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Abstract: A suitable control architecture for connected vehicle platoons may be seen as a promising
solution for today’s traffic problems, by improving road safety and traffic flow, reducing emissions
and fuel consumption, and increasing driver comfort. This paper provides a comprehensive overview
concerning the defining levels of a general control architecture for connected vehicle platoons,
intending to illustrate the options available in terms of sensor technologies, in-vehicle networks,
vehicular communication, and control solutions. Moreover, starting from the proposed control
architecture, a solution that implements a Cooperative Adaptive Cruise Control (CACC) functionality
for a vehicle platoon is designed. Also, two control algorithms based on the distributed model-based
predictive control (DMPC) strategy and the feedback gain matrix method for the control level of the
CACC functionality are proposed. The designed architecture was tested in a simulation scenario, and
the obtained results show the control performances achieved using the proposed solutions suitable
for the longitudinal dynamics of vehicle platoons.

Keywords: control architecture; connected vehicle platoons; V2X communication; CACC; DMPC

1. Introduction

Nowadays, with the ever-increasing number of vehicles on the highways, there is a
stringent need to improve the driving experience quality through autonomous driving, by
making use of the available vehicle connectivity. There is much interest in the research
community to explore this topic, a testimony given by the following highly cited review
works. In [1], a survey on the control of connected and automated vehicles (CAVs), with
emphasis on control solutions for improving the energy efficiency of different powertrain
architectures is given. In [2], a comprehensive survey on urban traffic signal control for
CAVs, with both deterministic and stochastic approaches, is provided.

A typical control framework for connected vehicles (CVs) is given by the connected
cruise control (CCC) architecture, which is suitable for a vehicle group consisting of both
autonomous and human-driven vehicles, connected with a vehicle-to-vehicle (V2V) com-
munication network [3]. In [4], a fuzzy support vector machine (SVM) method for CCC,
using radar and V2V communication to detect the lane change of a side vehicle, is proposed.
In [5], a deep reinforcing learning (DRL) solution to solve a CCC problem with communica-
tion delays and dynamic traffic changes is given. In [6], a nonlinear range policy for a CCC
application with merging capabilities is provided.

Vehicle platoons are control applications for groups of CVs, which are designed using
the advantages of vehicle-to-infrastructure (V2I) and V2V connectivity. To perform a
desired common task for the entire platoon, each vehicle needs to exchange the relevant
local measured data with the other participants. Usually, a vehicle platoon task is to travel
with a velocity imposed by the leader vehicle of the platoon, while maintaining a desired
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safe distance between the follower vehicles [7]. One of the most promising functionalities
for CAVs is cooperative adaptive cruise control (CACC). The most defining things for CACC
are the use of sensors and communication technologies. As an extension of adaptive cruise
control (ACC), in CACC systems, CAVs use V2V communications to exchange information
with other CAVs in an autonomous manner, as well as V2I to provide information on traffic
conditions and traffic management [8].

There are several design frameworks that have recently been researched for the platoon
formation of multiple CVs, such as non-cooperative differential games [9], estimation of
the communication delays via an adaptive switched predictor [10], model-based predictive
control (MPC) with switching communication topology [11], robust feedback control [12], or
a cooperative adaptive sliding mode [13], among others. In [14], an LMI-based optimisation
problem for a cooperative optimal control method for a CAV platoon is given. In [15], a
consensus-based impulse control method, which simplifies the communication exchange
in a platoon of CVs, is proposed. In [16], security for the distributed platooning control of
CAVs, subject to denial-of-service (DoS) attacks, is discussed. In [17], an ACC strategy for
CAVs in a platoon formation subject to cyber-attacks and communication delays is given.

However, in the state-of-the-art literature, there are few studies that detail the design
of a complete control architecture for a connected vehicle group. Thus, this work presents a
detailed survey regarding the components required by a control architecture for a vehicle
group, by describing the multitude of options available in terms of sensors, control, and
communication requirements. Moreover, the proposed study of the control architecture
can be used as a tutorial in designing a control solution for an automated vehicle group.

The main contributions of this paper are the following:

• A detailed survey was carried out on the solutions available in the literature of general
control architectures for the CAV platoon, from the point of view of the constructive
levels, the elements that define each level, and the links between them;
Moreover, in relation to other works on this topic [1,18,19], this paper presents a more
detailed description of the sensors and V2V communication standards essential for
the CAV concept;

• Starting from the proposed architecture, a suitable control architecture is defined for a
platoon of connected vehicles based on the CACC strategy, by presenting the necessary
sensors, the suitable types of communication means, and the control solutions;

• Finally, two control methods are proposed for the longitudinal dynamics suitable for
a CAV platoon framework. Thus, a state-space distributed model-based predictive
control (DMPC) method suitable for vehicle platooning is described and tested. More-
over, a second control method is proposed, designed using off-line optimisation to
compute a feedback gain control matrix. Both methods are compared using a CAV
platoon application.

The remainder of this paper is structured as follows. Section 2 deals with a general
presentation of architecture design for connected vehicle platoons, by describing the main
subsystems, their purpose, and component elements. In Section 3, different aspects of
the vehicle communication systems are presented, synthesised under intra-vehicle com-
munication and inter-vehicular communications. Section 4 presents the proposed control
architecture for a specific case involving a CACC strategy and model used to describe the
longitudinal dynamics of a vehicle platoon. Section 5 illustrates the simulation results
obtained using the proposed control solutions, and Section 6 includes a thorough analysis
based on their resulting performances. In the last section, one can find the conclusions and
future research directions.

2. Architecture Design for Connected Vehicle Platoons

The control architecture design defines the necessary stages in the transformation of
an ordinary car into a connected one by adding additional components, including different
sensors that allow the vehicle to detect the environment and communicate with other traffic
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participants and with the intelligent infrastructure, as well as adequate control strategies
for controlling the vehicle’s mobility.

A general control architecture is presented in Figure 1, where the communication
process between the most important subsystems of the architecture is illustrated. At a high
level, the architecture has five subsystems, responsible for defining the autonomy process of
a connected vehicle, such as sensing interface, perception, planning, decision, and control.
The proposed architecture is used by each vehicle regardless of the position within the
platoon. Depending on the type of the vehicle (leader or follower), the general control
architecture presented can be used differently, from the point of view of the component
elements and the functions performed by each of its subsystems.

Figure 1. Example of a general control architecture.

According to the work in [20], these subsystems, which are described in detail in
the following subsections, have the purpose of (1) retrieving information from the real
environment around the vehicle (i.e., the sensing interface), (2) fusing the data with the
purpose of detection and localisation (i.e., perception), (3) choosing the route (i.e., planning),
(4) predicting the behaviour of other traffic participants and planning the optimal trajectory
(i.e., decision), and based on the taken decision, (5) controlling the vehicle by operating
the various responsible actuators (i.e., control). In order to exchange the necessary infor-
mation between them, these subsystems are connected with a car-level communication
system, more precisely, the intra-vehicular communication network. For the exchange of
information between several connected vehicles, each with its own control architecture, an
inter-vehicular communication network is used, synthesised under vehicle-to-everything
(V2X) [21].

