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Abstract: Robot path planning is an important component of ensuring the robots complete work
tasks effectively. Nowadays, most maps used for robot path planning obtain relevant coordinate
information through sensor measurement, establish a map model based on coordinate information,
and then carry out path planning for the robot, which is time-consuming and labor-intensive. To
solve this problem, a method of robot path planning based on ant colony algorithms after the
standardized design of non-standard map grids such as photos was studied. This method combines
the robot grid map modeling with image processing, bringing in calibration objects. By converting
non-standard actual environment maps into standard grid maps, this method was made suitable
for robot motion path planning on non-standard maps of different types and sizes. After obtaining
the planned path and pose, the robot motion path planning map under the non-standard map was
obtained by combining the planned path and pose with the non-standard real environment map. The
experimental results showed that this method has a high adaptability to robot non-standard map
motion planning, can realize robot path planning under non-standard real environment maps, and
can make the obtained robot motion path display more intuitive and convenient.
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1. Introduction

With the development of the times, robots have become indispensable assistants in
various industries, among which mobile robots are more widely used due to their unique
structure. At bus stops, they can replace humans in automatic response. In warehouses,
they can replace humans for material handling. On the battlefield, they can even replace
humans in charge, assault, etc. [1-4]. The unique functions of robots make them increasingly
at the forefront of technological development and an indispensable tool for humanity.

The determination of the robot’s movement path is a crucial step in completing work
tasks. The planning of robot movement path mainly refers to the route that the robot needs
to pass through during the process of reaching another position from one location. This
route not only ensures that the robot can reach the endpoint from the starting point but
also ensures that the robot can avoid obstacles and dangerous objects on the path. With
the development of technology, the intelligence level of robot movement path planning
has increasingly become a focus of research for researchers. How robots can quickly and
intelligently determine their movement paths can greatly optimize the autonomy and speed
of mobile robot navigation. Therefore, the study of robot path planning method is of great
significance [5].

In order to determine the robot’s motion path, it is first necessary to obtain the robot’s
motion environment information, which is the robot’s motion environment map. Currently,
robot mobile maps mainly include Occupancy Grid Map, Octo Map, and Point cloud Map.
Due to the discreteness of data in computer, we need to perform a discreteness design on
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the x and y axes. In this way, we can obtain a large number of grids through discretization
design on the x and y axes. Each grid can be represented by 0 or 1. This can generate a
structured Occupancy Grid Map. Occupancy Grid Maps are typically generated through
laser measurement of relevant data. It has a simple structure and is easy to implement
various intelligent path planning algorithms for robots [6,7].

In addition, we can continuously split the 3D grid map into smaller cubes, label
obstacles, and hazards. This forms an Octo map. An Octo map is a tree with eight
subordinate nodes. It is often used for the expression of three-dimensional data [8,9]. We
can divide the cube into eight small cubes and continue dividing the cubes containing
obstacles or hazards until the requirements are met. When all the subordinate nodes
of a node are occupied or idle or unknown, we can remove it and all its subordinate
nodes. In addition, there is also a point cloud map that uses LiDAR to obtain the three-
dimensional coordinates of different points and generate maps based on laser reflection
intensity. It is precisely with the existence of these maps that the path planning for robots
becomes possible.

After the robot’'s movement map is generated, various algorithms are also used to
determine the robot’s movement path and pose. In 1956, Edsger Wybe Dijkstra proposed the
Dijkstra algorithm. This algorithm centers around the initial point and gradually expands
outward until the goal is achieved. The A* algorithm appeared in 1968 and optimized the
Dijkstra algorithm through heuristic functions to find the optimal path faster [10]. In 1985,
Khatib proposed an artificial potential field method, which assumes that obstacles have
a repulsive force on the robot and the target object has gravitational force on the robot.
The repulsive force and gravitational force are combined to form the motion path of the
robot [11,12]. The random road map (PRM) algorithm is an algorithm that converts the
continuous space state to the discrete space state and then uses search algorithms such as
A* to find the path [13,14]. The rapidly exploring random tree (RRT) algorithm detects the
collision of the acquisition points to avoid spatial modeling [15-17]. It effectively solves
path planning problems in high-dimensional spaces and complex constraints. In addition,
there is the genetic algorithm (GA) proposed by John Holland, which simulates the search
for optimal solutions in natural evolutionary processes [18,19]. It is a computational model
based on natural selection and genetics [20,21].

