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Abstract: The efficiency of the rapidly exploring random tree (RRT) falls short when efficiently
guiding targets through constricted-passage environments, presenting issues such as sluggish con-
vergence speed and elevated path costs. To overcome these algorithmic limitations, we propose a
narrow-channel path-finding algorithm (named NCB-RRT) based on Bi-RRT with the addition of
our proposed research failure rate threshold (RFRT) concept. Firstly, a three-stage search strategy is
employed to generate sampling points guided by real-time sampling failure rates. By means of the
balance strategy, two randomly growing trees are established to perform searching, which improves
the success rate of the algorithm in narrow channel environments, accelerating the convergence speed
and reducing the number of iterations required. Secondly, the parent node re-selection and path
pruning strategy are integrated. This shortens the path length and greatly reduces the number of re-
dundant nodes and inflection points. Finally, the path is optimized by utilizing segmented quadratic
Bezier curves to achieve a smooth trajectory. This research shows that the NCB-RRT algorithm is
better able to adapt to the complex narrow channel environment, and the performance is also greatly
improved in terms of the path length and the number of inflection points. Compared with the RRT,
RRT* and Bi-RRT algorithms, the success rate is increased by 2400%, 1900% and 11.11%, respectively.

Keywords: path planning; narrow channel; Bi-RRT; forklift AGV

1. Introduction

With the increasing economic benefits brought to traditional industries by automation
and artificial intelligence technology, the need for industrial intelligence transformation is
becoming more urgent. Automated Guided Vehicles (AGVs) are increasingly being used in
various fields, such as in intelligent warehouses [1,2], automated ports [3,4], unmanned
factories [5,6], and in smart agriculture [7,8], to improve the level of intelligence. AGVs
have advantages such as their high work efficiency, low cost, and high safety. The research
on AGVs includes navigation algorithms [9,10], path planning algorithms [11,12], path
tracking algorithms [13,14], and vehicle scheduling algorithms [15,16]. Of these, path
planning determines the route by which the AGV will move, and plays a fundamental
role in determining the operating costs. Moreover, as the operating environments of AGVs
have become increasingly complex, path planning has remained a focus of and challenge
in research [11]. Currently, the most commonly used path planning algorithms include the
graph-based A* [17] algorithm, the sample-based rapidly exploring random tree (RRT) [18]
algorithm, and bio-inspired intelligent algorithms, of which the RRT algorithm is the most
widely applied.

The RRT algorithm has several advantages, such as its simple structure, small number
of parameters, complete path probability, ability to search effectively in a variety of envi-
ronments, and the fact that there is no limitation on the spatial dimensions. However, the
RRT algorithm also has several drawbacks, including node redundancy, slow convergence
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speed, and the difficulty of finding the optimal path. The RRT algorithm has been highly
anticipated for practical application in path planning in narrow-passage environments,
but its current performance does not meet expectations. Many researchers have made
improvements to this algorithm, mainly focusing on constraining the sampling space,
implementing bi-directional searching, and changing the sampling method. The RRT* [19]
algorithm incorporates the concept of reconnecting parent nodes within a circular range and
updating the path based on the RRT algorithm. Informed RRT* [20] introduces an elliptical
state space based on RRT*, improving the success rate of the target passing through the
narrow channel, but with the problem of high time cost. Cyl-HRRT* [21] added cylindrical
constraints to the search part of RRT*, thereby reducing the search time, but this method is
presented with great challenges in narrow channel environments. An Jaekyu [22] divided
the sampling space according to the pipeline, but this was limited to high-dimensional
pipeline environments. The Bidirectional RRT (Bi-RRT) [23] algorithm searched the state
space by growing two trees simultaneously—from the initial point and from the target
point. This was able to help the target pass through the narrow channel, but it was difficult
to obtain the optimal path. Klemm added the parent node re-selection and path recon-
nection concepts of RRT* to Bi-RRT to form the Bi-RRT*algorithm [24]. Although Bi-RRT*
reduced the path cost, the time cost was greatly increased. Qureshi [25–27] changed the
search method of RRT* by integrating the Artificial Potential Field (APF), but this presented
problems with local minima. Bi-P-RRT* [28] integrated APF, based on Bi-RRT*. Although
the time cost was reduced, there were still many redundant nodes. Fan Jiaming [29] added
a target bias strategy to Bi-P-RRT* to further optimize the sampling method. However, the
effect of this algorithm when operating in narrow channel environments was not consid-
ered. Chai QS [30] improved the success rate of the RRT algorithm by generating a local
search tree in a narrow channel, but the path was too long. Ding, J [31] reduced the length
of the path by using heuristic search and greedy sampling strategies, but this solution was
not optimized for narrow channels. The MIS-RRT algorithm proposed by Huang CM [32]
was able to place the robot into the channel by identifying the entrance, but the general
adaptability of the algorithm needs to be improved. Li BH [33] combined the Bi-RRT and
RRV algorithms in order to be able to adapt to different environments, but there was no
reduction in time cost. Numerous scholars have attempted to solve the path planning
problem presented by the RRT algorithm in narrow channel environments. However, the
effectiveness of these solutions has been limited, and striking a balance between path
quality and time cost has proven challenging. In this study, we define the search failure rate
threshold (RFRT) concept, thereby establishing a Narrow Channel Bi-directional Rapidly
exploring Random Tree (NCB-RRT) algorithm to perform path planning for Automated
Guided Vehicles (AGVs). Firstly, the bidirectional RRT algorithm simultaneously creates
two search trees, and grows the two trees alternately using a balanced strategy in order
to reduce the sampling time. Next, according to the real-time failure rate of sampling,
the designed three-stage search strategy, path pruning strategy and Bi-RRT algorithm are
fused. The fusion algorithm significantly improves the success rate of operation in narrow
channel environments, and reduces the path cost. Then, a piecewise quadratic Bezier curve
method is introduced to smooth the path corners. The smoothed path is more in line with
the steering motion of AGVs. Finally, compared with the RRT, RRT* and Bi-RRT algorithms,
the proposed algorithm can greatly improve the success rate of the AGV passing through
narrow channels. Moreover, the path generated by the proposed algorithm has a higher
comprehensive performance. The remaining sections of this paper are arranged as fol-
lows. The background is discussed in Section 2. In Section 3, we describe the improved
algorithm in detail. Section 4 introduces the simulation environment and compares the
simulation results. Section 5 presents the conclusions of the paper and illustrates the future
research directions.
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2. Background
2.1. Problem Definition

