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Abstract: Human pose estimation is the basis of many downstream tasks, such as motor intervention,
behavior understanding, and human–computer interaction. The existing human pose estimation
methods rely too much on the similarity of keypoints at the image feature level, which is vulnerable to
three problems: object occlusion, keypoints ghost, and neighbor pose interference. We propose a dual-
space-driven topology model for the human pose estimation task. Firstly, the model extracts relatively
accurate keypoints features through a Transformer-based feature extraction method. Then, the
correlation of keypoints in the physical space is introduced to alleviate the error localization problem
caused by excessive dependence on the feature-level representation of the model. Finally, through the
graph convolutional neural network, the spatial correlation of keypoints and the feature correlation
are effectively fused to obtain more accurate human pose estimation results. The experimental results
on real datasets also further verify the effectiveness of our proposed model.

Keywords: human pose estimation; Transformer; graph convolutional network; dual space; keypoint
detection

1. Introduction

Human pose estimation is always a challenging problem in machine vision. Its main
goal is to determine the spatial position of a person’s body keypoints from a given image or
video. It is also the basis for many high-level semantic tasks and downstream application
scenarios, such as motion intervention, human–computer interaction [1–3], intelligent
education, museum immersive experiences, etc.

Considering the overall framework of the algorithm, 2D multi-person human pose
estimation can be divided into two categories: bottom–up and top–down estimation
methods. Bottom–up estimation methods take the original image as input, first estimate
all the keypoints coordinates in the figure, and then divide the keypoints coordinates
according to the human body, so as to generate 2D human pose estimation corresponding
to each body. The top–down method first detects the human body and then predicts the
keypoints coordinates for each detected human body. The original problem of multi-person
human pose estimation is transformed into multiple single-person human pose estimation
tasks, simplifying the complexity of keypoints estimation and improving the accuracy
of human pose estimation to a certain extent. Therefore, it is favored by the majority of
researchers. The method proposed in this paper also belongs to the top–down approach.

In addition, human pose estimation methods are divided into CNN-based and
Transformer-based approaches. Generally speaking, the CNN-based methods [4–6] are
mainly divided into two stages: feature extraction and keypoints regression. Among them,
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the feature extraction part mainly extracts the image features through different backbones,
to extract the human body information in the images. The keypoints regression part maps
the features in the images to the coordinates of the keypoints through the regression model
and then deduces the pose. In this stage, a deconvolution layer is added to the output layer
to generate heatmaps for keypoints prediction, which can further improve the model’s
performance. Since Transformer are widely used in natural language processing and com-
puter vision, Transformer-based methods [7–10] are also popular in human pose estimation
currently. These methods often combine conventional feature extraction networks with
Transformer models. A multi-layer attention-sensing module is used to capture the feature
connections between the keypoints of the images, and better results are achieved with
fewer parameters.

Although these top–down pose estimation methods have achieved good results, the
accurate identification of keypoints of the human body still faces three challenges: object oc-
clusion (object occlusion leads to the loss of information of part of the keypoints), keypoints
ghost (portrait ghost in the shooting process), and neighbor pose interference (neighbor
keypoints interference). The three challenges mainly come from the fact that the model
relies too much on the correlation of keypoints in feature space and ignores the correlation
of keypoints in physical space, which may have a negative impact on keypoints detection.
In physical space, the keypoints of the human body follow certain distribution laws, so this
knowledge is also crucial for posture modeling.

In this paper, the above correlations are divided into the following two categories:
(1) the correlation of keypoints in physical space refers to the overall distribution relation-
ship followed by keypoints in the human body, which is based on people’s common sense
of life and the comprehensive statistics of datasets such as the rigid body characteristics of
the keypoints of the head and the symmetry of the limbs; (2) the correlation of keypoints in
feature space refers to the pixel-level feature relationship between keypoints of the human
body in a single image. However, the keypoints of the human body in a single image may
be different from the physical space due to factors such as occlusion, distortion caused by
shooting methods and neighbor interference. To visualize these two distinct relationships,
we used different ways to model the two relationships separately. For the correlation of
keypoints in physical space, we use the results based on human physiological structure
and statistical analysis to construct the topological structure of physical space. For the
relevance of keypoints in feature space, we first use the Transformer-based network to
extract keypoints features. Then, we calculate the similarity degree of extracted keypoints
features to represent the relevance of feature space. Finally, the image convolutional neural
network effectively integrates the spatial correlation and the feature correlation to obtain
more accurate human pose estimation results.

Overall, our method makes the following contributions:

1. We proposed a novel Dual-Space Driven Keypoint Topology Modeling for human
pose estimation. The correlations of physical space and feature space are introduced
into the model to improve the accuracy of the model further.

2. We extract the feature relations based on the keypoints feature extracted by Trans-
former. We also combine human physiological structure and statistical analysis to
express the correlations of keypoints of human bodies in real world and figures. We
finally use graph convolutional neural network to integrate the knowledge of the two
more efficiently.

3. We conduct extensive experiments on real world datasets, comparing the proposed
DSPose method. Experiments results prove the effectiveness of our model in various
aspects. Furthermore, the experiment also proves that modeling the correlation of the
human body’s keypoints in physical space can further improve the model’s accuracy.
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2. Related Work
2.1. Human Pose Estimation

Human pose estimation is an important task in computer vision. Briefly, the main
goal of the task is to detect the keypoints of the human body in a 2D image and label
their locations.

