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Abstract: To address the issue of low positioning accuracy of mobile robots in trellis kiwifruit orchards
with weak signal environments, this study investigated an outdoor integrated positioning method
based on ultra-wideband (UWB), light detection and ranging (LiDAR), and odometry (ODOM).
Firstly, a dynamic error correction strategy using the Kalman filter (KF) was proposed to enhance the
dynamic positioning accuracy of UWB. Secondly, the particle filter algorithm (PF) was employed to
fuse UWB/ODOM/LiDAR measurements, resulting in an extended Kalman filter (EKF) measurement
value. Meanwhile, the odometry value served as the predicted value in the EKF. Finally, the predicted
and measured values were fused through the EKF to estimate the robot’s pose. Simulation results
demonstrated that the UWB/ODOM/LiDAR integrated positioning method achieved a mean lateral
error of 0.076 m and a root mean square error (RMSE) of 0.098 m. Field tests revealed that compared to
standalone UWB positioning, UWB-based KF positioning, and LiDAR/ODOM integrated positioning
methods, the proposed approach improved the positioning accuracy by 64.8%, 13.8%, and 38.3%,
respectively. Therefore, the proposed integrated positioning method exhibits promising positioning
performance in trellis kiwifruit orchards with potential applicability to other orchard environments.

Keywords: mobile robot in kiwifruit orchards; outdoor integrated positioning; UWB positioning;
Kalman filtering; particle filtering

1. Introduction

Currently, the positioning and navigation methods for orchard robots worldwide
primarily include Global Navigation Satellite Systems (GNSS) navigation, machine vision
navigation, LiDAR navigation, and multi-sensor fusion navigation [1–4]. GNSS navigation
is widely employed in open-field agricultural operations due to its real-time provision of
absolute positioning information, high precision, and all-weather capability [5,6]. However,
the stable reception of satellite signals by GNSS is obstructed in the environment of trellis-
style kiwifruit orchards due to shielding from tree leaves and signal interference from the
metallic trellis wires [7,8]. Consequently, the applicability of GNSS navigation becomes
limited, and it cannot accurately fulfill navigation tasks.

With the advancement of image technology and decreasing economic costs, vision
sensors are extensively applied in the field of agricultural robots because of their rich
information content and low cost [9]. Benson et al. [10] developed a machine vision system
to guide a combine harvester, which utilizes the lateral position of crop cutting edges as
a guidance reference. Using convolutional layer feature visualization techniques, Gao
et al. [11] investigated the influence of the depth of convolutional neural networks on
the feature extraction of kiwifruit tree trunks. They focused on extracting features at the
connection between the tree trunk and the furrow, fitting a navigation line based on the
detected kiwifruit tree trunk targets. The average lateral deviation was 7.15 cm under
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black furrow conditions, 6.29 cm under inter-row grass conditions, and 7.36 cm under
plastic film-covered conditions. Although visual navigation offers many advantages, it is
easily affected by lighting conditions and thus, cannot meet navigation requirements in
outdoor environments [12,13]. Additionally, due to the complex environment of orchards,
image information loss can occur, affecting the accuracy of the navigation system. Foliage,
branches, and weeds in orchards can potentially obstruct the camera’s line of sight, resulting
in the loss of image information in certain areas [14]. Fruits, leaves, bare soil, shadows, and
background environments in orchards can introduce color confusion, thereby affecting the
color recognition capabilities of the visual system [15]. Adverse weather conditions such
as rain, fog, frost, or snow can degrade the performance of the visual system, leading to
blurry and indistinguishable images [16].

Laser navigation has numerous advantages, such as high-ranging accuracy, good
resolution, and strong anti-interference capabilities, and it is widely applied in orchard
environment perception [17]. Jones et al. [18] designed an autonomous navigation heavy-
duty platform for kiwifruit orchards based on multi-line laser radar. Thanpattranon
et al. [19] utilized a 2D laser rangefinder and employed a Kubota Kingwel KL-21 tractor as
the experimental platform to develop an automatic curve navigation system suitable for
orchards. The experimental results showed an average path tracking deviation of 0.275 m
with a standard deviation of 0.009 m. However, drift occurred after a period of operation,
resulting in divergence in positioning and accumulating errors. Therefore, a positioning
method that provides absolute positioning information is needed to address this issue.

Xie et al. [20] proposed an improved angle-of-arrival (AOA) model for agricultural
machinery navigation parameter detection based on UWB base station tag relative ranging
information. This method realized cost-effective, high-precision, and simple autonomous
navigation in field environments. By using UWB as the sole source of positioning informa-
tion, this method faces challenges in providing highly continuous and stable positioning
information.

The single-sensor approach has inherent limitations and exhibits poor navigation
stability in complex and dynamic environments [21–23]. The development of the Bin-Dog
orchard transport robot by Washington State University in the United States addressed
this issue. The robot was equipped with sensors such as GPS and laser scanners, enabling
efficient handling tasks in orchard inter-rows and field turning functions [24]. Kanagasing-
hamd et al. [25] integrated GNSS, compass, and machine vision into a rice field weeding
robot, achieving fully autonomous navigation for weed control operations. The proposed
system demonstrated excellent performance in low weed density conditions, with head-
ing compensation accuracy below 2.5◦ and an average deviation from the ideal path of
45.9 mm. Gao et al. [26] utilized the complementary characteristics of Global Positioning
System (GPS) and LiDAR to periodically calibrate the Inertial Navigation System (INS)
under different environmental conditions. Real experiments were conducted on unmanned
ground vehicles (UGV) in both outdoor and indoor environments. The results demon-
strated sub-meter navigation accuracy throughout the entire trajectory. Jaeger-Hansen
et al. [27] estimated the position of grapefruit trees in a citrus orchard using GNSS and
LiDAR for autonomous robot mission planning and positioning. Experimental results
showed an average accuracy of 0.2 m for estimating positions along the centerline and
0.35 m in the direction perpendicular to the rows. Guevara et al. [28] fused information
derived from LiDAR scan matching estimation with GNSS measurements to reduce errors
associated with GNSS receivers. Testing was conducted in an apple orchard, and the results
showed a 20% reduction in estimation errors for crown surface area, crown volume, and
porosity when the GNSS error was 1.2 m, with even greater reductions of 50% for smaller
errors.

During autonomous navigation of robots in orchards, sensor data may be affected by
noise due to conditions such as the soft and uneven ground of the orchard. To mitigate this
impact, navigation data processing methods based on filtering technology can be used to
filter and reduce the noise in the data. When using multi-sensor fusion, it is also necessary
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to analyze and process redundant or complementary information in the data to achieve an
optimal estimate of the robot’s surrounding environment and its own state. Commonly
used navigation data processing methods based on filtering include KF, PF, and EKF [29].
These methods help improve the accuracy and reliability of the data obtained by the robot.
The KF is a linear filtering and prediction method that provides a robust mathematical
method for real-time multi-sensor fusion and noise reduction. By inputting and outputting
observation data, the state of the system can be optimally estimated. Since mobile robot
systems are mostly non-linear, the EKF method is used to solve the non-linear system
problems of mobile robots. EKF linearizes non-linear systems through the Taylor expansion
of non-linear functions and then operates as a regular KF. Tang et al. [30] proposed a
differential adaptive and EKF combined algorithm and verified its effectiveness. The PF is
a non-linear filtering method that combines Bayesian with Monte Carlo random sampling
methods and is not constrained by the assumptions of linear systems and Gaussian noise.
Jie Ying et al. [31] applied the PF method to multi-sensor data fusion and added a step to
resist outliers in the algorithm, effectively mitigating the error caused by GPS jumps, and
thus obtaining accurate navigation and positioning information. Compared with tradi-
tional filtering methods, Rao–Blackwellized Particle Filters (RBPF) and Rao–Blackwellized
Kalman Filters (RBKF) represent advanced techniques in the field of state estimation. They
overcome the limitations of traditional filtering methods, providing more accurate and
efficient state estimation methods, especially suitable for complex and nonlinear systems.
RBPF and RBKF combine the concepts of PF and KF, where certain state variables can be
efficiently estimated using KF, while other variables employ PF. This decomposition and
combination approach can effectively reduce computational complexity while providing
more precise state estimation, particularly in high-dimensional and non-linear systems [32].
Gupta et al. employed RBPF for the fusion of GNSS and visual odometer, which com-
bines the tracking efficiency of KF with the superior uncertainty modeling of PF, enabling
effective state tracking and rich position probability distribution [33]. Norhidayah et al.
adopted RBPF in a grid-based Simultaneous Localization and Mapping (SLAM) algorithm,
effectively improving the mapping accuracy of the map and significantly reducing the
error in robot state estimation [34]. The integrated positioning method in this study is
also implemented by combining KF, EKF, and PF, fully utilizing the advantages of each
individual method to improve the accuracy of robot positioning.