This section uses mathematical symbols to describe the path planning problem of a
forklift AGV. The state space is denoted by S, and the obstacle space composed of shelves
is represented by Sobs. The free search area without obstacles in the space is expressed as
Ssearch = S/Sobs. (S, nstart, ngoal) defines a path planning problem where the random tree is
growing, nstart is the root node of the tree, and ngoal is the target node of the tree. If there
is a continuous function f : [0, 1]→ S, and the function is a bounded variation, then the
function is a path. If v ∈ [0, 1], f (v) ∈ Ssearch, then the path f is a collision-free path from the
root node to the target node.

Definition 1 (Feasible path planning). For the path planning problem (S, nstart, ngoal), v is
collision-free, v(0) = nstart, v(1) = ngoal, and the feasible path is any solution corresponding to v. If
no solutions are found, failure is reported.

Definition 2 (Shortest path planning). Given the path planning problem (S, nstart, ngoal), after a
viable path c(v*) is found, such that c(v*) = min c(v): v is feasible, where c(v) is the full length of the
path v. If no solutions are found, failure is reported.

Definition 3 (Fast path planning). Within a certain number of iterations i ∈ R, the optimal
solution path with minimum cost is found. Failure is reported if the upper bound for the number of
iterations is exceeded.

2.2. Related Work

The rapidly exploring random tree (RRT) [18] algorithm samples the free space in a
completely random manner, and gradually establishes the construction of a search tree that
extends from the root node to the target node. Different from RRT, the RRT* algorithm
adds the parent node re-selection and path update strategies, making the cost of new nodes
lower, so as to obtain a path at a lower cost than the RRT algorithm. The Bi-directional
Rapidly exploring Random Tree (Bi-RRT) [23] algorithm generates two trees simultaneously,
one from the root point and one from the target point. The speed of the bidirectional search
is faster, and the success rate of path planning can be effectively improved. The algorithm
proposed in this paper is improved based on Bi-RRT, and the pseudo-code for the Bi-RRT
algorithm is shown in Algorithm 1.

The functions of the pseudo-code are explained as follows:

• Sample: Random sample in the environment and return the sample point nrand.
• Nearest(T, nrand): Returns the node closest to nrand in the tree T.
• Steer(nnearest, nrand): Extend a length from nnearest to nrand to get a new node.

In the pseudo-code of the Bi-RRT algorithm, T1 and T2 are two trees growing from
nstart and ngoal, respectively. E1 and E2 record the parent node information of all nodes in
T1 and T2, respectively. The first tree T1 is grown by running lines 4–7, and extended to
the new node nnew. The expansion approach of the second tree T2 differs slightly from that
of T1 as it involves two expansion steps. The details of the first step are described in lines
8–12, where the second tree expands in the direction of the new node nnew to obtain the
node n′new. If there is no collision, lines 13–21 are executed to continue expanding in the
same direction to obtain n′′new as the second step. Subsequently, the number of nodes in the
two trees is compared, and the Swap function is used to exchange the tree with the fewest
nodes with the first tree. This process is repeated until the two trees are connected.
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Algorithm 1. Bi-RRT

1 T1 ← {nstart}; T2 ← {ngoal};
2 E1 ← ∅ ; E2 ← ∅ ;
3 for each iter ∈ [1, Maxiter] do
4 nrand ← Sample(iter);
5 nnearest ← Nearest(T1, nrand);
6 nnew ← Steer(nnearest, nrand);
7 if Collision-free(nnearest, nnew, Sobs) then
8 T1 ←T1 ∪{nnew};
9 E1 ← E1 ∪{(nnearest, nnew)};
10 n′nearest ← Nearest(T2, nnew);
11 n′new ← Steer(n′nearest, nnew);
12 if Collision-free(n′nearest, n′new, Sobs) then
13 T2 ←T2 ∪{n′new};
14 E2 ← E2 ∪{(n′nearest, n′new)};
15 n′′new ← Steer(n′new, nnew);
16 if Collision-free(n′nearest, n′new, Sobs) then
17 T2 ← T2 ∪{n′′new};
18 E2 ← E2 ∪{(n′′new, n′new)};
19 n′new ← n′′new;
20 end if;
21 if n′new = nnew then Return T1, T2, E1, E2;
22 end if;
23 end if;
24 if |T2| < |T1| then
25 Swap(T1, T2);
26 Swap(E1, E2);
27 end if;
28 end for
29 Return T1, T2, E1, E2;