In 2D pose estimation, multi-person pose estimation is the main research task. For
this task, there are two main solutions: top–down and bottom–up. Top–down means
each person in an image is detected first, and then, the keypoints of each person are
identified. It transforms multi-person pose estimation task into multiple single-person
pose estimation tasks, while bottom–up means that all the keypoints are detected first and
then corresponded to each person separately. The method in this paper belongs to the
top–down method.

CNN-based methods have dominated past research. Simple Baselines [4] provides
one of the simplest and fastest methods: using ResNet [11] as the backbone and adding an
inverse convolutional layer at the end of it to generate a heatmap for keypoints prediction,
which ultimately yields considerable results. This demonstrates that methods that work
well in other CV tasks also work well in human pose estimation tasks through simple
modifications. CPN [5] uses ResNet as the backbone, and the researchers design two
networks, GlobalNet and RefineNet, to work together, with the former detecting unob-
structed keypoints and the latter detecting occluded keypoints; the idea of processing the
datasets, respectively, has been widely borrowed. HRNet [6] is used to divide the portrait
into several different dimensional levels by convolution; it predicts the locations of the
keypoints by fusing the extracted multi-level information and achieves excellent results.
These methods have been recognized as benchmark methods in the field and are widely
used in academia as well as industry.

However, the above CNN-based method still has shortcomings in capturing the
relationship between long sequence features, and it cannot effectively use the feature
information between keypoints. The Transformer-based method can capture the context
information better and has better generalization ability for long sequence data.

2.2. Pose Estimation with Transformer

Transformer [12], proposed by Vaswani et al. in 2017, has attracted much attention in
NLP. Its successful application in NLP has led to passionate research in computer vision.
Researchers valued its outstanding ability to understand contextual information, so they
modeled the Transformer after the way it is used in NLP, where sliced images are used
as context, to apply the Transformer to computer vision [13–18]. Among them, Visual
Transformer [13] is very representative as a backbone that applies to a wide range of tasks.
The method divides the image into small slices with position encoding and puts them into
the encoder of the original Transformer together with a class token specialized in learning
the information in these slices. Pyramid Vision Transformer [14] adds a multi-level pyramid
structure to Vision Transformer, which enables the Transformer to extract information from
different scales. Swin Transformer [15] replaces the rigid segmentation of ViT by using
moving frames for segmentation, which can capture the relationship between different
parts of the image.

In human pose estimation, Transformer-based models have also achieved initial suc-
cess. Transpose [9] obtained good results by using HRNet as a backbone and inputting
the extracted features directly into the Transformer; TokenPose [8] mimicked the design
of ViT by adding randomly initialized tokens that represent the keypoints’ features, so
the keypoints features are obtained during the Transformer process without subsequent
processing; HRFormer [7] embeds the Transformer into the structure of HRNet to replace
the original convolution operation and also achieves good results; ViTPose [10] even uses
the pure ViT structure directly, with multiple datasets for long-time training, and performs
a very high detection accuracy.
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Transformer-based human pose estimation methods accurately capture the feature
connections between keypoints located at various parts of the image, giving better results
with fewer parameters. However, these methods obtain the connections between keypoints
only by learning directly from the input image data through multi-layer self-attention,
failing to mine the fundamental relations in the human skeleton well enough to provide
priori information to assist training. With this in mind, we can view the human skeleton as
a graph network and use GNN methods to deal with it.

2.3. Graph Neural Network

GNN [19] is a convolutional neural network designed based on graph theory. Unlike
CNNs, which focus on pixels that are closely arranged in position, GNNs are mainly used
to deal with this situation: elements are related to each other, but the relationships are
difficult to describe directly. These elements and relationships are often represented using
nodes and edges to form a graph structure, and the GNN performs subsequent operations
such as feature aggregation and extraction.

Mimicking the operation of CNN that aggregates the information of surrounding
pixels, GCN [20] multiplied the neighbor matrix, which had been transformed by Laplace
transform, the feature matrix, and the weight matrix, so that the features between neigh-
boring nodes are aggregated. And for the feature aggregation of GCN, GraphSAGE [21]
improved it by proposing two other ways of aggregation: the LSTM aggregation and
the pooling aggregation, which aggregated the information of neighboring nodes more
scientifically. To make the information of neighboring nodes aggregated according to
importance, GAT [22] added the attention mechanism to obtain the features of neighboring
nodes selectively.

Because of the success of GNN methods in recommender systems and social net-
works [23–26], related research has been gradually conducted in computer vision [27–32].
In image annotation, Curve-GCN [28] used GCN for the fine prediction of labeled object
contours, which improved the efficiency of image annotation; in image multi-label pre-
diction, Chen et al. [29] uncovered the number of times a combination of labels appeared
in an image and combined with GCN to construct a link between multiple labels in an
image, which assisted in the prediction of multiple labels; in facial expression recognition;
GCANet [32] statistically analyzed the dataset and constructed a graph between AUs, and
it used GCN to obtain the relationship between the composition of AUs and the correspond-
ing emotions, which improved the accuracy of expression recognition. To prove that GNNs
alone are also effective in processing images, Vision GNN [31] imitated Vision Transformer
to perform the segmentation of images and constructed a graph network between these
slices to selectively perform feature fusion between the slices, which is more flexible than
the traditional method. The above studies show the feasibility and application potential of
GNN in computer vision. However, its application in 2D human pose estimation is still
rare, and how to use GNN to deal with the possible graph structures in this task is still
worth deeply digging into.

