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Abstract: EEG decoding based on motor imagery is an important part of brain–computer interface
technology and is an important indicator that determines the overall performance of the brain–
computer interface. Due to the complexity of motor imagery EEG feature analysis, traditional
classification models rely heavily on the signal preprocessing and feature design stages. End-to-end
neural networks in deep learning have been applied to the classification task processing of motor
imagery EEG and have shown good results. This study uses a combination of a convolutional neural
network (CNN) and a long short-term memory (LSTM) network to obtain spatial information and
temporal correlation from EEG signals. The use of cross-layer connectivity reduces the network
gradient dispersion problem and enhances the overall network model stability. The effectiveness
of this network model is demonstrated on the BCI Competition IV dataset 2a by integrating CNN,
BiLSTM and ResNet (called CLRNet in this study) to decode motor imagery EEG. The network model
combining CNN and BiLSTM achieved 87.0% accuracy in classifying motor imagery patterns in
four classes. The network stability is enhanced by adding ResNet for cross-layer connectivity, which
further improved the accuracy by 2.0% to achieve 89.0% classification accuracy. The experimental
results show that CLRNet has good performance in decoding the motor imagery EEG dataset. This
study provides a better solution for motor imagery EEG decoding in brain–computer interface
technology research.
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1. Introduction

Brain–computer interfaces (BCIs) are systems that enable communication between the
brain and a device by decoding the electroencephalogram (EEG) signals captured from the
brain during mental activities and then generating commands for the device [1,2]. These
EEG signals are acquired, processed and classified, typically leading to the conversion into
control instructions [3]. These instructions are used to develop systems for neurorehabilita-
tion, recreation and assisting individuals with motor disabilities in achieving independent
movement [4]. The flow of the BCI system is depicted in Figure 1. BCI technology has found
practical applications in people’s lives, including controlling wheelchairs [5], intelligent
prosthetics [6], intentional typing, intentional control of mechanical arms [7,8] and aiding
in the recovery from neurological diseases [9], as shown in Figures 2 and 3.

Electroencephalogram (EEG) is a time-varying bioelectrical signal that exhibits charac-
teristics such as temporal variability, low amplitude and high randomness, with a frequency
spectrum ranging from 0.5 to 47 Hz. When there is brain activity, electrode recordings can
capture the potential changes generated by a large number of neurons. These potential
fluctuations over time are commonly referred to as EEG traces. EEG traces reflect the elec-
trical activity of cortical cells in the brain and exhibit complexity and diversity, representing
different brain functional states. Motor imagery EEG (MI-EEG) refers to the brain signals
generated when an individual imagines body part movements without actually performing
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them. Compared to traditional EEG signal studies, MI-EEG is better able to reflect people’s
intentions and behaviors, and further research on MI-EEG is of significant importance for
exploring the neural basis of motor imagery and understanding the underlying neural
mechanisms of motor imagery.
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The detection of MI-EEG relies on highly sensitive EEG devices and corresponding
data analysis techniques. In recent years, there have been significant advancements in
the detection and application research of MI-EEG signals, although certain aspects still
present challenges. MI-EEG has a low signal-to-noise ratio due to the extremely weak
electrical signals obtained by the electrodes when measuring brain neural activity. It is also
susceptible to interference from other bodily signals, which necessitates the use of filtering
techniques to mitigate the effects of unrelated signals [10]. Furthermore, the non-stationarity
of collected MI-EEG signals, influenced by both external environmental factors and internal
changes within the subject, introduces unpredictable influences on the acquired MI-EEG,
making it highly dynamic [11]. Additionally, since there are individual differences in the
collected MI-EEG signals, each participant requires model training from the beginning,
resulting in substantial computational costs [12]. Since the features of MI-EEG signals vary
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over time and can produce large differences among individuals, the selection of reliable
and stable feature extraction methods is currently an important research direction [13].