By combining various path planning algorithms with environmental maps, we can
achieve path planning for mobile robots. Since ant colony algorithms have highly efficient
searchability [22-27], it has also become a commonly used path planning method. This
paper proposed a method to transform the non-standard real environment map into the
standard robot mobile environment map-occupancy grid map, and to then use ant colony
optimization algorithms to realize the robot moving path, position, and pose planning.

In this paper, a new method of ant colony algorithm planning robot motion path
using a real environment map was proposed. This method processes non-standard real
environment maps and converts them into standard occupancy grid maps. Through ant
colony algorithms, the planning path and pose of the robot are given. Then, the robot’s
planned path and pose are combined with the original non-standard map and generate
a mobile path planning map for the robot in a non standard environment. The planning
results of the virtual environment and the results of the real experimental environment
have once again verified the application potential of this method.

The second part of the article discusses the origin of the research and introduces
the practical research issues and related preparations. Part three introduces the overall
solution approach, explains the method of converting detailed non-standard maps into
standard maps, and the path planning was implemented in steps. The fourth part validated
the method of path planning for robots under non-standard maps in real environments
through experiments and conducted comparative analysis. The fifth part summarizes the
article [28].
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2. Problem Description
2.1. Realistic Issues

The planning of robot motion trajectory needs to be based on a map. Robot motion
maps are mostly based on sensors such as infrared to explore surrounding objects, collect
relevant information, and create maps based on the collected information, as shown in
Table 1 [11-37]. The robot avoids different obstacles based on the formed map and gradually
approaches the target through the planned motion path and pose requirements. However,
information collection requires a lot of time, and the data processing and map generation
after collection also require a lot of time. If the environmental information that needs
to be collected is relatively complex, the time for establishing this map is quite long.
Efficiently generating robot motion environment maps has become an urgent problem to
be solved [38,39].

Table 1. Comparison of different path planning methods using maps now.

Algorithm Main Usage Maps Algorithm Type Real Environmental Map Used

ACO Grid map, Octo Map Search algorithm No

A* Grid map Search algorithm No
PRM Grid map Search algorithm No

PRT Grid map Probabilistic path planning algorithm No

RRT Grid map, Octo Map Probabilistic path planning algorithm No

GA Grid map, Search algorithm No

PSO Grid map, Octo Map Search algorithm No

The development of artificial intelligence has made rapid progress. If we can obtain
a real environment map by taking photos, process the real environment map, transform
non-standard environment maps into robot path planning maps suitable for robot path
planning, and then carry out path planning and pose planning for robots, this can greatly
improve the efficiency of robot path planning. Grid maps are commonly used nowadays,
and if non-standard maps can be converted into more common grid maps, subsequent
processing will be more convenient. The purpose of this article is to process the non-
standard real environment map to form a standard grid map, and then realize the robot’s
motion path and pose planning through ant colony algorithms.

2.2. Processing of Non-Standard Maps
2.2.1. Image Processing

The image-processing technology is relatively mature. It can be used for disease
prediction [40], crop recognition [41], and industrial defective product selection [42]. We
can use image-processing technology to segment and crop non-standard maps in real
environments, locate, detect, and frame obstacles in the images, and identify obstacles.
Subsequently, a new image is generated using the previously obtained image parameters,
which is the standard robot motion path planning map that needs to be obtained. Because
the image itself expresses the relative relationships between objects in the environment,
using non-standard maps for image processing to obtain standard grid maps is more
accurate and convenient.

2.2.2. Obtaining Maps Adapted to Algorithms

The grid method is a commonly used map modeling method in robot path planning,
which is simple and convenient to use. This article obtains relevant modeling parameters
through non-standard real environment maps and uses the grid method to establish a map
of the mobile robot’s mobile environment. In the map, 0 represents the area of the free area,
and 1 represents the area of obstacles or dangerous objects in the map. The grid with a
0 value is represented in white, while the grid with a 1 value is represented in black (see
Figure 1). This is similar to the principle of image binarization in image processing, but due
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to the fact that image processing is mostly based on pixels and the data are huge, we need
to perform secondary processing after image processing. Alternatively, the non-standard
map itself can be processed to obtain a standard map suitable for robot path planning.

20

15

10

0
0 5 10 15 20

Figure 1. Common ant colony algorithm grid map.