In summary, the fusion of multiple sensors generally leverages the advantages of
continuous relative positioning information provided by the sensors and the absence of
cumulative errors in absolute positioning information, leading to high accuracy. In outdoor
environments, GNSS is commonly used to obtain the robot’s absolute positioning informa-
tion. However, in a trellis-style kiwifruit orchard environment, the presence of overhead
structures obstructs GNSS signals, and the use of LiDAR for robot positioning and naviga-
tion can result in accumulated odometry errors due to track slippage and prolonged travel.
On the other hand, UWB positioning can provide high-precision positioning information
without cumulative errors and with real-time capabilities even in GNSS-denied environ-
ments. Therefore, this study conducts research on the integrated positioning method of
UWB/LiDAR/ODOM in a trellis-style kiwifruit orchard environment to correct the robot’s
cumulative positioning errors and improve the accuracy of its positioning and navigation.

2. Materials and Methods
2.1. System Components

As shown in Figure 1, the integrated positioning system of this study comprises
primarily a crawler robot, a UWB tag, a LiDAR sensor, a personal computer (PC), and a
tracking device. In addition, the Gazebo model of the integrated positioning system is
depicted in Figure 2. The crawler robot operates on a two-wheel differential mode, with
each track unit including an independent active wheel. It has a length of 1020 mm and a
width of 790 mm. The passive wheel primarily supports the robot’s movement in various
directions. The detailed specifications of the sensors and motors used in this study are
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available in Appendix A Table A1. The LiDAR sensor used is the RPLiDAR S1 model. To
match the actual specifications of RPLiDAR S1, the parameters of the simulation model
are consistent with the actual LiDAR parameters. UWB is an absolute positioning method
that calculates distance by measuring signal propagation time, and its ranging accuracy
directly affects positioning accuracy. Its precision is influenced by the orchard’s obsta-
cles and the sensor’s noise level. For UWB simulation modeling, we developed a UWB
positioning feature pack in ROS, based on the DS-TWR ranging principle. To match the
actual specifications of the D-DWG-PGPLUS positioning module, we simulated different
complex environments’ effects on UWB sensor positioning accuracy by adding an offset
error to the tag to base station ranging distance in the simulation model parameters. We
modeled the UWB sensor’s internal noise by having the noise in the tag-to-base station
ranging distance follow a Gaussian distribution with a standard deviation of 0.1 m and
0.3 m. The simulated UWB has an update rate of 10 Hz. Two photoelectric encoders,
installed separately on the two motor drive wheels, provide speed and mileage information
as ODOM. The odometer is used for the relative positioning of the robot, and its accuracy is
affected by ground conditions and sensor noise. Inaccurate odometer readings can lead to
cumulative errors, thereby affecting positional accuracy. For ODOM simulation, the robot’s
odometer is calculated based on the active wheel’s speed on both sides. To match the
encoder’s real specifications, noise is added to the speeds of both wheels, making the noise
follow a Gaussian distribution with a standard deviation of 0.05 m. To replicate the ground
conditions of kiwifruit orchards, we used the SketchUp sandbox tool to create the terrain,
incorporating pyramid-shaped protrusions randomly into a flat grid to simulate bumps.
The simulated ODOM has an update rate of 10 Hz. In the simulation process of automatic
navigation for the robot within Gazebo, a synergistic relationship between Gazebo and the
Robot Operating System (ROS) facilitates the interaction between the simulated environ-
ment and control algorithms. Within Gazebo, sensors generate data through simulation,
mimicking data gathered by actual sensors in reality. The communication between Gazebo
and ROS is established using plugins provided by ROS. These plugins can simulate various
sensors with parameters corresponding to each sensor set within the plugin and sensor
models, such as noise, resolution, etc., endeavoring to emulate the behavior of real sensors
as closely as possible. Within the ROS framework, proprietary navigation algorithms can
be developed, encompassing multi-sensor combined positioning algorithms, Simultaneous
Localization and Mapping (SLAM) algorithms, and path planning algorithms, among
others. These algorithms subscribe to sensor data and publish control directives, facili-
tating navigation of the robot within the simulation environment. Control instructions
are conveyed to Gazebo via ROS topics, dictating the motion of the robot. Upon receipt
of control directives published by ROS, Gazebo updates the simulated state considering
the robot model alongside physical properties and environmental presets, resulting in a
simulated movement and navigation of the robot within the virtual world. The crawler
robot uses the STM32 module as a lower machine to control the DC motor driving the
active wheel, monitoring, and feedback on the travel speed of the mobile platform through
the photoelectric encoder. The crawler robot uses a personal computer (PC) with Ubuntu
(16.04) and ROS (Kinetic) systems installed as the upper machine. Based on ROS (Kinetic),
this platform achieves functions such as positioning navigation algorithms, sensor data
monitoring, and issuing speed control instructions [35,36]. The tracking device contains
white flour, which leaves a white line on the ground when the robot moves, representing
the actual path taken by the robot.
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2.2. Simulation Environment Setup

We created a highly realistic model of a trellis-style kiwifruit orchard in SketchUp and
imported it as a 3D model file into Gazebo. The obstacles, terrain, and physical properties
in the created simulated environment model of the kiwifruit orchard are based on an actual
trellis-style kiwifruit orchard. Unlike the real environment, natural conditions such as
wind, rain, snow, and moving obstacles were not taken into consideration in our model.
Each trellis is 4 m wide and 1.8 m high, as shown in Figure 3. As depicted in Figure 4, the
entire trellis measures 20 m in width and 40 m in length. To simulate leaf coverage and
density, kiwifruit trees are randomly distributed on both sides and exhibit around 50%
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overlap of branches and leaves. The soil type of the kiwifruit orchard is primarily loamy
soil and sandy soil, covered with weeds, with ground protrusions less than 5 cm [37,38].
To replicate the actual environment, we used the SketchUp sandbox tool to construct the
ground and create a test area of 40 × 60 m, as shown in Figure 4. By randomly creating
pyramid-shaped protrusions in the flat grid, bumps were simulated, with heights of both
2 cm and 4 cm.
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2.3. Positioning Method

The integrated positioning method proposed in this study is illustrated in Figure 5.
First, a dynamic error correction method based on Kalman filtering is applied to achieve
accurate positioning of the UWB sensor and reduce the dynamic positioning error. Second,
the filtered UWB, LiDAR measurements, and ODOM values are fused using particle
filtering, where the particle-filtered robot pose is utilized as the measurement for the EKF,
while the ODOM measurement serves as the prediction for the EKF. Finally, the predicted
and measured values are fused using extended Kalman filtering to estimate the robot’s
pose. In describing the integrated positioning method, we have used a series of variables.
Their definitions and meanings can be found in the table in the Appendix A, specifically
see Table A2 in the Appendix A.
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The specific steps of the proposed integrated positioning algorithm are as follows
(Algorithm 1):

Algorithm 1 Specific steps of the proposed integrated positioning algorithm

Step 1: Input the robot’s position (xUWB, yUWB) measured by UWB, the pose (xL, yL, θL)
obtained by LiDAR scanning, and the values (Vxo, Vyo, ωo) from the odometer.