3. Improved Bi-RRT Algorithm with Search Failure Rate Threshold (SFRT)

The NCB-RRT algorithm proposed in this paper improves the Bi-RRT algorithm in
three main respects. Figure 1 presents a flowchart of the improved algorithm.
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• Balanced growth strategy: The growth priority of the bidirectional tree of the Bi-RRT
algorithm is improved. The number of nodes in each tree and the distance from the
target point are used as cost indicators, and the growth of the tree with the lower cost
is given priority in order to make the sampling more uniform.

• High-quality search strategy: The node closest to the target point on the search tree
is selected to carry out the search. Three search strategies were designed to adapt to
different environments. The calculated real-time sampling failure rate was compared
with the failure rate threshold to determine whether the current environment was
simple, complex, or the most complex. When sampling becomes increasingly difficult,
the adaptive sector search strategy, the dynamic right angle search strategy, and the
target-biased RRT search strategy are gradually implemented to help the algorithm
adapt to the obstacle environment. At the same time, the parent node re-selection
and the path pruning methods are introduced to reduce redundant nodes and further
improve search quality.

• Path smoothing strategy: After generating an initial path, the piecewise quadratic
Bezier curve method is used to optimize the corners of the path, so that the smoothness
of the path is higher and more in line with the steering motion of AGV.

3.1. Dual Index-Exchange Search Tree

The RRT algorithm has the problem of requiring a large amount of time when per-
forming AGV path planning. Compared with RRT, the Bi-RRT algorithm has a faster search
speed, but there is the risk that the search tree will become trapped by obstacles in narrow
channel environments. The unbalanced growth of the search tree is not able to give full
play to the advantages of a two-way search. The main improvement presented in this
section is that, on the one hand, two trees are extended simultaneously in each iteration; on
the other hand, a value function is designed to optimize the birth order of the two trees.
The value function is composed of two Indexes: the number of nodes and the distance. The
value function of the two trees is calculated according to Equations (1) and (2):

Value1 = 0.5c1p − 0.5c1l (1)

Value2 = 0.5c2p − 0.5c2l (2)

where Value1 is the growth value of tree T1, which is extended from the root point, c1p is
the number of nodes of T1, and c1l is the nearest distance between T1 and the end point;
Value2 is the growth value of tree T2, which is extended from the end point, c2p is the
number of nodes of T2, and c2l is the nearest distance between T2 and the root point. The
value function is recalculated at each iteration. When Value1 is greater than Value2, T2
grows preferentially. Otherwise, T1 grows preferentially.

3.2. Search and Optimize Paths
3.2.1. Three-Stage Search Strategy

The steps with which the Bi-RRT algorithm is extended are shown in Figure 2. Three
search strategies are designed in this paper based on real-time sampling failure rate. The
new search strategy will change the expansion of nrand and nnew in Bi-RRT, so that the new
algorithm can adapt to environments of different complexity. The search strategies are
selected according to Equation (3):

Sample =


adaptive sector search (ASS), i f p ≤ p1

dynamic right angle search (DRAS), i f p1 < p < p2
target biased RRT (TBRRT), i f p ≥ p2

(3)

where p1 and p2 are the search failure rate threshold, p1, p2 ∈ (0, 1), and p is the real-time
sampling failure rate. The search failure rate threshold (SFRT) is designed as a value that is
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obtained by dividing the number of failed samples by the total number of samples. The
search strategy of each sampling is determined by p. When p ≤ p1, the adaptive sector
search (ASS) strategy is selected for the sampling points. When p1 < p < p2, the dynamic
right-angle search (DRAS) strategy is run for sampling; otherwise, the target biased RRT
(TBRRT) search strategy is switched to.
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Figure 2. Two-way search tree expansion diagram. T1 is a random tree that starts from the starting
point nstart, T2 is a random tree that starts from the end point ngoal, nnew is a new node extended by
T1, n′new and n′′new are nodes grown by T2.

The pseudo-code of the ASS strategy is shown in Algorithm 2. Firstly, the algorithm
finds the nearest point nnearest of the search tree to the end point. In line 3, Algorithm
3 returns the set of reference points between nnearest and ngoal. Then, the reference point in
the set that does not collide with nnearest is denoted as nnew by lines 4–10, and nnew is added
to the search tree. If all the points in the set collide, then lines 11–16 are run, and a sampling
point is returned from an adaptive sector area defined by Algorithm 4.