2.2.3. Method of Image Processing

After the image is read, the image is transformed into an array I. If the image is a real
color array, the array Iis an array of m x n x 3. Because the grid graph is a two-dimensional
array of small squares, it is necessary to convert the image into a two-dimensional array.
Therefore, it is necessary to perform binary processing on the image. We can convert the
true color image into a grayscale image, and convert m X n x 3 arrays to m X n arrays.
In this way, the non-standard map can be transformed into a standard grid map that
can implement ant colony algorithms. The binarized image also needs to be subjected to
obstacle recognition, positioning, and subsequent data processing, as detailed in Section 3.

2.3. Introduction to Ant Algorithm
2.3.1. Basic Principles

Among intelligent algorithms, the ant colony algorithm is a common algorithm. This
method mainly uses the method that each ant in the ant colony selects the moving route
under the guidance of a pheromone to calculate. Because the accumulation degree of
pheromone released by ants is different on different routes, ants will choose the route with
more pheromone accumulation when moving. We can assume a directed graph G(N, A)
with N locations, where N ={1,2,3,4...,n — 1,n}, A={(i,j)i,j € N}.

The scheduled path planning task is represented by the objective function:

n

min f((,d) = Zi:l lifl,ir (1)

and w = (i1, iz, i3, 14 - =+ In—1, In)-
lij is the distance between two points,

lij = \/(xi _xj)2+ (vi _yj)2/ (i, j € N) 2)

When ants move from one position to the next, they can choose the next position based
on the probability of reaching the next position.
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This probability needs to be calculated using the following equation:
o o) B
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Among them, k € allowed k; i, j is the starting point and target point of the ants,

1
i = 1, @)

17ij is visibility, which is the reciprocal of the distance between i and j; Tigt) is the
pheromone strength from i to j at time ¢; allowed k is a collection of locations that have not
been visited yet; a, § are two constants. They are the weighted values of pheromone and
visibility.

In the process of ant colony algorithms, the pheromone in the algorithm is con-
stantly updated.

t m
i) = (1-p)m + Y, A1, (5)

In the above formula, m is the number of ants in the ant colony. ATZ-’; is the Pheromone
left by the k-th ant when passing on the path from i to j.

ath= (@), ©

Among them, i, j are the points on the path passed by the ant. Cy is the total length of
the path obtained by the k-th ant walking along the entire path.

In this way, the ant completes the path once, iterates the operation once, and imple-
ments the algorithm through continuous iteration [43].

2.3.2. Implementation

Usually, after generating a standard grid map, we can set the starting point and the
target point to be reached in the planned path according to the requirements and set the
basic parameters of the algorithm. The ant colony algorithm is used to search the path.
The ant updates the pheromone on the path according to the algorithm after reaching the
destination, outputs information, and saves the path information.

2.3.3. Post-Processing

After the robot path planning is realized according to ant colony algorithms, it is also
necessary to obtain the position and pose information of the robot movement according
to the path information. After obtaining the path and pose information, it is necessary to
combine the path and pose information with the non-standard real environment map to
complete path planning and pose planning under non-standard maps. The entire process is
a unified one. In this way, combined with image processing, ant colony algorithm, and pose
planning algorithm, it is very convenient to realize robot path planning under non-standard
maps [2,44,45].

2.3.4. Related Work

There are many methods for robot path planning now. Jinghua Wang et al. combined
Dijkstra’s algorithm and used a fuzzy logic system to consider the environmental conditions
of path planning to study the path planning of mobile robots in complex two-dimensional
terrain [46]. Oscar Loyola, John Kern, and Claudio Urrea proposed to generate the robot’s
path by adding a boredom element without a reward [47]. Yigao Ning et al. proposed to add
a safe distance to the existing repulsive potential energy field, and an obstacle avoidance
controller was designed based on IAPF to study vehicle path planning under a multi-
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obstacle environment [48]. Novak Zagradjanin et al. proposed a cloud-based autonomous
multi-robot system to perform highly repetitive tasks. The study further improved path
planning in complex and crowded environments [49]. W Wei et al. studied the long-
distance autonomous path planning of intelligent vehicles by using the Dijkstra algorithm
and studied the autonomous obstacle avoidance of intelligent vehicles by using the artificial
potential field method combined with the direction sensor and infrared sensor [50]. Hao
Ge, Xin Li, Leiyan Yu et al. also studied the path planning method through different
methods [51-55]. These methods implement and optimize the path planning from different
aspects, but the establishment of the environment map is based on free modeling, and the
path planning is not implemented in the real environment. Haichuan Zhang et al. proposed
a search path design algorithm to improve the efficiency of maritime search and rescue.
Based on the basic ant colony algorithm, they designed the search and rescue path of the
ship at sea [56]. In this study, the designed maritime search and rescue path was finally
represented on the navigation map. However, this study was still based on the existing
parameters for modeling and generating maps for path planning and was not carried out
in the real environment map.