3. Method

The proposed DSPose framework is shown in Figure 1. The DSPose model consists of
three parts. The first part is the keypoint feature representation. Firstly, two types of tokens
are constructed based on the input image: Visual Tokens and Keypoint Tokens. Then,
the two types of tokens are concatenated as the input of the Transformer to explore the
correlation between the keypoints and the image regions and generate the initial keypoint
features. The second part is the construction of keypoint topology in dual space. In order
to fully represent the keypoint structure relationship, we propose two key point structure
construction strategies in physical space and feature space. For the physical space, the
keypoints in each image are divided into five clusters based on the human shape structure
and prior knowledge. For the feature space, the topology structure is modeled based on the
relative position relationship between keypoint features, and the keypoints close to each
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keypoint feature are selected to establish correlation. Based on the topological structure
of keypoints in physical space and feature space, GCN is applied to update the keypoint
features continuously. Finally, the keypoint position is represented as a heatmap for training
and optimization. The experimental results show that we obtain higher detection accuracy
with fewer parameters, and our model design does make a difference.

Figure 1. Schematic illustration of DSPose. The method is divided into four stages: 1. Keypoints
feature extraction; 2. Keypoints topology modeling in dual space; 3. Keypoints feature enhancement
based on GCN; 4. Keypoints prediction. In stage 1, a Transformer-based method is used to extract the
keypoints feature, which consists of HRNet, a feature map extraction network, and multi-token Vision
Transformer, which is a keypoints feature extraction network. In stage 2, the keypoints topology of
physical space is constructed based on the human physiological structure and statistical analysis,
which are, respectively, summed up from prior knowledge of what the human body composition and
statistical results from datasets. The keypoints topology of feature space is constructed based on the
cosine similarities of keypoints with KNN. The topology structures are used to direct the update of
keypoints feature. In stage 3, keypoints feature is enhanced by GCN. In stage 4, keypoints feature is
transformed into heatmaps for predicting coordinates.
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3.1. Keypoints Feature Extraction

The keypoints in the image are located in different regions. Therefore, in order to
establish topological relationships between keypoints and multiple regions of the image,
the images and keypoints are explicitly embedded as Visual Tokens and Keypoint Tokens
to learn constraint relationships and appearance cues from images simultaneously. Then,
Visual Tokens and Keypoint Tokens are concatenated as input to the Transformer to learn
feature representations of keypoints.

3.1.1. Multi-Type Tokens Construction

Visual Token. Inspired by the Vision Transformer, the image is segmented into
multiple Visual Tokens. Firstly, HRNet, with the fourth down-sampling removed, was used
to extract features of the image and generate feature maps x ∈ RH×W×C. Then, split x into
H
Ph
× W

Pw
patches of size Ph × Pw, which is denoted as p . Each patch is flattened into a 1D

vector with a size of d: f : p→ v ∈ Rd . Considering the location information of different
patches, position embeddings are added to the feature vectors to finally form Visual Tokens:
VT = {v1 + pe1, v2 + pe2, . . . , vn + pen}.

Keypoint Token. Each keypoint in the image is represented by a learnable d-dimensional
vector, called a keypoint token, donated by k. Each Keypoint Token feature vector is
randomly initialized and denoted as KT = {k1, k2, . . . , kc}, where c represents the number
of keypoints in an image.

3.1.2. Transformer Blocks

We concatenate Visual Tokens and Keypoint Tokens as input to the Transformer to
learn keypoint features: U0 = {VT, KT}. The model learns keypoint features through
multiple Transformer blocks, and each block consists of three layers: LN, MSA (multi-head
self-attention), and LN. Two LN (layer norm) layers are used for token normalization. The
self-attention mechanism is calculated as follows:

SA(Ul−1) = so f tmax(
Ul−1WQ(Ul−1WK)

T

√
d

)(Ul−1WV). (1)

In the formula, WQ, WK, WV ∈ Rd×d are learnable parameter matrices corresponding
to Q, K, V. Ul−1 is the output of l − 1 layers and d is the embedding dimension of each
token. To enrich the feature representation of Keypoint Tokens from multiple dimensions,
the above operation is repeatedly carried out N times through different transformation
matrices. The multi-head self-attention mechanism is calculated as follows:

MSA(U) = Concat(SA1(U), SA1(U), . . . , SAN(U))WO, (2)

where WO ∈ R(h·d)×d .
After training with multiple Transformer blocks, keypoint features are extracted by

modeling the correlation between Keypoint Tokens and different Visual Tokens, which are
specifically expressed as follows:

H = {k′1, k′2, . . . , k′n} = Trans f ormer({k1, k2, . . . , kn}). (3)

3.2. Keypoints Topology Modeling in Dual Space

The feature vectors of keypoints are closely related to the image region and limited
by the topological structure between keypoints. In order to represent keypoints more
effectively, we model the correlation between keypoints from two spaces: physical space
and feature space. On the one hand, the topology of keypoints in the physical space
is constructed based on the original physiological structure and prior knowledge of the
human body. On the other hand, the topological structure is modeled based on the cor-
relation of the feature vectors of keypoints. Finally, GCN was used to comprehensively
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consider the topological structure of keypoints in the dual space and generate the enhanced
keypoint features.

3.2.1. Keypoints Topology Construction of Physical Space

The physiological structure of the human body has certain rules. For example, head
is a rigid part of our body covered by less clothing, and the correlation of multiple key-
points such as the nose, eyes, and ears should be very close. Therefore, according to the
physiological structure of the human body, we summarize the following principles: (1) the
keypoints in the head have a strong correlation; (2) the limbs are pairwise related; (3) parts
of the body symmetry are relevant.