Step 2: Apply a KF (refer to Section 2.3.1) to the robot’s position (xUWB, yUWB) measured by
UWB.

Step 2.1: Determine whether the UWB measurement value is an outlier based on the outlier
judgment condition proposed in this study.

Step 2.2: When the UWB measurement is found to be an outlier, apply the KF model
proposed in this study for filtering, or proceed to Step 2.5.

Step 2.3: Use the robot’s positional at time t1, t2 to predict the position at time t3.
Step 2.4: Use the UWB measurement at time t3 to update the predicted pose.
Step 2.5: Output the measurement value (xKFUWB, yKFUWB) after applying the KF.
Step 3: Perform PF fusion (refer to Section 2.3.2) on the measurement value

(xKFUWB, yKFUWB) from the KF, the robot’s pose (xL, yL, θL) obtained by LiDAR scanning, and
the odometer measurement (Vxo, Vyo, ωo).

Step 3.1: Use the odometer reading (Vxo, Vyo, ωo) to predict the pose.
Step 3.2: Use the LiDAR measurement (xL, yL, θL) to update the predicted pose. This is the

first update.
Step 3.3: Use the measurement value (xKFUWB, yKFUWB) after Kalman filtering to update the

pose again. This is the second update.
Step 3.4: Output the estimated pose (xPF, yPF, θPF) after PF fusion.
Step 4: Perform EKF fusion (refer to Section 2.3.3) on the measurement value (xPF, yPF, θPF)

from the PF and the odometer reading (Vxo, Vyo, ωo).
Step 4.1: Use the odometer reading (Vxo, Vyo, ωo) to predict the pose.
Step 4.2: Use the pose estimation value (xPF, yPF, θPF) obtained after particle filtering to

update the predicted pose.
Step 4.3: Output the final estimated pose (X, Y, θ).

The integrated positioning method proposed in this study has the following main
features. Firstly, UWB is generally used for indoor scenes, but there is less related re-
search that uses UWB devices for positioning in orchards. This study applies UWB devices
to trellis-style kiwifruit orchards, which highlights the practicality of this integrated po-
sitioning method in this particular environment. Secondly, most previous research on
UWB/LiDAR fusion positioning directly combines the data measured by UWB. However,
UWB positioning within orchards can be interfered with by multiple factors, leading to dis-
continuous positioning. If the values measured by UWB are directly fused, the positioning
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effect might deteriorate. Therefore, this study proposes a KF model and a threshold judg-
ment condition for the values of UWB in a trellis-style orchard environment. The values
after Kalman filtering are then combined with the information measured by other sensors,
thereby effectively improving the efficiency of the method. Lastly, a combined method
using Kalman filters, particle filters, and extended Kalman filters is proposed. By making
full use of the advantages of each individual method such as the efficiency and simplicity
of the KF, the capability of particle filters to handle more complicated and non-Gaussian
systems, and the ability of extended Kalman filters to deal with nonlinear issues, the overall
method provides an optimized approach for multi-sensor data fusion, especially suitable
for complex situations such as applications in trellis-style orchard environments.

2.3.1. UWB Positioning Error Correction Based on KF

This study presents a dynamic error correction method based on Kalman filtering,
aimed at reducing UWB positioning errors. The flowchart of the proposed method is
illustrated in Figure 6.
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Initially, as the robot moves, it utilizes the robot’s position information, measured
by the UWB at times t1 (x1, y1) and t2(x2, y2), combined with the robot’s motion path, to
predict the position information (x3, y3) of the robot at time t3. The predicted location
information (x3, y3) is then compared with the measurement information (m3, n3) from
UWB at time t3 and judged based on outlier determination conditions. Finally, if the
measured information (m3, n3) from UWB at time t3 is an outlier, it is merged with the
predicted values (x3, y3) using KF fusion to determine the position information of the robot
at time t3. If not, we take the position (m3, n3) at time t3 is taken as the robot’s position at
time t3.

UWB positioning relies on the range measurements between base stations and anchors,
which in turn depend on the flight time of the signals [39,40]. Therefore, for UWB devices
using bilateral bidirectional ranging for positioning, the flight time measurements, Tf ,
are consistent when the robot is stationary. However, in the case of robot motion, the
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time consumed for measuring the flight time, Tf , introduces a delay, causing the three
measured Tf values to not correspond to the Tf at the same location of the target node.
This discrepancy leads to positioning errors. As Kalman filtering can recursively estimate
better values from the predicted and measured values using the corresponding system
model [41], this study proposes a dynamic error judgment and correction method based on
Kalman filtering to reduce UWB dynamic positioning errors.

For instance, when a robot makes a curved movement in the orchard, the tag moves
a certain distance from the starting point to the endpoint. We select the time intervals of
three consecutive positions [t1, t2, t3], as shown in Figure 7. The black solid line represents
the ground, and the larger circle is a localized magnification of the smaller circle. Here,
t1 is the first positioning time, t2 is the second, and t3 is the third. As the selected time is
short, the tag’s trajectory from t1 to t3 can be seen as a straight line, and the time of each
positioning is the same during the three consecutive positionings.
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Outlier judgment is shown in Figure 8. y = k1x + b is the line formed by the coordi-
nates at times t1 and t2. The blue shaded area represents the range where normal points
are located. According to the robot’s position information (x1, y1) at time t1 and (x2, y2) at
time t2 obtained by the UWB device, we can determine the line y = k1x + b and the robot’s
turning angle θ; then we can predict the robot’s location information (x3, y3) at time t3.{

x3 = 2x2 − 2x1
y3 = 2y2 − y1

(1)

The data measured by the UWB positioning device at time t3 is represented as z3. A
distance threshold N and an angle threshold ∆θ are set to determine whether z3 is an outlier.

We compare the measured value at time t3, (m3, n3), with the predicted value at time
t3, (x3, y3).

C =

√
(m3 − x3)

2 + (n3 − y3)
2 (2)

Φ = arctan((n3 − y1)/(m3 − x1)) (3)

Set a threshold N as the criterion for distance judgment and a threshold ∆θ as the
criterion for angle change.{

C ≥ N, or Φ < θ − ∆θ, or Φ > θ + ∆θ, Outliers
C < N, and θ − ∆θ ≤ Φ ≤ θ + ∆θ, Inliers

(4)
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Based on preliminary foundational research experiments, it has been determined that
the UWB device’s average error within trellis-style kiwifruit orchards is 10 cm and the
absolute value of the average angle deviation is 5 degrees. In order to provide the robot
with enhanced positioning accuracy, we have set the outlier thresholds N and ∆θ as 8 cm
and 3 degrees, respectively. When identified as normal values, the measurement result
(m3, n3) is considered as the UWB positioning result at time t3. When identified as outliers,
the outliers are corrected using the Kalman filtering method. In the Kalman filtering model
used in this study, the state vector Xk incorporates the position information at time k and
k− 1.

Xk = [xk, yk, xk−1, yk−1] (5)

Based on the aforementioned robot motion model, the predicted position of the robot
at time k can be determined.[

x̂k
ŷk

]
= 2

[
xk−1
yk−1

]
−
[

xk−2
yk−2

]
(6)

Furthermore, the system state transition matrix A can be determined as follows.

