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Abstract: Here, we document a D-type double open-loop channel floor plasmon resonance (SPR)
photonic crystal fiber (PCF) for temperature sensing. The grooves are designed on the polished
surfaces of the pinnacle and backside of the PCF and covered with a gold (Au) film, and stomata are
distributed around the PCF core in a progressive, periodic arrangement. Two air holes between the
Au membrane and the PCF core are designed to shape a leakage window, which no longer solely
averts the outward diffusion of Y-polarized (Y-POL) core mode energy, but also sets off its coupling
with the Au movie from the leakage window. This SPR-PCF sensor uses the temperature-sensitive
property of Polydimethylsiloxane (PDMS) to reap the motive of temperature sensing. Our lookup
effects point out that these SPR-PCF sensors have a temperature sensitivity of up to 3757 pm/◦C
when the temperature varies from 5 ◦C to 45 ◦C. In addition, the maximum refractive index sensitivity
(RIS) of the SPR-PCF sensor is as excessive as 4847 nm/RIU. These proposed SPR-PCF temperature
sensors have an easy nanostructure and proper sensing performance, which now not solely improve
the overall sensing performance of small-diameter fiber optic temperature sensors, but also have vast
application prospects in geo-logical exploration, biological monitoring, and meteorological prediction
due to their remarkable RIS and exclusive nanostructure.

Keywords: Core-Metal-Analytes; double open-loop channels; surface plasmon resonance;
temperature sensing

1. Introduction

Temperature is a fundamental parameter in many fields, such as resource development,
climate change, and medical diagnosis [1,2]. Temperature sensors can be divided into two
main patterns: electrical transducer and photosensors.

Electrical sensors have been widely researched and applied as early as in practice, but
there are still some disadvantages, such as the need for extra systems, large bulk, high costs,
high power waste, weak multiplexing, remote monitoring capabilities, etc. [3]. In addition
to these reasons, they are also more susceptible to the uncertainty of the environment itself,
which not only adds an extra burden to the sensing device, but also affects the sensing
sensitivity. An electrical transducer can also come in for electromagnetic (EMC) interference
during signal transmission, leading to inaccurate sensing results [4–6].
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As far as light sensors such as optical fiber sensors (OFS) are concerned, they have
more outstanding benefits than the electrical sensors noted in the preceding paragraph. In
particular, they have the characteristics of a small size and strong anti-interference, far flung
sensing can be realized, and there is the possibility for prepared integration and reuse [7].
Its outstanding sensing characteristics allow it to be used in more sophisticated and hostile
environments, for example, underwater and in environments sensitive to electric induction.
With the development of photonic fiber technology [8,9], it has been found that combining
photonic crystal fiber (PCF) with plasmon resonance (SPR) technology can overcome the
shortcomings of traditional optical sensors, such as not being able to bend at large angles
and at a short transmission distance. These excellent characteristics of SPR-PCF sensors
can effectively improve sensing sensitivity and show high efficacy in many fields.

SPR is a touchy surface analysis technique, and when light is absolutely mirrored on the
surface of the prism and metallic film, it will form a dying wave in the photophobic medium,
and there is a positive plasma wave in the medium (assuming a metal medium). When the
two waves resonate, the detected reflected mild intensity is considerably reduced. That is, the
coupling generates a loss and achieves the purpose of sensing at the identical time [10–12].
In other words, SPR is the resonance phenomenon between electromagnetic waves (EW)
generated by free electrons on the surface of metals and plasma waves on the surface. SPR
technological know-how is widely used to allow the sensing of physical parameters due to the
strongly excited floor plasmon polaron (SPP) mode with a robust electromagnetic discipline
and sensitivity to small modifications in the analyte refractive index [13,14].

PCF is a new mannequin of optical fiber that transmits mild waves by using introducing
periodically organized air holes in the fiber [15]. Different stomatal arrangements of PCF
can result in it exhibiting different optical properties [16]. SPR coating with metal film, using
the characteristics of PCF, is far better than conventional SPR sensors in terms of sensing
performance [17]. In recent years, SPR-PCF pickup has been vastly used to take a look at many
bodily parameters, such as the refractive index, temperature, magnetic field, etc. [18–20].