In addition to considering the physiological structure of the human body, the corre-
sponding prior knowledge should be summarized through the analysis and statistics of the
pose dataset. Wei Tang and Ying Hu [33] summarized the correlation between keypoints of
the human body by analyzing the huge amount of data from MPII [34]. Precisely, in this
paper, the mutual information between different keypoints is calculated, the correlation
degree between keypoints is expressed by numerical magnitude after normalization, and
spectral clustering is applied to group each keypoint. The visualization result is shown
in the figure, where keypoints of the same color are closely related and have a certain
topological structure. It can be seen from the figure that all the keypoints of the human
body are divided into six clusters: (1) head top, upper neck, and thorax, (2) left wrist, left
elbow and left shoulder, (3) right wrist, right elbow, and right shoulder, (4) left knee and
left ankle, (5) right knee and right ankle, (6) left hip, right hip and pelvis. The keypoints in
each cluster have a certain topological structure.

The above prior knowledge is based on the MPII dataset, and the above construction
methods can be extended to other datasets. The MSCOCO dataset [35] is another keypoints
detection dataset, which contains the nose, left eye, right eye, left ear, right ear, left shoulder,
right shoulder, left elbow, right elbow, left hip, right hip, left knee, right knee, left ankle, and
right ankle. The former structures should be combined, as shown in Figure 2. According
to the results of human physiological structure and statistical analysis, the following
modifications are made based on MPII keypoints topology: (1) The five keypoints of the
head are grouped. (2) The symmetric keypoints are grouped. (3) The rest remain consistent.
In this way, the physical space topology applicable to MSCOCO is obtained. Its correlation
is divided into the following five groups: (1) nose, left eye, right eye, left ear and right ear;
(2) left shoulder and right shoulder; (3) left elbow, right elbow, left wrist, and right wrist;
(4) left hip and right hip, (5) left knee, right knee, left ankle, and right ankle.

The keypoints topological structure of physical space is constructed based on the
prior knowledge of the human physiological structure and statistical structure of the
dataset. The matrix representing the topological structure consists of solid and weak
correlation matrices. The strong correlation matrix highlights the correlation of keypoints
in the physiological structure. The strong correlation matrix highlights the correlation of
keypoints in the physical space topology. The keypoints in the same group in the figure
are strongly correlated and are represented by 1. For example, the relationships within
the five groups of keypoints in the figure above, and the remaining relationships between
the keypoints are represented by 0. The weak correlation matrix guarantees that there is
information exchange between all keypoints and is an all-1 matrix of c× c . Its formula is
as follows:

Ap = a · As + b · Aw, (4)

where Ap is the matrix used to represent the physical space topological relationship of
keypoints, As is the strong correlation matrix, Aw is the weak correlation matrix, a , b are the
weights, and they satisfy a ∈ (0.7, 1), b ∈ (0, 0.3), a + b = 1. The above matrix represents
the true association of the keypoints.
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Figure 2. Construction of keypoints topological structure of physical space. The physiological
skeleton and MPII skeleton come from the physiological structure and statistics of the MPII dataset,
respectively. Then, these two skeletons are combined to construct the MSCOCO skeleton, which
contains five groups.

3.2.2. Keypoints Topology Construction of Feature Space

Keypoints relations sometimes do not obey the topological structure of physical space,
as shown in Figure 3. In addition to considering the topological structure of keypoints
in the physical space, we also propose a method to construct the topological structure of
keypoints in the feature space. According to the Keypoint Token feature vectors output by
Transformer, the cosine similarity between each pair is calculated, and a similarity matrix S
is formed to represent the correlation between keypoints. The specific calculation formula
is as follows:

Smn =
xmxn

‖xm‖‖xn‖
(m, n = 1, 2, . . . , c), (5)

where Smn represents the element of the mth row and nth column in the similarity matrix, xm
and xn represent the feature vectors of the m and n keypoints, respectively, and c represents
the number of keypoints.

Figure 3. Keypoints relationships in images may differ from those in the real world. (A). Based
on real-world knowledge, the left shoulder is most closely associated with the left elbow, left hip,
and neck. (B). After calculating the keypoint similarity, those most closely associated with the left
shoulder are the left wrist, the right wrist, and the neck.
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In order to distinguish the strong and weak associations between keypoints, the t
largest similarities (including the similarities calculated with itself) are kept in each row of
the similarity matrix, and the remaining positions are set to 0.

ain =

{
smn i = m, smn ∈ Topt(sin)
0 i = m, smn /∈ Topt(sin)

. (6)

A f =

 a11 . . . a1n
...

. . .
...

ai1 · · · ain

, (7)

where ain represents a single element in the similarity matrix. A f represents the similarity
matrix of the topological structure of keypoints in the feature space.

3.3. Keypoints Feature Enhancement Based on GCN

To comprehensively characterize the topological relationships among keypoints, we
fused the topological structure of keypoints in the physical space and in the feature space
to generate the final keypoints topological structure. The fusion process represented by the
adjacency matrix is as follows:

Am = p · Ap + A f , (8)

where Am represents the final keypoints topological structure and p represents a learnable
weight matrix, which adaptively adjusts the proportion of the two topological structures in
the fusion process.