A =


2 0 −1 0
0 2 0 1
1 0 0 0
0 1 0 0

 (7)

In this experiment, since there are no external input control variables, the input
control vector uk and the control matrix B at time step k are both zero. wk follows a
Gaussian distribution with mean 0 and covariance matrix Q. Q represents the covariance
of the system process, is estimated through analysis and statistical methods based on
historical data. The variable zk is defined as zk =

[
zx, zy

]T . The matrix H is responsible for
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transforming the state matrix Xk into a format that can be operated with the measurement
matrix zk. Here, the matrix H is defined as follows:

H =

[
1 0 0 0
0 1 0 0

]
(8)

vk follows a Gaussian distribution with mean 0 and covariance matrix R. The co-
variance matrix R provided by Guangzhou Networking Technology (UWB manufacturer).
The Kalman algorithm can be divided into two steps: prediction and update [42–44]. The
specific steps are as follows:

(1) Prediction:

Using the state model to predict the position:

X̂k = AXk−1 (9)

The predicted position at time k:

P̂k = APk−1 AT + Q (10)

(2) Update:

Calculate the Kalman gain matrix:

Kk = P̂k HT(HP̂k HT + R)
−1

(11)

Update the state:
Xk = X̂k + Kk(zk − HXk−1) (12)

Update the error covariance matrix:

Pk = (I − Kk Hk)P̂k (13)

2.3.2. Fusion of UWB/LiDAR/ODOM Based on Particle Filtering

We utilize the particle filtering approach to fuse the ODOM values, UWB position infor-
mation after Kalman filtering, and LiDAR measurements [45]. The fused robot pose is then
used as the pseudo-measurement for extended Kalman filtering. Particle filtering, funda-
mentally, is a type of Bayesian filtering that incorporates the Monte Carlo principle [46–48].
The goal of filtering is to obtain the posterior probability distribution of the current state. In
particle filtering, the steps for updating the posterior probability are particle propagation,
weight updating, and resampling [49,50]. The flowchart of the fusion algorithm is depicted
in Figure 9.

Let ct−1 ∈ Ct−1 represent the particle swarm at the previous moment, ut−1 =[
Vxt−1, Vyt−1, ωt−1

]
represents the latest odometer result, and zt = [xLt, yLt, θLt] repre-

sents the most recent LiDAR scanning result. The goal of the algorithm is to obtain the pose
ŝt and particle swarm Ct at time t.

First, we conduct the particle initialization process, which uses the particle swarm
information from the previous moment to initialize the pose information st−1 and the
particle weight information wt−1, as shown in Equation (14). Then, we carry out particle
propagation, using the odometer prediction model to obtain an estimated position value
s′it , as shown in Equation (15). Next, we perform the first update of the pose and weight.
Based on the LiDAR observation model, a local maximum ŝi

t is obtained through maximum
likelihood estimation (MLE), as shown in Equation (16). If a local maximum is not found
here, the particle’s pose state is updated using a Gaussian distribution, as indicated by
Equations (17) and (18). If a local maximum is found, k poses are taken near the local
maximum, as shown in Equation (19). Assuming that the k poses follow a Gaussian
distribution, the mean–variance of the k poses is calculated and normalized, as depicted
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in Equations (20)–(24). This means that the new pose can be represented in the form of
a normal distribution, as shown in Equation (25). Then, the second update of the pose is
performed. The value of KFUWB is introduced to correct the mean and variance of each
particle, as demonstrated in Equations (28) and (29). Finally, the current position location
result is obtained through the weighted average of the particle weights and the means of
each particle, as indicated in Equation (31).
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(1) Particle Initialization:

Using the particle information from the previous moment to initialize pose information
and particle weight information:

< si
t−1, ωi

t−1 >= ci
t−1 (14)

(2) Particle Propagation:

Use the odometer prediction model to obtain the estimated value of the position [51]:

ŝ′it = si
t−1 ⊕ ut (15)

(3) First Update:

On the basis of the LiDAR observation model, find the local maximum ŝi
t through

maximum likelihood estimation (MLE):

ŝi
t = argmaxs p(s|zt, s′(i)t ) (16)
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If no local maximum is found, a Gaussian distribution is used to update the particle’s
pose state, and the observation model is used to update the particle’s weight. Then, start
again from the initialization phase [52]:

s(i)t ∼ p(st

∣∣∣s(i)t−1, ut−1) (17)

ω
(i)
t = ω

(i)
t−1 · p(zt

∣∣∣s(i)t ) (18)

If a local maximum is found, take k poses near the local maximum:

sk ∼
{

sj||sj − ŝ(i)| < ∆
}

(19)

Assume that the distribution of k particles follows a Gaussian distribution, calculate
their mean and normalization parameters for the k particles sj ∈ {s1, · · · , sk} [53]:

µ
(i)
t = µ

(i)
t + sj•p(zt

∣∣∣sj)•p(st

∣∣∣s(i)t−1, ut−1) (20)

η(i) = η(i) + p(zt

∣∣∣sj)•p(st

∣∣∣s(i)t−1, ut−1) (21)

Normalize the mean:
µ
(i)
t = µ

(i)
t /η(i) (22)

After obtaining the mean, calculate the variance ξ
(i)
t of the k particle poses [54]:

ξ
(i)
t = ξ

(i)
t + (sj − µ(i))(sj − µ(i))

T
· p(zt|sj) · p(sj|s

(i)
t−1, ut−1) (23)

Normalize the variance:
ξ
(i)
t = ξ

(i)
t /η(i) (24)

In this way, the new pose can be represented as a normal distribution:

s(i)t ∼ N(µ
(i)
t , ξ

(i)
t ) (25)

Update the weight of this pose particle:

ω
(i)
t = ω

(i)
t−1 · η

(i) (26)

(4) Second Update:

In the second update, use the KFUWB value sKFUWB
t to correct the mean and variance

of each particle. Assume the location information of KFUWB at time t is:

sKFUWB
t ∼ N(µKFUWB

t , σKFUWB2

t ) (27)

where sKFUWB
t =

[
xKFUWB

t , yKFUWB
t

]T ; µKFUWB
t , σKFUWB2

t are the mean and variance of
KFUWB at time t. sKFUWB

t does not include azimuth information, so only the particle’s
position is corrected using KFUWB information, and the attitude information remains
unchanged. Use Gaussian multiplication to correct the position information of each particle

s(i)t ∼ N(µ
(i)
t , ξ

(i)2

t ) [55]:

µ
′(i)
t =

ξ
(i)2

t µKFUWB
t + σKFUWB2

t µ
(i)
t

ξ
(i)
t + σKFUWB

t

(28)
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ξ
′(i)2

t =
ξ
(i)2

t δKFUWB2

t

ξ
(i)2

t + σKFUWB2
t

(29)

In this way, each particle contains the position information of KFUWB. The corrected
mean and variance are taken as the new particle position distribution information, denoted

as s(i)t ∼ N(µ
′(i)
t , ξ

′(i)2

t ). Subsequently, a resampling step is performed to validate the
particles.

(5) Resampling:

Calculate the effective sample size and judge whether resampling needs to be per-
formed, and filter particles according to the weights of all particles [56]. Particles with
higher weights are closer to the real attitude. The threshold T for the number of effective
particles is set to 20.

Ne f f =
1

1 + ∑k
i=1 (ω

(i)
t )

2 (30)

If Ne f f is less than the threshold T, perform the resampling operation.

(6) Pseudo-measurement:

Finally, the current position positioning result is obtained by the weighted average of
the particle weights and the means of each particle [57]:

st = ∑k
i=1 µ

′(i)
t ω

(i)
t (31)

The obtained current pose information is used as the update value for the next step of
extended Kalman filtering.

2.3.3. Fusion of UWB/LiDAR/ODOM Based on Extended Kalman Filtering

The EKF algorithm is proven to be effective in handling nonlinear systems, making
it an ideal choice for integrating multiple sensor inputs and estimating the relative pose
of robots [58]. We employ the EKF approach to fuse the odometry measurements and the
pseudo-measurements obtained from the output of the PF to estimate the pose of the robot.
The flowchart of the fusion algorithm is illustrated in Figure 10.

