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Abstract: Mobile sensors can extend the range of monitoring and overcome static sensors’ limitations
and are increasingly used in real-life applications. Since there can be significant errors in mobile
sensor localization using the Monte Carlo Localization (MCL), this paper improves the food digestion
algorithm (FDA). This paper applies the improved algorithm to the mobile sensor localization
problem to reduce localization errors and improve localization accuracy. Firstly, this paper proposes
three inter-group communication strategies to speed up the convergence of the algorithm based on
the topology that exists between groups. Finally, the improved algorithm is applied to the mobile
sensor localization problem, reducing the localization error and achieving good localization results.

Keywords: food digestion algorithm; parallel strategy; compact strategy; mobile sensors;
Monte Carlo Localization

1. Introduction

Metaheuristic algorithms play a huge role in many fields, such as UAV [1–3], digital
watermarking [4], engineering design [5], unit commitment [6], image processing [7–9],
intrusion detection systems [10], feature selection [11], multi-robot exploration [12], wireless
sensor networks [13–15], scheduling problems [16,17], etc.

Although metaheuristics are excellent at solving problems with real-world applica-
tions, they are not a panacea, and, as mentioned in the No Free Lunch Theorem [18],
each optimization algorithm may be good at solving different problems. Therefore, re-
searchers are constantly exploring new optimization algorithms. For example, Holland
proposed the Genetic Algorithm (GA) in 1975 based on Darwinian evolutionary theory [19].
Dorigo et al. proposed the Ant Colony Optimization (ACO) in 1992 [20]. Storn et al. pro-
posed Differential Evolution (DE) in 1995 [21]. Kennedy and Eberhart proposed the Particle
Swarm Optimization (PSO) algorithm in 1995 [22]. Karaboga et al. proposed the Artificial
Bee Colony algorithm (ABC) in 2005 [23]. Yang et al. proposed the Cuckoo Search (CS)
in 2009 [24]. Rashedi et al. proposed the Gravitational Search Algorithm in 2009 [25].
Yang et al. proposed the Bat Algorithm (BA) in 2010 [26]. Mirjalili et al. proposed the
Grey Wolf Optimizer (GWO) in 2014 [27]. Mirjalili et al. proposed the Sine Cosine Algo-
rithm(SCA) in 2016 [28]. Abualigah et al. proposed the Aquila Optimizer (AO) in 2021 [29].
Song et al. proposed the Phasmatodea Population Evolution algorithm (PPE) in 2021 [30].
Pan et al. proposed the Gannet Optimization Algorithm (GOA) in 2022 [31].
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Numerous researchers have dedicated their efforts to enhancing the performance of
metaheuristic algorithms. Among the various approaches, parallel and compact strategies
have gained significant attention due to their simplicity and effectiveness. The parallel
strategy emphasizes the grouping of populations, facilitating the exchange of information
between groups to accelerate the algorithm’s convergence and enhance its ability to discover
optimal solutions accurately. On the other hand, the compact strategy involves mapping the
population onto a probabilistic model and performing operations on the entire population
through manipulations of this model. This approach offers notable benefits such as reduced
computational time and memory usage. In this study, we propose a novel approach that
combines both parallel and compact strategies to enhance the performance of the food
digestion algorithm. We expect that this integrated methodology will effectively enhance
the algorithm’s ability to seek optimal solutions in the optimization process, leading to
improved outcomes.

Numerous researchers have combined these two strategies to improve metaheuristic
algorithms. In reference [32], the authors combine the parallel and compact strategies to
enhance DE and utilize the enhanced algorithm for image segmentation, yielding superior
outcomes. In reference [33], the authors initially introduce six enhancements to the compact
strategy CS, subsequently selecting the algorithm with the most favorable results and
incorporating the parallel strategy. Ultimately, the authors apply the improved algorithm
to underwater robot path planning, which yields promising results.

Wireless sensor networks (WSNs) are self-organized communication systems con-
sisting of multiple nodes that enable the monitoring of specific areas through multi-hop
communication. In a static WSN, the nodes are randomly distributed and their locations
remain fixed once determined. However, in practical environments, mobile sensor nodes
are in greater demand. For instance, in target tracking applications, real-time positioning
of moving targets is essential [34,35]. The mobility of sensor nodes allows for an extended
monitoring range, overcoming coverage gaps that may occur due to the failure of static
nodes. Furthermore, the movement of nodes enables the network to discover and observe
events more effectively, while also enhancing the communication quality among the sensor
nodes [36]. Despite the importance of mobile node localization, there is a relative scarcity
of research in this area. Most localization methods developed for static sensor nodes are
unsuitable for the mobile sensor localization problem, making the study of mobile sensor
localization a current research focal point [37]. Additionally, the study of outdoor mobile
sensors holds particular significance due to the complex and ever-changing nature of the
outdoor environment.

Based on the above reasons, this paper uses parallel and compact strategies to improve
the food digestion algorithm and apply it to the outdoor mobile sensor localization problem.
Section 2 mainly introduces the food digestion algorithm and mobile sensor localization
techniques. Section 3 mainly introduces the implementation of the Parallel Compact Food
Digestion Algorithm (PCFDA). Section 4 tests the performance of PCFDA. Section 5 uses
PCFDA to optimize the error in mobile sensor localization. Section 6 gives the conclusion
of this paper.

2. Related Works

This section mainly introduces the food digestion algorithm and the mobile sensor
localization problem.

2.1. Food Digestion Algorithm

The food digestion algorithm mainly covers the process of food digestion in the mouth,
stomach, and small intestine. This section describes the modeling processes in these three
sites in detail.
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2.1.1. Digestion in the Oral Cavity

The digestion of food in the mouth involves both physical and chemical digestion. The
process of physical digestion mainly consists of the action of forces, which are represented
as follows:

F1 = 2 ∗ (− arctan(iter ∗ a/Max−iter− a)) (1)

F1−d = 2 ∗ F1 ∗ rand− F1 (2)

F1 denotes the force on the food in the mouth, iter denotes the current number of
iterations, Max−iter denotes the maximum number of iterations, and a is used to adjust
the size of F1, which has a value of 1.5574. F1−d denotes forces with different sizes and
directions, where rand is a random value in the range [0, 1].

The chemical digestion of food in the mouth is dominated by the digestion of starch by
salivary amylase, and, considering the effect of substrate concentration on the enzymatic
reaction, the modeling process is as follows:

Em(i) =

{
1 i f r(i) > (D/2), r = randperm(D)
0 else i = 1, 2 . . . D (3)

V = (Vmax ∗ S)/(Km + S) (4)

S = sin(rand ∗ π) (5)

Em denotes the enzyme in the oral cavity, randomly setting half of the dimension
values to 0 and the other half to 1. r = randperm(D) denotes that the values of the D
dimensions are randomly scrambled. Equation (4) is the Mie equation, which reflects the
relationship between substrate concentration and reaction rate [38]. V represents the rate
of the enzymatic reaction, Vmax represents the maximum reaction rate, and its value is 2. S
represents the substrate concentration, and we express it as a sine function, represented
by Equation (5), where rand is a number in the range [0,1]. π represents the mathematical
constant pi. Km is a characteristic constant of the enzyme, and in the oral cavity, the value
of Km is 0.8. Therefore, the particle update equation in the oral cavity is as follows:

Foodt+1
i =Foodt

k + F1−d ∗
(

C1 ∗ Best−p− Foodt
i

)
+ C1 ∗ Em ∗

(
Foodt

i − C2 ∗ Foodt
R

)
∗V (6)

k = randi(N) (7)

R = randi
(

ceil
(
(N/3) ∗ e−iter∗b/Max−iter

))
(8)

Foodt+1
i denotes the ith particle at generation t + 1. Foodt

k denotes the kth particle at
generation t. k is a randomly selected particle from among N particles. Foodt

R denotes
the Rth particle of the tth generation, and R is chosen as shown in Equation (8). b is a
constant which has a value of 1.5. Foodt

i denotes the ith particle of the tth generation.
Best−p represents the global optimal value. C1 and C2 are two random numbers that
change with the number of iterations. ceil denotes rounding to positive infinity, and randi
is a random rounding function.