Algorithm 2. Adaptive sector search strategy

1 nnearest ← nnearest;
2 a← Len(T)
3 A← Surrounding nodes(nnearest, S)
4 for each nref ∈ A do
5 if Collision-free(nnearest, nref, Sobs) then
6 nnew ← nref;
7 T← T ∪{nnew};
8 E← E ∪{(nnearest, nnew)};
9 break
10 b← Len(T)
11 if b ! = a then
12 nnew ← Sample sector(nnearest, ngoal, p);
13 if Collision-free(nnearest, nnew, Sobs) then
14 T← T ∪{nnew};
15 E← E ∪{(nnearest, nnew)};
16 else then
17 nnew = None;
18 Return nnearnest, nnew;
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Algorithm 3. Surrounding nodes

1 A ← ∅ ; nnearest ← nnearest;
2 B← Extending nodes(S);
3 for each nref ∈ B do
4 if nref ∈ Ssur(nnearest, ngoal) then
5 A←A ∪{ nref };
6 end if;
7 end for
8 Return A;

Algorithm 4. Sample sector

1 nnearest ← nnearest; p← p;
2 a, r← Angle(nnearest, ngoal, p);
3 S’

sec ← Ssec(a, r);
4 nnew ← Sample(S’

sec);
5 Return nnew;

The functions in the pseudo-code are as follows:

• Len: Calculate the length of the list.
• Samplesector: Sample in a fan-shaped space and return new nodes.
• Extending nodes: The collection of a series of reference points, which is composed of

reference points (nref in Figure 3) that extend around the vertices of each obstacle at a
certain length.

• Ssur: A rectangular dynamic search region between nnearest and ngoal.
• Angle: Calculate the central angle and radius of the fan from nnearest to ngoal.
• Ssec: Plan out the fan-shaped sampling area.

Sensors 2023, 23, 7547 8 of 20 
 

 

 
Figure 3. Reference point extension diagram. 

 
Figure 4. Select the reference points. 

 
Figure 5. Sector area search diagram. 

The DRAS strategy and the ASS strategy are basically the same in the algorithm flow. 
The difference between the two is that the DRAS strategy replaces the sector sampling 
area in Algorithm 4 with the dynamic right-angle sampling area in Algorithm 5. The right-
angle sampling region is expanded towards ngoal with nnearest as the right-angle vertex. The 
angle between any right-angle edge and the line segment connected by nnearest and ngoal is 
an acute angle. The shape of the right-angled sampling area when the ngoal is at the upper 
right of the nnearest is shown in Figure 6. The right-angled area is composed of two identical 
rectangles that are perpendicular to each other and superimposed. The longer side b1 and 
the shorter side b2 in the rectangle are determined according to Equations (6) and (7): 

Figure 3. Reference point extension diagram.

The generation of reference points is shown in Figure 3. The cyan circle nref is the
reference point, which is obtained by extending each vertex of the obstacle outward. The
dark green points in Figure 4 are the returned reference points, which are distributed in
a square with its center between nnearest and ngoal. O is the center of the square, d is the
distance from nnearest to O, and a is the side length of the square area. The dark green circle
nref is the reference point to return. The fan-shaped sampling area is shown in Figure 5.
The line segment composed of the fan-shaped vertex nnearest and the end point ngoal divides
the fan-shaped center angle α. The center angle α and radius r are related to the real-time
sampling failure rate p. As the failure rate increases, the central angle becomes larger, and
the radius becomes smaller. According to Equation (4), α is calculated, and r is calculated
according to Equation (5):

α = π(p + p 1)
1
2 (4)
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r = kL(1− p)
1
2 (5)

where α is the central angle, r is the radius, k is the scaling factor, and L is the extended step
size of AGV.
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The DRAS strategy and the ASS strategy are basically the same in the algorithm flow.
The difference between the two is that the DRAS strategy replaces the sector sampling area
in Algorithm 4 with the dynamic right-angle sampling area in Algorithm 5. The right-angle
sampling region is expanded towards ngoal with nnearest as the right-angle vertex. The angle
between any right-angle edge and the line segment connected by nnearest and ngoal is an
acute angle. The shape of the right-angled sampling area when the ngoal is at the upper
right of the nnearest is shown in Figure 6. The right-angled area is composed of two identical
rectangles that are perpendicular to each other and superimposed. The longer side b1 and
the shorter side b2 in the rectangle are determined according to Equations (6) and (7):

b1 = k1Lln(e− p) (6)

b2 = k2Lln(e− p) (7)

where k1 and k2 are the gain coefficients, L is the extended step size of AGV, e is the Euler
number, and p is the extended failure rate. As p keeps increasing, the sample area in
Figure 6 gradually shrinks from the shape delineated in orange to that marked in green.
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Algorithm 5. Sampleright

1 nnearest ← nnearest; p← p;
2 b1, b2 ← rectangle(nnearest, ngoal, p);
3 S’

rec ← Srec(a, r);
4 nnew ← Sample(S’

rec);
5 Return nnew;
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The functions in the pseudo-code that are different from those in the ASS strategy are
described as follows:

• rectangle: Calculate the length of two adjacent edges of the rectangle.
• Srec: Plan out the right-angle sampling area.

The TBRRT search strategy indirectly affects the generation of nnew by adding a target-
biased strategy to the RRT to change the selection of nrand. Random sampling point selection
is performed according to Equation (8):

nrand =

{
ngoal , i f rand() > m
Random, else

(8)

where rand() is a random number between 0 and 1, it is given randomly by the algorithm
before TBRRT is run. m is the threshold of the target bias. The growth direction of new
nodes is determined by m. When rand() > m, the growth tree will grow toward ngoal;
otherwise, the growth tree grows randomly in the sampling space.