In recent years, deep learning algorithms have developed rapidly and competitively in
the field of algorithms, with great success in speech sequence modeling, image classification
and video tracking [10]. Deep learning algorithms have powerful end-to-end self-learning
capabilities and can automatically extract effective features from complex data. Using
deep learning methods to process MI-EEG signals can effectively improve the decoding
performance [14,15].

Some researchers proposed separating the channels of CNN to encode multichannel
data and then connecting the encoded features back to the recognition network to perform
the final MI-EEG recognition task [16]. It was demonstrated that features encoded by CNN
are easier to recognize. Similarly, RNN can efficiently learn temporal feature relationships
in EEG by virtue of their sequential network structure [17]. The authors of [18] combined
LSTM with bi-directional LSTM (BiLSTM) to extract spatial and temporal attributes in
the EEGmmidb dataset and improved the classification accuracy by 8.25% compared to
the traditional method. Considering the advantages and disadvantages of CNN and
RNN, combining CNN and RNN into one network can improve the prediction accuracy
of MI-EEG and is more suitable for the feature processing of non-smooth EEG [19]. The
authors of [20] combined CNN and LSTM, incorporating both methods into a single
network to improve the performance of the network. In [21], an EEG signal classification
method based on a multiscale CNN model is proposed and the performance of the network
is evaluated on a publicly available EEG dataset. The authors of [22] added attention
mechanisms to multi-scale fused convolutional neural networks for visual analysis of EEG
signal decoding. The authors of [23] enhanced the time-frequency representation of EEG
data using an improved deep convolutional generative adversarial network. The authors
of [24] proposed a weighted shared 2D convolutional CNN-LSTM network that shares
convolutional kernels of different channel feature maps. The weight-sharing CNN-LSTM
reduces the amount of calculation and speeds up the network training, and the highest
accuracy rate is 82.3%. The authors of [25] proposed two meaningful image representations
built from multichannel EEG signals. Images were built from spectrograms and scalograms.
They evaluated two kinds of classifiers: one based on CNN-2D and the other built using
CNN-2D combined with LSTM. Their experiments showed that this pipeline allows us to
use the same channels and architectures for all subjects, achieving competitive accuracy
using different datasets: 71.3 ± 11.9% for BCI IV-2a (four classes).

For the data processing stage of MI-EEG, many effective methods have been proposed
by scholars. However, due to the limitations of the data and the characteristics of the EEG
signal itself, bottlenecks have been encountered in the current stage of research, and it is
difficult to improve the classification results of MI-EEG signals to a large extent. It has
been shown that deep learning methods such as CNN and RNN have good results on
MI-EEG classification, and the decoding of MI-EEG signals can be better achieved by fusing
multiple deep learning algorithms into one network and taking advantage of each network.
In terms of classification, research on MI-EEG signals needs to be further improved in the
following aspects:

(1) Improving algorithmic models: The study of feature extraction algorithms and clas-
sification algorithms with better noise immunity is one of the goals to achieve the
improved classification accuracy of MI-EEG signals. Better feature analysis can be
achieved by using automatic feature extraction methods based on neural networks.
Meanwhile, traditional classification models such as Bayesian networks and support
vector machines require a large number of training samples to obtain more satisfactory
classification results. The algorithmic model to improve the classification accuracy of
motion images using limited samples is a key research direction at present.

(2) Algorithm combination: Each algorithm has its own advantages and disadvantages.
Multiple algorithms can be combined (e.g., multi-feature combination) to leverage
the advantages of each algorithm to obtain more comprehensive feature information,
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thus providing more predictive interpretation and improving the accuracy and gener-
alization of classification. Moreover, since different algorithms have different error
responses when faced with the same data, the combination of algorithms can improve
the overall model stability and facilitate the extension to new dataset applications.