2.1.2. Digestion in the Stomach

The digestion of food in the stomach also involves two processes: physical and
chemical digestion. Physical digestion is primarily governed by the forces generated by
the contraction and diastole of the stomach as well as peristalsis. The forces are expressed
as follows:

F2 = 2 ∗ (1− (iter/Max−iter)) (9)

F2−d = 2 ∗ F2 ∗ rand− F2 (10)
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F2 represents the force on the food in the stomach. F2−d represents a directed force,
which takes values in the range [−2, 2]. The chemical digestion modeling process in the
stomach is similar to that in the oral cavity. The difference is that different enzymes Em
and different characteristic constants Km are selected for each iteration. In the stomach, the
value of Km is 0.9. Therefore, the particle update equation in the stomach is as follows:

Foodt+1
i =Foodt+1

m + F2−d ∗
(

Foodt
i − C1 ∗ Foodt+1

m

)
+ C1 ∗ Em ∗

(
Foodt+1

m −Mean
)
∗V (11)

Mean =
1
N

(
N/3

∑
i=1

Foodt+1
i +

N

∑
i=N/3

Foodt
i

)
(12)

Foodt+1
m =

{
Foodt+1

m

Best−p +
(

C1 ∗ Best−p− Foodt+1
m

) (13)

Foodt+1
m selects particles according to Equation (13). If the optimal fitness value of

the first one-third of the updated particles is less than the global optimum, then we select
this particle. Otherwise, we perturb the globally optimal particle and select the perturbed
particle. Therefore, its selection condition is i f min

(
f itnesst+1

i

)
< Best−p, i ∈ (1, N/3).

Mean is calculated according to Equation (12).

2.1.3. Digestion in the Small Intestine

The digestion of food in the small intestine also involves two processes: physical
and chemical digestion. Physical digestion is primarily governed by forces generated by
peristalsis of the small intestine, which is expressed as follows:

F3 = 2 ∗ (− arctan(iter ∗ a/Max−iter) + a1) (14)

F3−d = 2 ∗ F3 ∗ rand− F3 (15)

F3 represents the force on the food in the small intestine. a is a constant that has a
value of 1.5574. a1 is used to regulate the magnitude of the force, which has a value of 1.
F3−d represents a directed force, which is a random value in the range [−2, 2]. Thus, the
equation for particles updated in the small intestine is as in Equation (16).

Foodt+1
i = Best−p + F3−d ∗

(
Foodt

i − C1 ∗ Foodt+1
n

)
+ C1 ∗ Em ∗ Levy(D) ∗V (16)

Foodt+1
n =

{
Foodt+1

n

Best−p +
(

C1∗Best−p− Foodt+1
n

) (17)

The judgment condition for Foodt+1
n is i f min

(
f itnesst+1

i

)
< Best−p, i ∈ (N/3, N ∗

(2/3)), which is calculated from Equation (17). Levy(D) denotes Lévy flight, which is
calculated as follows:

Levy(D) = 0.01 ∗ µ ∗ δ

|v|
1
β

(18)

δ =

Γ(1 + β) ∗ sin( β∗π
2 )

Γ( 1+β
2 ) ∗ β ∗ 2

β−1
2

 1
β

(19)

µ and δ are random numbers in the range [0, 1], and β is a constant whose value is 1.5.
The food digestion algorithm simulates the process of food digestion in the three

main digestive sites in the human body to construct the particle optimization process.
In the oral cavity, particles always follow a random particle to update their positions,
which promotes the diversity of particles. As the number of iterations increases, particles
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gradually select particles with better fitness values to update their positions. This selection
enhances population diversity in the early iterations and facilitates rapid convergence in
later stages.

In the stomach, particles follow the optimal particles from the previous site or particles
after perturbation to update their positions. This accelerates the convergence process.
Additionally, particles follow the average particles to update their positions, promoting
particle diversity and preventing them from getting trapped in local optima.

In the small intestine, particles update their positions after the global optimum, en-
abling quick convergence. Furthermore, particles update their positions using the Lévy
flight strategy, which helps avoid falling into local optima.

Algorithm 1 provides a detailed description of the FDA.

Algorithm 1 Food Digestion Algorithm.

Output: Population size N; Dimension D; Maximum number of iterations Max−iter;
Lower boundary lb; Upper boundary ub;

Input: Global optimal position Best−p, Global optimal fitness value Best− f ;
1: Initialize populations and calculate their fitness values;
2: Record the optimum global position Best−p;
3: Initialize the parameters a, b, a1, Vmax, Km;
4: while iter < Max−iter do
5: Backup the initialized populations and their fitness values;
6: Calculate the values of F1, F2, and F3 according to Equations (1), (9) and (14);
7: Calculate the value of R according to Equation (8);
8: Calculate the values of C1 and C2;
9: for i = 1 : N do

10: Calculate the values of Em and S according to Equations (3) and (5);
11: if i <= N/3 then
12: Calculate the values of F1−d and V according to Equations (2) and (4);
13: Update the particle according to Equation (6);
14: Calculate the fitness value of the particle;
15: if i == N/3 then
16: Find the minimum fitness value in the oral cavity f itnessm;
17: Update the particle according to Equation (13);
18: end if
19: end if
20: if i > N/3 and i <= 2 ∗ N/3 then
21: Calculate the values of F2−d, V, and Mean according to Equations (4), (10) and

(12);
22: Update the particle according to Equation (11);
23: Calculate the fitness value of the particle;
24: if i == 2 ∗ N/3 then
25: Find the minimum fitness value in the stomach f itnessn;
26: Update the particle according to Equation (17);
27: end if
28: end if
29: if i > 2 ∗ N/3 then
30: Calculate the values of F3−d and V according to Equations (15) and (4);
31: Update the particle according to Equation (16);
32: Calculate the fitness value of the particle;
33: end if
34: end for
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Algorithm 1 Cont.

35: for i = 1 : N do
36: if The historical optimal fitness value of the particle < Updated particle optimal

fitness value then
37: Replace the updated particle position and fitness value with the particles’ opti-

mal historical position and fitness value;
38: end if
39: end for
40: Backup of the particle’s historical optimal position and its fitness value;
41: Update optimal global position and optimal global value;
42: iter = iter + 1;
43: end while

2.2. Mobile Sensor Localization Problem

This section introduces a localization method called Monte Carlo Localization (MCL)
for mobile sensor networks, as described in references [39,40]. In wireless sensor networks,
Monte Carlo localization methods typically involve fixed anchor nodes. These anchor
nodes serve as reference points in the localization algorithm, and their positions are known
in advance and remain unchanged over time. During the localization process, anchor nodes
send signals to the mobile node and receive signals back from it, aiding in determining the
mobile node’s position.

The Monte Carlo localization method is a probabilistic and statistical-based algorithm
used to estimate the location of a mobile node through multiple random simulations. It
calculates the position of the mobile node using measurements such as received signal
strength, arrival time, or other relevant data. The algorithm relies on important parameters,
among which the pre-known position of the anchor node plays a crucial role.