Currently, temperature-sensitive materials include oils [21], alcohols [22], and PDMS [23],
among others. In contrast, PDMS has achieved excellent results in the field of temperature
sensing due to its stability and linearity with temperature [23]. This paper is a study of
temperature sensing with the help of PDMS.

In this paper, we propose a D-type double open-loop channel SPR-PCF temperature
sensor to achieve a highly sensitive sensing of temperature by using PDMS. The sensor
has two polished planes with an elliptical recess on each face, forming double open-loop
channels. Two channels are coated with an Au film and the fibers are surrounded by
polydimethylsiloxane (PDMS) as a temperature sensing medium. For better sensing,
we designed polished surfaces and recesses. The sensor was then subjected to finite
element analysis to investigate its modal characteristics, structural parameters, and sensing
performance. Our research results indicate that the PCF sensor has good temperature
sensitivity (Sλ ≥ 3.75 nm/◦C) and RIS (Sλ ≥ 4800 nm/RIU). The sensitivity of the
PCF sensor is higher than the present temperature sensor (such as the electromagnetic
sensor, traditional light sensor, etc.), and because of its simple nanostructure, convenient
manufacturing, high environmental applicability, high portability, etc., it not only has
practical potential, but also meets the current demand for a high-sensitivity temperature
sensor, and is an innovative development of the temperature sensor.

2. Nanostructure and Principle

Figure 1 indicates a cross-section of the D-type dual-open-loop channel SPR-PCF
designed in this paper. The PCF has a radius of 12 µm and can be processed with the
aid of lofting and drawing. The grinding wheel polishing approach is used to graph
grooves in the airplane of the top and bottom of the PCF (the aircraft is 8 µm from the
middle of symmetry above and below) [24,25]. The Au film was coated on two open-loop
channels by way of chemical vapor deposition or magnetron sputtering, and the magnetron
sputtering technique used to be generally selected in the experiment [26–28]. In Figure 1, h
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represents the width of the surface of the non-grooved part after polishing (one side), and D
represents the thickness of the Au film. The specific parameter settings are shown in Table 1.
R3, R4, and R5 point out the radii of holes 1, 2, and 3, respectively, d1 varies from the
hub of the fiber core for the No. 1 hole, d2 is the range from the hub of air holes 1 and 2,
d3 is positioned faraway vertically towards the cable’s hub for the No. 3 hole, and d4 is
the horizontal distance. The radii of the R3 pore (No. 1 hole) and R4 pore (No. 2 hole) are
rotationally symmetrical distributions around the core; the center of rotation is the center
of the core, and the rotation angle is 30◦. Among them, the No. 3 hole is the most special
hole, and its distribution as well as size, etc., have the most influence on the SPR pattern
compared to other air holes. The ideal preparation process of the dual open-loop channel
PCF proposed in this paper is shown in Figure 2.

Sensors 2023, 23, x FOR PEER REVIEW 3 of 14 
 

 

2. Nanostructure and Principle 
Figure 1 indicates a cross-section of the D-type dual-open-loop channel SPR-PCF de-

signed in this paper. The PCF has a radius of 12 µm and can be processed with the aid of 
lofting and drawing. The grinding wheel polishing approach is used to graph grooves in 
the airplane of the top and bottom of the PCF (the aircraft is 8 µm from the middle of 
symmetry above and below) [24,25]. The Au film was coated on two open-loop channels 
by way of chemical vapor deposition or magnetron sputtering, and the magnetron sput-
tering technique used to be generally selected in the experiment [26–28]. In Figure 1, h 
represents the width of the surface of the non-grooved part after polishing (one side), and 
D represents the thickness of the Au film. The specific parameter settings are shown in 
Table 1. R3, R4, and R5 point out the radii of holes 1, 2, and 3, respectively, d1 varies from 
the hub of the fiber core for the No. 1 hole, d2 is the range from the hub of air holes 1 and 
2, d3 is positioned faraway vertically towards the cable’s hub for the No. 3 hole, and d4 is 
the horizontal distance. The radii of the R3 pore (No. 1 hole) and R4 pore (No. 2 hole) are 
rotationally symmetrical distributions around the core; the center of rotation is the center 
of the core, and the rotation angle is 30°. Among them, the No. 3 hole is the most special 
hole, and its distribution as well as size, etc., have the most influence on the SPR pattern 
compared to other air holes. The ideal preparation process of the dual open-loop channel 
PCF proposed in this paper is shown in Figure 2. 