Based on this, this study proposes a combination of CNN and BiLSTM and ResNet,
i.e., CLRNet is used for decoding MI-EEG. CLRNet is a hierarchical end-to-end network
structure in which a convolutional neural network (CNN) is used to find the most infor-
mative linear subspace in the MI-EEG signals by a layered end-to-end network structure.
A special recurrent neural network (RNN) with a bi-directional long short-term memory
network (BiLSTM) was then developed as a regression algorithm to capture temporal
dynamics. For the long sequence feature information captured by the BiLSTM network,
a ResNet cross-layer connection was used to purposefully enhance the data processing
capability of the network. This study compares the CLRNet model with various other
methods on publicly available datasets and finds that the model constructed in this study
performs well on the BCI Contest IV dataset 2a.

2. Related Work
2.1. Convolutional Neural Network

Neural networks have powerful nonlinear fitting and self-learning capabilities. Com-
pared with traditional methods, neural networks have a powerful network structure and
are able to omit the step of manual feature extraction. They have excellent performance in
the feature extraction part of network training and in handling classification and regression
problems. CNNs reduce the complexity of the feedback network and enhance the gener-
alization ability of the network through unique structural designs, such as locally shared
weights and neural-network-based pooling. CNN can extract the rich linear subspace of
the original signal and update the weights using a back propagation algorithm, which is
one of the main advantages of CNN.

2.2. Bidirectional LSTM Network

RNN is used to extract temporal patterns and build a sequential model of the time
series. In this model, past data iterations predict future inputs, while future iterations infer
past interactions. This type of network is applied in RNN variants of LSTM and gated recur-
rent neural (GRU) networks. LSTM is an improved version of RNN that increases the unit
structure and reduces the weight of unimportant information. It effectively improves the
learning efficiency of long sequence data and avoids the gradient disappearance and gradi-
ent explosion problems that RNN usually faces. For an input vector xk = [x1, x2, · · · , xk] of
length k, the LSTM computes the next sequence of hidden vectors ht by iterating over time.

ft = σ(Wx f xt + Wh f ht−1 + b f ) (1)

it = σ(Wxixt + Whiht−1 + bi) (2)

ct = ft ∗ ct−1 + it ∗ tanh(Wxcxt + Whcht−1 + bc) (3)

ot = σ(Wxoxt + Whoht−1 + bo) (4)

ht = ot ∗ tanh(ct) (5)

In the above equation, Wx and Wh denote the trainable weights of the input vector
and the cyclic connection, respectively, and b represents the deviation terms. The oblivion
gate, input gate, output gate and cell state are denoted by f , i, o and c respectively.
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2.3. Residual Network

Ideally, the fitting power of a neural network increases with the number of network
layers. However, in practice, the cumulative multiplicative effect of the backpropagation
algorithm leads to problems in error gradient transfer between shallow and deep networks,
resulting in reduced gradients that may disappear or explode. As a result, not enough
feature information is extracted to obtain better performance. This is the phenomenon
of underfitting as well as overfitting in the network. To solve these problems, ResNet
was proposed as one of the classical network structures in the field of deep learning. The
innovation of ResNet is the introduction of residual blocks, which combine the outputs of
different network layers by spanning connections to form a residual mapping. This design
ensures that the gradients can be passed efficiently even if the network is deepened, making
the network easier to train and optimize. At the same time, the spanning connection also
maintains the flow of gradient information from the previous layer, effectively avoiding the
problem of gradient disappearance and dispersion. Its basic structure is shown in Figure 4.
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In Figure 4, x is the input of the pre-network layer, relu is the activation function and
f (x) is the output of the single-layer network, which form a simple residual network. H(x)
is the output of the two network layers and a constant mapping of the initial input through
the residuals. A simple residual network is formed.