First, we use the pose information from the previous moment to initialize the robot’s
pose, and the covariance matrix of the filter is initialized based on prior research experience.
Next, the pose information u =

[
Vx,o, Vy,o, ωo

]T obtained from the odometer is used as the
control input for the prediction phase. Then, the [xPF, yPF, θPF]

T obtained from the particle
filtering fusion in the previous phase is used as the system state measurement input. Finally,
the system state vector x = [X, Y, θ]T is calculated using the input state measurement value
[xPF, yPF, θPF]

T and the Kalman gain coefficient Kt.

(1) Definition of System Dynamic Equation and Measurement Equation:

Assuming the mobile robot’s workspace in a trellis-style kiwifruit orchard as a two-
dimensional environment, then the system state vector is the robot’s pose, and the robot
platform’s state vector is x = [X, Y, θ]T . Using the EKF algorithm, establish the dynamic
equation and measurement equation of the motion system as follows [59].

System Dynamic Equation:

x(t) = f (x(t− 1), u(t), w(t)) (32)

System Measurement Equation:

z(t) = h(x(t), v(t)) (33)
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w and v follow a Gaussian distribution with a mean of 0. They are characterized by
the probability distributions p(w) ∼ N(0, Q) and p(v) ∼ N(0, R).
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(2) The odometry prediction model:

The input ut =
[
Vx,ot, Vy,ot, ωot

]
of the odometer at time t is used as the control input

for the prediction phase. Then, according to the method of dead reckoning and the motion
model of the mobile robot [60], the robot’s pose at time t is expressed as:

x−t = xt−1 +

cos θt−1 − sin θt−1 0
sin θt−1 cos θt−1 0

0 0 1

 Vx,ot
Vy,ot
ωot

dt + wdt (34)

At the prediction stage, the covariance matrix of the system state vector at time t is
written as:

P−t = FPt−1FT + Q (35)

The state transition matrix F and process noise covariance matrix Q can be calculated
according to the odometer prediction model.

(3) Update Phase:

The [xPFt, yPFt, θPFt]
T obtained by PF fusion at time t is used as the system measure-

ment value zt at time t. The measurement model is expressed as:

zt =

 xPFt
yPFt
θPFt

+ vt (36)

Calculate the Kalman gain,Kt:

Kt = P−t HT(HP−t HT + R)
−1

(37)

R is determined by considering the covariance matrices provided by LiDAR and UWB
manufacturers.
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Calculate the corrected state quantity and the corrected covariance matrix at time t

xt = x−t + Kt
[
zt − x−t

]
(38)

Pt = (I − KtH)P−t (39)

3. Simulation and Experiments
3.1. Positioning Experiments in a Simulated Environment

To validate the effectiveness of the proposed mobile robot positioning algorithm,
we conducted simulation experiments in a trellis-style kiwifruit orchard environment
using the Gazebo platform. First, as illustrated in Figure 11, we constructed a trellis-
style kiwifruit orchard model within the Gazebo environment that had dimensions of
40 m × 20 m × 1.8 m. The inter-row of the actual trellis-style kiwifruit orchard is a loose
soil road surface, the soil type is mainly red clay, the parent material of this soil is loess,
0~100 cm is long-term cultivated by humans; 100~200 cm soil texture is uniform, mainly
silty clay loam, soil bulk density 1.28 g/cm3 [61]. While building the ground model, we
simulated the undulation of the terrain. The softness of the ground was simulated by
adjusting the elastic parameters and friction parameters related to the ground in Gazebo.
When the crawler travels on a loess road surface, it necessitates the construction of a
three-dimensional model through Bekker’s proposed caterpillar–soil interaction model and
determining the three-dimensional model through reasonable assessment [62,63]. However,
as Gazebo cannot provide such a force mode, we assumed the ground to be hard during
the simulation process. The interaction between the soil and the crawler track was achieved
through a spring-damping model. Figure 11 includes four UWB base stations, trellis
columns, trellis wire mesh, and kiwifruit trunks on both sides of the trellis, where the
dashed trajectory A→B→C→D→E→F→G→H→I→J→K is the simulated operation path
of the robot. Secondly, we set up UWB base stations. The four UWB base stations were
arranged at the four vertices of the area, with Base Station A coordinates (−11, −26, 0),
Base Station B coordinates (−11, 16, 0), Base Station C coordinates (11, 16, 0), and base
station D coordinates (11, −26, 0). Finally, we controlled the robot’s movement in the field
and used the SLAM algorithm to establish a 2D grid map required for robot localization.
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Base Station Distance 
Error (m) 

RMSE (m) 
Gaussian (0, 0.1) 

MAX (m) 
Gaussian (0, 0.1) 

RMSE (m) 
Gaussian (0, 0.3) 

MAX (m) 
Gaussian (0, 0.3) 

0 0.13 0.78 0.24 1.05 
A 0.3 0.25 1.15 0.39 1.38 
A 0.5 0.36 1.40 0.48 1.44 
A 0.8 0.51 1.70 0.64 1.88 

Figure 11. Experimental site layout.

In this study, we use the RMSE to evaluate the lateral trajectory error [64], which is
defined as follows:

RMSE =

√
1
n

n

∑
i=1

(ŷi − yi)
2 (40)

where n represents the total number of samples, ŷi represents the measured values of each
sample data, and yi represents the reference values of each sample data.
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3.1.1. UWB Positioning Experiment

The factors that affect UWB positioning error are primarily related to sensor noise
and obstacle noise. For instance, structural obstacles such as wires, branches, and leaves
can cause signal attenuation and lead to ranging biases (non-line-of-sight errors), thereby
affecting the final positioning accuracy. In this study, we simulated the influence of obstacles
in complex environments by introducing ranging errors for each base station to evaluate
the impact of non-line-of-sight errors on positioning accuracy. Additionally, we added
Gaussian noise to the distance information between the tag and the four base stations to
assess the effect of sensor noise on positioning accuracy. After we initialized the robot’s pose,
we controlled the robot platform using the navigation package in ROS to autonomously
navigate along the trajectory A→B→C→D→E→F→G→H→I→J→K at a speed of 0.5 m/s,
as shown in Figure 11. The UWB positioning accuracy test results are presented in Table 1.

Table 1. Influence of non-line-of-sight error on positioning error.

Base Station Distance Error (m) RMSE (m)
Gaussian (0, 0.1)

MAX (m)
Gaussian (0, 0.1)

RMSE (m)
Gaussian (0, 0.3)

MAX (m)
Gaussian (0, 0.3)

0 0.13 0.78 0.24 1.05
A 0.3 0.25 1.15 0.39 1.38
A 0.5 0.36 1.40 0.48 1.44
A 0.8 0.51 1.70 0.64 1.88
A 1.0 0.67 2.00 0.79 2.11

A 0.5 + B 0.5 0.43 1.52 0.61 1.92
A 0.5 + B 0.8 0.60 1.90 0.84 2.20
A 0.5 + B 1.0 0.82 2.22 0.98 2.37

A 0.5 + B 0.5 + C 1.0 0.93 2.37 1.12 2.75
A 0.1 + B 0.1 + C 0.1 0.21 0.94 0.29 1.16

When we added Gaussian noise of (0, 0.1), and the range error for the base stations
was 0 m, indicating no influence from environmental obstacles, the positioning error was
minimal, measuring only 0.13 m. However, if there was an obstruction-induced increase
in the range distance for one of the base stations, such as Base Station A (ranging from
0.3–1.0 m), the error increased from 0.25 m to 0.67 m accordingly. Similarly, if the range
distances for two base stations increased due to obstruction, such as a 0.5 m error for
Base Station A and an increase from 0.5 m to 1.0 m for Base Station B, the corresponding
positioning error increased from 0.43 m to 0.82 m. The maximum positioning error occurred
when the range distances for three base stations increased due to obstruction, with a 0.5 m
error for Base Station A, a 0.5 m error for Base Station B, and a 1.0 m error for Base Station
C. When we added Gaussian noise of (0, 0.3), the corresponding positioning error increased
further. Furthermore, there was a significant difference between the root mean square
error and the maximum positioning error, indicating the presence of fluctuations and
discontinuities in UWB positioning accuracy. If the UWB positioning data were directly
used as input for integrated positioning, it could introduce an additional offset and degrade
fusion performance. We presented the positioning accuracy after UWB Kalman filtering
in Table 2.