 
Figure 1. (a) The PCF sensor’s dimension and its geometrical parameters: d = 30 nm, R1 = 12 µm, R3 
= 1.5 µm, R4 = 1.2 µm, R5 = 1 µm, h = 4√5 µm, d1 = 6 µm, d2 = 4 µm, d3 = 4 µm, d4 = 2 µm. (b) Stereogram 
of a D-type double open-loop channel PCF. 

 
Figure 2. Schematic of D-type double open-loop channel PCF preparation. (a) is fiber cross-section, 
(b) is the ideal gold plating process, (c) is a D-type double open-loop channel PCF in 3D mode. 
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(b) Stereogram of a D-type double open-loop channel PCF.

Table 1. Initial setting parameters.

Symbol Parameter Value

R1 radius of PCF 12 µm

R2
PDMS radius (assume it wraps the fiber to

form a column) 13.5 µm

R3 No. 1 hole radius 1.5 µm
R4 No. 2 hole radius 1.2 µm
R5 No. 3 hole radius 1 µm
h Width of polished surface (half side) 4

√
5 µm

d1
Distance from the center of the No. 2 hole to

the hub of the fiber core 6 µm

d2
Distance between the hub of the No. 1 hole

and the No. 2 hole 4 µm

d1 + d2
Distance from the hub of the No. 2 hole to

the hub of the fiber core 10 µm

d3
The No. 3 hole from the vertical distance of

the fiber core 4 µm

d4
The horizontal distance of the No. 3 hole

from the fiber core 2 µm

D Au film thickness 30 nm
aa Length of the long axis of the groove ---------
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During the analysis, the index of refraction of the air hole is put up, and Sellmier’s
equation may be used to express the connection between the silica’s coefficient of refraction
and the length of the spectrum [29]:

n2(λ) = 1 +
B1λ2

λ2 − C1
+

B2λ2

λ2 − C2
+

B3λ2

λ2 − C3
(1)

In Sellmier’s equation, λ is the wavelength. The constants B1, B2, B3, C1, C2, and C3 are
0.6961663, 0.407942, 0.8974794, 0.0684043 µm, 0.1162414 µm, and 9.896161 µm, respectively.

The relative dielectric constant of the Au layer is determined by the Drude-Lorentz
model [30]:

ε(ω) = ε∞ −
ω2

D
ω(ω + jγD)

+
∆ε·Ω2

L(
ω2 −Ω2

L

)
+ jΓLω

(2)

In particular, ε∞ = 5.9673 is the powerful dielectric constant and ∆ε = 1.09 is the balance
element. The angular frequency is ω. ωD = 4227.2π THz and γD= 31.84π THz represent the
plasma frequency and reduction period, respectively. ΩL = 1300.14π THz is the oscillator
strength and ΓL= 209.72π THz is the spectral width.

A gold film is used to excite SPR in this paper. The SPR effect is built on the basis of
coupled-mode theory (CMT) [31]. When SPR occurs, coupling between modes is generated.
It is possible to express the coupled mode theory as [32]:{