2.1. Sensing Interface

This subsystem shows how the information is captured from the vehicle’s environment,
such as the detection of its position in relation to the surroundings, but also information
about the other traffic participants. The sensing interface consists of different sensors for
data collection. These sensors can be classified into two categories: (1) internal sensors that
provide information only about the state of the vehicle and (2) external sensors used to
capture data from the outside of the vehicle. All of them are better exemplified in Figure 2,
where one can see the sensors’ position, the coverage area, and the performed functions.
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Figure 2. Typical types of sensors and their functionalities.

2.1.1. Literature Review

In the following, the most important external sensors are presented in detail:

(1) The camera is one of the key sensors of a vehicle, used for perceiving the visual
environment, lane and traffic sign recognition, object tracking, and much more [22].
Cameras may be mono, stereo, or full surround, and placed in areas such as dash-
boards and windshields. These types of cameras used for autonomous vehicles
are described in detail in [7]. Depending on the quality of the lens, the maximum
working distance of the camera is around 250 m. The main advantages of a camera
are related to the accuracy of the colour distribution, the contour of the surroundings,
and the texture [23]. As a disadvantage, cameras are sensitive to low-intensity lights
and can be affected by weather conditions [24].

(2) Radar is the most common sensor used in vehicles to identify and locate objects in the
presence of various interferences, such as noise, clutter, and jamming [25]. To measure
the distance, the time Of flight (TOF) method [26] is used, whereas to measure the
relative velocity, the Doppler shift [23] is used. Thus, radars lend themselves very
well for obstacle detection [27] and pedestrian and vehicle recognition [28,29]. Also,
some functionalities of the radars are blind spot detection, rear collision warning,
emergency braking, and cross-traffic alert. Radar sensors operate in the millimetre-
wave (mm-Wave) spectrum, using different frequency bands, such as 24, 60, 77, and
79 GHz, being able to measure a range from 5 to 200 m [30]. Depending on the type
of radar and the application for which it is used, radar sensors are divided into short,
medium, or long-range ones. The most important characteristics of the types of
radars used in the automotive field are presented in [25]. Radar sensors also offer the
benefits of high availability and low cost [31]. Moreover, compared to cameras, they
are less affected by the weather and the low lighting environment [26]. Disadvantages
include lack of precision, receded field of view (FOV), and the production of false
positives by rejecting emitted signals [32].

(3) A light detection and ranging (LiDAR) sensor is a technology used to determine
precise information about the distance and size of objects [33]. It uses a remote
sensing technique, producing pulses of infrared or laser light and measuring the
time it takes for the pulses to be reflected [34], a principle known as TOF, and it is
similar to how the radar sensor operates. The range of LiDAR is about 200 m on
average [35], using 905 nm and 1550 nm spectra [36]. There are different types of
LiDAR sensors, these being 2D, 3D, and solid-state [37]. The general specifications
for each type of LiDAR sensor are presented in [34]. Compared to the camera, the
LiDAR sensor has better detection capabilities in terms of range, with bad weather
and low lighting affecting this sensor less than the camera [26]. Compared to radar,
it has a higher accuracy and precision, but also a superior 3D perception competence.
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As a disadvantage, the LiDAR sensor is affected by severe weather conditions, such
as snow, fog, and rain [38]. Moreover, in terms of cost and low availability, the LiDAR
is less competitive than the other two types of sensors.

(4) An ultrasonic sensor is the most diligent and cheap sensor, used for short-range
obstacle detection, proximity sensing for lane change, and parking functions [39].
These sensors use ultrasonic waves to measure the distance to objects by calculating
the TOF of the emitted wave. These sensors operate in the 20–40 KHz range, with a
detection range of generally less than 11 m [40], and are used at low speeds. Also,
these sensors are easier to implement, and work satisfactorily in bad weather condi-
tions and in dusty environments [41]. The main disadvantages are the disturbances
in the sound waves and the tendency to produce false positives in the measurements,
as well as the need to use multiple sensors to obtain a complete view; thus, mutual
interference is produced between them [42].

(5) Global Positioning System (GPS) and inertial measurement unit (IMU) technolo-
gies are used for navigation and localisation purposes, by determining the exact
position of the vehicle and helping it to navigate. The GPS is a system used to
obtain information about geolocation, speed, and time, each vehicle containing
a GPS receiver that connects to GPS satellites [43]. The position of the vehicle is
given by the GPS coordinates, but the accuracy with which these are extracted
depends on several factors. Therefore, position errors can be obtained with an
average value of 3 m, and with a deviation of 1 m [44], and can reach up to 20 m
depending on the environment. In urban environments, the GPS performances are
lower [45]. It presents advantages in terms of cost and the way of managing the
accumulation of errors over time. The disadvantages would be related to precision,
which is reduced to one metre for current vehicles, but also the inability to operate
in environments where the view of the sky is obstructed, such as tunnels [26]. An
IMU is an electronic device that measures and reports the body’s specific force,
angular rate, and sometimes the magnetic field surrounding the body, using a com-
bination of accelerometers and gyroscopes, sometimes also magnetometers [46].
Therefore, with the help of these data, the linear velocity and angular positions for
the vehicle can be calculated. The IMU sensor can be combined with the GPS, as a
complementary sensor, because the IMU can not give the position error by itself,
but also for the performance qualities of the IMU sensor in tunnels [47]. Moreover,
to improve the estimation of the vehicle’s position, different techniques are used
in which GPS and IMU data are fused [48].

2.1.2. Summary

Table 1 illustrates the comparison between external sensors from the point of view
of the most relevant metrics. Thus, it can be concluded which of them lends itself best
depending on the functionality chosen for CAVs from the platoon.

Due to the fact that the leader vehicle is in front of the platoon, it imposes the travel
velocity and direction for all members, and has also the role of detecting the lanes and
the various obstacles on the road. To fulfil the leader’s tasks, it can be equipped with the
following sensors: (i) camera (for lane, traffic signs/lights, and obstacle size detections),
and (ii) radar and LiDAR (for obstacle detection at large distances). In other words, because
the follower vehicles require high accuracy for distance measurement, each follower can
be equipped with radar, and with a camera for lane detection. The GPS and IMU sensors
should be used by each vehicle from the platoon to measure their velocity and obtain
their position.
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Table 1. Comparison of different sensing technologies.

Metrics Camera Radar LiDAR Ultrasonic

Technology Lights Radio waves Laser beams Ultrasound
waves

Range ∼=250 m 5–200 m ∼=200 m Up to 10 m

Data per second 20–40 MB 10–100 KB 10–70 MB 10–100 KB

Bad weather
functionality

Poor Good Fair Good

Low lighting
functionality

Fair Good Good Good

Speed detection Poor Very good Good Poor

Distance detection Poor Very good Good Good

Resolution Very good Average Good Poor

2.2. Perception

The perception subsystem is composed of software elements that receive the informa-
tion from the sensors and combine and structure it in a simpler form, in order to classify
it. Sensor fusion is a necessary process for this stage, and involves the combination of
information from all the available sensors in the vehicle [49]. Thus, a complete assessment
of the environment can be carried out and more precise information can be obtained.

Literature Review

In practice, different algorithms are used for the fusion process, such as Kalman and
Bayesian filters [20]. In [23], several data fusion methods are presented, based on the
following strategies: discernible units, complementary features, target attributes, and the
decision making of different sensors.