It can be seen that the research of planning path algorithms on real environment
maps is blank. However, applying the planning path algorithm to the real environment
map can not only greatly improve the intelligence and practicability of the algorithm, but
also greatly reduce the control difficulty of robots and vehicles. At present, car automatic
driving is generally based on the combination of satellite navigation and sensors, if the
path can be automatically planned under the real environment map, it will greatly im-
prove the intelligence of automatic driving [57]. The path planning method under the real
environment non-standard map of this article will be introduced in detail below.

This article first created a non-standard simulation map of mobile robot motion and
used the non-standard simulation map to provide an overall introduction to the method
proposed in the article. We also conducted experiments using the path planning method
proposed in this article by displaying non-standard maps of the environment. The proposed
method was experimentally validated. The path planning method for mobile robots under
non-standard maps proposed in the article mainly included three steps.

Step 1: Process non-standard real environment maps to form a standard grid map for
robot motion path planning;

Step 2: Plan the robot’s motion planning path according to the grid map;

Step 3: Integrate the path and pose planned by the grid map with non-standard real
environment maps. Create a robot motion path and pose planning map under non-standard
real environment maps.

3. Methods

Performing ACO on a real environment map required first normalizing the non-
standard real environment map to generate a standard 2D grid map. Then, a 2D grid map
and ant colony algorithm were used to plan the path from the initial location to the target
location. At the same time, there were some obstacles in the non-standard map, and the
planned path should not collide with these obstacles.

We read non-standard real environment maps using Matlab software. To standardize
map processing, first, we selected the specified box selection area in the non-standard
map, and we cut non-standard maps to obtain standard areas for establishing standard
maps. Then, we performed binary processing on the cropped generated area. After the
binarization of non-standard maps, obstacle recognition was performed on the map. In
order to clearly reflect the actual dimensions on the map, there must be a scale calibration
object inside the non-standard map. The dimensions of other objects and the planned path
parameters should be referenced by the calibration object. This lay a good foundation
for generating maps in non-standard environments that can reflect the real environment.
Because the data after obstacle recognition were extracted by MATLAB, the binarized map
was then subjected to two-dimensional grid processing. In order to facilitate the reading
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of positions on the map, it was necessary to encode the grid after grid processing. This
made it very convenient to know the positions of various points on the map. After grid
processing, non-standard maps were converted into standard two-dimensional grid maps.

Next, path planning was carried out through the ant colony algorithm. After obtaining
the planned path, we can proceed with pose planning based on the path parameters.
After obtaining the path and pose, we read the non-standard map. Due to the use of size
calibration objects in the early stage, the obtained path parameters and pose parameters
can be converted into real environmental parameters. Based on these parameters, we can
display the planned path and pose in the non-standard map, so as to obtain the planned
path and pose of the non-standard map. The main process is shown in Figure 2.

% ¥
Scale determination and map saving I Robot path pose planning I
after cutting
I Non-standard map reading I v v
Read non standard maps after I Map reading after cutting I
Non-standard map box selection, to cropping and grayscale them
create a standard map area v v
i I Map Grid l Plan path, pose extraction, and
I Non-standard map cropping I ¢ scale input
[ Map grid encoding I
\ 4 A 4
Binary processing of non-standard Generation of non-standard
maps after cropping Ant Colony Algorithm Parameter map planning path
¢ Initialization maps and pose maps
Obstacle identification and ¢
calibration object detection IAm Colony Algorithm Path Plauningl
| | I

Figure 2. Non-standard map path planning approach based on ACO research method process.

3.1. Non-Standard Map Processing

For ease of explanation, we first established a virtual non-standard map, as shown
in Figure 3. From the figure, it can be seen that each obstacle on the map had different
sizes and irregular shapes. The circle in the upper right corner of Figure 3a represents
the designated calibration object, and we assumed its diameter to be L. The size of other
objects was based on it as a reference. In order to streamline, generalize, and standardize
the entire process, we box-selected the non-standard map in Figure 3a with a size of a x a.
Then, we obtained Figure 3b. After box selection, we cropped it to obtain Figure 3c. Next,
we binarized Figure 3c to obtain Figure 3d,e, which are two different forms of image
binarization. In order to facilitate subsequent processing and facilitate the identification of
obstacles and calibration objects, we selected Figure 3d for subsequent processing.