After we applied Kalman filtering, in various scenarios with increasing environmental
noise and sensor noise, the maximum lateral positioning error of UWB positioning was
reduced by an average of 50.1%, and the root mean square lateral error was reduced by an
average of 31.1%. This demonstrates that the dynamic error correction method based on
Kalman filtering can effectively improve the accuracy of UWB positioning.
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Table 2. Positioning error after Kalman filtering.

Base Station Distance Error (m) RMSE (m)
Gaussian (0, 0.1)

MAX (m)
Gaussian (0, 0.1)

RMSE (m)
Gaussian (0, 0.3)

MAX (m)
Gaussian (0, 0.3)

0 0.11 0.40 0.13 0.53
A 0.3 0.15 0.58 0.19 0.71
A 0.5 0.21 0.83 0.31 0.85
A 0.8 0.30 0.84 0.40 0.89
A 1.0 0.45 0.92 0.56 0.95

A 0.5 + B 0.5 0.32 0.88 0.42 0.90
A 0.5 + B 0.8 0.47 0.94 0.63 1.01
A 0.5 + B 1.0 0.63 0.98 0.77 1.07

A 0.5 + B 0.5 + C 1.0 0.72 1.07 0.86 1.10
A 0.1 + B 0.1 + C 0.1 0.16 0.57 0.19 0.61

3.1.2. Experimental Evaluation of Trajectory Tracking Positioning

In the trellis-style kiwifruit orchard, signal propagation between the base stations is
primarily hindered by trellis poles and tree branches, amongst other minor obstructions. To
simulate the effect of orchard obstruction on UWB positioning in real-world conditions, we
selected Base Station A with a ranging error of 0.1 m, Base Station B with a ranging error of
0.1 m, and Base Station C with a ranging error of 0.1 m. The robot was autonomously navi-
gated at a speed of 0.5 m/s along the trajectory A→B→C→D→E→F→G→H→I→J→K,
as shown in Figure 11, under different positioning scenarios including UWB standalone
positioning, UWB Kalman filtering standalone positioning, LiDAR/ODOM positioning,
and UWB/LiDAR/ODOM integrated positioning. We presented the obtained results in
Figure 12.

According to Figure 12a, it could be observed that under UWB standalone positioning,
the robot’s positioning trajectory, represented by scattered points, was distributed around
the reference trajectory. The positioning results were relatively scattered, indicating sus-
ceptibility to interference, with a maximum error of up to 0.942 m. In Figure 12b, under
UWB Kalman filtering standalone positioning, the robot’s positioning results showed some
improvement compared to the previous case, but the positioning was discontinuous and
exhibited poor resistance to interference, with a maximum error of 0.586 m. Figure 12c
shows the case of LiDAR/ODOM integrated positioning. In the AB segment, where the
robot transitioned from the ground to the trellis structure, the positioning performance
was significantly worse due to the lack of features on one side of the environment. This
resulted in a significant offset, and the positioning error after point B mainly accumulated
and increased over time. In Figure 12d, under UWB/LiDAR/ODOM integrated posi-
tioning, the indistinct features in the AB segment adversely affected the performance of
LiDAR/ODOM positioning, leading to larger oscillations in the UWB/LiDAR/ODOM
integrated positioning. However, compared to LiDAR/ODOM positioning, there was a
considerable improvement. After point B, the robot’s trajectory was smoother and the
cumulative error was reduced, indicating improved positioning performance. The lateral
errors between the recorded trajectory and the reference trajectory were compared, as
shown in Figure 13. A summary of the statistical analysis and calculations of the lateral
errors for each positioning method can be found in Table 3.

Table 3. Analysis of lateral positioning errors for different positioning methods.

Positioning Methods Average Error (m) Maximum Error (m) Standard Deviation (m) RMSE (m)

UWB 0.170 0.942 0.128 0.213
KFUWB 0.137 0.586 0.078 0.158

LiDAR/ODOM 0.235 0.778 0.168 0.289
UWB/LiDAR/ODOM 0.076 0.365 0.061 0.098
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The average lateral error of the proposed UWB/ODOM/LiDAR integrated positioning
method in this study was 0.076 m, with a maximum error of less than 0.4 m. Compared
to the UWB positioning, KFUWB positioning, and LiDAR/ODOM integrated positioning
methods, the average positioning error was reduced by 55.3%, 44.5%, and 67.7%, respec-
tively. The RMSE was reduced by 53.9%, 37.9%, and 66.0%. It can be concluded that
the proposed integrated positioning method in this study exhibits superior positioning
performance compared to the other three positioning methods.
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3.1.3. Target Points Positioning Experiment

We set fifty-one target points along the trajectory A→B→C→D→E→F→G→H→I→J→K,
as shown in Figure 11, for multi-target point autonomous navigation. When the robot
reached each target point, it paused for 2 min to record the positioning data using different
positioning methods at that specific moment, and we computed the average values. The
positioning results are presented in Figure 14.
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Significant positioning errors might be exhibited by the LiDAR/ODOM integrated po-
sitioning method due to the ambiguity of positioning features, and it could also suffer from
large positioning errors due to cumulative errors in environments with distinct positioning
features. In contrast, the UWB and KFUWB methods demonstrate higher accuracy in target
point positioning when the positioning was performed in a static state. The integrated
UWB/LiDAR/ODOM positioning method outperformed the other three methods and
provided the most accurate positioning results. The analysis of the experimental data for
target point positioning is summarized in Table 4.
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Table 4. Analysis of target point positioning errors under different positioning methods.

Positioning Methods Average Error in the
X-Direction (m)

Average Error in the
Y-Direction (m) Maximum Error (m) RMSE (m)

UWB 0.175 0.035 0.280 0.184
KFUWB 0.059 0.061 0.232 0.092

LiDAR/ODOM 0.241 0.210 0.923 0.353
UWB/LiDAR/ODOM 0.047 0.046 0.174 0.072

The largest source of positioning error in LiDAR/ODOM integrated positioning was
due to the fact that there were positioning features on only one side of the robot during
the simulation path segment AB. This resulted in noticeably poorer positioning perfor-
mance at target points in the AB segment, thereby leading to a larger overall positioning
error. The non-line-of-sight error in UWB solo positioning was significantly higher than
in KFUWB solo positioning and integrated positioning. UWB/LiDAR/ODOM integrated
positioning first used KFUWB and LiDAR/ODOM to perform PF fusion and then fused
with the ODOM value through extended Kalman filtering. Thus, its positioning was more
continuous than KFUWB and did not experience large fluctuations; moreover, it used
the KFUWB value to suppress the cumulative error of LiDAR/ODOM during the fusion
process. Hence, as could be seen from the table, compared to UWB positioning, KFUWB
positioning, and LiDAR/ODOM integrated positioning, the overall positioning accuracy of
the UWB/LiDAR/ODOM integrated positioning method had improved by 60.8%, 21.7%,
and 79.6%, respectively. The RMSE of positioning on the x-axis, y-axis, and overall was
0.047, 0.046, and 0.072 m, respectively, with the maximum positioning error being 0.174 m.
These results demonstrated that the positioning method adopted in this study improved
the precision of the robot.