E1
z = iβ1E1 + iκE2

E2
z = iβ2E2 + iκE1

(3)

where E1 and E2 are the electric fields’ strength of the heart mode and SPP mode. The
propagation frequencies for the primary type and SPP mode are β1 and β2, correspondingly.
z is the transmission distance and κ represents the interaction intensity. The schematic
diagram of this paper is shown in Figure 3. When the phase matching conditional tense is
contented, β1 and β2 are equal [33]. The electric fields of the heart and SPP modes follow
the same trend, and when a lot of energy from the Y-POL mode is linked to the higher and
lower order SPP modes, the loss of the Y-POL mode increases dramatically and the SPR
peak appears in the spectrum [34]. Analysis of the SPR-PCF sensor’s sensing capabilities
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may be conducted using the degradation spectroscopy of the core mode. The put on and
tear is associated with the core sample through the following equation [35]:

aloss = 8.686× 2π

λ
Im
(

ne f f

)
× 107(dB/cm) (4)

where λ is the wavelength and Im
(

ne f f

)
is the fictitious portion of the core mode’s ERI.
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Theoretically, when the refractive index of PDMS changes, it purposes an alternate in
the nice index of the core and SPP patterns. In addition, the change in the segment matching
scenario leads to a shift in the SPR height [36–38]. The SPP mode is more sensitive to the
exchange of the PDMS refractive index than the core mode. As a result, two notches and
polished surfaces are designed in this paper, which now no longer solely deliver the Au film
nearer to the core, but also promote each and every other, making top use of the sensitive
traits of the SPP mode and improving the temperature sensitivity of the fiber sensor. The
response of the PCF sensor can be evaluated by means of the skill of the volume of the
exchange of the SPR resonant wavelength with the index of refraction of the measured
object, which is expressed as Equation (5) [39]:

Sλ =
∆λpeak

∆na
(nm/RIU) (5)

where ∆λpeak is the range of resonant wavelength deviation and ∆na is the refractive index
change in the analyte.

PDMS is a polymer material that has a high thermos-optic coefficient and easy process-
ing. Hence, PDMS is used in combination with PCF as a sensitive material for temperature
detection. The expression that follows can be used to demonstrate the connection among
its coefficient of the refractive index and temperature [40]:

n(T) = n0 + k× (T − To) (6)

where n0 is set as 1.4176, To = 20 ◦C is the initial temperature, and k = −0.00045/◦C is the
thermo-optic coefficient. In this paper, the effects of metal layer thickness, groove long axis
length, and hole radius No. 3 on sensitivity are discussed when n = 1.40775, that is, when
the refractive index of PDMS is at a temperature of 30 ◦C.
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3. Analysis of Mode Characteristics

In this paper, numerical simulations of the D-type double open-loop channel PCF
sensor nanostructure are performed using the control variables method with COMSOL 6.0
software based on finite element analysis [41,42]. Figure 4a,b exhibit the electric powered
subject distribution of the Y-POL and X-POL imperative modes.
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This paper’s SPR-PCF sensor nanostructure is not highly symmetrical in terms of
rotation, so the X-POL and Y-POL mode have one-of-a-kind positive refractive indices.
The SPR top loss excited by using the two core modes is unique [43]. The Y-POL core
mode in the PCF sensor nanostructure described in this study exhibits more distinct SPR
issues and better sensing capabilities than the X-POL core mode (the metallic movie layer
is in the Y direction, so the excited SPR height mode is extra obvious in the Y direction,
as shown in Figure 5A,B). In addition, by solving Maxwell’s equations for steel dielectric
surfaces, we observe that the SPP mode is a mode that is generally excited with the aid of
the electric field, which is orthogonal to the metal layer’s outside [44–46]. The ERI of the
Y-POL high-order SPP mode and low-order SPP mode (this paper normally studies Y-POL)
at one-of-a-kind wavelengths, that is, the optical index’s real phase, which has an impact
on the suggested sensor’s responsiveness and loss spectrum, is shown in Figure 4. The
loss spectrum of the proposed sensor is shown in Figure 5, together with the real section
of the ERI of the high-order SPP mode and low-order SPP mode of the X-POL at unusual
frequencies. Comparing the two units of plots, we can observe that the loss top in X-POL is
significantly less than the loss height in Y-POL by two orders of thousands. Moreover, in
Figure 5, we can see that the lower-order SPR effect is more obvious than the higher-order
one. After the above comparison, the main object of this paper is the low-order loss peak
under Y-POL.

The PCF temperature sensor with double open-loop channels of D-type can be opti-
mized with structural parameters to further improve the sensing performance.