3.2. Determination of Obstacles in Non-Standard Environmental Maps

After obtaining Figure 3d, we used the region props function provided by MATLAB to
obtain the area parameters of the obstacle. We used the rectangle function for box selection,
as shown in Figure 4. After the box selection, we not only obtained information about
the obstacles but also obtained the size L; of the calibration object in the figure. Though
the size of the entire map was a x a, because the actual diameter of the calibration object
was L, the actual size reflected in the entire diagram should be (@ x L/L;) x (a x L/Lq).
From the figure, it can be seen that the boundary between the identified obstacle and the
calibration object in the upper right corner was clearly visible. We placed the calibration
object in the upper right corner to accurately size the map without affecting the robot’s
final planning path.
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Figure 3. A diagram of the process of generating a grid map with a non-standard map. (a) Non-
standard environment map. (b) Non-standard environment map box selection. (¢) Non-standard
environment map cutting. (d) Non-standard environmental map binarization result 1. (e) Non-
standard environmental map binarization result 2. (f) Grid design for non-standard maps.

Figure 4. Obstacle identification and box selection.

3.3. Grid Map Design

We needed to segment the binary map into n x n grids to convert it into a grid map.
This means that the map was divided into n? grids. Because the size of the entire diagram
was a X a, the side length of each grid was u = a/n. Next, we used the floor function
to convert the matrix where the obstacle was located to 0, and the remaining areas to 1.
Afterward, the fill function was used to fill the area with a median value of 0 in black,
forming a standard grid map as shown in Figure 3f. In order to facilitate the subsequent
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ant colony algorithm path planning, we also needed to code each grid. Because the edge
length of each grid was u, we divided the map into n x n parts, so the position of each
encoding can be obtained in the following way. The encoding principle process is shown in
Algorithm 1, and the encoded map is shown in Figure 5.

Algorithm 1 Principle of location coding for non-standard environmental maps

Coding Principle

Input: Image edge length a, number of grids n x n

Output: Grid edge length u =a/n

1. Loop n times starting from the first line

2. Loop n times starting from the first column

3. The encoding position y for each loop row is u x j, and j is the current number of columns
4. Each loop has a column encoding position x of u X i, where i represents the current number
of rows

5. The encoded value for each position is num2str (({ — 1) x a/u +j

6. End column loop

7. End row loop

8. End

48
96 ¢
144
192

2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028
2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088
2138 2139 2140

2143 2144 2145 2146 2147 2148

pos 2198 2199 2205 2207 2208
88 2258 2250 2265 2267 2268
335 2318 2319 2327 2328
384 2378 2379 2387 2388
432 2438 2439 2447 2448
480 [siniis i oo ; i s i 2498 2499 2507 2508
528 e e armmmemenwat 9558 2559 2567 2568
576 Friiiz Emm e _ s Sk ﬂw‘ 2618 2619 2627 2628
624 : e Bl |o67s 2670 2687 2688
?;g 2738 2739 2747 2748
768 & 2798 2799 2801 2807 2808
816 2858 2859 2861 2866 2867 2868

2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928
2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988

864
912 & g
060 B e par

R O o s o R BT
® P PP LS PP LA G S

Figure 5. Display of standard map coding results.

3.4. Algorithm Design

After obtaining the standard map, we used ant colony algorithms to plan the path.
The specific process is shown in Figure 6. Due to the encoding of the map in the early
stage, path planning for any two locations can be implemented by inputting the encoding.
From Figure 5, it can be seen that we divided the image into 60 x 60 grids, which means
there were a total of 3600 grids and 3600 positions in the entire image. Except for the areas
marked as obstacles in the figure, other areas can be selected for path planning, which was
convenient and simple.
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Are there any points that
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Update the pheromone matrix
according to certain principles

pdate the pheromone matrix
ccording to certain principle;

[Output local optimal path]

Figure 6. Principle of ant colony algorithms.

In this virtual non-standard map, we set the starting position as point 130 and the
target position as point 3513. The number of iterations here was 100. The number of ants
was 100. These parameters can be increased or reduced, and the larger the value, the
better the path planning effect. But the calculation time also increased. According to the
previous research experience, we set the evaporation coefficient of the pheromone as 0.3,
the increasing intensity coefficient of pheromone as 1, and the importance coefficient of the
pheromone as 1 [28]. See the Table 2 for the other main parameters.