3.2. Positioning Experiments in a Kiwifruit Orchard Environment

We conducted positioning experiments in a Kiwifruit Orchard Environment at the
Yangling International Kiwifruit Innovation and Entrepreneurship Park (34◦18′21′′ N,
108◦3′41′′ E), as shown in Figure 15. The orchard, cultivated using a trellis system, features
a row spacing of 4 m, column spacing of 2 m, a canopy height of 1.8 m, and covers
a total area of 336 m2. We equipped the crawler robot, depicted in Figure 16a, with
odometry, LiDAR, UWB tags, and a tracking device. Real-time information is collected
using odometry and LiDAR, and the cartographer algorithm is employed to construct a
two-dimensional grid map of the kiwifruit orchard [65,66]. In Figure 16b, A, B, C, and D
represent the four UWB base stations deployed in the field. We used a laser rangefinder,
with an accuracy of 1 mm, to obtain distance measurements. During the experiment,
the robot was controlled to initiate its movement from point a and follow the sequence
of a→b→c→d→e→f→g→h→i→j. A tracking device containing white flour was placed
on the robot, and as it traversed the designated path, the white line left on the ground
represents the actual trajectory followed by the robot. A comparison was then made
between the positioning results obtained through sensor measurements and the actual path
taken by the robot to assess the disparities.
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We manually controlled the robot at a speed of 0.5 m/s along the sequence shown in
Figure 16b, under different positioning scenarios including UWB standalone position-
ing, UWB Kalman filtering standalone positioning, LiDAR/ODOM positioning, and
UWB/LiDAR/ODOM integrated positioning. The obtained results are presented in
Figures 17 and 18.

In Figure 17, the dashed line corresponds to the robot’s actual path. In Figure 17a,
the green trajectory represents UWB standalone localization, while in Figure 17b, the pink
trajectory represents UWB Kalman filtering standalone localization. In Figure 17c, the light
blue trajectory represents LiDAR/ODOM integrated localization, and in Figure 17d, the
red trajectory represents UWB/LiDAR/ODOM integrated localization.

Observations from Figures 17 and 18 reveal that in the case of UWB standalone posi-
tioning, the robot’s positioning trajectory is fairly scattered around the reference trajectory.
A noticeable improvement in the positioning results was observed when employing UWB
Kalman filtering standalone positioning. Under LiDAR/ODOM integrated positioning,
the initial positioning error was small, but it gradually increased over time, resulting in
continuous positioning. Under UWB/LiDAR/ODOM integrated positioning, the robot’s
positioning trajectory closely followed the reference trajectory with minimal deviation,
resulting in continuous and the most accurate positioning. A summary of the positioning
results can be found in Table 5.
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Table 5. Analysis of lateral positioning errors for different positioning methods.

Positioning Methods Average Error (m) Maximum Error (m) Standard Deviation (m) RMSE (m)

UWB 0.092 0.419 0.078 0.142
KFUWB 0.051 0.276 0.042 0.058

LiDAR/ODOM 0.084 0.260 0.051 0.081
UWB/LiDAR/ODOM 0.044 0.199 0.033 0.050
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For UWB positioning, the average error was 0.092 m, with a maximum error of 0.419 m
and an RMSE of 0.142 m. For UWB Kalman filtering positioning, the maximum error was
0.276 m, with a lateral RMSE of 0.058. The LiDAR/ODOM integrated positioning method
had an average error of 0.084 m, a maximum lateral error of 0.260 m, and an RMSE of
0.081 m. The proposed UWB/LiDAR/ODOM integrated positioning method in this study
had an average lateral error of 0.044 m, with a maximum error of less than 0.2 m. Compared
to UWB positioning, UWB Kalman filtering, and LiDAR/ODOM integrated positioning
methods, the lateral RMSE was reduced by 64.8%, 13.8%, and 38.3%, respectively. The ex-
perimental results demonstrated that the proposed integrated positioning method exhibits
better adaptability and positioning performance in the kiwifruit orchard environment.

4. Discussion

(1) When the mobile robot traveled between rows in the kiwifruit orchard at a low speed,
the inertia during the robot’s deceleration could be significant, thereby affecting the
tracking error of the autonomous navigation system. Additionally, when the robot
moved at a high speed, the central control unit might not have been able to provide
accurate positioning information for the transport robot. Based on preliminary real-
world tests, we set the robot’s travel speed to 0.5 m/s in the experimental process.

(2) Based on the results obtained from both simulation and real-world experiments, it
could be concluded that the positioning trajectories of UWB and KFUWB, as absolute
positioning methods, exhibited a discrete nature. On the other hand, the positioning
trajectories of LiDAR/ODOM and UWB/LiDAR/ODOM, as integrated positioning
methods, appeared to be continuous. This distinction arises from the fact that ab-
solute positioning methods do not rely on the previous positioning results but are
influenced only by the sensor and environmental noise. The independent use of UWB
and KFUWB for navigation and positioning may potentially affect the stability and
reliability of robot navigation.

(3) The simulation experiment results indicated that LiDAR/ODOM, as an integrated
positioning method, exhibits the largest lateral error among the four positioning meth-
ods. However, in real-world experiments, UWB standalone positioning demonstrates
the largest lateral error among the four methods. This discrepancy may be attributed
to the fact that the simulated operation path included a stage where the robot transi-
tioned from the field to the canopy (AB segment). During this AB segment, the robot
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had limited positioning features on only one side, resulting in poorer positioning
performance. Consequently, this led to certain deviations in the positioning trajectory
beyond point B. In real-world experiments, the robot directly entered the canopy,
where the LiDAR/ODOM positioning features were prominent, resulting in relatively
continuous positioning results. Additionally, environmental disturbances significantly
affected UWB positioning, thus explaining the largest UWB positioning error among
the four methods.

(4) This study had two main contributions. First, it proposes a Kalman filter-based
dynamic UWB error correction method that is applicable to trellised kiwifruit or-
chards. Secondly, this study proposes an integrated positioning method based on
UWB/LiDAR/ODOM and conducts extensive tests in simulated and real environ-
ments to evaluate the feasibility of the positioning method. The integrated positioning
method of this study is different from using EKF alone for sensor information fusion
or using PF alone for sensor information fusion. Instead, the integrated positioning
method of this study is implemented by combining EKF and PF. EKF is used for
sensor fusion and combines with PF for measurement updates. The combination of
EKF and PF can provide better accuracy than using either filter separately [67,68].
This is primarily because each filter can compensate for the weaknesses of the other,
thereby reducing errors in the position update process. EKF uses a Gaussian noise
model, which may be inaccurate for non-linear systems, while PF does not assume
the nature of the noise and is more flexible. In this study, when there are multiple
credible explanations for sensor data, the method of combining EKF-PF will be more
effective and more suitable for the environment of this study.

(5) Our integrated positioning method takes advantage of three fundamental filtering
techniques: KF, PF, and EKF. Each of these methods has its unique mathematical basis
and, when combined, they can effectively merge data from multiple sensors to deliver
improved results. When these techniques are combined, the integrated positioning
method initially applies the KF to UWB measurement values to reduce noise and
enhance the accuracy of these measurements. Then, a PF works on LiDAR data,
odometer readings, and Kalman-filtered UWB data, effectively integrating sensor data.
Finally, the EKF combines the odometer readings with the posture estimated by the PF
to provide the final optimal estimate of the robot’s posture. By integrating these filters
and fully exploiting the advantages of each individual method, the overall method
offers an optimized solution for multi-modal data fusion, particularly applicable to
complex scenarios such as applications in trellis-style kiwifruit orchards.

(6) The simulation environment in this study has the following limitations. Firstly, the
lack of simulation of certain natural conditions; in this study, the obstacles, terrain,
and their physical properties in the kiwifruit orchard simulation environment are
created based on real trellis-style orchards. However, all actual factors cannot be
reproduced in a simulation environment, such as changes in lighting, climate condi-
tions, and random interference, which could lead to deviations between simulation
results and reality. Secondly, model errors: simulation models, being based on theo-
ries and mathematical formulas, may not precisely simulate complex physical and
environmental attributes in the real world. This discrepancy might result in the
integrated positioning method performing well in the simulation environment but
underperforming actual applications. Then, sensor model limitations: sensor models
used in the simulation environment may not accurately reflect the performance and
characteristics of actual sensors, possibly impacting the performance of the sensor
fusion positioning methods. Lastly, the gap between theory and practice: simulation
usually relies on certain theoretical conditions, but these conditions may not be fully
met in actual applications, leading to simulation results not accurately predicting
the real situation. For example, actual sensors need to consider calibration and bias
issues. While the simulation environment currently does not mimic all aspects of the
real-world environment, our simulation model holds a certain degree of similarity
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compared to the real environment, making it a valid tool for verifying the effectiveness
and applicability of the proposed integrated positioning method in kiwifruit orchard
environments. Future work will further validate the algorithm proposed in this study
in actual orchards.