In order to make the extracted keypoints feature more accurate, GCN and the key-
points topological structure constructed above are used to update the keypoints feature.
The keypoints feature matrix H(0) = H ∈ Rc×c is the input of GCN, and the keypoints
topological structure Am ∈ Rc×c is the adjacency matrix that guides the keypoints feature
updating in GCN. The update process goes through multiple layers of GCN. In layer l,
feature H(l) that needs to be updated is first normalized by layernorm, and then, it is fused
in GCN. Finally, the nonlinear activation function is activated to obtain the updated feature
H(l+1). Its formula is expressed as follows:

H(l+1) = σ(Am(LN(H(l)))W(l)), (9)

where σ stands for nonlinear activation function and LN stands for layernorm. After N
layers GCN, the updated keypoints feature matrix H f is obtained.

3.4. Keypoints Prediction

Based on the keypoints feature, the heatmaps of size H*W are generated for the
keypoints location prediction. Firstly, the one-dimensional keypoints feature is transformed
into a two-dimensional matrix of H*W by ascending dimension to represent the heatmap,
in which the data at different positions in the thermal map represent the probability of the
keypoint occurrence there: f : V(c×(h·w)) → M(c×h×w), where V represents the keypoints
feature, M represents the heatmaps, c represents the number of keypoints, and h and w
represent the height and width of the heatmap.

In the training and optimization stage of DSPose, MSE loss is used as a loss function.
This is a common loss function, and its principle formula is as follows:

MSE =
1
n

n

∑
i=1

(Yi − Ŷi)
2, (10)
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where n represents the number of values in the predicted heatmap, Yi represents the value
of the corresponding position in the predicted heatmap, and Ŷi represents the value of the
corresponding position in the ground-truth heatmap.

4. Experiments

This section describes the training setup of the model on the COCO keypoints detec-
tion dataset and MPII human pose dataset, the comparison of the results with the SOTA
methods on COCO validation, test-dev sets, MPII validation set, the ablation study, and
the model visualization.

Dataset. The COCO keypoints detection dataset contains over 200,000 images and
250,000 portraits. Each of these portraits is labeled with 17 keypoints, which are the nose,
left eye, right eye, left ear, right ear, left shoulder, right shoulder, left elbow, right elbow,
left hip, right hip, left knee, right knee, left ankle, and right ankle. The COCO keypoints
detection dataset is divided into a training set, a validation set, and a test set, which contain
118,000, 5000, and 20,000 images, respectively.

The MPII Human Pose Dataset contains 25,000 tagged images of more than 40,000
portraits. These images are taken from Internet videos. Each portrait contains 16 keypoints,
which are the right ankle, right knee, right hip, left hip, left knee, left ankle, pelvis, thorax,
upper neck, head top, right wrist, right elbow, right shoulder, left shoulder, left elbow and
left wrist.. There are 22,000 and 3000 images for training and testing.

Evaluation metrics. For COCO keypoints detection, we used average precision (AP)
as the evaluation metric for model effectiveness. AP is calculated based on OKS with the

formula: OKS = ∑i exp(−
_
d

2

i /2s2k2
i )σ(vi>0)

∑i σ(vi>0) , where
_

d
2

i denotes the Euclidean distance between
the predicted coordinates and the true coordinates of a keypoint, vi represents whether the
key point is occluded or not, s represents the object scale, and ki represents the constraints
of the keypoint. OKS indicates how close the predicted key points are to the ground truth.

AP is calculated by OKS:AP=∑p δ(oksp>T)
∑p 1 , where p represents the person p in the data set

and T represents the threshold. When T = 0.5, it is AP50; when T = 0.75, it is AP75. For
MPII keypoints detection, we use PCK@0.5 as the evaluation metric, which means the
percentage of detections that fall within a normalized distance of the ground truth, and the
threshold is 0.5.

Implementation details. The model parameters used in all our experiments are shown
in Table 1. The model follows a top–down training approach, where people in the image are
first detected and formed into a uniformly sized detection frame. The size of the detection
frame is 256 × 192, and the human detection method is the same as the method used in
SimpleBaseLine. The optimization algorithm for the model in the experiment is Adam’s
algorithm. During the training process, the batch size of each GPU is set to 32, and the initial
learning rate is 1 × 10−3, which decreases to 1 × 10−4 at the 200th epoch, and 1 × 10−5 at
the 260th epoch, for a total of 300 epochs. For model evaluation after training, DARK [36]
is used as the heatmap decoding method. The experiments were performed according to
their original settings for the SOTA methods.

Table 1. Architecture configurations. The model parameters are computed under an image with
256 × 192 input resolution.

Model CNN Backbone Transformer Layers Embedding Size Heads Patch Size Params

DSPose-B HRNet-W32-stage3 12 192 8 4 × 3 13.5 M
DSPose-L HRNet-W48-stage3 6 192 8 4 × 3 20.8 M

In the following article, we use some symbols to denote the hyperparameters. N
denotes the number of hidden layers in the GCN, and t denotes the largest value in each
row of the adjacency matrix of the feature space topology relations. Usually, we set N = 2,
t = 4.



Sensors 2023, 23, 7626 11 of 19

Comparison Method
SimpleBaseline. The runner-up solution of the COCO human pose estimation com-

petition was presented in 2018. It is a simple and efficient method using the ResNet series
as the backbone in combination with the inverse convolution for the output prediction.
SimpleBaseline with the backbone of ResNet-50, ResNet-101, and ResNet-152 is used for
comparison in this experiment.

HRNet. A backbone proposed by Microsoft Research Asia for multi-domain tasks.
The method down-samples the feature map layer by layer, allowing different scale features
to interact, giving the model a powerful feature extraction capability. In this experiment,
two models HRNet-W32 and HRNet-W48 are used for comparison.