Sensors 2023, 23, 7569 7 of 15Sensors 2023, 23, x FOR PEER REVIEW 7 of 14 
 

 

 
(A) 

 
(B) 

Figure 5. (A) n = 1.40775, D = 30 nm, aa = 4 µm, R5 = 1 µm. The ERI real part of the Y-POL core and 
SPP modes, and the loss spectra of the proposed D-type double open-loop channels PCF-SPR sensor. 
I and III of (A) are coupling modes of core mode and SPP mode, and II and IV are SPP modes. (B) n 
= 1.40775, D = 30 nm, aa = 4 µm, R5 = 1 µm. The ERI real part of the X-POL core and SPP modes, and 
the loss spectra of the proposed D-type double open-loop channels PCF-SPR sensor. I of (B) is cou-
pling mode of core mode and SPP mode, and II is SPP mode. 

4. Analysis of Nanostructure Parameters 
After the above analysis, we found that the structural parameters of the PCF temper-

ature sensor with a D-type double open-loop channel can be optimized to further improve 
the sensing performance [47]. It is worth noting that in the analysis process, the paper 
focuses on the Y-POL low-order SPP mode, considering the variety of situations that lead 
to the appearance of high-order loss peaks and the tendency to overlap phenomena that 
are not easy to find a pattern for. 

4.1. Thickness of Au Film 
First of all, the iron movie layer’s thickness (the steel in this case is gold, the following 

are Au film) is the most important component affecting the peak loss, and we first discov-
ered that it has an effect on law through the control variable method. We can see that in 
the range from 0.7 µm to 0.9 µm, the graphic demonstrates how varied Au movie thick-
nesses affect the loss spectrum. As proven in Figure 6, the resonant wavelength of SPR is 
red-shifted as the Au movie thickness in the fiber increases. We can additionally see that 

Figure 5. (A) n = 1.40775, D = 30 nm, aa = 4 µm, R5 = 1 µm. The ERI real part of the Y-POL core
and SPP modes, and the loss spectra of the proposed D-type double open-loop channels PCF-SPR
sensor. I and III of (A) are coupling modes of core mode and SPP mode, and II and IV are SPP modes.
(B) n = 1.40775, D = 30 nm, aa = 4 µm, R5 = 1 µm. The ERI real part of the X-POL core and SPP modes,
and the loss spectra of the proposed D-type double open-loop channels PCF-SPR sensor. I of (B) is
coupling mode of core mode and SPP mode, and II is SPP mode.

4. Analysis of Nanostructure Parameters

After the above analysis, we found that the structural parameters of the PCF tempera-
ture sensor with a D-type double open-loop channel can be optimized to further improve
the sensing performance [47]. It is worth noting that in the analysis process, the paper
focuses on the Y-POL low-order SPP mode, considering the variety of situations that lead
to the appearance of high-order loss peaks and the tendency to overlap phenomena that
are not easy to find a pattern for.

4.1. Thickness of Au Film

First of all, the iron movie layer’s thickness (the steel in this case is gold, the follow-
ing are Au film) is the most important component affecting the peak loss, and we first
discovered that it has an effect on law through the control variable method. We can see
that in the range from 0.7 µm to 0.9 µm, the graphic demonstrates how varied Au movie
thicknesses affect the loss spectrum. As proven in Figure 6, the resonant wavelength of SPR
is red-shifted as the Au movie thickness in the fiber increases. We can additionally see that
when the thickness of the Au movie is thin, the tremendous subject index of the Y-POL and
SPP modes decreases, and the section matching point of SPR is blue-shifted. When D is
between 20 and 30 nm, the ERI reduction of the SPP mode causes the SPR peak to move
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from 0.59 µm red to 0.817 µm, and the loss increases from 8.59 dB/cm to 20.47 dB/cm. This
is shown in Figure 6. However, when D increases from 30 nm to 35 nm, the coupling of
the Y-POL and SPP modes deviates from the most efficient coupling factor because the
two evanescent fields are disturbed, and even disorderly loss peaks are generated [48].
Therefore, even if the SPR peak is red-shifted, the peak of the loss peak decreases instead.
In order to ensure high sensitivity and high detection accuracy, D = 30 nm is chosen in
this paper.
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wavelength where the maximum value of the loss peak of the low-order mode is located.