The perception subsystem is in charge of two key tasks: the localisation of the ego
vehicle and the detection of other traffic participants and other elements of interest from
the surrounding environment. Within the localisation task, the location of the vehicle
relative to a map is computed. More precisely, the vehicle’s position is determined using
data received from different sensors, such as GPS, IMU, LiDAR, and V2X communication,
combined with the use of maps. The work in [50] presents a localisation system for urban
and indoor scenarios, where LiDAR, IMU, and GPS sensors are integrated. A multitude of
combinations of different sensors for data fusion in localisation and mapping are presented
in [51], with an emphasis on limitations without fusion and fusion advantages. The
detection process uses camera, radar, LiDAR, and ultrasonic sensors to collect the necessary
data for the identification and classification of various elements of the vehicle’s external
environment. In [52,53], a fusion between camera and LiDAR used for pedestrian detection
is given, whereas in [54,55], the same is employed for road detection. Moreover, for vehicle
and lane detection, information from camera and radar are used in [56]. The perception
subsystem is used by both leaders and followers to fuse sensor measurements.

2.3. Planning and Decision

The planning subsystem uses information from the perception subsystem to find the
most suitable route for the vehicle, from the origin to the destination, both for short-term
and long-term planning. The GPS navigation system has the role of a global planner, being
used to plan routes, but considering the current requirements, it does not ensure the safety
of the user [57]. In this context, according to Figure 1, a traditional planner structure for a
self-driving car consists of a route planner, behaviour planner, and trajectory planner.

The decision subsystem, which is the next step after planning, makes a decision and
sends all the information to the control subsystem by assuming a compact data form
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received from the previous subsystems. A number of the decisions available for connected
vehicles are illustrated in Figure 1, such as anti-lock braking systems (ABS), lane keep assist
(LKA), traffic sign assist (TSA), collision avoidance (CA), adaptive cruise control (ACC),
and more. The decision-making process is based on the information from the previous
subsystems available at the current moment, but also uses past information. Furthermore,
real-time data from maps, traffic models, and additional information from the driver are
also used as information. Thus, depending on the type of decision chosen, based on the
collected information, it is forwarded to the control subsystem, which in turn will choose
the appropriate control type and optimal method.

Literature Review

Route planning, at a general level, involves the use of a route planner, whose purpose is
to identify the path that a vehicle must travel between two cardinal points. Moreover, route
planning includes several dynamic parameters, such as congestion level, spontaneous
indicators, meteorological conditions, and others [58]. An optimal route consists of a
continuous adjustment of the planning process, in which the vehicles decide their routes
in an adaptive manner. Considering the unexpected changes that may appear along the
route (e.g., traffic barricades or lane obstructions), an efficient planning subsystem employs
dynamic optimisation techniques at each discrete moment of time. For this type of planning,
updated maps and data provided by the localisation stage from the previous subsystem
are basically used. In the case of connected vehicles, a distributed route design strategy
is used, where each vehicle collects its own traffic data and calculates its own route, thus
improving the overall calculation time for the route planner [59].

Behaviour planning involves the use of a behaviour planner, which is closely related to
a predictor. The prediction component evaluates the behaviour of other traffic participants,
such as vehicles and pedestrians, but also other intervening obstacles, in order to obtain
risk and road traffic management [60]. Moreover, another source of information for this
planner is sensor fusion data from the perception subsystem. As such, the behaviour
planner uses the information from lane detectors, traffic lights, and traffic signs, as well
as detected objects, but also information from the localisation part. All this information
is used to plan their own safe handling behaviour. Therefore, having all these data as
inputs, certain decisions are issued for the vehicle, such as maintaining or changing lanes,
maintaining the current distance from the vehicle in front, and maintaining the speed by
braking or accelerating.

Trajectory planning uses a trajectory planner in order to generate a series of trajectories
based on the behaviour planner, taking into account several aspects, such as driver comfort,
various road limitations, and vehicle dynamics [61]. The most used methods to design the
trajectory planner are based on polynomial equations [62,63], Bézier curves [64,65], and
MPC algorithms [66,67]. Thus, taking into account the previously mentioned aspects, the
desired trajectory is determined and sent to the decision subsystem [68].

The planning subsystem is mainly intended for the leader vehicle; it computes the
global route using localisation functionality based on GPS and V2X communication. Based
on the information from the perception subsystem, the leader determines the general
behaviour of the platoon by choosing the most suitable action. After that, it must inform
the followers about the chosen decision (maintaining or changing lanes, maintaining the
speed by braking or accelerating, and more). Finally, based on the previously mentioned
information, the leader uses trajectory planning to compute a path so that the platoon can
follow the global route and avoid collisions that may occur.

The follower vehicles receive the decision taken by the leader, and depending on this,
the following cases result: (i) maintaining or reducing the speed to ensure an imposed
distance to the vehicle in front (longitudinal dynamics); and (ii) maintaining or changing
lanes to minimise the lateral position error between followers and the vehicle in front.
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2.4. Control

The control subsystem receives its task and all related information from the deci-
sion subsystem. Thus, starting from the desired trajectory determined by the planning
subsystem, and the imposed driving action, implements the best decision for the vehicle.
Following the description from Figure 1, once the decision is taken, an appropriate control
strategy is selected.

Literature Review

Let us assume that a collision avoidance action is requested. This can happen if an
unexpected obstacle is detected on the travel lane in front of the vehicle. Prior to this
decision, at the stage of the planning subsection, the trajectory planner computes the
optimal trajectory to avoid the obstacle, starting from the current position measured by
the sensors to the final position for the vehicle, which usually is on the neighbouring
available lane. In the control subsystem, using this information as input data, the lateral
control strategy is implemented. In this case, the end result of the control action is a
steering movement, i.e., the vehicle’s wheels are moved with the desired steering angle
while following the planned trajectory [68]. The lateral control supposes that vehicles are
equipped with GPS and IMU sensors to measure their position and orientation; also, the
vehicles have to be equipped with LiDAR and camera sensors to measure their position
and orientation with respect to the neighbour vehicles or an obstacle. In the case of an
ego vehicle, the lateral control function uses the measurements of these sensors and inputs
received from the planning and decision subsystems to steer the vehicle so that it follows
the imposed trajectory and avoids collision with obstacles or other vehicles. In the case of a
vehicle group (e.g., platoon), there are three preferred approaches: (i) follower vehicles do
not use information about the vehicle in front and they only follow the road; (ii) a follower
vehicle receives from the vehicles in front information about their lateral references and
uses it to determine its own future trajectory; and (iii) the case in which the follower vehicle
is following the lateral trajectory of the vehicle in front. In the last two cases, the use of
vehicle communication can improve performances due to the fact that the follower is not
using only measurements from its own sensors, but also information received from its
neighbour vehicles. The most used approaches for lateral control are based on the MPC
strategy [69–71], LQR algorithm [72,73], adaptive control [74], and optimal control [75].
The lateral control of the leader involves steering the vehicle according to the trajectory
from the planning subsystem. Also, the follower vehicles use lateral control to track the
trajectory of the vehicle in front and to maintain the lanes (if no other functionality is
chosen, e.g., collision avoidance).

