an IoT-based cardiac patient monitoring and detection
system, which, by design, involves real-time data collection from IoT sensors. However, to
demonstrate the model’s effectiveness, we initially used a publicly available ECG image
dataset, widely accepted as a benchmark in the field. This dataset served as an initial testbed,
and its results are presented in Figure 10, where an input image is successfully predicted.
We specifically worked with a dataset consisting of 12-lead cardiac ECG images recorded
at a 500 Hz frequency. However, we acknowledge that ECG images can significantly
vary across different sources and clinical settings. To ensure our model’s robustness and
applicability to a wider range of datasets, including real-world data, extensive training
is necessary.
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Finally, Table 7 presents a comparison between the outcomes of our proposed method
and the models that use the same dataset for classifying ECG images. Through an extensive
search, we found that the only existing studies utilizing the same dataset for classifying
the four classes are [5,43]. Our proposed lightweight CNN method has clearly demon-
strated its excellence by achieving superior accuracy and precision, thereby establishing its
effectiveness in ECG image classification.

Table 7. Comparison with recent techniques.

Refs. Year Method Dataset Accuracy (%) Recall (%) Precision (%)

[5] 2021 MobileNet v2 ECG images for
Cardiac
patients

97.5 - -
[43] 2022 CNN 98.23 98.22 98.31

Proposed - Lightweight CNN 98.39 98 98.5

5. Conclusions and Future Work

This paper presents a solution aimed at enhancing the management of a CVD through
early diagnosis. Despite the advancements in clinical treatment, the accurate detection of
cardiac disorders remains a challenging task. Deep learning has emerged as a promising
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approach to improve diagnosis, especially in remote patient scenarios, achieving an im-
pressive accuracy of 98.39%. However, a limitation of this research is the absence of the
segmentation process, which could have increased computational complexity and further
improved the results.

Incorporating the segmentation approach before classification is the work’s future goal
because it is anticipated to improve the diagnostic process’ accuracy and dependability. The
suggested solution intends to further improve and streamline the CVD detection process
by utilizing robust features and investigating alternative deep learning models on more
datasets. These initiatives could change early detection and open the door to the better
management of heart diseases.
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