In Monte Carlo localization methods, the use of multiple fixed anchor nodes enables
the provision of additional measurements for estimating the position of the mobile node.
This, in turn, improves the accuracy of the localization process. The fixed positions of
the anchor nodes, along with reliable measurement data, form the foundation for the
effectiveness of the Monte Carlo localization method in achieving accurate localization.

The MCL (Monte Carlo Localization) method consists of three main phases: initial-
ization, prediction, and filtering [41]. In the initialization phase, each node is assigned
motion regions and maximum motion speeds. During the prediction phase, a preliminary
estimate of the mobile node’s location is calculated. This estimate corresponds to a circular
region, where the last known position of the node serves as the center, and the product of
the velocity and positioning interval time determines the radius. Figure 1 illustrates the
execution flow of the MCL algorithm.

The filtering phase plays a crucial role in MCL. Initially, MCL calculates the set of
single-hop beacon nodes, denoted as S1, and the set of two-hop beacon nodes, denoted
as S2, based on their distances to other nodes. Subsequently, MCL randomly selects
points within the feasible region and checks if they belong to the set of unknown nodes
by verifying if they fall within the range of either single-hop or two-hop beacon nodes.
Specifically, a selected point is classified as an unknown node if its nearest anchor is within
the range of S1, or if both its closest and next closest anchors fall within the range of S2.
Points that fail to satisfy these criteria are filtered out. The filtering condition is expressed
in Equation (20).

f iler(node) = (∀s1 ∈ S1, distence(node, s1) ≤ R) ∪ (∀s2 ∈ S2, R ≤ distence(node, s2) ≤ 2R) (20)
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Figure 1. Flowchart of the MCL algorithm.

As shown in Figure 2, the unknown node L senses the information of the surrounding
anchor nodes at the moment t, where S1 is its one-hop anchor node and S2 is its two-hop
anchor node, and the estimated coordinate sample of the unknown node L is a valid sample
only if it satisfies the filter condition that the distance from S1 is less than R and the distance
from S2 is between R and 2R, Lt in the figure meets the filter condition, and is retained as a
reasonable sample particle.

Figure 2. Filtering stage.
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After the filtering phase, numerous sample particles’ coordinates are eliminated,
resulting in an insufficient number of sample sets. Hence, the prediction and filtering
phases are iteratively executed until an adequately high number of samples remain in the
sample set. Eventually, the arithmetic mean of the sample coordinates is calculated, serving
as an estimation for the final node coordinates, thereby concluding the localization at the
current moment. Equation (21) was employed to estimate the locations of the unknown
nodes based on the filtered reference points.

Position(s) =

(
N

∑
i=1

nodei

)
/N (21)

3. Enhanced Food Digestion Algorithm

This section introduces three intergroup communication strategies and proposes a
concise approach to enhance the food digestion algorithm.

3.1. Design of Parallel Strategies

This section proposes three parallel strategies to speed up the convergence of the
algorithm and to improve the algorithm’s optimization finding accuracy. These three
parallel strategies use different topologies. Their topologies are shown in Figure 3.

Figure 3. Three topologies.

The first parallelization strategy uses a star topology. First, we choose one group as
the central group and the others as subgroups. Particles in the central group exchange
information with particles in the subgroups, and there is no communication between
subgroups. The pseudo-code for the algorithm is shown in Algorithm 2.

The second parallel strategy uses a unidirectional ring topology. The structure allows
only subgroups to communicate with their neighboring side, and the side that each group
chooses to communicate with is in the same direction in the ring structure. Algorithm 3
shows the details of the communication strategy.
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Algorithm 2 Parallel strategy for star topology.

1: Calculate the average position of the first three groups of optimal particles and their
fitness values;

2: if The fitness value of the average position < The fitness value of the optimal particle
in the central group then

3: Replace the position of the central group of optimal particles and its fitness value
with the average position and its fitness value;

4: end if
5: Perturbing the central group of optimal particles and calculating its fitness value;
6: if Particle fitness values after perturbation < The fitness value of the first group of

optimal particles then
7: Replace the position of the first group of optimal particles and its fitness value with

the position of the perturbed particle and its fitness value
8: end if
9: if Particle fitness values after perturbation < The fitness value of the second group of

optimal particles then
10: Replace the position of the second group of optimal particles and its fitness value

with the position of the perturbed particle and its fitness value
11: end if
12: if Particle fitness values after perturbation < The fitness value of the third group of

optimal particles then
13: Replace the position of the third group of optimal particles and its fitness value with

the position of the perturbed particle and its fitness value
14: end if

Algorithm 3 Parallel strategy for unidirectional ring topology.

1: for g = 1 : 4 do
2: Use g + 1 to find the remainder of 4 and record the remainder as sg
3: if sg == 0 then
4: sg = 4
5: end if
6: if The fitness value of the optimal particle in group g > The fitness value of the

optimal particle in group sg then
7: Replace the optimal particle position and its fitness value of group g with the

optimal particle position and its fitness value of group sg
8: else
9: Disturb the optimal particle of group g and calculate its fitness value

10: end if
11: if Particle fitness value after perturbed < The optimal particle fitness value of group

g then
12: Use the perturbed particle position and its fitness value to replace the optimal

particle position and its fitness value of group g
13: end if
14: end for

The third parallel strategy uses a bi-directional ring topology. The structure allows
subgroups to exchange information with their neighboring groups, and in a ring structure,
subgroups exchange information in a specific direction. Implementation details are given
in Algorithm 4.



Sensors 2023, 23, 7508 10 of 24

Algorithm 4 Parallel strategy for bi-directional ring topology.

1: for g = 1 : 4 do
2: Use g + 1 to find the remainder of 4 and record the remainder as sg
3: Use g− 1 to find the remainder of 4 and record the remainder as vg
4: if sg == 0 then
5: sg = 4
6: end if
7: if vg == 0 then
8: vg = 4
9: end if

10: Calculate the average position of the optimal particle in group sg and group vg and
its fitness value

11: if The fitness value of the average position < The fitness value of the optimal particle
in group g then

12: Replace the position of the optimal particle in group g and its fitness value using
the average position and its fitness value

13: end if
14: end for

3.2. Design of Compact Strategy

This section describes the principles of the compact mechanism and the detailed
process for improving the food digestion algorithm using the compact mechanism.

3.2.1. Principles Of The Compact Mechanism

The Distribution Estimation Algorithm (EDA) is a method based on probabilistic mod-
els [42]. It maps the population into a probability model and realizes the operation of the
population by operating the probability model [43]. Compact algorithms are a type of EDA.
It dramatically reduces the use of memory space and speeds up the algorithm’s operation
by using a probabilistic model to characterize the distribution of the entire population. The
compact algorithm uses a virtual population instead of the actual population. This virtual
population is encoded in a PV vector. It is an N ×2 matrix in compact differential evolution
(CDE) [43] and real-valued compact genetic algorithms (RCGAs) [44].

PV =
[
µt, δt] (22)

µ and δ denote the mean and standard deviation of the PV, respectively, and t denotes
the current number of iterations. Each pair of mean and standard deviation in PV corre-
sponds to the corresponding Probability Density Function (PDF), which is truncated at
[−1, 1] and normalizes the amplitude area to 1 [45]. The calculation of PDF is given by
Equation (23).