Moreover, when ACC-based travel is decided, the most suitable control strategy is
longitudinal control. This means that the vehicle must travel with an imposed longitudinal
velocity (i.e., cruise control) while maintaining a safe distance with respect to the vehicle
in front (i.e., headway control). Here, the control action is either braking, if the current
velocity is greater than the desired velocity, or accelerating, if the measured velocity is
lower than the imposed target [76]. The cruise control (CC) functionality is specific for
an ego vehicle or the leader vehicle from a platoon. The vehicles use sensors like GPS
and IMU to measure their velocity, which is used afterwards to compute the error to
the imposed velocity. The longitudinal controller uses these measurements and errors to
calculate the control inputs that command the brake or acceleration. In the cases of ACC
functionality, follower vehicles have to use sensors like radar or LiDAR to determine the
distance between vehicles. Moreover, if the vehicles can exchange information through
communication networks about their velocity, acceleration, or position, then the CACC
functionality can be used to ensure improved performances obtained by the ACC. The most
used approaches for the longitudinal control are also based on the MPC algorithm [62,77,78],
LQR [79], and PID controllers [80]. The advantage of using the MPC strategy and vehicle
communication compared to the other methods consists of the possibility to use the future
actions’ predictions of a neighbouring vehicle. The leader vehicle uses longitudinal control
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to travel with the imposed velocity, and the follower vehicles use it to maintain the imposed
distance from the vehicle in front.

3. Vehicle Communication

This section presents the different aspects of the vehicle communication systems
by introducing several communication standards used for the exchange of information
between the vehicle components (i.e., intra-vehicle communication), as well as for the inter-
vehicular communications, between the vehicle and other traffic participants or intelligent
infrastructure, known as V2X communication.

3.1. Intra-Vehicle Communication

Intra-vehicle communication is an absolutely necessary requirement to take into
account in the development of new model cars. Thus, for proper vehicle operation, strict
information must be exchanged in real time between different nodes/modules. Depending
on the communication architecture, the amount of data to be transmitted, bandwidth,
reliability, and security, several networks can be distinguished.

3.1.1. Literature Review

The most important intra-vehicle protocols are presented in the following:

(1) The controller area network (CAN) protocol is an automotive-specific bus standard,
usually used for powertrain and body control applications. Thus, from the data rate
point of view, two networks can be distinguished: (i) high-speed CAN (500 Kb/s)
for real-time control for chassis and power-train electronic control units (ECUs),
and (ii) low-speed CAN (125 Kb/s) for body and comfort electronics. The CAN
is a multi-master serial bus that uses multiplexed communication between several
ECUs in the vehicle [81]. Related to CAN arbitration, bus access conflicts are re-
solved by bit-level arbitration using the carrier sense multiple access with bitwise
arbitration (CSMA/BA) technique. The CAN also contains five mechanisms for error
detection, three for the message level: cyclic redundancy check (CRC), frame check,
and acknowledgement (ACK) bit; and two for the bit level: bus monitoring and
bit stuffing [82]. The advantages of CAN are reliability, robustness, low cost, high
flexibility, and low network complexity. As disadvantages, it would be that it is
not deterministic, it is not suitable for safety-critical applications, and it has a low
bandwidth [83].

(2) The local interconnect network (LIN) is a low-cost network used for simple, less
time-critical applications, especially used for connecting sensors and actuators. The
LIN protocol uses the master–slave architecture; the master sends a frame header
and the slave node must respond with a frame response. For low-cost requirements,
a single wire is used at the physical level, thus resulting in a limited data rate of
19.2 Kb/s [84]. To detect incorrect messages in the network, LIN uses parity bits and
checksum. The advantages of the LIN network are related to the ease of use, low
implementation costs, and its deterministic characteristic when compared to other
networks. As disadvantages, it is not as reliable as CAN, has a lower bandwidth,
and less effective bus access, and cannot be used for time-critical applications [85].

(3) The FlexRay protocol was developed by the FlexRay consortium, and it is used for
time-critical applications in the advanced chassis control area [86]. During data
transmission, each node uses two parallel communication channels, the exchange of
information being performed based on a communication schedule. Regarding the
bus access principle, two methods are used: time division multiple access (TDMA)
and flexible TDMA (FTDMA) [87]. A FlexRay frame consists of three parts: the
header, the payload segment, and the trailer CRC. For error protection, checksums
and redundancy mechanisms are used [88]. The advantages of the FlexRay protocol
are its flexibility, higher data rate, and deterministic behaviour. Moreover, it offers
constant latency and scalable fault tolerance, which makes it suitable for “drive-by-
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wire” applications. The disadvantages of this protocol can be summed up in the very
high implementation costs and the high complexity compared to CAN [89].

(4) The Media Oriented Systems Transport (MOST) protocol is a multimedia network de-
veloped for infotainment applications. The bandwidth is up to 150 Mb/s, supporting
both synchronous and asynchronous transmission. The MOST network can manage
up to 64 devices using a ring topology, which can be easily connected and removed
using the plug-and-play functionality. Moreover, different end-user applications can
be connected to this network, such as radios, GPS, and entertainment systems [90].
Although this protocol satisfies the requirements for infotainment applications, there
is a limitation in terms of bandwidth for certain requirements [91].

(5) Automotive Ethernet is a communications bus that successfully serves high-bandwidth
applications in the field of autonomous driving and connected cars. Ethernet tech-
nology has several uses besides in-vehicle communication, such as measurement
and calibration, but also diagnostics over IP (DoIP) [92]. The Ethernet standards
used for automotive requirements are 100Base-T1 and 1000Base-T1. Automotive
Ethernet is implemented with a single twisted cable pair, obtaining data rates from 10
Mb/s to 10 Gb/s. Ethernet lends itself very well to the requirements of applications
in the advanced driver-assistance system (ADAS) field, which requires the use of
large bandwidth for the sensors used. Moreover, related to diagnostics, Ethernet has
started to replace CAN, offering a much shorter time for flashing procedures [89].
Supporting a switched network technology, another advantage is the reduced cost of
cabling. The main disadvantages are related to the high costs, resulting in a more
expensive physical-level interface [90]. Besides this, Ethernet does not offer deter-
ministic and real-time communication, and this is the main reason why automotive
Ethernet does not completely replace the CAN protocol.

3.1.2. Summary

A comparison of in-vehicle network protocols from the point of view of technical
characteristics is illustrated in Table 2, where can be observed the essential aspects that can
classify each protocol according to its advantages, as it can be concluded which is more
suitable depending on the chosen architecture.

Table 2. Classification of intra-vehicle network protocols.