TokenPose. A Transformer-based pose estimation method, one of the first to use
Transformer in human pose estimation. TokenPose-B is chosen for comparison to harmonize
its backbone with the method in this paper.

G-RMI [37]. The cornerstone of human pose estimation, proposed in 2017, identifies
the steps of the top–down approach: figure detection in images using Faster-RCNN first,
followed by keypoint detection using ResNet.

Integral Pose Regression [38]. A human pose estimation technique was proposed
in 2018. The technique combines the heatmap and regression methods using a simple
integration operation. It improves the detection accuracy of the thermogram regression
method in low-resolution images.

CPN. The champion method for the COCO keypoint detection challenge was pre-
sented in 2017. The method expands on ResNet with two interconnected networks: Glob-
alNet and RefineNet. The former detects unobscured keypoints, and the latter detects
occluded keypoints. This classification and detection idea brings good results.

RMPE [39]. A top–down pose estimation method proposed in 2017. The method
mainly focuses on the human detection phase. It uses a symmetric spatial transformation
network to improve the quality of the human detection frame while applying parametric
pose non-maximization suppression to solve the redundancy detection problem.

PRTR [40]. A human pose estimation method based on Transformer released in 2021.
PRTR is a regression method that uses a cascade Transformer to achieve SOTA of this kind
of method.

UniFormer [41]. A proposed backbone network combining CNN and Transformer in
2022. The network borrows from CNN’s layered design but contains three small layers
within each layer in the style of Transformer. This approach goes one step further in
becoming the backbone of most downstream tasks.

DistilPose [42]. Human pose estimation method proposed in 2023. The method
focuses on keypoints encoding and decoding. It uses a token extraction encoder combined
with the heatmap and regression method and an analog heatmap to achieve efficient
keypoints encoding and decoding.

DPIT [43]. Transformer-based approach proposed in 2022. This method combines the
top–down and bottom–up methods to extract features as input to the Transformer, which
has a certain improvement in keypoint detection compared with previous methods.

TFPose [44]. Human pose estimation method based on Transformer proposed in 2021.
This method is one of the first to use Transformer for key point coordinate regression, which
greatly improves over previous regression methods.

SimCC [45]. A new method to characterize keypoints in the human body was pub-
lished in 2022. This method improves the representation of keypoints by using two one-
dimensional vectors instead of thermal maps to represent the coordinates of keypoints,
which is helpful for both CNN and Transformer methods in human body pose estimation.

4.1. COCO Keypoints Detection

Comparison of test results. As shown in Table 2, DSPose achieves better results than
the previous SOTA methods with fewer parameters. Compared to the SimpleBaseLine
series, DSPose still achieves 3.1% higher AP and 2.4% higher AR than SimpleBaseline-
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Res152 with very few parameters. Compared with HRNet-W32, which also has 32 input
channels, DSPose improves on all indicators except for a slight shortfall on AP50. The most
improvement is 1.0% on AR. Compared with TokenPose-Base, except for AP50, DSPose
achieves certain improvement on all other metrics, and the improvement is 0.4%, 0.6%, 0.2%,
0.2%, 0.6%, 0.2%, and 0.2%, respectively. Our analysis suggests that the AP50 of DSPose is
reduced compared to HRNet due to the further suppression of forced fitting of images with
poor quality, which results in the abandonment of images that may meet the criteria under
looser detection criteria. However, because of this suppression, DSPose can locate the
keypoints more accurately in acceptable-quality images. This conclusion was also verified
on the test set. We then tested the model on the coco2017 test-dev dataset. The results are
shown in Table 3, and it can be seen that with the same input data size and number of
parameters, the model has improved in all accuracy metrics except for AP50. The model is
even close to HRNet-W48, which has a much larger number of parameters, with HRNet-
W32 as the backbone. The above experimental results further demonstrate the effectiveness
of DSPose in suppressing overfitting and improving the overall detection accuracy.

Table 2. Comparisons on the COCO validation set provided with the same detected human boxes.
Our model achieves competitive results compared to the state-of-the-art models. Bold indicates the
optimal value of the indicator, underline indicates the sub-optimal value of the indicator.

Method Params AP AP50 AP75 APM APL AR

SimpleBaseline-Res50 34.0 M 70.4 88.6 78.3 67.1 77.2 76.3
SimpleBaseline-Res101 53.0 M 71.4 89.3 79.3 68.1 78.1 77.1
SimpleBaseline-Res152 68.6 M 72.0 89.3 79.8 68.7 78.9 77.8

PRTR 57.2 M 73.3 89.2 79.9 69.0 80.9 80.2
UniFormer-S 25.2 M 74.0 90.3 82.2 66.8 76.7 79.5
DistilPose-L 21.3 M 74.4 89.9 81.3 71.0 81.8 -
HRNet-W32 28.5 M 74.4 90.5 81.9 70.8 81.0 79.8
TokenPose-B 13.5 M 74.7 89.8 81.4 71.3 81.4 80.0

DSPose-B 13.5 M 75.1 89.8 82.0 71.5 82.0 80.2

Table 3. Comparisons on the COCO test-dev set with state-of-the-art models. Bold indicates the
optimal value of the indicator, underline indicates the sub-optimal value of the indicator.