In this section, we design three search strategies. When the three strategies are
used separately, ASS is more advantageous in simple environments. In more complex
environments, the success rate of ASS will be reduced by half. DRAS has a high success
rate in simple, complex, and more complex environments, and the feasible paths obtained
in simple and complex environments are shorter, but DRAS has a longer search time in
simple and complex environments than ASS. TBRRT can search in a global environment
and find a feasible path without considering the number of iterations, so it can escape from
local searches in extreme environments. However, TBRRT requires too many iterations and
consumes too much time. Considering the advantage of the fast search time of the ASS in
simple environments and the high success rate of DRAS in more complex environments,
we use ASS when the SFRT is low, DRAS when the SFRT is high, and TBRRT when the use
is higher.

3.2.2. Path Cost Optimization Strategy

The RRT and Bi-RRT algorithms have too many redundant nodes in narrow channel
environments, which is an important reason for the high cost of the path. This paper
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optimizes the problem of node redundancy in the RRT algorithm in two ways. Firstly, with
reference to the idea of the RRT* algorithm, the parent nodes re-selection strategy presented
in Algorithm 6 is run after sampling new nodes, thus reducing the cost of the new nodes.
Secondly, the path is triangularly trimmed after a feasible path has been obtained.

After each new node nnew is obtained, the parent node re-selection strategy presented
in Algorithm 6 is run. The strategy defines a neighborhood Snear with nnew as the center of
the circle and a fixed length as the radius. Then, the algorithm takes the point nmin in Snear
with the smallest path cost after connecting to nnew as the parent node of nnew. The triangle
pruning strategy is employed after the algorithm finds a feasible path. At its core is the fact
that the sum of the lengths of any two sides of a triangle is greater than the length of the
third side. The path pruning process is shown in Figure 7. When the non-collision point n2
in the original path is pruned, a new path, n1–n3–n4, is obtained.

Algorithm 6. ChooseParent(Snear, nnew, nnearest)

1 nmin ← nnearest;
2 Cmindist← C(nnear) + Dist(nnear, nnew);
3 for each nnear ∈ Snear do
4 Cdist← C(nnear) + Dist(nnear, nnew);
5 if Collision-free(nnear, nnew, Sobs) then
6 if Cmindist < Cdist then
7 Cmindist = Cdist;
8 nmin ← nnear;
9 end if;
10 end if;
11 end for
12 Return nmin;
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3.3. Bezier Curve Optimization

Most of the path corners generated by the path planning algorithm are sharp turns,
which can negatively impact the operation efficiency and stability of AGVs, and especially
of heavy-duty AGVs. Therefore, it is necessary to smooth the corners of the path. Spline
interpolation is widely used in path post-processing, but this would greatly change the
original search path. At the same time, the Runge–Kutta phenomenon is prone to occur at
high orders, and there is a lack of stability in narrow channel environments. Based on the
work of Durakli et al. [34], this paper introduces a local path smoothing method based on a
quadratic Bezier curve to smooth each path corner. The shape of the quadratic Bezier curve
is determined according to Equation (9):

B(t) = (1− t)2P0 + 2t(1− t)P1 + t2P2 , t ∈ [0, 1] (9)
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where P0, P1, P2 are control points, B(t) is a quadratic Bezier curve, and t is a time parameter.
According to the method designed by Durakli, P0, P1 and P2 are used as control points
to generate a continuous arc line. P0 and P2 are retained in the new arc line, and P1 is
discarded. By replacing the two straight lines of P0–P1 and P1–P2 in the original path with
new arcs, path smoothing at the inflection point of the path is achieved.

In particular, for the path processed using the ordinary methods, there is a possibility
of collision occurring between the path and the obstacle. However, Durakli’s method,
described in this section, avoids collisions by adjusting the positions of P0 and P2. This
makes the work in this section more effective and superior.

4. Simulation Results

In this paper, we compared the simulation results of the NCB-RRT algorithm with
those of the RRT, RRT* and Bi-RRT algorithms. Kang designed different environments
to test the performance of the RRT algorithm [35]. With reference to Kang’s research on
simulation environments, we established five simulation environments with which to
evaluate the performance of the algorithms.

Firstly, four environments were used to evaluate the performance of the four algo-
rithms. The sizes of the four environments were 500 cm × 500 cm, with the AGV running
from (40,40) to (460,460). Figure 8a depicts a simple environment with few obstacles and a
large free space. The multi-obstacle environment B is illustrated in Figure 8b, with a more
dispersed obstacle distribution to test the convergence speed of the algorithm. Environment
C featured concave–convex obstacles, as shown in Figure 8c, posing a significant challenge
in obtaining the shortest path. Environment D represented a narrow channel environment,
as shown in Figure 8d, where it is difficult of the algorithms to obtain a feasible path.
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DRAS. At the same time, the rapid search of ASS causes the overall advantages of ASS to 
seem more prominent, such that the use of ASS in environment C reaches 50%. In partic-
ular, the bumpy obstacles in Environment C make it easy to get stuck, causing TBRRT to 
be used for up to 40% of the process. Environment D has two continuous large barrier-
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Figure 8. Simulation environment and forklift AGV dimensions. (a–e) Simulation environments A, B,
C, D, and E, respectively. (f) Overhead view of the forklift AGV. The vertical length of the AGV is
3r (r = 570 cm), the horizontal length is a (a = 775 cm), the geometric center of the AGV is the center
of the circle. The blue rectangle is the driving wheel that controls the front and back movement
of the AGV, and it is able to control the steering movement of the AGV. The green rectangle is the
driven wheel.
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Next, a more complex environment E was established to test the superiority of
the algorithm. This environment was based on an actual map of a railway warehouse,
and integrated the characteristics of environments A–D. The size of environment E was
8000 cm × 4800 cm, with the AGV running from (40,40) to (460,460). In Figure 8e, the
white part represents the sampling area, and the black rectangles represent the shelves. In
order to search for the AGV as a particle, we extend the projection size of the AGV to the
shelves. The slate-grey area around the shelves is the extended range, and the obstacles are
composed of black and slate-grey rectangles together. The top view of the AGV is shown in
Figure 8f, and the slate-grey expansion distance is the radius of the yellow circle.