Intra-Vehicle
Network Bit Rate Data Length Access Control Messaging Network

Topology
Error

Detection

LIN 19.2 Kb/s 8 bytes Polling Master–Slave Bus 8-bit Checksum

CAN 125 Kb/s–1
Mb/s 0–8 bytes CSMA/CA Multi-Master Bus Star 15-bit CRC

FlexRay Up to 10 Mb/s 0–254 bytes TDMA FTDMA Multi-Master Bus Star
Multi-star 24-bit CRC

MOST Up to 150 Mb/s Up to 364 Bytes
TDMA Support

for
(a)synchronous

Master–Slave
Streams Ring 16-bit CRC

Automotive
Ethernet Up to 10 Gb/s Up to 1500

bytes CSMA/CR Based on IP Bus Star 32-bit CRC

3.2. V2X Communication

V2X communication technology has major importance in the implementation of an
intelligent transport system (ITS), offering a level of automated driving and intelligent
mobility. Furthermore, this technology involves the exchange of information between a
vehicle and other entities of the traffic system.
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3.2.1. Literature Review

The V2X includes four modes of communication: vehicle-to-vehicle (V2V), vehicle-to-
infrastructure (V2I), vehicle-to-pedestrian (V2P), and vehicle-to-network (V2N) [93]. Each
of these communication modes is illustrated in Figure 3 and exemplified in the following:

(1) V2V communication allows for the exchange of information between vehicles in
proximity, exchanging useful information about vehicle location, traffic accidents,
speed, and traffic dynamics [94]. Each vehicle is equipped with an on-board unit
(OBU). Communication between vehicles is achieved by forming a mesh network
and connecting them as nodes to the network [95]. Therefore, for the exchange of
information between nodes, messages are used with the aim of creating a more
efficient decision-making system. Thus, if used properly, V2V communication has
the benefits of increased driver safety and road capacity, improving fuel efficiency,
and preventing possible accidents [96].

Figure 3. V2X communication modes.

(2) V2I communication refers to the exchange of information between the vehicle and
various equipment installed on the road infrastructure [97]. V2I communication
can be ad hoc, wireless, or bidirectional [98]. The vehicles collect information from
a road side unit (RSU), which is a stationary unit installed along the roads. This
information is used for traffic management [99]. Thus, useful information can be
obtained about traffic congestion, available parking, the most efficient routes, and
road conditions [100]. All these are used to obtain reduced fuel consumption, increase
mobility, and reduce polluting emissions [22].

(3) V2P involves real-time, wireless communication between vehicles and vulnerable
road users (VRUs), such as pedestrians, bicyclists, and more [101]. Each VRU has
user equipment (UE), usually a mobile phone, which makes it possible to exchange
information with vehicles. Thus, messages and alerts are sent about the location,
speed, and direction of VRUs [102]. Using V2P, communication between vehicles
and VRUs can be achieved even in unfavourable weather conditions [93]. Therefore,
the benefits of this type of communication refer to the improvement of pedestrian
safety and the reduction in traffic accidents in which VRUs are involved.

(4) V2N communication allows the vehicle to access the network, through a server, for
various cloud-based services. This type of communication can be made directly
between the vehicle and the network or indirectly through a node installed in the
road infrastructure, depending on the distance between the vehicle and the network
infrastructure [103]. Vehicles can receive broadcast alerts regarding various aspects
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of traffic, such as accidents ahead, traffic congestion, or support for planning the
best route. All this leads to increased vehicle safety, better route planning, and better
traffic efficiency [104].

V2V communication is used for all platoon members to exchange information related
to position, velocity, acceleration, and decision. Moreover, V2P communication is also
necessary for leaders and followers according to safety considerations for vulnerable road
users. The V2I and V2N communications are used only by the leader vehicle to obtain
information about traffic management, traffic congestion, road conditions, accidents ahead,
and support for planning the best route.

From the point of view of the communication standards used for V2X communication,
two important categories of communication technologies are distinguished: dedicated
short-range communication (DSRC) and Cellular-V2X (C-V2X) technology. Each of these is
presented in detail in the following:

(1) DSRC is a specific communication standard for V2X technology, which allows for
wireless communication between connected vehicles, but also with road infrastruc-
ture. The DSRC involves short-range bidirectional wireless communication, and it is
used for V2V and V2I communications [8]. The DSRC system is based on a series
of IEEE and SAE standards. For the physical (PHY) and medium access control
(MAC) layers, DSRC uses the IEEE 802.11p standard, for requirements related to
authentication, data transmission, and high mobility challenges. The network and
security services are defined in the IEEE 1609.x family of standards [105,106]. In
the U.S., the Federal Communications Commission (FCC) has allocated for DSRC a
75 MHz spectrum, divided into 10 MHz channels, in the 5.9 GHz frequency band [8].
DSRC-based V2X is successfully used in applications such as traffic safety, traffic
management, and commercial vehicle applications [107]. Thus, this standard comes
with the following benefits: low latency, high reliability, data rates from 3 Mbps up
to 27 Mbps, and ad hoc communications. Cooperative awareness messages (CAMs)
and event-triggered warnings, i.e., decentralised environmental notification mes-
sage (DENM)-type messages, were established in the IEEE 802.11p standard by The
European Telecommunications Standards Institute (ETSI). On the other side, in the
U.S., the basic safety message (BSM) set messages have been defined by the Society
of Automotive Engineers (SAE) [108]. The CAM and BSM are periodical messages
sent between vehicles and between vehicles and the infrastructure. These contain
information about the status information on heading, speed, position, and accelera-
tion. Moreover, for V2X applications, the transmission frequency of CAM messages
is standardised between 1 to 10 Hz, and the broadcast rate of BSM messages is 10 Hz.
The DENM messages are warnings transmitted in emergency situations. These are
decentralised and information is transmitted directly between vehicles, without the
involvement of a centralised infrastructure [109].

(2) C-V2X technology is based on cellular systems, merging the traditional V2X network
with the cellular network [110]. According to the 3rd Generation Partnership Project
(3GPP) unified global standards, this communication technology uses long-term evo-
lution (LTE)–V2X for assisted driving and 5G New Radio (NR)–V2X for autonomous
driving [111]. The working frequency for C-V2X is the same as in the case of the
DSRC, operating in the 5.9 Hz frequency band, a band allocated for communica-
tions in the intelligent transportation system (ITS) area. LTE-V2X uses single-carrier
frequency division multiple access (SC-FDMA) and supports 10 MHz and 20 MHz
channels. The communication channel for LTE-V2X uses resource blocks (RBs) of
180 kHz; this implies 12 subcarriers of 15 kHz each. Moreover, from the point of
view of time, the channel is divided into sub-frames of 1 ms [112]. LTE-V2X uses
communication modes 3 and 4 for resource allocation. The initial advantages of LTE-
V2X were improving road safety and reducing traffic congestion. This is possible by
periodically broadcasting a CAM message between connected vehicles and LTE-V2X
supporting in-coverage, out-of-coverage, and partial-coverage scenarios.
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The 5G NR-V2X technology started to be developed from Release 16, coming as a
complement to LTE-V2X. For 5G NR, two frequency ranges are defined in which
it can operate: frequency range 1 (410 MHz–7.126 GHz) and frequency range
2 (24.25–52.6 GHz). This results in bandwidth for the channel in both bands of 10,
20, 30, and 40 MHz. Besides these, 5G NR-V2X supports various frequency division
multiplexing (OFDM) methodologies [113]. For 5G NR-V2X, two communication
modes are defined, as in the case of LTE-V2X, mode 1 and mode 2. The advantages
of 5G NR-V2X technology include increased capacity and speed, as well as reliability,
but also a considerable decrease in latency [114]. The C-V2X uses two complemen-
tary transmission modes: the Uu and PC5 interfaces. Modes 1 and 3 correspond
to the Uu interface, this being a traditional radio interface that accesses terminals
through a base station, using uplink (UL) and downlink (DL) transmissions. Within
Uu, C-V2X applications operate in traditional mobile broadband licensed spectrum.
This interface is used in V2N communication, for long-range applications. The PC5
interface corresponds to modes 2 and 4 and involves direct communication between
traffic entities, unassisted by the base station. It is used for V2V, V2I, and V2P com-
munications, the exchange of information being carried out with the help of sidelink
(SL) transmission. Within PC5, C-V2X applications operate in the 5.9 GHz ITS band
for short-range applications, on a distance of less than 1 km [115].