PDF(turncNorm(x)) =

√
2
π e
− (x−µi)

2

2δ2
i

δi

(
er f
(

µi+1√
2δi

)
− er f

(
µi−1√

2δi

)) (23)

er f is the error function. By constructing Chebyshev polynomials, PDF can correspond
to a Cumulative Distribution Function (CDF) with values ranging from 0 to 1 [46,47]. CDF
is calculated as shown in Equation (24):

CDF =
∫ x

−1
PDF dx =

∫ x

−1

√
2
π e
− (x−µi)

2

2δ2
i

δi

(
er f
(

µi+1√
2δi

)
− er f

(
µi−1√

2δi

))dx (24)
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In Equation (24), x takes values in the range [−1, 1]. The function CDF can be
expressed as Equation (25):

CDF =
er f
(

µ+1√
2δ

)
+ er f

(
x−µ√

2δ

)
er f
(

µ+1√
2δ

)
− er f

(
µ−1√

2δ

) (25)

CDF returns the value in the range [0, 1].
The process of sampling the design variable Xi from the PV vector is to first generate

a random number R from a uniform distribution and then calculate its corresponding
inverse function of CDF to obtain a new value. This newly generated value is compared
with another value, with the one with the better fitness value being the winner and the
one with the worse fitness value being the loser, both of which are retained for updating
the PV vector. The updated equations of mean and standard deviation are shown in
Equations (26) and (27).

µt+1
i = µt

i +
1
N
(winneri − loseri) (26)

δt+1
i =

√(
δt

i
)2

+
(
µt

i
)2 −

(
µt+1

i

)2
+

1
Np

(
winner2

i − loser2
i

)
(27)

Np denotes the size of the virtual population, which is a typical parameter of compact
algorithms, and the size of this parameter is usually several times the size of the actual
population [44].

3.2.2. Compact Food Digestion Algorithm

Compact algorithms reduce memory space usage and speed up algorithms, but they
reduce population diversity and tend to fall into local optima. A solution is generated by
sampling from the probabilistic model during each iteration to solve this problem. Then
three solutions are generated using the sampled solutions in conjunction with the character-
istics of the FDA algorithm. These three solutions are generated using the particle update
formulae in the oral cavity, stomach, and small intestine. Since the extent of the sampling
space is not the same as the actual space, it is essential to map the generated solution Foodt

1
to the actual computational space once it has been sampled in the probabilistic model, and
we use Equation (28) to complete this process.

Foodt
1 =

Foodt
1 ∗ (ub− lb)

2
− ub + lb

2
(28)

ub and lb are the maximum and minimum bounds on the actual space, respectively.
The updated equation for the three solutions is given by Equations (29)–(31).

Foodt
2 =Foodt

1 + F1−d ∗
(

C1 ∗ Best−p− Foodt
1

)
+ C1 ∗ Em ∗

(
Foodt

1 − C2 ∗ group(g).Best−p
)
∗V (29)

Foodt
3 =Foodt

2 + F2−d ∗
(

Foodt
1 − C1 ∗ Foodt

2

)
+ C1 ∗ Em ∗

(
Foodt

2 −Mean
)
∗V (30)

Foodt
4 =Best−p + F3−d ∗

(
Foodt

2 − C1 ∗ Foodt
3

)
+ C1 ∗ Em ∗ Levy(D) ∗V (31)

Foodt
2 is the particle generated using the particle update equation in the oral cavity,

where Foodt
1 is the particle generated by sampling from the probabilistic model, Best−p is

the optimal global particle, and group(g).Best−p is the optimal particle of the gth group.
Foodt

3 is the particle generated using the particle update equation in the stomach, and Mean
is the particle obtained by averaging Foodt

1 and Foodt
2. Foodt

4 is the particle generated using
the particle update equation in the small intestine. The meaning of the other variables in



Sensors 2023, 23, 7508 12 of 24

these three equations is the same as in the FDA in Section 2. The pseudo-code of the FDA
algorithm for the parallel compact strategy is shown in Algorithm 5.

Algorithm 5 Parallel Compact Food Digestion Algorithm.

Output: Population size Np; Dimension D; Maximum number of iterations Max−iter;
Lower boundary lb; Upper boundary ub;

Input: Global optimal position Best−p, Global optimal fitness value Best− f ;
1: Initialize the parameters a, b, a1, Km, Vmax, iter and the number of groups groups as well

as the mean and standard deviation µ and δ for each group;
2: while iter < Max−iter do
3: for i = 1 : groups do
4: Sampling generates particles Foodt

1 and calculates their fitness values;
5: Calculate the values of F1, F2, F3, C1, C2, Em and S;
6: Calculate the values of F1−d and V;
7: Update the particle to get Foodt

2 and calculate its fitness value;
8: Calculate the values of F2−d and V;
9: Update the particle to get Foodt

3 and calculate its fitness value;
10: Calculate the values of F3−d and V;
11: Update the particle to get Foodt

4 and calculate its fitness value;
12: Find the particle with the best and worst fitness value among the four particles,

denoted as winner and loser;
13: Use winner and loser to update PV;
14: end for
15: Intergroup communication using parallel strategies;
16: Find the global optimal solution Best−p and its fitness value Best− f ;
17: iter = iter + 1;
18: end while

4. Numerical Experimental Results and Analysis

This section not only compares the PCFDA with the original FDA but also compares
it with the PCSCA [28]. In reference [28], the authors propose three strategies for parallel
communication, which apply to solving single-peak, multi-peak, and mixed-function
problems. This section verifies the effectiveness of PCFDA by comparing it with them.

4.1. Parameter Settings

In this section, experiments are conducted using a Lenovo computer manufactured in
Shanghai, China, equipped with an Intel(R) Core(TM) i3-8100 CPU at 3.60 GHz, 24 GB of
RAM, a 64-bit Windows 10 operating system, and MATLAB2018a.

This section uses the CEC2013 test set for test experiments. The test set consists of
28 test functions, including five unimodal, fifteen multimodal, and eight mixed functions.
Unimodal functions have only one global optimal solution and are used to test the ability of
the algorithm to develop. Multimodal functions have multiple local optimal solutions and
are mainly used to test the ability of the algorithm to escape from local optimal solutions.
Mixed functions are extremely complex, they have the characteristics of both single-peak
and multi-peak functions, and can test both the development ability of the algorithm and
the ability of the algorithm to escape from the local optimal solution, which is the function
that can best reflect the ability of the algorithm to solve complex problems. Using these
three types of function tests to test the metaheuristic algorithm can effectively assess the
performance and reliability of the algorithm and improve the practical application value of
the algorithm.

To ensure the experiments’ fairness and reduce the effect of algorithmic instability, we
let all algorithms run ten times on 28 test functions for 1000 iterations. Finally, the mean
and standard deviation of their runs on each function are compared. The dimension of
each particle is set to 30, and the range of the particle search is in the range [−100, 100]. The
number of groups in the algorithm is set to 4, and the initial mean and standard deviation
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values are set to 0 and 10. The number of particles in the FDA is set to 20. Km has three
different values that indicate the three characteristic constant values of the algorithm in the
oral cavity, stomach, and small intestine, which have values of 0.8, 0.9, and 1, respectively.
The parameter settings of PCSCA follow the original paper, and its three algorithms are
denoted by PCSCAS1, PCSCAS2, and PCSCAS3, respectively. For the experiments in this
section, we use PCFDA1, PCFDA2, and PCFDA3 to represent the enhanced FDA using
Algorithms 2–4.

4.2. Comparison with the Original FDA

In this section, we use PCFDA to compare with the original FDA, mainly comparing
the mean and standard deviation of their runs on each function as well as the time cost
and memory usage of their runs to determine the performance of PCFDA. The mean and
standard deviation comparison results are shown in Tables 1 and 2.