4.2. Radius of the Air Hole

Furthermore, we examined the ellipse’s semi-long axis. As the semi-major axis of
the ellipse increases, although the low-order SPR loss top is blue-shifted, its peak variant
appears to be extra difficult. In the range from 0.73 µm to 0.84 µm, the variation of its
loss spectra with the half-length axis of the ellipse notch in the PCF sensor is displayed in
Figure 7. As the elliptical semi-long axis increases, the overall ERI of the core mode of Y-
POL appears to decrease, and the SPR peak is blue-shifted according to the phase-matching
condition. At the same time, its low-order SPR loss peak first has a small fluctuation in the
overall downward trend, which is due to changing the semi-major line within the ellipsoid
outcomes in the alternate of the position of the Au film and the leakage window [49,50].
This will not only affect the ERI of the Y-POL, but also its coupling with the Au film.
Therefore, Figure 7a shows that the SPR loss peaks of the lower order and the SPR loss
peaks of the higher order are changed. Overall, the highest peak-to-peak value of low-order
SPR loss is detected at half-length axis aa = 4 µm, so the sensor’s responsiveness and
precision for detection approach a double-optimal condition.
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Figure 7. n = 1.40775, D = 30 nm, R5 = 1 µm. (a) The effect of the variation of elliptical long axis
aa on the loss peak. (b) The modification of the low-order mode’s highest point. (c) The change in
wavelength where the maximum value of the loss peak of the low-order mode is located.

4.3. The Long Axis of The Ellipse

Last but not least, we also analyzed the radius of the No. 3 gap in the range from
0.725 µm to 0.875 µm, and Figure 8 shows that its loss spectrum increases with the radius
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of the bound hole in the PCF, one main to a make bigger and then a minimize in its ERI.
The blue shift of the low-order SPR top is additionally derived from the phase-matching
condition. The wastage increases from 16.19 dB/cm to 20.47 dB/cm when the binding
hole radius increases from 0.8 µm to 1.0 µm. This is because as the binding hole radius
increases, it makes the core energy concentrate in the middle of the two holes and coupled
with the Au film, reduces the energy dissipation. However, when the radius of the holes
increases from 1.0 µm to 1.2 µm, the loss decreases from 20.47 dB/cm to 13.98 dB/cm. This
is because the leakage window between the two binding holes is too small as the radius of
the binding hole increases [51]. This leads to a reduction in the ERI of the Y-POL, and it is
difficult to allow the core energy to come out of the window and couple with the Au film.
Therefore, the low-order SPR loss peak-to-peak value increases and then decreases, as in
Figure 8b. After the above analysis, we chose to set the bound hole radius at 1.0 µm.
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5. Temperature Sensing Performance
5.1. Temperature Sensing Performance

Then, it explores the sensor capability across the temperature range from 5 ◦C to 45 ◦C.
Due to the PDMS response temperature, Figure 9 suggests the variant of the SPR peak at
different temperatures. The refractive index of PDMS drops with temperature, which also
causes a fall in the ERI of its SPP mode, so the SPR peak is blue-shifted. PDMS is a high
thermo-optical effect material, and its refractive index is very sensitive to temperature as it
changes linearly with temperature, so the SPP mode’s propagation curve is the primary
source of the substantial nonlinear exchange of the SPR peak. The low-order SPP mode’s
sensitivity may be employed as the sensor’s temperature tolerance because, under the
modification of the phase matching point, the SPP mode dispersion caused by thermal
exchange causes the SPR peak to move to the blue [52,53]. Temperature changes lead to
changes in the analyte’s refractive index, which changes the fantastic component of the SPP
mode’s refractive index and shifts the frequency coinciding to the SPR peak. The change in
resonant wavelength with temperature may be used to gauge this sensor’s sensitivity, and
Equation (7) is used to describe the refracted index of it [54].