Method Input
Size Params AP AP50 AP75 APM APL AR

G-RMI 353 × 257 42.6 M 64.9 85.5 71.3 62.3 70.0 69.7
Integral Pose Regression 256 × 256 45.0 M 67.8 88.2 74.8 63.9 74 -

CPN 384 × 288 - 72.1 91.4 80 68.7 77.2 78.5
TFPose 384 × 288 20.4 M 72.2 90.9 80.1 69.1 78.8 -
RMPE 320 × 256 28.1 M 72.3 89.2 79.1 68.0 78.6 -
DPIT-B 256 × 192 20.8 M 73.6 91.4 81.2 70.4 79.5 78.9

DistilPose-L 256 × 192 21.3 M 73.7 91.6 81.1 70.2 79.6 -
SimpleBaseline-Res152 384 × 288 68.6 M 73.7 91.9 81.1 70.3 80.0 79.0

HRNet-W48 256 × 192 63.6 M 74.2 92.4 82.4 70.9 79.7 79.5
TokenPose-B 256 × 192 13.5 M 74.0 91.9 81.5 70.6 79.8 79.1

DSPose-B 256 × 192 13.5 M 74.5 91.9 82.2 71.1 80.4 79.6

4.2. MPII Keypoints Detection

Comparison of test results. As shown in Table 4. DSPose achieves very competitive
results in MPII keypoints detection tasks with minimal parameters. Out of the eight
indicators, DSPose achieved four of the best and four of the second best, proving that it has
excellent results for different data sets.



Sensors 2023, 23, 7626 13 of 19

Table 4. Comparisons on the MPII validation set with SOTA and recent methods. Bold indicates the
optimal value of the indicator, underline indicates the sub-optimal value of the indicator.

Method Params Hea Sho Elb Wri Hip Kne Ank Mean

SimpleBaseline-Res50 34.0 M 96.4 95.3 89.0 83.2 88.4 84.0 79.6 88.5
SimpleBaseline-Res101 53.0 M 96.9 95.9 89.5 84.4 88.4 84.5 80.7 89.1

PRTR 57.2 M 97.3 96.0 90.6 84.5 89.7 85.5 79.0 89.5
SimpleBaseline-Res152 68.6 M 97.0 95.9 90.0 85.0 89.2 85.3 81.3 89.5

SimCC - 97.2 96.0 90.4 85.6 89.5 85.8 81.8 90.0
HRNet-W32 28.5 M 96.9 96.0 90.6 85.8 88.7 86.6 82.6 90.1

TokenPose-L/D6 21.4 M 97.1 95.9 91.0 85.8 89.5 86.1 82.7 90.2
DSPose-L 20.9 M 97.3 96.0 90.9 85.9 89.5 86.3 82.6 90.3

4.3. Ablation Study

Topology of physical space and feature space. In our model, constructing the topol-
ogy of the physical space and the feature space is one of the biggest innovations. To refine
their roles in improving the model’s accuracy, we performed relevant ablation experiments.
We sequentially trained the network with only the topology of feature space added and
then both together. And we tested their detection accuracy on the coco2017 val dataset.
The results are shown in Table 5. It can be seen that using topological relations in feature
space plus GCN has a significant improvement in AP and AR over the commonly used
MLP alone for output, while adding topological relations in physical space again leads to a
small increase in detection accuracy. The results show that our method better utilizes the
priori and feature information of the human skeleton and is more suitable for this task.

Table 5. Evaluation of the two topological structures on COCO validation set.

Method AP AR

MLP 74.7 80.0
Feature-A 75.0 80.1

Feature-A + Physical-A 75.1 80.2

We also conducted the same experiment on the MPII dataset. The MPII dataset has
the following characteristics: (1) relatively small amount of data; (2) excerpted from video;
keypoints of human bodies in different images may have similar relations; (3) the people
in the videos are mostly centered, and the shooting is more clear. In this case, as shown
in Table 6, the effect of using only the feature space adjacency matrix is less than that of
MLP, while the effect of using the physical space and the feature space adjacency matrix
is greater than that of the former. We analyzed the correlation with the data set for the
opposite results of the ablation experiments on COCO and MPII. For COCO, a dataset
with large quantities and uneven quality, the feature space adjacency matrix plays a major
role in fitting various cases. For MPII, with a relatively small amount of data and clear
character characteristics, the physical space adjacency matrix can already fit the keypoints
relationships well and guide the feature extraction of keypoints.

Table 6. Evaluation of the two topological structures on MPII validation set.

Method Hea Sho Elb Wri Hip Kne Ank Mean

MLP 97.1 95.9 91.0 85.8 89.5 86.1 82.7 90.2
Feature-A 97.1 95.9 90.7 85.6 89.2 86.0 82.5 90.1

Feature-A + Physical-A 97.3 96.0 90.9 85.9 89.5 86.3 82.6 90.3

Topological composition of the feature space. When constructing the topological
relationships of the feature space in our model, we use the feature vectors to compute the
similarity matrix and choose a few keypoints with the highest similarity to each keypoint
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to form the edges of the adjacency matrix. The number of these keypoints with the
highest similarity needs to be carefully considered as an important hyperparameter. The
experiment’s result shows the model’s accuracy when different t values are taken, as shown
in Table 7. It can be seen that the accuracy is different when different t values are taken.
In order to compare the accuracy when t is different and select the optimal t, we plot
the following line graph Figure 4, where the vertical coordinate represents the degree of
improvement of each evaluation index over TokenPose-B. The line graph shows that the
overall accuracy improvement is greatest at t = 4, while smaller or larger values do not
achieve optimal accuracy.