3.2.2. Summary

The technical characteristics of DSRC and C-V2X standards are illustrated compara-
tively in Table 3, where can be observed the properties of each communication technology:
IEEE 802.11p, LTE, and 5G NR. Therefore, depending on the V2X communication require-
ments for each use case, the appropriate communication standard can be chosen.

Table 3. Comparison between communication standards used for V2X communication.

Features DSRC LTE-V2X NR-V2X

Communication
technology IEEE 802.11p LTE 5G NR

Frequency bands 5.9 GHz 5.9 GHz 5.9–52.6 GHz
including mmWave

Data rates 3–27 Mb/s 150 Mb/s 1–10 Gb/s

Latency Up to 150 ms 10–100 ms <5 ms

Communication
modes Broadcast Broadcast Broadcast, unicast,

and multicast

Mobility support 252 km/h 350 km/h 500 km/h

Transmission time 0.4 ms 1 ms 1 ms

Retransmission None Blind HARQ-based

Sub-carrier spacing 156.25 KHz 15 KHz
Sub–6 GHz: 15, 30, 60

KHz; mmWave: 60,
120 KHz

4. Cooperative Adaptive Cruise Control for Vehicle Platoon

Interconnected vehicle systems are built around the ability of multiple vehicles to
establish a local network and communicate with one another their mobility characteristics
so that cooperative maneuvers can be performed such as maintaining lanes, maintaining a
constant speed, changing lanes, and many others. In recent years, cooperative adaptive
cruise control (CACC) has emerged as a promising technology in vehicular safety appli-
cations. CACC-based platoons involve a group of vehicles that are connected through
wireless communication and are capable of performing coordinated driving manoeuvres,
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such as acceleration, deceleration, and lane changing. The use of CACC in platooning
applications has been shown to improve traffic efficiency, reduce fuel consumption, and
enhance safety by mitigating the effects of human error [8].

This section presents a proposal for a control architecture targeting a specific case
involving a CACC strategy for a vehicle platoon, as illustrated in Figure 4. The topology
used is predecessor–follower; thus, the vehicles periodically transmit their current state
information, such as location, speed, and acceleration. The proposed control architecture
that implements the CACC functionality has the following components:

• Sensors:

– The leader is equipped with a long-range radar for obstacle detection;
– The follower vehicles are equipped with a short-range radar to measure the

distance to the preceding vehicle;
– Each vehicle is equipped with a camera for lane and obstacle detection, and GPS

and IMU to determine the position and velocity of the vehicle.

• Vehicle communication:

– The communication channel consists of a V2V link between the vehicles. Thus,
vehicles are equipped with DSRC technology for short-range communication
using CAM messages. These are sent with a frequency of 10 Hz, with each vehicle
sending 10 messages per second, which is the minimum required by the CACC
functionality [116]. The bitrate for CAM messages is set to 6 Mbit/s, which means
an optimal value for vehicular scenarios [117];

– For each vehicle, the data from the sensors are processed and then transferred to
the vehicle’s central control unit for fusion using a CAN bus. Also, the automotive
Ethernet bus is preferred for the camera sensor according to its required high
bandwidth.

• Control solutions:

– Specifically for lateral control, vehicles can use an LQR algorithm to implement
the lane keep assist functionality;

– For the longitudinal control, two methods based on the DMPC algorithm and
feedback gain matrix are proposed.

Figure 4. Cooperative adaptive cruise control for a vehicle platoon.

In what follows, the modelling method and the two control strategies proposed for
the longitudinal dynamics are detailed.

4.1. Vehicle Platoon Modelling

The leader vehicle (denoted with V0) is in front of the platoon and leads the platoon
with a desired travel velocity. The follower vehicles are tracking the vehicle in front while
keeping an imposed distance from it. Each vehicle uses GPS, IMU, camera, and LiDAR to
measure the velocity, acceleration, position, and velocity errors, and receives information
about the states of its in-front neighbour via V2V communication. Moreover, the control
solution for CACC functionality assumes that in front of the leader is a “virtual leader”
vehicle that is moving with the desired acceleration. In this way, the leader vehicle can
be modelled as a follower that has to follow the virtual leader. The model that describes
the longitudinal dynamics [118] is given by (1). This model describes the relationship
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between states of the vehicle, position and velocity errors and inputs. Moreover, the model
illustrates the coupling between two consecutive vehicles from the platoon : ėpi(t)

ėvi(t)
ȧi(t)

 =

 0 1 −δ
0 0 −1
0 0 −1/τ

 epi(t)
evi(t)
ai(t)

+

 0
0

1/τ

ui(t) +

 0
1
0

ai−1(t), (1)

where epi represents the longitudinal position error of vehicle i to the vehicle in front i− 1;
evi represents the velocity error; ai represents the acceleration; ui represents the input, i.e.,
acceleration request; δ = 0.7 s represents time headway; and τ = 0.1 s represents the time
constant. Notice that for the leader vehicle i = 0, the acceleration a−1 represents the virtual
leader’s imposed acceleration ar.

To control the vehicle platoon, this study proposes two control solutions based on the
distributed model-based predictive control (DMPC) strategy and the feedback gain matrix
method. In the latter, the control law of each vehicle is a linear combination of its states and
states of the vehicle in front:

ui = Ki,iζi + Ki,i−1ζi−1, (2)

where ζi =

 epi(t)
evi(t)
ai(t)

 represents the vector of system states and Ki,j represents a real array.

The model presented in this section will be used in the design phase of the two control
methods (i.e., DMPC strategy and feedback gain matrix method), but also to simulate the
longitudinal dynamics of the platoon.

4.2. Communication Topologies

The use of vehicular communication in designing the CACC solution improves driv-
ing performance, safety, and stability. Vehicles can obtain information about velocities,
accelerations, and positions from vehicles in front and use them to decide the new action
so that the imposed constraints and targets are respected. The main advantages of V2V
communication are represented by [19,119]: (i) improving safety, (ii) optimising the use
of roads by reducing the space between vehicles, (iii) reducing fuel consumption and
pollution by minimising the accelerations, (iv) improving control performances, and (v)
ensuring string stability. The most studied communication typologies are represented by (i)
predecessor–follower communication, where each follower i receives information from the
vehicle in front i− 1; (ii) leader–follower, where each follower i receives information from
the leader vehicle i = 0; (iii) leader–predecessor–follower, where each follower i receives
information from the vehicle in front i − 1 and from the leader i = 0; (iv) bidirectional
communication, where each vehicle i receives information from its neighbour vehicles i + 1
and i− 1. However, the performance of the vehicle platoons that use these communication
topologies depends on the model and the chosen control solution. In the case of the MPC
algorithm, some studies show that the control performances are quite similar for these
topologies [68,120]. Also, solutions that ensure string stability and performances for a
vehicle platoon’s lateral and longitudinal dynamics are proposed in [121–123]. These solu-
tions use predecessor–follower communication in cases where the dynamics of a follower
is described taking into account the position of the vehicle in front, and leader–follower
communication when the dynamics of a follower is described taking into account the
position of the leader or both of them.