In particular, the search part of the NBC-RRT proposed in this paper consists of three
stages. The SFRT is the indicator that divides the three stages. To optimize the performance
of the NCB-RRT, different thresholds need to be selected for different environments. There-
fore, the combination of the SFRT traverses the distance between 0 and 1 at a step size of
0.1. We designed a cost function to select the group with the lowest average cost in each
environment as the final threshold. The cost function is as show in Equation (10):

Cost = 0.3node + 0.3len + 0.2iter + 0.2t (10)

where Cost is the total cost, node is the average number of nodes, len is the average path
length, iter is the average number of iterations, and t is the average running time. Each
group was iterated for 20 rounds to obtain the threshold data of Table 1. The role of the
three search strategies of NBC-RRT in different environments is shown in Figure 9. A is a
simple environment. Although ASS is able to search faster, DRAS accounts for 80% of the
whole process because of its greater advantages in terms of path length. The number of
obstacles in environment B is large and scattered, causing the algorithm to easily become
trapped in local optima; therefore, TBRRT is needed to give full play to its advantages
in terms of global search. The barrier-free space of environment C is more continuous
than that of environment B, so the path disadvantage of ASS is not obvious compared
with DRAS. At the same time, the rapid search of ASS causes the overall advantages of
ASS to seem more prominent, such that the use of ASS in environment C reaches 50%.
In particular, the bumpy obstacles in Environment C make it easy to get stuck, causing
TBRRT to be used for up to 40% of the process. Environment D has two continuous large
barrier-free spaces, which makes it easier for ASS to take advantage of its search speed and
help the algorithm to reach the narrow channel as soon as possible. The narrow channel
is a more complex environment, however, and DRAS can achieve higher success rates in
more complex environments under the same number of iterations, so DRAS also plays
a great role. In particular, there are few obstacles in environment D, and they are evenly
distributed, so the proportion of the process for which TBRRT is used is very small. The
barrier-free space of Environment E is small, which makes it impossible for ASS to exert
its speed advantage. Similar to environment D, environment E has more home channel
space, resulting in DRAS playing a more important role. At the same time, the obstacles in
environment E are evenly distributed, so the use of TBRRT is also very low. In addition,
it can easily be seen from Figure 9 that the SFRTs of environment A and E are consistent.
However, after the above analysis, the reasons for which DRAS has an advantage in these
two environments are different. In Environment A, the path advantage of DRAS results in
it playing a greater role, while in environment E, it relies more on the ability of DRAS to
successfully search in more complex environments.

Table 1. SFRT for NBC-RRT.

Environment A B C D E

p1 0.1 0.1 0.5 0.5 0.1
p2 0.9 0.2 0.6 0.9 0.9
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4.1. Performance Testing

The paths planned by the four algorithms in the four environments are shown in
Figure 10. The root points and the target points are represented by the blue squares and the
blue pentagrams, respectively. The growth trees are represented by the green lines, and
the obtained paths are indicated by the red lines. The smoothed paths are the blue lines. It
can be seen from Figure 10 that the RRT algorithm occupies a large search space. Although
RRT was able to obtain a feasible path, that path is long, and there are too many inflection
points. Compared with the RRT algorithm, the RRT* algorithm was able to plan a shorter
path. However, RRT* needed to be iterated continuously throughout the space, making it
difficult to balance the path cost and time consumption. The Bi-RRT algorithm reduced the
number of redundant points by using a two-way search, and was able to quickly find a
feasible path. However, there are many corners in the obtained path, which may lead to
the unstable operation of AGVs in real environments.

In contrast, the red solid line of the fourth image of each row represents the planning
results of the NCB-RRT algorithm proposed in this paper, and the blue solid line is the
smoothed path. Compared with the RRT, RRT* and Bi-RRT algorithms, the NCB-RRT
algorithm was able to effectively deal with a variety of environments with fewer iterations.
As shown in Figure 10a, the path obtained using the NCB-RRT algorithm has the fewest
path inflection points. It is not difficult to see from Figure 10b,c that the path obtained
using the NCB-RRT algorithm has the largest turning angle, causing the AGV to run more
smoothly in the multi-obstacle and concave–convex environments. In the narrow channel
environment shown in Figure 10d, the NCB-RRT algorithm can still obtain a feasible path
quickly. After optimizing the path using the segmented quadratic Bezier curve, the path
turning is smoother and more suitable for the AGV’s steering motion.