3. Deep-Learning-Based Neural Network Structure Building

The convolutional layer in CNN performs spatial filtering operations on the input
MI-EEG signals, optimizing the convolutional effect by adjusting various parameters of
the CNN. A pooling layer is added after each convolutional layer to downsample the data,
followed by another convolution to obtain deeper features. To mitigate overfitting, dropout
regularization is employed. Considering the characteristics of MI-EEG, constructing a CNN
structure suitable for processing its specific data format can facilitate feature extraction and
dimensionality reduction of EEG. The CNN network structure in this study consists of a
total of six layers, including four convolutional layers and two pooling layers. The specific
structure is illustrated in Figure 5.
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The details of each network layer structure in Figure 5 are as follows:
Input layer: The MI-EEG data format of 22 × 288 × 240 is used as the CNN network input.
Convolutional layers: The first two convolutional layer filters are set to 128, the convo-

lutional kernel size is set to 3 × 3 and the number of filters in the last two convolutional
layers is set to 256. The size of the convolutional kernel is set to 5 × 5 and the step size is
1. The features of the input data are obtained by sliding the convolutional kernel window
according to the step size and are filled with the same after each convolution.

Pooling layer: The role of the pooling layer is to downsample the input data and
reduce the complexity of the overall model computation. Similar to a convolutional layer,
a pooling kernel is used to pool the convolutional output of the previous layer, and a
maximum pooling approach is taken to compare all data in the pooled region. The output
of the pooling area is the largest of these values, the pooling kernel is set to 3 × 3, the step
size is 1 and the same padding is used to fill the same after the pooling operation.

Dropout layer: The role of this layer is mainly to prevent overfitting when training the
network, and a dropout rate of 0.5 is used to improve the overall generalization ability of
the network.

Fully connected layer: The fully connected layer is the last layer of the CNN, and the
role of this layer is to integrate the features obtained from the previous network through
multiple convolution and pooling. The extracted features are mapped to the sample data to
expand the differentiation of the data, and the purpose of classification is achieved using
the softmax function.

In CLRNet, the structure and parameters of CNN are introduced. The network
parameters and structure of BiLSTM as well as ResNet are shown in Figure 6 and Table 1.
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In Figure 6, the network structure of the five-layer BiLSTM is shown, which includes
B1, B2, B3, B4 and B5. The same parameters are set for this five-layer network structure,
the number of hidden neurons is set to 100 and tanh is used as the activation function.
The output for BiLSTM is four classification results, as shown in Table 1. ResNet is added
to BiLSTM, and the residual structure of ResNet is applied to the BiLSTM network for
cross-layer connectivity. For BiLSTM, the output of the single-layer network is processed
through the residuals, i.e., RES1 =(B1 + B3) as well as RES2 =(RES1 + B5). The final
residual-processed output is verified by softmax for the four classifications. Adopting
the cross-layer connection of ResNet can reduce the problem of increasing training error
caused by the deepening of the number of layers of the network, and further improve the
generalization ability of the network to avoid the occurrence of overfitting. Therefore, it
has better performance for processing complex motor imagery patterns. The parameters
in the model are optimized after several experiments and adjustments. The parameters
presented are validated in later experiments.

CNN performs well in the space domain feature extraction ability, and LSTM can
effectively extract information in the time domain. The network model combining CNN
and BiLSTM can decode MI-EEG signals more effectively. When the number of layers of
the network increases, gradient disappearance and overfitting problems occur. Therefore,
there is still room for improvement in the structural optimization of deep networks. In this
case, adding ResNet is a very effective way to improve the performance of the network.
Enhancing network generalization by adding direct mapping between the outputs of
BiLSTM feature vectors using ResNet’s cross-layer connectivity in BiLSTM further enhances
the performance of the network in MI-EEG signal decoding tasks.