Due to the fact that the model (1) describes the position of a vehicle to the vehicle in
front and a follower i is coupled with follower i− 1 through the acceleration, this work
uses the predecessor–follower communication topology.

4.3. Distributed Model-Based Predictive Control Method

This section presents the DMPC strategy used to control the velocity and distance
between vehicles. The algorithm is used by each vehicle to compute its control inputs
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(i.e., acceleration requests). The method uses a model of the vehicle to predict its behaviour
and to determine a sequence of optimal control inputs so that a cost function is minimised.
Also, due to the coupling between two consecutive vehicles, the method supposes com-
munication between vehicles regarding their prediction of acceleration. With this, the
prediction of vehicle future states is improved, which implies better performance.

Consider a system in chain architecture described by:

ζi(k + 1) = Aiζi(k) + Biui(k) + Ai,i−1ζi−1(k), (3)

where Ai ∈ Rn×n, Bi ∈ Rm×n, Ai,i−1 ∈ Rn×ni,i−1 , n represents the number of states for
subsystem i, m represents the number of inputs for subsystem i, ni,i−1 represents the
number of states through which the subsystems i and i− 1 are coupled, and i = 0, . . . , M,
M + 1 represents the number of subsystems.

The optimal sequence of control inputs is determined by solving at each sample time
the DMPC problem 1. This problem assumes the minimisation of a cost function that has
three types of terms: (i) terms that minimise the prediction of vehicle position and velocity
errors, (ii) terms that minimise the control efforts, and (iii) terms that minimise the error
between the prediction of the states of vehicle ζi(·) and the assumed prediction of the
states of the vehicle in front ζ̃i−1(·). Moreover, the DMPC problem 1 takes into account the
imposed constraints on vehicle inputs and states.

Problem 1. At each discrete step k, starting from an initial state ζi(k) = ζ0 and using the system
model (3) to predict the states of the vehicles, compute a finite horizon optimal input sequence
minimising the cost function:

Ji(k, ζi(k), Ui(k)) =ζi(N|k)TQiζi(N|k) + (ζi(N|k)− ζ̃i−1(N|k))TWi(ζi(N|k)− ζ̃i−1(N|k))+

+
N−1

∑
j=0

[ζi(j|k)TQiζi(j|k) + uT
i (j|k)Riui(j|k)+

+ (ζi(j|k)− ζ̃i−1(j|k))TWi(ζi(j|k)− ζ̃i−1(j|k))]

(4)

over Ui(k), subject to the following constraints:

Umin
i ≤ Ui(j|k) ≤ Umax

i ,

ζmin
i ≤ ζi(j|k) ≤ ζmax

i ,
(5)

where Qi, Ri, and Wi represent the weighting matrices, W0 = 0 (for the leader), N represents the
prediction horizon, Ui(k) = [ui(0|k), . . . , ui(N − 1|k)]T is the sequence of control inputs, and
ζ̃i−1 = [ζi−1(2|k− 1), . . . , ζi−1(N|k− 1), ζi−1(N|k− 1)]T represents the prediction of the states
for vehicle i− 1, computed at step k− 1 and sent to vehicle i.

Remark 1. Note that for the leader vehicle, with index i = 0, the vehicle in front is considered to be
the “virtual leader” that is driving with the imposed acceleration, so ζ̃−1 represents the imposed
acceleration for the leader for the next N steps.

4.4. Feedback Gain Matrix Method

The second method uses a feedback gain matrix to compute the control inputs instead
of a complex algorithm, such as DMPC. This solution has the advantage of requiring a low
computational effort and being easier to be implemented on hardware with limited storage
and computational capabilities. In what follows, the method used to determine this control
matrix is detailed.

The model (3) can be rewritten as

ζℵ(k + 1) = Aℵζℵ(k) + Bℵuℵ(k) + Aℵ,0ζr(k), (6)
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where ζℵ = [ζT
0 , . . . , ζT

M]T and uℵ = [uT
0 , . . . , uT

m]
T aggregate all states and inputs of each

subsystem i = 0, . . . , M, ζr ∈ Rnr represents the imposed reference for subsystem 0 (i.e., the

leader), Aℵ,0 =


An,nr

On,nr

. . .
On,nr

, On,nr represents the null matrix of size (n× nr).

Notice that the matrix An,nr corresponds to the matrix A0,−1, and ζr to x−1 from (3).
Then, the control law of the whole system can be defined as:

uℵ(k) = Kζℵ(k), (7)

where K ∈ R(M+1)×n(M+1) represents the feedback gain matrix.
Moreover, each vehicle receives via V2V communication the states of the vehicle in

front. Based on this, the control law of each follower is considered as in (2). The leader
vehicle does not have a vehicle in front (except the virtual leader), so its control law is
defined as u0 = K0,0ζ0. The control matrix K has non-zero elements only on the sub-
block (1, 1) corresponding to the leader and on the sub-block {(i + 1, i), (i + 1, i + 1)}
corresponding to the follower vehicles. Notice that a sub-block (i, j) refers to the elements
from matrix K represented by line i and columns {j, j + 1, . . . , j + n− 1}. Also, the notation
Ki,j is referring to the sub-block (i + 1, j + 1) in matrix K.

The control matrix K is obtained by solving Problem 2. The method assumes the use
of a set of reference states, and the control matrix is computed so that the error between the
reference states and model states (6) is minimised:

Problem 2. Starting from a set of reference states, compute the K matrix so that the following cost
function is minimised:

V(K) =
L

∑
j=1

Vj(k), (8)

Vj(k) =
tk f

∑
k=0
||ζr
ℵ(j, k)− ζℵ(k)||22, (9)

over K, subject to the following constraints:

ζℵ(k + 1) = Aℵζℵ(k) + Bℵuℵ(k) + Aℵ,0ζr(j, k)

uℵ(k) = Kζℵ(k),

ζℵ(0) = ζr
ℵ(j, 0),

(10)

where ζr
ℵ represents the set of the reference states, tk f represents the length of a reference, L represents

the number of states from the set.

Note that the first solution, i.e., CACC based on the DMPC strategy, has the advantage
that at each sample time, the method computes the command minimising a cost function
that takes into account the prediction of the vehicle states, i.e., position and velocity errors
and acceleration, as well as imposed constraints on the states and inputs, and also takes
into account the information about the prediction of acceleration received from the vehicle
in front. However, it has the disadvantage of requiring a high computing power to solve
optimisation Problem 1. The second method requires a significant computational effort,
but only in the phase of computing the feedback gain matrix K. After that, the command is
computed at each sample time using Equation (2). The disadvantages of this method are
represented by the possibility of violating imposed constraints, and also by the fact that it
does not use a prediction of the vehicle’s state. Moreover, the method does not receive the
prediction of the acceleration of the vehicle in front as it is using the method based on the
DMPC approach. But the last disadvantage can be minimised in the phase of computing the
matrix K by "training" the feedback gain matrix, so that the error between the two methods
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is minimised by choosing the set of references as the solution of the DMPC algorithm [124]
(see Problem 2).