In Tables 1 and 2, the data in the last row indicate the number of PCFDAs better than
the FDA. On the Unimodal functions f1–f5, PCFDA1 has a better searching ability on the
first three functions and is more stable on f2 and f3. On the Multimodal functions f6-f20,
all the algorithms have good searchability and stability on f8 and f20. PCFDA3’s search
ability is poor on Multimodal functions. FDA and PCFDA2, and PCFDA3 outperformed on
different Multimodal functions with comparable performance. On the Mixed functions f21-
f28, PCFDA2 has better searchability and stability on four functions, while PCFDA3 only
performs better on f26. Overall, PCFDA1 and PCFDA2 are comparable to the original FDA
regarding merit-seeking ability but are more stable than the FDA. PCFDA3 has improved
performance on a few functions, but overall performance is not as good as the FDA.

Table 1. The average of the running results of the improved FDA and the original FDA.

Functions FDA PCFDA1 PCFDA2 PCFDA3

f1 −4.61× 102 −4.63× 102 −4.63× 102 −4.63× 102

f2 1.30× 107 9.94× 106 1.35× 107 1.24× 107

f3 4.51× 109 3.02× 109 3.17× 109 3.35× 109

f4 1.43× 104 1.66× 104 1.61× 104 1.75× 104

f5 −3.17× 102 −3.07× 102 −3.08× 102 −3.01× 102

f6 −2.61× 102 −2.58× 102 −2.73× 102 −2.58× 102

f7 −2.13× 102 −2.13× 102 −2.02× 102 −2.15× 102

f8 −2.26× 102 −2.26× 102 −2.26× 102 −2.26× 102

f9 −1.90× 102 −1.89× 102 −1.89× 102 −1.88× 102

f10 −1.50× 102 −1.49× 102 −1.56× 102 −1.46× 102

f11 −3.99× 101 −2.70× 101 −3.49× 101 −3.82× 101

f12 1.58× 101 3.38× 100 9.36× 100 1.95× 101

f13 5.86× 101 4.52× 101 5.02× 101 5.95× 101

f14 1.35× 103 1.69× 103 1.66× 103 1.41× 103

f15 1.63× 103 1.81× 103 1.75× 103 1.93× 103

f16 6.75× 101 6.76× 101 6.74× 101 6.75× 101

f17 2.30× 102 2.09× 102 2.15× 102 2.26× 102

f18 2.59× 102 2.56× 102 2.55× 102 2.56× 102

f19 1.77× 102 1.76× 102 1.75× 102 1.76× 102

f20 2.05× 102 2.05× 102 2.05× 102 2.05× 102

f21 3.60× 102 3.63× 102 3.55× 102 3.51× 102

f22 1.78× 103 2.00× 103 2.19× 103 2.05× 103

f23 2.33× 103 2.46× 103 2.31× 103 2.40× 103

f24 4.36× 102 4.34× 102 4.31× 102 4.34× 102

f25 4.77× 102 4.69× 102 4.67× 102 4.73× 102

f26 4.67× 102 4.67× 102 4.73× 102 4.67× 102

f27 8.44× 102 8.38× 102 8.22× 102 8.45× 102

f28 1.51× 103 8.20× 102 9.33× 102 1.26× 103

win 14 16 12
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Table 2. The standard deviation of the running results of the improved FDA and the original FDA.

Functions FDA PCFDA1 PCFDA2 PCFDA3

f1 6.63× 102 6.67× 102 6.65× 102 6.67× 102

f2 1.98× 107 1.57× 107 2.19× 107 2.04× 107

f3 7.67× 109 5.02× 109 5.14× 109 6.21× 109

f4 2.07× 104 2.46× 104 2.38× 104 2.53× 104

f5 4.56× 102 4.42× 102 4.43× 102 4.33× 102

f6 3.76× 102 3.73× 102 3.94× 102 3.72× 102

f7 3.07× 102 3.07× 102 2.92× 102 3.10× 102

f8 3.26× 102 3.26× 102 3.26× 102 3.26× 102

f9 2.73× 102 2.71× 102 2.72× 102 2.71× 102

f10 2.16× 102 2.15× 102 2.25× 102 2.10× 102

f11 7.51× 101 4.99× 101 6.29× 101 7.90× 101

f12 4.34× 101 4.03× 101 2.85× 101 5.50× 101

f13 9.32× 101 7.37× 101 7.81× 101 9.82× 101

f14 2.00× 103 2.51× 103 2.47× 103 2.08× 103

f15 2.36× 103 2.66× 103 2.56× 103 2.81× 103

f16 9.71× 101 9.72× 101 9.70× 101 9.71× 101

f17 3.33× 102 3.02× 102 3.10× 102 3.27× 102

F18 3.74× 102 3.70× 102 3.68× 102 3.70× 102

f19 2.55× 102 2.53× 102 2.51× 102 2.53× 102

f20 2.95× 102 2.95× 102 2.95× 102 2.95× 102

f21 5.19× 102 5.23× 102 5.13× 102 5.07× 102

f22 2.59× 103 2.91× 103 3.19× 103 3.00× 103

f23 3.37× 103 3.60× 103 3.34× 103 3.48× 103

f24 6.28× 102 6.25× 102 6.20× 102 6.24× 102

f25 6.86× 102 6.75× 102 6.72× 102 6.80× 102

f26 6.72× 102 6.72× 102 6.81× 102 6.72× 102

f27 1.21× 103 1.21× 103 1.18× 103 1.22× 103

f28 2.19× 103 1.46× 103 1.55× 103 1.97× 103

win 18 18 14

In order to statistically verify the effectiveness of the improved algorithm, this paper
uses the Wilkerson rank sum test to verify the significant difference between the improved
algorithm and the original algorithm. The significance level alpha is set to 0.05. Table 3
displays the p-values for the comparison results. The data with p-values less than 0.05
are highlighted in red. From the data in the table, it can be observed that the improved
algorithm holds a significant advantage.

Improving the algorithms using compact strategies is more concerned with the time
cost and the memory footprint size. Table 4 shows the time loss and memory usage for
each algorithm.

In Table 4, the average running time indicates the average time to run each algorithm
10 times on 28 functions, the memory usage indicates the memory space occupied by each
particle in each algorithm, the ∗ is used as a multiplication sign, and D indicates the particle
dimension. (20 + 1) ∗ D denotes the memory occupied by the 20 particles in the FDA
and one globally optimal particle. In the last three columns of Table 4, (2 ∗ 4) ∗ D denotes
the memory occupied by µ and δ in the four groups. The following two 4s represent
the memory occupied by the four particles obtained from each update (including one
sampled particle and three generated particles) and the optimal particle in the four groups,
respectively. The last 1 denotes the memory occupied by a temporary particle needed in
the communication strategy. Combining the results of each algorithm in Tables 1 and 2
leads to the conclusion that the improved algorithms are improved in terms of both time
cost and memory space.
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Table 3. The comparison results between PCFDA1, PCFDA2, and PCFDA3 with FDA.