To reduce the lateral deviation of the robot during turning, future research will focus
on optimizing the pure tracking algorithm. Based on the experimental results, the design
of fuzzy PID control rules for lateral deviation adjustment will be explored. This approach
will utilize the derived rules and the pure tracking algorithm to enable the robot to adjust
its turning radius based on changes in distance.

5. Conclusions

(1) This study proposed a UWB dynamic error correction method based on Kalman
filtering. Twenty scenarios ranging from no obstruction to gradually increasing
obstructions were simulated. By analyzing the positioning results before and after
filtering, it was determined that the average positioning accuracy was improved by
31.1% after filtering.

(2) This study proposed an integrated positioning method based on UWB/LiDAR/ODOM.
This method fused the filtered UWB values, LiDAR measurements, and ODOM values
using particle filtering. The robot’s estimated pose was obtained by using the particle-
filtered robot pose as the measurement for extended Kalman filtering and the ODOM
values as the prediction. Finally, the prediction and measurement were fused using
extended Kalman filtering to obtain the robot’s estimated pose.

(3) Simulation results of the positioning experiments demonstrated that the integrated
positioning method proposed in this study effectively reduced the cumulative er-
rors produced by LiDAR/ODOM integrated positioning and provided smoother
positioning trajectories compared to UWB standalone positioning and UWB Kalman
filtering standalone positioning. Field positioning accuracy comparison experiments
showed that the proposed integrated positioning method improved the robot’s posi-
tioning accuracy compared to UWB standalone positioning, UWB Kalman filtering
positioning, and LiDAR/ODOM integrated positioning methods. This approach
largely addressed the issue of low positioning accuracy of mobile robots in the trellis
kiwifruit orchard environment.
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Appendix A

Table A1. Product specifications.

Product Categories Product Models Parameters Specifications

LiDAR RPLiDAR S1

Measurement radius White Object: 40 m
Black Object: 10 m

Sampling rate 9200 times per second
Scanning frequency 10 Hz
Angular resolution 0.391◦

Communication rate 256,000 bps
Range resolution 3 cm

Measurement accuracy ±5 cm

Application scenarios
Suitable for indoor and outdoor
environments, reliable anti-glare

capability

UWB D-DWG-PGPLUS

Communication rate 115,200 bps
Single communication 0.2 ms—6.8 M/s air speed

Single-shot ranging 3 ms—6.8 M/s air speed
Communication distance 600 m

Communication frequency 3.5 Ghz–6.5 Ghz
Measurement accuracy ±5 cm

Encoder E6B2-CWZ6C

Resolution 360 pulses/rotation
Maximum mechanical speed 6000 RPM

Torque Maximum 0.01 Nm
Seismic resistance Maximum 500 m/s2

Rated voltage 5VDC
Operating current Maximum 40 mA

Motor 48V DC brushless motor
Rated power 1500 W
Rated torque 144 NM

Table A2. Table of variable definitions.

Variable Types Variable Symbols Variable Meanings

Variables in the UWB
Positioning Error Correction

on KF.

(x1, y1) Robot position information measured by UWB at time t1.
(x2, y2) Robot position information measured by UWB at time t2.
(x3, y3) Robot position information predicted at time t3.
(m3, n3) Robot position information measured by UWB at time t3.

z3 Robot position information measured by UWB at time t3.
(xKFUWBt3, yKFUWBt3) Robot position information fused by Kalman filtering at time t3.

Tf Flight time of the measured signal.
θ Robot’s steering angle at time t1.

∆θ Maximum value of angle deviation.
N Maximum value of distance deviation.

(xk, yk) Robot’s position information at time k.
(xk−1, yk−1) Robot’s position information at time k− 1.
(x̂k, ŷk) Robot’s predicted position information at time k.

A State transition matrix.
uk Input control vector at time k.
B Control matrix.

wk Process noise.
Q Covariance matrix of the system process.
zk Observation matrix at time k.

(zx, zy) UWB measurement result at time k.
H Transformation matrix.
vk Observation noise.
R Covariance matrix of observation noise.
X̂k State prediction vector at time k.
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Table A2. Cont.

Variable Types Variable Symbols Variable Meanings

Xk State vector at time k.
Xk−1 State vector at time k− 1.

P̂k State prediction covariance matrix at time k.
Pk Covariance matrix at time k.

Pk−1 Covariance matrix at time k− 1.
Kk Kalman gain matrix at time k.
I Identity matrix.

Variables in Fusion of
UWB/LiDAR/ODOM Based

on Particle Filtering.

Ct−1 Particle swarm at time t− 1.
Ci

t−1 Particles at time t− 1.
Ct Particle swarm at time t.

ut−1 Odometry measurement information at time t− 1.
ut Odometry measurement information at time t.[

Vxt−1, Vyt−1, ωt−1
]

Odometry measurement information at time t− 1.
zt LiDAR scan information at time t.

[xLt, yLt, θLt] LiDAR scan information at time t.
ŝt Particle pose information at time t.

st−1 Pose information at time t− 1.
si

t−1 Particle pose information at time t− 1.

s(i)t−1
Particle pose information at time t− 1.

st Pose information at time t.
s(i)t Particle pose information at time t.
wt Weight information at time t.

w(i)
t Particle weight information at time t.

wt−1 Weight information at time t− 1.
wi

t−1 Particle weight information at time t− 1.
s′it Estimated pose of particles at time t.
ŝi

t Local extrema of particles at time t.
sKFUWB

t Value of KFUWB at time t.
(xKFUWB

t , yKFUWB
t ) Value of KFUWB at time t.

µKFUWB
t Mean of KFUWB at time t.

σKFUWB2

t Variance of KFUWB at time t.

µ
(i)
t Mean of particles at time t.

ξ
(i)
t Variance of particles at time t.

µ
′(i)
t Mean of particles after correction at time t.

ξ
′(i)2

t
Variance of particles after correction at time t.

T Threshold of effective particle number.
Ne f f Effective sample capacity.

Variables in Fusion
ofUWB/LiDAR/ODOM

Based on Extended Kalman
Filtering.

u Odometry measurement information.
ut Odometry measurement information at time t.

(Vx,o, Vy,o, ωo) Odometry measurement information.

Vx,ot
Linear velocity of the robot in the x-direction as measured by

odometry at time t.

Vy,ot
Linear velocity of the robot in the y-direction as measured by

odometry at time t.
ωot Angular velocity of the robot as measured by odometry at time t.

(xPF, yPF, θPF) Fused value from particle filtering.

(xPFt, yPFt)
Robot’s global position in the global coordinate system fused by

particle filtering at time t.
θPFt Robot’s global yaw angle fused by particle filtering at time t.
Kt Kalman gain coefficients.
x System state vector.

xt−1 State vector at time t− 1.
x−t State prediction vector at time t− 1.

(X, Y) Robot’s global position in the global coordinate system.
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Table A2. Cont.

Variable Types Variable Symbols Variable Meanings

θ Robot’s orientation angle.
w Process noise.
v Observation noise.
Q Covariance matrix of noise.
R Covariance matrix of observation noise.

P−t Covariance prediction matrix at time t.
Pt Covariance matrix at time t.

Pt−1 Covariance matrix at time t− 1.
F State transition matrix.
zt Observation matrix at time t.
H Jacobian matrix of the measurement model.
I Identity matrix.
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