Table 2. Main parameters of virtual map for ant colony algorithm operation.

Parameter K M Alpha Beta Rho Q S E
Value 100 200 1.8 25 0.3 1 130 3513

3.5. Path and Pose Generation

Figure 7 shows the planning path obtained through 100 iterations of the ant colony
optimization algorithms. In the figure, grid 130 is the initial point of the design, and grid
3513 is the end point of the design. The blue route is the planned path. Ants pass through
57 points, as shown in Table 3, through points 130, 191, 252, 313, 374-3393, 3453, 3513,
bypassing obstacles and reaching the target location.



Sensors 2023, 23, 7502

11 0f 25

960
912
864
816
768
720
672
624
576
528
480
432
> 384
336
288
240
192
144
96

48

0

coordinate

Robot motion trajectory

O D ® WD D O A DA AV D D O X D
¥R PR R R 2R PG QAT S E NP

5
x coordinate

Figure 7. The generation of virtual map planning path.

Table 3. Initial and target position settings and passing points.

Initial Position: 130 Target Position: 3513

130 191 252 313 374 435 496 557 618 679 739 799 860 921 982 1043 1104 1164 1223 1284 1344 1404
1465 1525 1586 1646 1705 1765 1825 1885 1945 2005 2065 2125 2186 2247 2308 2369 2430 2490 2551
2611 2672 2732 2793 2853 2913 2973 3033 3093 3153 3213 3273 3333 3393 3453 3513

Assume that the planning pathis R, R = {Ry, Ry, ..., R;, ..., Ry}, where R; is the initial
point and R is the target point. The coordinates of each point of R; is (x;, y;), then the point
set coordinate formula:

C= {(X], yl)/ (x2/ y2) ceey (xi/ yi)/ ey (xn/ yn)}r

The distance between each paragraph is Lrir;+1,1 € [1, 1 — 1],

2
LRiri+1 = \/(XRi+1 —xgi)*+ (Yrig1 — Yri) o € [1, n—1] @)

The total path length is S,

-1
S=Y " Lriri+1, (8)

Then, the posture of each segment is Bg; ri+1,

Ri Ri+1 = arctanw, ie (1, n—1]. 9)
’ +
XRi+1 — XRi
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Based on the above analysis, the planned displacement and position can be easily
obtained. In order to find a good planning path, we chose the convergence method with a
limited number of iterations. Figure 8 is the displacement convergence curve obtained by
100 iteration based on the above analysis. Figure 9 is the pose planning diagram obtained
from the robot planning route in Figure 7.

Convergence curve trend
450 T T .

- s N N

[=3 o (=3 (o1

o o o o
T T T T
L L L L

Minimum path length for iterations

o
o
T
L

0 . . . .
0 20 40 60 80 100

Iterations

Figure 8. Displacement convergence curve chart of virtual map.

Robot motion position and posture

48 =

&

144

192

(oto

240

288 T s

336

o oo

384 %

432 £

480

528

y coordinate

lelolelololofo

576

624

672 -

1T

720

768

816

864

912 t

[ kllllcllollole

960
0 48 96 144 192 240 288 336 384 432 480 528 576 624 672 720 768 816 864 912 960

x coordinate

Figure 9. Pose planning of virtual map.



Sensors 2023, 23, 7502

13 of 25

3.6. Integration of Non-Standard Virtual Environment Maps and Path Planning

Because the virtual map path in Figure 7 was obtained from the original non-standard
map, the obtained planning path and pose can be regressed to the original non-standard
map. According to the data in Figures 7 and 9, the path and position of ant optimization
algorithms in the non-standard map can be obtained by displaying them in the original
non-standard map. The thick blue line in Figure 10 is the robot motion path planned by
the ant colony optimization algorithms. From the initial position to the target position, the
robot’s motion path was very clear. Each solid circle in Figure 11 represents the position
of the robot at each step on the map, while the straight lines in the circle indicate its
upcoming posture. Compared with traditional standard maps, this non-standard map that
combines real environments was simpler and clearer for robot motion path planning and
pose planning. From the process of robot motion path planning under the above virtual
non-standard map, it can be seen that, theoretically, we can obtain the robot’s planned path
and pose by converting the non-standard real environment map into a standard grid map.
Then, by returning the planned path and pose to a non-standard map, the robot’s motion
path planning route and pose in the real environment map can be obtained. Next, we
needed to analyze and study the entire path planning process through real non-standard
environmental maps.
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4. Experiment
4.1. Processing of Non-Standard Real Environment Map

Figure 12 show the calibration and non-standard real environment map preprocessing.
The calibration object in the upper right corner of Figure 12a is very important as it ensures
reference for later map size determination. Similarly, we conducted it in the Matlab
environment. Figure 12b shows a non-standard map of the real environment that was read
in. After reading Figure 12b, we boxed and cropped it (as shown in Figure 12c) to obtain the
area for later standardized map design, as shown in Figure 12d. By binarizing Figure 12d,
we can obtain Figure 12e f. For the convenience of later processing, we chose Figure 12e as
the object for grid processing.