Functions PCFDA1 PCFDA2 PCFDA3

f1 4.396× 10−4 1.706× 10−3 1.827× 10−4

f2 2.123× 10−2 3.847× 10−1 3.728× 10−2

f3 4.708× 10−2 4.897× 10−2 2.113× 10−2

f4 5.133× 10−2 5.828× 10−2 5.827× 10−2

f5 5.827× 10−2 5.827× 10−2 5.827× 10−1

f6 4.727× 10−1 3.447× 10−2 4.727× 10−1

f7 9.108× 10−3 5.575× 10−2 9.108× 10−3

f8 2.413× 10−2 3.764× 10−2 4.708× 10−2

f9 5.586× 10−2 4.396× 10−4 5.827× 10−2

f10 2.413× 10−1 4.396× 10−4 5.827× 10−2

f11 2.730× 10−1 5.019× 10−2 5.764× 10−2

f12 7.337× 10−3 1.859× 10−2 3.075× 10−1

f13 4.727× 10−2 4.097× 10−2 3.847× 10−1

f14 5.133× 10−2 5.402× 10−2 5.396× 10−2

f15 7.337× 10−2 1.133× 10−1 1.726× 10−1

f16 7.913× 10−1 4.708× 10−2 1.859× 10−2

f17 4.501× 10−2 4.097× 10−2 4.910× 10−2

f18 4.274× 10−2 2.123× 10−2 1.620× 10−2

f19 3.708× 10−2 4.274× 10−2 4.897× 10−2

f20 9.108× 10−3 3.890× 10−2 4.274× 10−2

f21 1.212× 10−1 1.133× 10−2 1.405× 10−2

f22 1.212× 10−1 1.405× 10−1 5.586× 10−2

f23 9.097× 10−1 3.447× 10−2 6.776× 10−1

f24 4.586× 10−3 4.791× 10−2 3.075× 10−2

f25 3.298× 10−4 2.123× 10−4 2.461× 10−4

f26 3.764× 10−2 7.685× 10−2 4.396× 10−4

f27 3.678× 10−2 3.910× 10−2 7.913× 10−2

f28 3.764× 10−2 1.620× 10−1 1.008× 10−3

Table 4. The average running time and memory usage of each algorithm.

Evaluation
Indicators FDA PCFDA1 PCFDA2 PCFDA3

Average running
time 36.34 33.22 30.37 35.46

Memory usage (20 + 1) ∗ D (2 ∗ 4 + 4 + 4 +
1) ∗ D

(2 ∗ 4 + 4 + 4 +
1) ∗ D

(2 ∗ 4 + 4 + 4 +
1) ∗ D

4.3. Comparison with PCSCA

This section compares the improved FDA with PCSCA. Both algorithms use parallel
and compact strategies for improvement, so we only compare their searchability and
stability here. Tables 5 and 6 show the mean and standard deviation comparison results.

The red font in Tables 5 and 6 indicates the mean and standard deviation of the
optimum found by each algorithm on each function. As seen from the tables, on the f20,
all algorithms show good searching ability and stability. On the f8, all algorithms have
the same search ability, but PCSCAS3 is more stable. On the other functions, the PCFDA
outperformed the PCSCA regarding searching superiority.

In this section, the Wilcoxon rank sum test was also used for the significance analysis
of the proposed algorithm in this paper. We conducted significance analysis of the three
algorithms proposed in this paper with the parallel compact SCA algorithm. Tables 7–9
display the comparison results, with red font indicating data with p-values greater than
0.05. From the data in the table, it can be observed that the proposed algorithm in this
paper outperforms the parallel compact SCA algorithm in most functions.
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Table 5. The running results of the average value of each algorithm.

Functions PCSCAS1 PCSCAS2 PCSCAS3 PCFDA1 PCFDA2 PCFDA3

f1 −4.54× 102 −3.70× 102 −4.04× 102 −4.63× 102 −4.63× 102 −4.63× 102

f2 2.07× 107 2.43× 107 3.02× 107 9.94× 106 1.35× 107 1.24× 107

f3 9.75× 109 5.49× 109 9.07× 109 3.02× 109 3.17× 109 3.35× 109

f4 3.17× 104 3.49× 104 3.27× 104 1.66× 104 1.61× 104 1.75× 104

f5 −2.77× 102 −1.76× 102 −1.77× 102 −3.07× 102 −3.08× 102 −3.01× 102

f6 −2.55× 102 −2.52×102 −2.54× 102 −2.58× 102 −2.73× 102 −2.58× 102

f7 −1.89× 102 −1.95× 102 −1.96× 102 −2.13× 102 −2.02× 102 −2.15× 102

f8 −2.26× 102 −2.26× 102 −2.26× 102 −2.26× 102 −2.26× 102 −2.26× 102

f9 −1.88× 102 −1.88× 102 −1.87× 102 −1.89× 102 −1.89× 102 −1.88× 102

f10 −1.16× 102 −9.25× 101 −6.32× 101 −1.49× 102 −1.56× 102 −1.46× 102

f11 −1.35 −1.07× 101 2.13× 101 −2.70× 101 −3.49× 101 −3.82× 101

f12 5.91× 101 2.85× 101 2.96× 101 3.38 9.36 1.95× 101

f13 8.30× 101 5.18× 101 5.33× 101 4.52× 101 5.02× 101 5.95× 101

f14 1.85× 103 2.15× 103 1.99× 103 1.69× 103 1.66× 103 1.41× 103

f15 2.08× 103 2.18× 103 2.30× 103 1.81× 103 1.75× 103 1.93× 103

f16 6.77× 101 6.77× 101 6.78× 101 6.76× 101 6.74× 101 6.75× 101

f17 2.63× 102 2.53× 102 2.80× 102 2.09× 102 2.15× 102 2.26× 102

f18 2.72× 102 2.73× 102 2.81× 102 2.56× 102 2.55× 102 2.56× 102

f19 1.82× 102 1.79× 102 1.84× 102 1.76× 102 1.75× 102 1.76× 102

f20 2.05× 102 2.05× 102 2.05× 102 2.05× 102 2.05× 102 2.05× 102

f21 3.66× 102 4.15× 102 4.20× 102 3.63× 102 3.55× 102 3.51× 102

f22 2.38× 103 2.69× 103 2.70× 103 2.00× 103 2.19× 103 2.05× 103

f23 2.56× 103 2.59× 103 2.83× 103 2.46× 103 2.31× 103 2.40× 103

f24 4.38× 102 4.38× 102 4.36× 102 4.34× 102 4.31× 102 4.34× 102

f25 4.75× 102 4.73× 102 4.75× 102 4.69× 102 4.67× 102 4.73× 102

f26 4.75× 102 4.69× 102 4.69× 102 4.67× 102 4.73× 102 4.67× 102

f27 8.52× 102 8.62× 102 8.45× 102 8.38× 102 8.22× 102 8.45× 102

f28 9.74× 102 9.43× 102 1.03× 103 8.20× 102 9.33× 102 1.26× 103

Table 6. The running results of the standard deviation of each algorithm.