The average data of the four algorithms after being run 100 times on the simple
environment (Figure 10a), the multi-obstacle environment (Figure 10b), the concave–convex
environment (Figure 10c), and the narrow channel environment (Figure 10d) are shown in
Tables 2–5, respectively.

From Tables 2–5, it is evident that as the environment complexity increased, finding a
path became more challenging for the RRT and RRT* algorithms. The Bi-RRT algorithm
managed to find feasible paths in all four environments, but the path cost was higher
than RRT*. The NCB-RRT algorithm proposed in this paper is obviously superior to the
other algorithms. Firstly, the NCB-RRT algorithm can still be rapidly implemented in a
narrow channel environment due to the balanced growth strategy of the bidirectional tree.
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Secondly, the three-stage search strategy makes NCB-RRT better able to adapt to different
environments, improving the success rate of path finding. Thirdly, NCB-RRT achieves a
shorter path cost and fewer turns through the combination of the parent node re-selection
strategy and the triangle pruning strategy. The simulation results show that the search
ability of NCB-RRT is better than that of other algorithms. It is also notable that NCB-RRT is
able to balance performance indicators such as path cost, number of iterations, and number
of corners. Of these, corners are defined as places in the path where it is necessary to turn.
Compared with RRT, RRT*, and Bi-RRT, NCB-RRT acheives a reduction in path cost of
17.15–40.7%, a decrease in the number of corners by 66.11–94.18%, a decrease in the number
of iterations by up to 96.44%, and a reduction in time consumption of up to 92.54%.
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environment shown in Figure 10d, the NCB-RRT algorithm can still obtain a feasible path 

Figure 10. Path results of four algorithms in four environments. (a–d) Simple environment, multi-
obstacle environment, concave–convex environment and narrow channel environment, respectively.
In each row, the planning results obtained by the RRT, RRT*, Bi-RRT and NCB-RRT algorithms are
presented from left to right, respectively. The blue square is nstart, and the blue pentagram is ngoal.
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Table 2. Simulation data in environment A.

Algorithm Success Rate
(%)

Average Path
Length (cm)

Average
Running Time (s)

Average
Iterations

Average
Corners

RRT 100 830.3207 3.3379 310 41
RRT* 100 659.0076 9.4609 1000 19

Bi-RRT 100 725.4594 2.8425 85 38
NCB-RRT 100 492.3891 2.6257 36 3

Table 3. Simulation data in environment B.

Algorithm Success Rate
(%)

Average Path
Length (cm)

Average
Running Time (s)

Average
Iterations

Average
Corners

RRT 98 810.1111 3.5699 367 40
RRT* 100 658.5574 21.9250 1000 19

Bi-RRT 100 676.1681 2.9837 51 35
NCB-RRT 100 545.6007 3.0067 52 6

Table 4. Simulation data in environment C.

Algorithm Success Rate
(%)

Average Path
Length (cm)

Average
Running Time (s)

Average
Iterations

Average
Corners

RRT 21 818.5157 3.6746 723 41
RRT* 24 703.6255 8.7475 1000 22

Bi-RRT 100 722.3770 3.5743 569 38
NCB-RRT 100 547.1600 3.5157 346 7

Table 5. Simulation data in environment D.

Algorithm Success Rate
(%)

Average Path
Length (cm)

Average
Running Time (s)

Average
Iterations

Average
Corners

RRT 29 885.4526 8.0130 4567 45
RRT* 32 738.1071 78.4928 10,000 23

Bi-RRT 100 862.8697 8.8575 2002 46
NCB-RRT 100 526.0580 5.8575 1389 3

4.2. Simulation of a Real Warehouse Environment

Environment E is a simulation environment based on an actual warehouse. It consists
of a large barrier-free space, a highly uniform distribution of obstacles, and dense narrow
channels, making it more complex than environments A–D. As shown in Figure 11, the path
planned by the RRT algorithm has a large number of redundant nodes, and the path is not
stable. The RRT* algorithm starts to optimize the path after finding a feasible one. The path
obtained by RRT* cannot be effectively optimized, because of the large number of iterations
consumed during the search. The number of redundant nodes is greatly reduced in the
simulated path determined using the Bi-RRT algorithm, but the problems of the instability
of the path and the high cost still persist. The planning results of the algorithm proposed in
this paper are shown in Figure 11d. The path obtained by the NCB-RRT algorithm has the
least redundant points and path turns. After optimizing the path using a Bezier curve, the
corner of the path is smoother and more suitable for the steering motion of AGVs.
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Figure 11. Simulation path diagram in environment E. (a–d) Simulation results of RRT, RRT*, Bi-RRT
and NCB-RRT, respectively. The red line is the searched path, and the blue line is the smoothed path.
The blue square is nstart, and the blue pentagram is ngoal.

The average data obtained after 100 runs of the four algorithms are shown in Table 6.
The analysis presented in Table 6 shows that the path-finding success rate of the NBC-RRT
algorithm proposed in this paper was 11.11–2400% higher than that of the RRT, RRT* and Bi-
RRT algorithms, with the average path length being reduced by 13.89–16.83%, the average
in running time being decreased by 10.04–81.04%, the average number of iterations being
decreased by 18.59–71.85%, and the average number of inflection points being reduced by
93.2–93.58%.