5. Illustrative Results

This section presents the simulation results obtained using the proposed control so-
lutions. The platoon is formed by a leader, followed by three follower vehicles. As it was
previously mentioned, the leader and follower vehicles use their sensors to obtain informa-
tion about their velocity, acceleration, position, and velocity errors. These measurements
are used by the control methods to obtain the prediction of vehicle states and to compute
the control input. Also, the vehicles receive from their vehicle in-front information that
contains the prediction of their accelerations (DMPC method) and their states (feedback
gain matrix method). Note that the leader vehicle does not have a real vehicle in front,
which means that model (1) can be used to compute the position and velocity error states.

The parameters used by the DMPC controller are represented by prediction horizon
N = 50 time samples, Q0 = Q1 = . . . = QM = diag{1, 10, 0.1}, R0 = R1 = . . . = RM = 0.1,
W0 = 0, Wi = diag{3, 3, 3}, i = 1, . . . , M, M = 3. The limits imposed on the input u and
longitudinal error ep are represented by umin = −2 m/s2, umax = 2 m/s2, emin

pi = −0.7 m,
emax

pi = 0.7 m. The used sample time is Ts = 0.1 s. For the second method based on the
feedback matrix, the set of the reference state is formed by L = 100 references computed
using the DMPC strategy. These reference states were obtained using a set of 100 reference
accelerations illustrated in Figure 5. The length of each reference is tk f = 200/Ts.

Figure 5. Set of 100 accelerations used by the second control method to design the control feedback
matrix for the platoon.

To test the proposed control methods, a simulation scenario was designed. The
reference of the leader consists of a series of changes in imposed acceleration to test the
methods in various situations. The reference and acceleration of vehicles are illustrated by
Figure 6. Based on these figures, it can be noticed that all vehicles follow the acceleration
and deceleration behaviour of the vehicle in front, but the first method (based on the DMPC
algorithm) has a smoother acceleration compared to the second method (based on the
feedback gain matrix). But this difference between methods is not noticed in the graph
of velocity; see Figure 7, where all follower vehicles travel with the same velocity in both
cases. All vehicles succeed in following the vehicle in front with imposed distance and
with small errors, as can be observed in Figure 8. For all methods, the errors decrease in
the upstream direction. Moreover, for the second method, the maximum of the absolute
values of eigenvalues is ρ = max(|Aℵ + BℵK|) = 0.9774 < 1, which means the platoon is
globally stable. The control inputs are illustrated in Figure 9. The difference between the
two methods is the following: the first method obtained a higher value for the requested
acceleration compared to the second method, which implies higher fuel consumption. Also,
all commands and position errors respect the imposed constraints.
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Remark 2. Note that for each reference acceleration from those 100, the evolution of the states of
the vehicle platoon was computed by imposing the reference accelerations for the platoon and having
the DMPC strategy as a control solution. As a result, a set of 100 reference states, ζr

ℵ, was obtained.
The control feedback matrix K was computed by solving Problem 2. By finding a control law (7) so
that the cost function (8) is minimised, the states of the platoon are led to follow the dynamics of the
states controlled by the DMPC strategy. This means that the behaviour of the platoon (controlled
with (7)) is close to the behaviour of the platoon controlled by the DMPC algorithm. Moreover,
using a random large set of references, the platoon is tested in multiple operating points, ensuring
that no bias from a particular case influences the calculus of matrix K.
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Figure 6. Accelerations of vehicles: (a) DMPC method; (b) feedback gain matrix method.
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Figure 7. Velocities of vehicles: (a) DMPC method; (b) feedback gain matrix method.
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Figure 8. Position errors of vehicles: (a) DMPC method; (b) feedback gain matrix method.
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Figure 9. Control inputs of vehicles: (a) DMPC method; (b) feedback gain matrix method.

6. Discussion

In order to ensure a fair comparison between the two methods, each proposed control
solution was tested for 100 random references for acceleration (other than those used in
the phase of computing matrix K, see Figure 5). Figures 10–13 contain the position error
of the leader and follower vehicles obtained from 100 simulated cases. Moreover, for
each vehicle, the average error is computed and illustrated with a black continuous line.
From these result, it can be noticed that the maximum average position error for each
vehicle are the following: (i) method based on DMPC algorithm—max(ep0) = 0.297 m,
max(ep1) = 0.291 m, max(ep2) = 0.276 m, max(ep3) = 0.258 m; (ii) method based on
feedback gain matrix—max(ep0) = 0.338 m, max(ep1) = 0.326 m, max(ep2) = 0.296 m,
max(ep3) = 0.276 m.
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Furthermore, using the results obtained from these 100 cases, a cumulative cost was
used to evaluate better the performances of the two methods. This cost takes into account
the position errors and input efforts of the vehicles:

J =
1

tk f

100

∑
s=1

3

∑
i=0

tk f

∑
j=1

(e2
pi(j) + u2

i (j)). (11)

Figure 10. Position errors sets for L: (a) DMPC method; (b) feedback gain matrix method. Thin
line—100 case; bold line—mean of |ep|.

Figure 11. Position errors sets for F1: (a) DMPC method; (b) feedback gain matrix method. Thin
line—100 case; bold line—mean of |ep|.
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Figure 12. Position errors sets for F2: (a) DMPC method; (b) feedback gain matrix method. Thin
line—100 case; bold line—mean of |ep|.

Figure 13. Position errors sets for F3: (a) DMPC method; (b) feedback gain matrix method. Thin
line—100 case; bold line—mean of |ep|.

The method based on DMPC obtains a cost equal to JDMPC = 6.18, and the second
method, based on the feedback gain matrix, obtains a cost equal to JK = 5.828. Based on
these results, the second method obtains control performances quite similar to the one
based on the DMPC approach. As can be seen from these results, by designing the feedback
matrix K using the proposed solution, it can be obtained a control solution that has a
behaviour close to the DMPC algorithm but did not require specialised software and online
optimisation to be implemented. These results made the second method proper for real-
time implementation. The first method, based on the DMPC strategy, has the advantage
that it can take into account online constraints imposed for the states and commands
compared with the second method. Also, the first method, using a model of the system,
can predict the state’s evolution. Although the used model usually has modelling errors,
DMPC can obtain better performances. But the second control method is more suitable
for real-time implementation because it does not require high computational power or
complex optimisation algorithms to be implemented online.
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The simulations were performed using MATLAB R2022b on Windows 10, 64-bit
Operating System with a laptop Intel Core i7-8750H CPU @ 2.200 GHz and 8 GB RAM.

7. Conclusions and Future Work

This paper presents in detail the related levels of a highly advanced vehicle control
architecture (sensing interface, perception, planning, decision, and control) and their
element components. Moreover, the proposed control architecture was used to design a
control solution for the longitudinal dynamics of a vehicle platoon. Also, for the control
level, two methods were proposed: (i) the first one uses a complex control algorithm
represented by DMPC; and (ii) the second method uses feedback gain matrices computed
using results from the first method. The simulation results prove that the second method
obtains similar performance compared to the one based on the DMPC algorithm, and this
fact made it suitable for real-time implementation due to the simplicity of the control law.

Future work will focus on using the proposed control architecture in a laboratory scale,
real-time vehicle platooning system.
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