Functions PCSCAS1 PCSCAS2 PCSCAS3 PCFDA1 PCFDA2 PCFDA3

f1 6.53× 102 5.34× 102 5.82× 102 6.67× 102 6.65× 102 6.67× 102

f2 3.60× 107 3.73× 107 4.91× 107 1.57× 107 2.19× 107 2.04× 107

f3 1.50× 1010 1.07× 1010 1.49× 1010 5.02× 109 5.14× 109 6.21× 109

f4 4.61× 104 5.17× 104 4.78× 104 2.46× 104 2.38× 104 2.53× 104

f5 3.98× 102 2.62× 102 2.68× 102 4.42× 102 4.43× 102 4.33× 102

f6 3.67× 102 3.62× 102 3.65× 102 3.73× 102 3.94× 102 3.72× 102

f7 2.74× 102 2.82× 102 2.85× 102 3.07× 102 2.92× 102 3.10× 102

f8 3.26× 102 3.26× 102 3.25× 102 3.26× 102 3.26× 102 3.26× 102

f9 2.70× 102 2.71× 102 2.70× 102 2.71× 102 2.72× 102 2.71× 102

f10 1.71× 102 1.37× 102 1.14× 102 2.15× 102 2.25× 102 2.10× 102

f11 5.68× 101 3.55× 101 4.65× 101 4.99× 101 6.29× 101 7.90× 101

f12 1.11× 102 5.59× 101 1.02× 102 4.03× 101 2.85× 101 5.50× 101

f13 1.28× 102 8.24× 101 7.91× 101 7.37× 101 7.81× 101 9.82× 101

f14 2.70× 103 3.11× 103 2.91× 103 2.51× 103 2.47× 103 2.08× 103

f15 3.04× 103 3.16× 103 3.32× 103 2.66× 103 2.56× 103 2.81× 103

f16 9.74× 101 9.73× 101 9.75× 101 9.72× 101 9.70× 101 9.71× 101

f17 3.81× 102 3.65× 102 4.06× 102 3.02× 102 3.10× 102 3.27× 102

f18 3.92× 102 3.93× 102 4.05× 102 3.70× 102 3.68× 102 3.70× 102

f19 2.62× 102 2.57× 102 2.65× 102 2.53× 102 2.51× 102 2.53× 102

f20 2.95× 102 2.95× 102 2.95× 102 2.95× 102 2.95× 102 2.95× 102

f21 5.28× 102 5.97× 102 6.08× 102 5.23× 102 5.13× 102 5.07× 102

f22 3.44× 103 3.88× 103 3.92× 103 2.91× 103 3.19× 103 3.00× 103

f23 3.76× 103 3.75× 103 4.07× 103 3.60× 103 3.34× 103 3.48× 103

f24 6.30× 102 6.30× 102 6.26× 102 6.25× 102 6.20× 102 6.24× 102

f25 6.83× 102 6.81× 102 6.83× 102 6.75× 102 6.72× 102 6.80× 102

f26 6.84× 102 6.75× 102 6.75× 102 6.72× 102 6.81× 102 6.72× 102

f27 1.23× 103 1.24× 103 1.22E× 103 1.21× 103 1.18× 103 1.22× 103

f28 1.44E× 103 1.38× 103 1.50× 103 1.46× 103 1.55× 103 1.97× 103
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Table 7. The comparison results between PCFDA1 with three improved SCA algorithms.

Functions PCSCAS1 PCSCAS2 PCSCAS3

f1 1.827× 10−4 1.827× 10−4 1.827× 10−4

f2 3.121× 10−2 1.315× 10−3 7.285× 10−3

f3 1.315× 10−3 7.285× 10−3 2.113× 10−2

f4 1.827× 10−4 1.827× 10−4 1.827× 10−4

f5 1.827× 10−4 1.827× 10−4 1.827× 10−4

f6 3.764× 10−2 5.828× 10−4 4.727× 10−2

f7 4.727× 10−2 4.727× 10−2 9.108× 10−3

f8 5.205× 10−1 9.698× 10−1 5.708× 10−1

f9 3.075× 10−2 1.405× 10−2 1.402× 10−2

f10 1.827× 10−4 1.827× 10−4 1.827× 10−4

f11 1.706× 10−3 2.827× 10−3 3.764× 10−2

f12 2.575× 10−2 7.285× 10−3 3.075× 10−2

f13 3.847× 10−2 2.113× 10−2 3.847× 10−2

f14 3.298× 10−4 7.685× 10−4 4.396× 10−4

f15 1.315× 10−3 4.396× 10−4 1.726× 10−2

f16 3.764× 10−2 4.640× 10−2 1.859× 10−2

f17 1.402× 10−2 3.298× 10−4 4.910× 10−2

f18 2.575× 10−2 3.121× 10−2 1.620× 10−2

f19 2.461× 10−4 2.827× 10−3 4.890× 10−2

f20 2.730× 10−1 7.337× 10−1 4.274× 10−1

f21 1.827× 10−4 1.827× 10−4 1.405× 10−2

f22 1.827× 10−4 2.202× 10−3 4.586× 10−3

f23 3.121× 10−2 1.008× 10−3 4.678× 10−2

f24 4.396× 10−4 5.828× 10−4 3.075× 10−2

f25 2.461× 10−4 5.795× 10−3 2.461× 10−4

f26 4.396× 10−4 3.298× 10−4 4.396× 10−4

f27 4.850× 10−2 1.405× 10−2 4.791× 10−2

f28 1.405× 10−2 1.405× 10−2 1.008× 10−3

Table 8. The comparison results between PCFDA2 with three improved SCA algorithms.

Functions PCSCAS1 PCSCAS2 PCSCAS3

f1 1.827× 10−4 1.827× 10−4 1.827× 10−4

f2 2.113× 10−2 1.706× 10−3 7.285× 10−3

f3 4.396× 10−4 3.611× 10−3 2.113× 10−2

f4 1.827× 10−4 3.298× 10−4 1.827× 10−4

f5 1.827× 10−4 1.827× 10−4 1.827× 10−4

f6 3.121× 10−2 7.685× 10−4 4.727× 10−2

f7 1.620× 10−2 1.402× 10−2 9.108× 10−3

f8 6.232× 10−1 9.097× 10−1 5.708× 10−1

f9 4.757× 10−2 3.539× 10−2 1.402× 10−2

f10 1.827× 10−4 1.827× 10−4 1.827× 10−4

f11 1.402× 10−2 1.402× 10−2 3.764× 10−2

f12 4.970× 10−2 1.212× 10−2 3.075× 10−2

f13 3.482× 10−2 2.123× 10−2 3.847× 10−2

f14 7.685× 10−4 3.611× 10−3 4.396× 10−4

f15 9.108× 10−3 1.008× 10−3 1.726× 10−2

f16 4.539× 10−2 3.447× 10−2 1.859× 10−2

f17 1.859× 10−2 9.108× 10−3 4.910× 10−2

f18 3.467× 10−2 4.571× 10−2 1.620× 10−2

f19 7.285× 10−3 4.515× 10−2 3.890× 10−2

f20 1.402× 10−2 2.730× 10−1 4.274× 10−1

f21 1.827× 10−4 1.827× 10−4 1.405× 10−2

f22 1.827× 10−4 7.685× 10−4 4.586× 10−3

f23 3.611× 10−3 4.396× 10−4 4.678× 10−1

f24 4.970× 10−2 4.850× 10−2 3.075× 10−2

f25 4.515× 10−2 4.910× 10−2 2.461× 10−4

f26 1.827× 10−4 5.183× 10−2 5.440× 10−2

f27 4.970× 10−2 3.075× 10−2 4.791× 10−2

f28 1.706× 10−3 1.315× 10−3 1.008× 10−3
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Table 9. The comparison results between PCFDA3 with three improved SCA algorithms.

Functions PCSCAS1 PCSCAS2 PCSCAS3

f1 1.827× 10−4 1.827× 10−4 1.827× 10−4

f2 3.791× 10−2 3.447× 10−2 7.285× 10−3

f3 1.212× 10−2 4.274× 10−2 2.113× 10−2

f4 1.827× 10−4 7.685× 10−4 1.827× 10−4

f5 1.827× 10−4 1.827× 10−4 1.827× 10−4

f6 4.640× 10−2 7.685× 10−4 4.727× 10−2

f7 4.623× 10−2 4.890× 10−2 9.108× 10−3

f8 1.212× 10−1 7.566× 10−2 5.708× 10−1

f9 1.620× 10−1 7.566× 10−2 1.402× 10−2

f10 2.202× 10−3 1.008× 10−3 1.827× 10−4

f11 3.764× 10−2 4.515× 10−2 3.764× 10−2

f12 4.623× 10−2 4.890× 10−2 3.075× 10−2

f13 4.727× 10−2 7.566× 10−2 3.847× 10−1

f14 3.611× 10−3 1.402× 10−2 4.396× 10−4

f15 3.121× 10−2 1.315× 10−3 1.726× 10−2

f16 3.847× 10−2 4.910× 10−2 1.859× 10−2

f17 4.890× 10−2 7.685× 10−4 4.910× 10−2

f18 4.586× 10−3 3.764× 10−2 1.620× 10−2

f19 4.539× 10−2 1.212× 10−2 3.890× 10−2

f20 1.008× 10−3 7.285× 10−3 4.274× 10−1

f21 1.827× 10−4 1.827× 10−4 1.405× 10−2

f22 1.133× 10−2 1.041× 10−2 4.586× 10−3

f23 7.285× 10−3 5.828× 10−4 4.678× 10−1

f24 4.890× 10−2 1.859× 10−2 3.075× 10−2

f25 2.461× 10−4 5.795× 10−2 2.461× 10−4

f26 4.586× 10−3 9.108× 10−3 4.396× 10−4

f27 4.734× 10−2 4.521× 10−2 4.791× 10−2

f28 5.708× 10−1 7.337× 10−1 5.101× 10−2

4.4. Convergence Analysis

This section evaluates the performance of the algorithms by comparing the con-
vergence curves of the PCFDA and PCSCA algorithms on three classes of functions.
Figures 4–6 show the corresponding experimental results.