In the decoding of MI-EEG, preprocessing is necessary to extract the required electroen-
cephalogram data. In this study, we designed a network model that takes preprocessed
EEG data as the input for feature analysis and validates four types of motor imagery states,
as shown in Figure 7. The overall model architecture combines the spatial convolutional
layer of CNN, the time-frequency analysis layer of BiLSTM and the cross-layer connections
of ResNet.
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When analyzing MI-EEG, it is necessary to continuously explore network structures
suitable for its decoding. As both CNN and LSTM have shown promising results in MI-
EEG processing, this paper makes improvements on their base network architectures to
further enhance the decoding performance of MI-EEG. The proposed CLRNet network
structure in this study consists of multiple different network layers. The first six layers
are CNN layers used to capture the spatial information of MI-EEG signals, while the
following five layers are BiLSTM layers used to capture the temporal information of MI-
EEG signals. In the BiLSTM layers, ResNet’s cross-layer connections are incorporated for
residual processing, enhancing the network’s data processing capability and stability, and
improving its performance. The overall network model combines spatial convolutional
transformations, time-frequency analysis and feature selection.
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4. Experimental Results and Analysis
4.1. Experimental Data

When comparing different network models, the training and testing datasets used
for the network models under study are often different. Differences in datasets may
lead to differences in the accuracy of network models, resulting in some network models
outperforming others on some datasets. To address this issue, this study uses the motor
imagery EEG dataset commonly used by researchers as the BCI Competition IV dataset
2a. The dataset is obtained from experiments performed on nine experimenters with a
sampling rate of 250 Hz, which has been processed using a band-pass filter of 0.5–100 Hz.
The dataset contains 25 channels (22 EEG and 3 EOG) and is a four-class MI (left/right
hand, foot and tongue) EEG dataset. The paradigm of the dataset is shown in Figure 8.
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The first 2 s of the paradigm in the figure is the preparation time. A cue is given at the
2 s mark. From 3 s onwards, subjects performed imaginary movements until the 6 s mark.

4.2. Data Processing

In the whole MI-EEG signal acquisition experiment, the experimental data are recorded
throughout. According to the introduction of the experimental paradigm, the duration of
motor imagery is from 3 s to 6 s. Here, 3 s of the motor imagery segments is extracted via
segmentation as the data for this experiment. It is filtered from 8–30 Hz and the effects of
the oculomotor signals from the ‘EOG-left’, ‘EOG-central’ and ‘EOG-right’ channels are
removed at the same time.

After the operation of filtering and segment extraction of the MI-EEG data, the MI-
EEG signals format of a single subject is 22 × 288 × 750. However, inputting the data
into the CLRNet network model to verify the performance of the model revealed that the
classification accuracy obtained is low. After exploration and experimental validation, it
is determined that the initial MI-EEG signal features are relatively weak. It is difficult
to extract effective features directly through the CLRNet network model, so the results
obtained after feature extraction and classification are weak. To address this problem, a
step of simple wavelet packet decomposition is added to the preprocessing stage and good
results are achieved. The specific operation is a five-layer wavelet packet decomposition
for a sampling rate of 250 Hz. The band range of each node in layer 5 is 0–7.8125 Hz, and
the band ranges of nodes 2 and 3 are 7.8125–15.625 Hz and 15.625–23.4375 Hz, respectively.
Node 2 and node 3 associated with the Mu (8–14 Hz) and Beta (16–24 Hz) rhythms of motor
imagery are selected for signal reconstruction. The format of the reconstructed signal data
is 22 × 288 × 240, where 22 represents the number of channels, 288 represents the number
of trials and 240 represents the sampling points after data processing. This data format is
used for experimental validation in the following experimental procedures.

The CLRNet network model proposed in this study is tested on the BCI Competition
IV dataset 2a. The input EEG data format is 22 × 288 × 240. The size of the batch training
is set to 8. The number of iterations is set to 200. The Adam optimizer is selected to update
the learning weights of the network model, and four categories of motor imagery patterns
(left/right hand, foot and tongue) are classified. The dataset used in this study is the BCI
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Competition IV dataset 2a, which contains data on a total of nine subjects. The nine sets
of pre-processed data are validated by the model separately, and the accuracy rate is used
as the evaluation index of the classification results. The obtained classification results are
shown in Table 2.

Table 2. CLRNet network model classification results.