Figure 12. Calibration and non-standard real environment map preprocessing. (a) Size calibration
object. (b) Non-standard real environment map. (c) Non-standard real environment map box
selection. (d) Non-standard real environment map cutting. (e) Non-standard environmental map
binarization result 1. (f) Non-standard environmental map binarization result 2.

4.2. Identification of Obstacles and Calibration Objects in Non-Standard Environmental Maps

After obtaining Figure 12e, we used the region props function to obtain the area
parameters of obstacles and calibration objects, and we used the rectangle function for box
selection, as shown in Figure 13. It is evident from Figure 13 that various obstacles were
boxed, including the size calibration objects placed. We obtained a diameter of 183 for the
calibration object in the system through box selection. As the box selection area parameter
in the previous entire map was 960 x 960, the size of the entire image was 960 x 960.
Because the actual size of the calibration object was 30 mm, based on the previous analysis,
the scale obtained was 183/30 = 6.1. From this, we obtained the true environmental map
size through data conversion, which was 960/6.1 = 157.377 mm.
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Figure 13. Identified obstacles in the real environment.

4.3. Non-Standard Environment Map Generation

After binarization, we needed to segment the map to convert it into a grid map. We
divided the map into 60 x 60 grids, which means a total of 3600 grids, and the size of the
entire map was 960 x 960; therefore, the side length of each grid is

U=a/n=960/60=16 (10)

Next, we used the floor function to convert the matrix where the obstacle is located to
0, and the remaining areas to 1. Then, the fill function is used to fill the area with a median
value of 0 in black, forming a standard grid map as shown in Figure 14. In order to facilitate
the subsequent ant colony algorithms path planning, we also needed to code each grid. We
divided the map into 60 x 60 parts, and the encoded map is shown in Figure 15.
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Figure 14. Non-standard real environment map grid design.

Figure 15 real environment map grid code result is also very important. Through it,
we can clearly understand the specific positioning of each part in the map.

4.4. Implementation of Ant Colony Optimization Algorithms
4.4.1. Main Parameters

In this map, we set the starting position as point 80, the target position as point 3220, the
number of iterations as 100, and the number of ants as 200. Based on the previous settings
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in Table 2, we obtained the parameters of the non-standard map for the actual environment,
as shown in Table 4. After the parametric setting, we can carry out ant algorithms.

123456789 10111213 14151617 18 19.20 2122 23 24 25 26 27 28 20 30 31 32 33 34 35 36 37 38 30 40 41 42 43 44 45 46 47 48 40 5051 52 53 5455 56 57 5 59 60
51szuussessvessgmﬂ72737475?671737930313233543536:173839909192939;95959193991uo|o11oemsmusmewommwwnnzhsnlmqm__
1211221231 24125126127 281291 301 311321 331341 351 361 371381 391401411421 431 441 451 461471 481 491 501 51 581691 mmmm?ﬂ
181 1 : 1212121 B 212121 212 :

b ;

108113131

EEEIRNBEBEEREE

10 3 1081091101111 12110481 151 181 171 181 181 201201
Bl 70171 721 751 /751 7B 771 781 781801 81

G 13 T3 14 163 163 173 183 1882

bR Ty i

116 I TG 108 165 165 196 1651662
Bl ;

21031021081 : ! 125 -
21eH ezl ezt : 7 75 7 d i [321 322 323 324 325 326 327 328 329 330 331 32 33

[at ISBZ 383 384 385 355 387 388 389 390 391 32 393
41 442 443 444 445 446 447 448 449 450 451 452 453
H01 502 503 504 505 508 507 508 509 510 511 512 513

018 0 00 WD DA

31x1m3|mmmmmm:hm1:‘mmémmﬁ${‘p&fw

Lk L i
g i
B 43 T30 10515 16130 180 1
: i )
% i) ,\Aﬁ.,.-
p ol T

2 ks

Figure 15. Real environment map grid code result.