Table 7. Evaluation of our model on COCO validation set with different parameters.

t AP AP50 AP75 APM APL AR

3 74.8 89.8 81.5 71.2 81.8 79.9
4 75.0 89.8 82.0 71.5 82.0 80.2
5 74.9 89.8 81.4 71.3 81.9 80.0
6 74.9 89.8 81.7 71.2 82.0 80.1
8 75.0 89.7 81.7 71.4 81.9 80.2

10 74.9 89.8 81.7 71.2 82.0 80.1

Figure 4. Residual of DSPose when t takes different values.

Quantity of GCN layers. The quantity of GCN layers also affects the accuracy. In
CNNs incorporating residual connectivity, the more CNN layers there are, the finer the
information learned by the model will be and the higher the model accuracy. However,
this is not necessarily the case in GCN. It has been shown that the optimal quantity of
GCN layers is 2 or 3. To verify how many GCN layers are appropriate in this model, we
set the quantity of GCN layers to 1, 2, and 3 for the experiments, respectively. Since the
model parameters increase substantially as the quantity of GCN layers increases, if there
is no significant improvement in accuracy with the increasing quantity of layers, it can
be determined that there is no need to increase the number of layers. The experimental
results are shown in Table 8. It can be seen that from N = 1 to N = 2, AP and AR both have
significant improvement, but from N = 2 to N = 3, there is no improvement, so the best
number of GCN layers is 2 according to the experiment.
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Table 8. Evaluation of our model on COCO validation set with different N values.

N Param AP AR

1 12.9 M 74.9 80.0
2 13.5 M 75.1 80.2
3 15.8 M 75.0 80.2

4.4. Visualization

The learning process of graph convolutional networks. In order to visualize the
learning process of graph convolutional networks, we have calculated the cosine similarity
of the feature vectors output from the two layers of GCN and presented them in the form
of a heatmap, as shown in Figure 5. It can be seen that after the first layer of GCN, the
keypoint features are already different from each other to a certain extent, showing some
topological relationships in line with the physical space constructed in the text: for example,
hips, knees, ankles have been paired up, and elbows have been associated with wrists;
at the same time, some of the features are not yet fully differentiated, resulting in some
undesirable correlations. After the second layer of GCN, the correlation and differentiation
of keypoint features are more obvious. In the heatmap, the five points of the head are highly
correlated, the symmetry points of the rest of the positions are similar, and there are some
additional correlations for the upper body. This result is consistent with our construction of
physical topological relationships for keypoints and demonstrates the adaptation of feature
space topological relationships to the realities of the image.

(a) First layer (b) Second layer
Figure 5. Cosine similarity matrices of keypoints after GCN. (a) After the first layer, some physical
spatial associations that fit the analysis have been found. (b) After the second layer, most of the
associations obtained by the analysis turned out to be correct.

Visualization of detection results. We visualized the predicted heatmaps as well as
the keypoints obtained from the final decoding, as shown in Figures 6 and 7. The training
data were processed by rotating, scaling, and blurring based on the COCO training set.
From the figure, it can be seen that in the face of the images after these processing steps, our
method can still find the location of the keypoints and generate the heatmaps accurately,
which shows that DSPose has high accuracy and strong robustness. By analyzing the
skeleton maps of keypoints generated after decoding, it can be seen that our method can
adapt to different lighting conditions, pose, and size. At the same time, it also has an
outstanding adaptability to the situation where the keypoints are blocked, and it can detect
the location of keypoints more accurately.
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Figure 6. Visualization of the keypoints in the form of a heatmap. In the case of blurred images,
ghosts, and the overlapping of two human bodies, DSPose can still accurately predict the coordinates
of keypoints.

Figure 7. Human pose estimation results of DSPose. DSPose has achieved excellent estimation results
when dealing with different sizes of the human body, different postures of the human body, and
different occlusion conditions, which shows the universality of this method in multi-source data.

5. Conclusions

In this paper, we propose a dual-space-driven human pose estimation method called
DSPose, which can effectively combine the correlation of keypoints in the physical space
and the correlation of the feature level to obtain accurate pose estimation results. Specifically,
the features of keypoints are extracted by a Transformer-based feature extractor. Then,
the association of keypoints in physical space is obtained based on human physiological
structure and statistical analysis method, and the association of keypoints in feature space
is obtained by calculating similarity based on keypoints features. Finally, the correlation of
the physical space and the correlation of the feature space are effectively fused to guide the
keypoints features update in GCN, and more accurate keypoints features and coordinates
are obtained. Our model achieves superior performance with fewer parameters compared
to the state-of-the-art methods. This work will provide a new perspective on the problem
of accurate localization in human pose estimation. The experiment also proves that the
correlation of physical space is very important for accurately positioning human keypoints.
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In the course of the experiments, we also found that the portraits in the datasets were
incomplete. This situation will cause some keypoints to be vacant, affecting the effect of
GCN keypoint update. At the same time, the portraits in the datasets can often be divided
into multiple categories according to their specific scenes, and the keypoints association
rules of the portraits in different categories will be slightly different. However, in our model,
we build a physical space topological relationship for all portraits, which is insufficient
in the case of dealing with multiple types of data. In the future, we will add different
categories of datasets to improve the construction of physical space adjacency matrices.
Specifically, we will classify the characters in the datasets according to their completeness
and action categories, and we will construct different physical space adjacency matrices for
each category to make the obtained physical space topological relations more targeted so
as to further improve the accuracy of the model.
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