Subjects Accuracy (%)

1 90.3
2 87.4
3 91.3
4 83.4
5 88.0
6 92.6
7 89.5
8 90.2
9 88.7

The final classification accuracy for each subject is given in Table 2. Individually
by subject, the MI-EEG dataset collected through subject 6 is the best classified with an
accuracy of 93%. This is the highest classification accuracy for this experiment. Meanwhile,
the MI-EEG dataset collected through subject 4 had the worst classification result, which is
83.4%. It is normal that there is variation between subjects due to differences in individual
body composition and status. The network model constructed in this study achieved good
classification results for all nine subjects’ EEG data from the BCI Competition IV dataset 2a,
with an average accuracy of 89%. A high classification accuracy is achieved overall. The
results of this experiment show that the model is suitable for processing the EEG signals of
most subjects and is effective and practical for processing MI-EEG signals.

In the decoding of MI-EEG signals, feature extraction plays a very critical role, and
channel selection is a special feature selection method. Channel selection is closely related to
the physiological context in which the MI-EEG signal is located. By removing channels that
contain noise and redundant information, the amount of data that needs to be processed
can be reduced and the data processing capacity of the BCI system can be improved.
Also, adding more valuable channels can improve the signal-to-noise ratio of the system
and increase the decoding performance of the BCI system. Therefore, the role of channel
selection is very important in the MI-EEG signal decoding task. It can improve the signal
quality and interpretability by reducing noise and redundant information and optimize
the training and testing accuracy of feature extraction and classifier. In turn, the overall
performance of the BCI system is improved. C3 and C4 are considered to be the most
relevant channels to MI-EEG [26]. In order to further verify the effect of multiple channels
and these two channels on the recognition rate of MI-EEG, these two channels are selected
for feature extraction and classification while retaining the C3 and C4 channels. In addition
to this, the recognition results are compared with those performed by the three-channel as
well as the multi-channel methods using C3, C4 and Cz. The results are shown in Figure 9.

Figure 9 demonstrates the variability between the different channels for the classifica-
tion accuracy of the subjects. For the MI-EEG data collected from nine subjects, the C3 and
C4 channels are most closely associated with MI-EEG. However, adding other channels
containing MI-EEG information can enhance the classification accuracy of the model.
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In addition, the model proposed in this study contains several commonly used net-
works. In order to verify that the effect of the combination can obtain the advantages of
each network, the CLRNet model proposed in this study is subjected to controlled variable
experiments using CNN, BiLSTM and CNN-BiLSTM networks for the BCI Contest IV
dataset 2a, respectively. The performance of each network is verified, and then ResNet
is added to compare and evaluate the performance of each network model, as shown in
Table 3.

Table 3. Controlled variable experiments.

Methods
Accuracy of Different Subjects (%) Average Accuracy

Rate (%)A01 A02 A03 A04 A05 A06 A07 A08 A09

CNN 81.2 79.8 84.6 80.2 82.0 85.1 85.0 84.7 84.5 83.0
BiLSTM 77.0 72.3 78.1 72.1 76.7 78.8 77.0 76.9 77.3 76.2

CNN-BiLSTM 86.8 83.5 88.9 82.8 88.0 89.5 86.8 87.0 87.1 87.0
CLRNet 90.3 87.4 91.3 83.4 88.0 92.6 89.5 90.2 88.7 89.0

Table 3 shows the comparison results obtained from the controlled variable experi-
ments. The experimental results show that the deep learning methods all have good results
for the data processing ability of MI-EEG signals. For non-stationary MI-EEG signals, CNN
and BiLSTM have good performance for feature extraction and classification of MI-EEG
signals. It proves that the spatial and temporal feature information is an important basis
for decoding MI-EEG signals.