Figure 4. Convergence curves on the unimodal functions.
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Figure 5. Convergence curves on multimodal functions.
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Figure 6. Convergence curves on mixed functions.

From the convergence curves of the three types of functions, on the unimodal function,
the convergence speed of each algorithm is not much different. Only on f1 do the PCFDA1
and PCFDA2 algorithms converge faster in the early stage. On the multimodal functions
f8 and f20, although the convergence speeds of the algorithms are quite different, they
have similar optimization capabilities based on the data in Tables 1 and 5. On f6, f7, f10,
and f19, the convergence speed of each algorithm is similar. Due to the instability of each
algorithm’s search on other multimodal functions, the convergence speed and accuracy are
different. On the mixed functions f23, f24, f25, and f27, PCFDA2 converges faster and has
the best optimization accuracy. On the function f22, the FDA has better convergence speed
and accuracy than other algorithms.

5. Application of PCFDA in Mobile Sensor Localization Problem

This section discusses the PCFDA algorithm for mobile sensor localization and com-
pares it with the original MCL algorithm under different numbers of anchor nodes and
communication radii. Locations with large errors are first obtained by the MCL localization
technique, and then the PCFDA algorithm is applied for further optimization around
the obtained locations to reduce the localization error. The error function is defined as
Equation (32):

error =
∑Z

k=1

(
∑N

l=1,l 6=k

√
(xl − xk)

2 + (yl − yk)
2 − Dlk

)
Z

(32)
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Z represents the total number of unknown nodes, and N represents the total number
of anchor nodes. (xl , yk) denotes the estimated location of the unknown node l, and (xk, yk)
denotes the location of the anchor node. Dlk represents the distance between unknown
node l and anchor node k. This section assumes that anchor node k can obtain the distance
between anchor node k and unknown node l through the signal strength received from
unknown node l. The smaller the error value, the higher the positioning accuracy.

5.1. Experimental Analysis of Different Numbers of Anchor Nodes

In this section, the total number of nodes is set to 300, randomly distributed within
the space range of 300 × 300. The number of anchor nodes is set to 10, 20, 30, 40, and 50,
and the communication radius is set to 50. Experiments were performed using the MCL
localization algorithm, FDA, and PCFDA. To avoid randomness, this section runs each
algorithm 10 times and takes the average of 10 runs as the final result. The experimental
results are shown in Table 10.

Table 10. Experimental results of the localization error of different anchor nodes.

Algorithms Evaluation Indicators 10 20 30 40 50

MCL Ave 23.6269 16.3017 11.8374 9.7348 8.8307
Std 2.8153 0.8655 0.5684 0.5097 0.7238

FDA Ave 20.8774 15.1468 7.5836 5.5885 6.2892
Std 4.5022 11.0386 4.8461 5.5609 3.6356

cAPSO Ave 20.2842 15.1823 9.3829 7.2389 5.8412
Std 2.7114 1.0986 0.8491 0.4829 0.2983

PCFDA1 Ave 19.2934 15.3938 6.2677 5.4326 3.2778
Std 2.1672 1.0578 0.5648 0.4364 0.5363

PCFDA2 Ave 19.3737 14.3896 6.3897 5.2874 3.9473
Std 2.6438 1.1724 0.6573 0.5483 0.6372

PCFDA3 Ave 19.2478 15.3851 6.0837 5.3573 3.3732
Std 2.6327 1.2563 0.5885 0.8356 0.6334

In Table 10, Ave and Std represent the mean and standard deviation of the run results,
respectively. It can be seen from Table 10 that under the condition of a fixed communication
radius, the more the number of anchor nodes, the smaller the positioning error and the more
accurate the positioning. Compared with the MCL positioning algorithm, the positioning
accuracy of the FDA has improved a lot, but the FDA is extremely unstable. The cAPSO [48]
algorithm has comparable localization accuracy to the FDA algorithm, but it is more stable
than the FDA algorithm. Under the same experimental conditions, the performance of the
PCFDA is remarkable, both in positioning accuracy and algorithm stability are better than
the FDA, and the positioning accuracy is much better than the MCL algorithm.

5.2. Experimental Analysis of Different Communication Radius

This section also uses 300 nodes for experiments and distributes them in the space of
300*300. The number of anchor nodes is set to 50, and the communication radius is set to
20, 40, 60, and 80, respectively. Each algorithm is run 10 times in this section, and the mean
and standard deviation of 10 runs are taken for experimental analysis. The experimental
results are shown in Table 11.

Table 11. Experimental results of the localization error of different communication radius.

Algorithms Evaluation Indicators 20 40 60 80

MCL Ave 16.8253 11.1635 7.5723 6.6517
Std 2.2746 0.8523 0.2663 0.4111

FDA Ave 14.0564 8.5623 4.7753 1.3562
Std 9.2742 10.6584 4.2358 5.2645
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Table 11. Cont.

Algorithms Evaluation Indicators 20 40 60 80

cAPSO Ave 14.3829 8.5933 4.8321 1.8932
Std 1.3922 1.0529 0.4721 0.2292

PCFDA1 Ave 7.0317 3.3189 1.5642 0.6523
Std 1.7834 0.9748 0.5943 0.2984

PCFDA2 Ave 6.9851 3.3451 1.1567 0.6586
Std 1.8375 0.9732 0.5382 0.4928

PCFDA3 Ave 6.9856 3.7652 1.3654 0.8562
Std 1.9382 0.9375 0.4878 0.7362

Table 11 shows that when the number of anchor nodes is fixed, the larger the commu-
nication radius, the smaller the positioning error, and the more accurate the positioning.
The positioning accuracy of the FDA is better than the MCL positioning algorithm, but the
stability is poor. The cAPSO algorithm is comparable to the FDA algorithm in terms of
localization accuracy, but with better stability. The performance improvement of PCFDA is
more significant and has good results in positioning accuracy and operational stability.

6. Conclusions

This paper proposes three intergroup communication strategies to improve the food
digestion algorithm. These three strategies use different topologies, which significantly
demonstrate the efficiency of particle communication and speed up the algorithm’s conver-
gence. This paper also uses a compact strategy to improve the food digestion algorithm,
reducing the algorithm’s running time and saving memory space. Then, this paper tested
the PCFDA algorithm on the CEC2013 test set and achieved good results. Finally, this paper
uses the improved algorithm to solve the problem of mobile sensor localization, which
reduces the error of positioning and improves the accuracy of positioning.

In the future, we can use other inter-group communication strategies to further im-
prove the FDA’s search accuracy. In the meantime, we will consider using the improved
algorithm for other localization problems in wireless sensor networks. The design pro-
cess of the algorithm does not take into account issues such as communication barriers
of mobile sensors in real environments, so these factors can be considered to be added in
future research.
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