Table 4. Parameters of ant colony algorithms.

Parameter K M Alpha Beta Rho Q S E
Value 100 200 2 30 0.3 1 80 3220

4.4.2. The Results and Analysis

Figures 16-18 show the path planning map, pose planning map, and displacement
iteration graph after the grid of non-standard map. They are the planned paths obtained
through 100 iterations of ant colony algorithms. The path and poses planned by ant colony
algorithm are clearly shown in the figure. At the same time, after 100 iterations, it can be
seen from Figure 18 that the path planned by ant colony algorithms was generally regional
optimization, and the final selected path was 274.233 mm. It should be noted that the
path length here was obtained by converting it through a scale. The above results prove
that the role of ant colony algorithm in path planning is very obvious. The planned path
was optimized.
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4.5. Integration of Planning Path with Non-Standard Real Environment Map

After planning the path and pose, we opened the originally selected non-standard
map of the real environment. Then, we applied the parameters obtained through previous
calculations to the graph. Figure 19 is the planning path, Figure 20 is the planning pose.
From Figure 19, it can be seen that the planned path was clear and reasonable, avoiding
obstacles and ultimately reaching the endpoint This also achieved the goal of this arti-
cle. Compared to traditional standard maps, Figure 20 has a more guiding role in robot
motion control.
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Figure 19. Integration of planning path and non-standard real environment map.
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Figure 20. Integration of planning pose and non-standard real environment map.

4.6. The Impact of the Number of Iterations

Theoretically speaking, increasing the number of iterations can better find the optimal
motion path of the robot, but the greater the number of iterations, the longer the operation
time will be. On the one hand, in order to improve the effect of path planning of ant
colony algorithm on actual environment map, we conducted a comparison of six sets of
experiments with different iterations, as shown in Figure 21.

According to Figure 21, the path length and processing time changes of Figure 22 can
be obtained. It can be seen from the figure that under the path planning of the existing ant
colony algorithm in a real environment, when the number of iterations was 50 and 800, the
moving path displacement was the minimum value of 169.3 mm, and the movement path
displacement changed little between 50 and 800 times. However, the processing time of the
algorithm increased significantly, and the operation time of 800 times was 13.98 times that
of 50 times. Obviously, when other existing parameters remained unchanged, setting the
iteration number 50 times can not only improve the operation efficiency but also obtain
better-planned paths and poses. This also laid a good foundation for us to conduct other
related experiments in the later stage. When the number of iterations was 50 times, the
path planning diagram in the real environment was as shown in Figure 23.
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Figure 21. Convergence curves of different iterations under non-standard maps of real environment.
(a) 5 iterations. (b) 50 iterations. (c) 100 iterations. (d) 200 iterations. (e) 400 iterations; (f) 800 iterations.
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Figure 23. Integration of planning pose and non-standard real environment map with 50 iterations.

4.7. Repeat Implementation

In order to ensure the universality of the method described in this article, we verified it
through multiple experiments. We conducted the same experiment on six non-standard real
environment maps in Figure 24 and obtained satisfactory planning paths. After multiple
experimental verifications, the path planning method proposed in this article was true and
effective in non-standard maps in real environments. The path planning method proposed
in this article had broad application prospects.
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Figure 24. Planning paths under non-standard maps in different real environments. (a) Environment 1.
(b) Environment 2. (¢) Environment 3. (d) Environment 4. (e) Environment 5. (f) Environment 6.

5. Conclusions

With the development of technology, robots have become a common intelligent human-
assistance tool. Because path planning is the core technology in robot motion control, its
importance is obvious. In response to the problem that the maps used for robot path
planning are often obtained through sensor measurement, which is time-consuming and
laborious. This article studied the method of using of non-standard real environment map
to plan the path. By placing calibration objects in the map, the generated non-standard
planned paths can reflect the real environment, greatly improving the practicality of the
path planning algorithm. In this paper, ant colony algorithms was used for path planning
of non-standard map in a real environment, which greatly improved the intelligence of
path planning algorithm. The experimental results of path planning based on ant colony
algorithms for non-standard maps in virtual and real environments show that the method
can realize path planning and pose planning of mobile robots in non-standard environments.
Because the time of sensor measurement to obtain map was saved, the robot path planning
was more efficient. Since the real environment map was used, the generated mobile robot
path and pose were more intuitive. The research results of this article had great reference
significance for improving the intelligence level of robot path planning methods in the
later stage.
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