For non-stationary MI-EEG signals, CNN and BiLSTM have good performance for
feature extraction and classification of MI-EEG signals. Their average classification accu-
racies reached 83.0% and 76.2%, respectively. It proves that spatial and temporal feature
information is an important basis for decoding MI-EEG signals. CNN-BiLSTM combines
the advantages of both networks and provides excellent performance in processing data
containing spatio-temporal information. The average accuracy of the classification is 87.0%,
and the overall performance is stronger than that of the individual networks. The CLRNet
model proposed in this study combines the features of three networks, CNN, LSTM and
ResNet. CNN can effectively extract the spatial features of the signals; BiLSTM can handle
sequence information very well. ResNet networks can alleviate the gradient disappearance
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problem in deep neural networks and reduce the complexity of network training. The
experimental results show that the combined approach of the CLRNet model can give
full play to the advantages of each network and realize the improvement of classification
accuracy of BCI race IV dataset 2a. It is further demonstrated that the CLRNet model
proposed in this study is an effective method for MI-EEG signal decoding, and it also
shows that the multi-network fusion model is an important research direction for MI-EEG
signal processing.

To demonstrate the excellent decoding performance of the CLRNet network model
for MI-EEG in more depth, this paper is compared with MI-EEG classification methods
proposed by other researchers. All comparison trials are conducted on the dataset of each
subject in the BCI Competition IV dataset 2a. The same classification accuracy is used as an
evaluation metric. The comparison results are shown in Table 4.

Table 4. Comparison of MI-EEG classification methods.

Subjects TCNet (%) WPD_CSP_ANN (%) ATCNet (%) CLRNet (%)

A01 86.1 70.5 88.5 90.3
A02 66.0 60.0 70.5 87.4
A03 93.4 81.8 97.6 91.3
A04 72.6 65.6 81.0 83.4
A05 79.9 75.8 83.0 88.0
A06 66.7 72.0 73.6 92.6
A07 90.3 71.3 93.1 89.5
A08 85.8 71.5 90.3 90.2
A09 85.4 81.0 91.0 88.7

Average 80.7 72.2 85.4 89.0

The four MI-EEG classification methods included in this paper are compared sepa-
rately in Table 4. Temporal convolutional networks (TCNet) and attention-based temporal
convolutional networks (ATCNet) are characterized by the ability to achieve better clas-
sification results using fewer training parameters. It is suitable for low computational
complexity and low memory consumption but has the disadvantage that the extracted
features are not comprehensive enough. Wavelet Decomposition-Common Spatial Pattern
Algorithm-Artificial Neural Network (WPD_CSP_ANN) is characterized by good perfor-
mance in combining neural networks for MI-EEG recognition through feature extraction in
the time and space domains, but the network design in the feature extraction phase is more
complex. The comparison shows that the classification accuracy of the model in this paper
reaches 89%, which is significantly higher than the remaining three groups. In this paper,
CNN, BiLSTM and ResNet are combined to obtain higher feature recognition capability
through feature extraction in multiple dimensions. Compared with other methods for
non-smooth MI-EEG signal processing, it has better decoding performance and improves
the classification accuracy of MI-EEG signals.

5. Discussion

In this research work, a network consisting of CNN, BiLSTM and ResNet is proposed
to decode MI-EEG. The main elements of this study are as follows: A hierarchical network
is proposed, combining CNN and BiLSTM with ResNet. CNN is used to obtain the null
domain features from the original MI-EEG, and BiLSTM is used to obtain the time domain
information of the MI-EEG time series. To avoid network degradation, a residual network
is used to perform residual processing on the output of BiLSTM to enhance the data
processing capability of the model. The CLRNet model presented in this study is evaluated
using a publicly available motor imagery dataset to demonstrate the validity and utility
of the model. The experimental results demonstrate the ability of CLRNet to effectively
reduce the long-term non-smooth effects of EEG sequences and improve the robustness
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and accuracy of EEG-based motor imagery classification models. The model may be used
to develop MI-BCI applications in the future.

For neural networks, the settings of network parameters are not fixed, and different
parameters may bring results with large disparities. In order to achieve better MI-EEG
decoding, there may be room for improvement for the CLRNet network model architecture
parameters proposed in this study. This requires a lot of time for tuning and comparison,
and this is the area that needs to be focused on and studied in the future.
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