Sλ =
∆λpeak

∆T
(pm/°C) (7)

where ∆λpeak is the range of the resonant wavelength shift and ∆T is the trade of temperature.
In Figure 9b, five temperature sensitivities are calculated: 3757 pm/◦C, 3271 pm/◦C,

2785 pm/◦C, 2299 pm/◦C, and 1813 pm/◦C, respectively. The highest temperature sensi-
tivity is 3757 pm/◦C, when the temperature is close to 5 ◦C. This sensitivity has excellent
results in SPR sensors with a diameter of about 20 µm and has a strong potential for
development [55,56].
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5.2. Refractive Index Sensing Performance

In this paper, the RIS of the improved D-type dual-open-loop channel temperature
sensor is analyzed. Figure 10 suggests the trade in the overall sensing performance and
SPR height of the sensor at a refractive index of 1.37775–1.40775. As the set refractive
index increases, the SPR height is red-shifted. The change in wavelength and its peak in
the low-order SPP mode may be employed as an indicator of the sensor’s transparency
since the exchange in the ERI of the SPP mode is directly caused by utilizing the change in
the refractive index beneath the modulation of the segment matching point [57–60]. The
sensor’s ability to detect brightness at certain refract indicia of the tested items is shown
in Figure 10. In Figure 10c, four visible light sensitivities are calculated: 4847 nm/RIU,
3703 nm/RIU, 2559 nm/RIU, 1415 nm/RIU. As proven in Figure 10b, although the SPR
loss peak is blue-shifted as the refractive index increases, the low-order SPP mode is the
largest at the refractive index Ri = 1.39775.
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5.3. Discussion

In conclusion, this paper presents a D-type double open-loop channel SPR-PCF for
temperature sensing. The sensor has excessive temperature sensitivity and extremely
good overall sensing performance in small diameter PCF sensors, which can extend the
application range of PCF sensors and is of leap forward value. As shown in Table 2, the
recently reported SPR sensors for temperature sensing are investigated in this paper [61–63].
Compared to them, it has high sensitivity as well as a simple nanostructure, and its small
radius and simple nanostructure extends the application range of fiber optic temperature
sensors, which is not less innovative.
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Table 2. Performance evaluation of the proposed PCF-SPR temperature sensor mannequin.

Model Refractive Index Sensitivity Temperature Sensitivity

Model A
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6. Conclusions

We focus on the SPR-PCF sensor with D-shaped double open-loop channels nanos-
tructure and examine its temperature sensitivity as well as RIS by finite element analysis.
Compared with the conventional D-PCF, our proposed D-PCF has the following features.
Firstly, we have two open-loop channels that facilitate the coupling of the Y-POL and SPP
modes to enhance the sensitivity of the sensor while increasing its portability. A coating
on the open ring of the ellipse can make production less complicated and minimize the
production cost. The internal air holes in this SPR sensor are organized in a revolution-
ary periodic manner, with two binding holes beneath the Au film. This sketch promotes
the energy leakage from the Y-POL quintessential mode into the plasma mannequin for
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coupling, but it also avoids the excessive outward growth of energy, which substantially
improves the SPR effect. By optimizing three structural parameters, namely, the thickness
of the Au film, the radius of the certain hole, and the elliptic semilength axis, the maximum
temperature sensitivity of the low-order SPP mode is 3757 pm/◦C and the maximum RIS
is 4847 nm/RIU. Learning about this is important for lookup and development in the
field of temperature sensing. The sensor is also suitable for the simultaneous detection of
different substances with good portability. The SPR-PCF sensor proposed in this paper
is not only anticipated to meet the wishes of temperature sensing applications, but also
has the possibility of aiding in scientific diagnosis in the future. The fiber’s ultra-high
sensitivity and unique shape underpin its first-rate potential for biomedical sensing ap-
plications, such as the detection of glucose, hemoglobin, and other biomolecules that use
microfluidic channels. If different metal films are coated on the surfaces of the two grooves
and filled with different analytes, the sensing of two physical parameters can be achieved
simultaneously. An in-depth study can be conducted later.
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