Table 6. Simulation data in environment E.

Algorithm Success Rate
(%)

Average Path
Length (cm)

Average
Running Time (s)

Average
Iterations

Average
Corner

RRT 4 10,285.2113 58.6121 17,421 103
RRT* 5 10,034.2300 278.0813 30,000 109

Bi-RRT 90 10,388.9534 58.9138 10,374 106
NCB-RRT 100 8640.9002 52.7265 8445 7

Figure 12 shows the average performance of the four algorithms in five environments.
From Figure 12a–d, it can be seen that, compared with the RRT, RRT* and Bi-RRT algorithms,
the proposed algorithm achieved the shortest path and the smallest number of inflection
points in a variety of environments. At the same time, the NBC-RRT algorithm is able
to balance this performance against time consumption and number of iterations. It is
not difficult to see from Figure 12e that with increasingly complex environments, the gap
between the success rate of the algorithm proposed in this paper and the success rate of the
other algorithms gradually expands. The NCB-RRT algorithm can obtain better paths in
five environments, thus demonstrating the superiority of the NCB-RRT algorithm.
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Figure 12. The performance of each algorithm in five environments. (a–d) Average path length,
average time, average number of iterations and average number of corners of RRT, RRT*, Bi-RRT
and NCB-RRT, respectively; the lower the value, the better the performance. (e) Success rate of path
finding; the higher the value, the better the performance.

4.3. Discussion

A superior AGV trajectory will embody characteristics such as minimal path cost,
small numbers of corners, minimal time consumption, low number of iterations, and a
smooth route. The simulation results show that the balanced strategy helps NCB-RRT
solve the problem of tree growth being trapped in narrow channel environments. The
proposed balanced growth strategy reduces the consumption and number of iterations
of the algorithm. It is not difficult to see from Figure 12b,c that the NCB-RRT algorithm
has the lowest time consumption and number of iterations in each environment. The
analysis presented in Tables 2–6 shows that compared with Bi-RRT, the time consumption
overhead and number of iterations of the NCB-RRT algorithm are reduced by up to 93.4%
and 57.93%, respectively.
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The three-stage search strategy improves the success rate of NCB-RRT in narrow chan-
nel environments, and maintains its search advantage in other environments. The success
rate of NCB-RRT is the highest in each environment, as shown in Figure 12e. Compared
with the RRT, RRT* and Bi-RRT algorithms, the success rate of the algorithm proposed in
this paper represents and increase of up to 2400%, 1900% and 11.11%, respectively. The
introduction of the parent node re-selection strategy allows NCB-RRT to initially optimize
tree growth during the search process. By integrating the triangle construction strategy,
NCB-RRT is able to trim the path well both during and after the search process. The fusion
of the two methods solves the problems of there being too many path turns and too much
instability in the RRT algorithm. As seen in Figures 10 and 11, the paths obtained using
NCB-RRT have the fewest inflection points. The analysis presented in Tables 2–6 shows
that the number of corners using the proposed algorithm is much smaller than using the
other algorithms. Compared with the RRT, RRT* and Bi-RRT algorithms, the number of
corners obtained using the NCB-RRT algorithm represents a reduction by 94.18%, 93.75%
and 94.24%, respectively.

By optimizing the corners using a piecewise quadratic Bezier curve to make the path
smoother, the difficulty of the path obtained not being suitable for AGV operation is solved.
It can be seen from the blue lines in Figures 10 and 11 that the optimized paths allow
smoother transit at the corners, thus meeting the expected requirements.

It is not difficult to see from Figures 10 and 11 that the algorithm proposed in this
paper is able to find a better path in a narrow channel environment, while still having
good performance in other environments. However, compared with Bi-RRT, NCB-RRT
adds more strategies, which results in it having some weaknesses. It can be seen from
Table 3 that the running time of NCB-RRT is slightly higher than that of Bi-RRT in relatively
simple environments.

5. Conclusions

In this paper, the NCB-RRT algorithm with sampling SFRT was proposed to solve the
path planning problem for AGVs in narrow channels. Firstly, two alternating random trees
were established using the balance strategy to search for new nodes. Then, we designed a
three-stage search strategy to improve the quality of the sampling points. The new search
method demonstrated a higher success rate and a greater adaptability than the RRT, RRT*
and Bi-RRT algorithms in an actual warehouse environment with narrow channels. Next,
we added the parent node re-selection strategy following the generation of new nodes,
and the path pruning strategy was performed after the generation of the initial path. The
problems of faced by the RRT and RRT* algorithms of having too many redundant nodes,
too many iterations and excessive path length were solved by the integrated path pruning
strategy. Finally, the segmented quadratic Bezier curve was used to further optimize the
path, so that the path corner was smooth and more in line with the driving requirements of
the AGV. The simulation results showed that the proposed algorithm is able to effectively
reduce the path cost and improve the search efficiency through complex narrow channel
environments. However, this algorithm only takes the path planning of a single AGV into
consideration. In actual storage application, increasing numbers of collaborating AGVs are
required for transportation, and this will be the next topic to be studied.
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