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Abstract: The utilization of multibeam sonar systems has significantly facilitated the acquisition of
underwater bathymetric data. However, efficiently processing vast amounts of multibeam point cloud
data remains a challenge, particularly in terms of rejecting massive outliers. This paper proposes a
novel solution by implementing a cone model filtering method for multibeam bathymetric point cloud
data filtering. Initially, statistical analysis is employed to remove large-scale outliers from the raw
point cloud data in order to enhance its resistance to variance for subsequent processing. Subsequently,
virtual grids and voxel down-sampling are introduced to determine the angles and vertices of the
model within each grid. Finally, the point cloud data was inverted, and the custom parameters were
redefined to facilitate bi-directional data filtering. Experimental results demonstrate that compared to
the commonly used filtering method the proposed method in this paper effectively removes outliers
while minimizing excessive filtering, with minimal differences in standard deviations from human-
computer interactive filtering. Furthermore, it yields a 3.57% improvement in accuracy compared to
the Combined Uncertainty and Bathymetry Estimator method. These findings suggest that the newly
proposed method is comparatively more effective and stable, exhibiting great potential for mitigating
excessive filtering in areas with complex terrain.

Keywords: multibeam sonar systems; bathymetric point cloud; outlier rejection; Combined
Uncertainty and Bathymetry Estimator; cone model filtering

1. Introduction

Multibeam sonar systems are widely utilized for underwater bathymetric surveys and
target identification due to their full coverage and high efficiency. However, the presence of
outliers, both including positive anomalies generated by instrument self-noise or environ-
ment noise and negative anomalies caused by seafloor secondary echo, significantly impairs
the quality of multibeam bathymetric data. Therefore, it is imperative to eliminate these out-
liers. Usually, outlier rejection can be categorized into human-computer interactive (HCI)
filtering and automatic filtering according to the level of human intervention. Although
HCI filtering is highly accurate, it heavily relies on operator’s subjective awareness and
experience, rendering it challenging to cope with massive amounts of multibeam bathymet-
ric data. In light of this, exploring efficient and accurate automatic filtering methods has
become a research focus in recent years. At present, two primary types of approaches are
employed for effectively filtering multibeam bathymetric point cloud data (PCD), which
rely on mathematical and statistical theories as well as function statistical inference values.

Earlier developed multibeam bathymetric data filtering methods based on mathemati-
cal statistics, such as the Ware method, Du method, and Median filter method [1–3], were
deem to lack automation and accuracy [4]. Yang et al. proposed an automatic approach for
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outlier removal using beam point density and mathematical morphology methods, while
also smoothing bathymetric data with wavelet filters [5]. This methodology effectively
reduces echo detection errors and enhances the overall quality of the final bathymetric
dataset.

Additionally, Mitchell presented a method of least-squares plane (also known as trend
surface filtering, TSF) fitting multi-ping bathymetric data to filter noise [6]. The method
is effective in rejecting obvious outliers, but it is less resistant to errors. Subsequently,
Debese et al. proposed a hierarchical quadtree approach [7], while Rezvani et al. raised an
M-estimation-based means for improving anti-aliasing and adaptivity respectively [8]. It
is noteworthy that the Combined Uncertainty and Bathymetry Estimator (CUBE) method
was first proposed by Calder and Mayer in 2003 [9], which employs Kalman filtering and
multiple estimations to automatically process multibeam bathymetric data. Due to its high
efficiency and error resistance, it remains one of the most advanced methods in this field.
Even today, many scholars continue to study and improve this method, such as Zhao et al.,
who established a joint CUBE surface filtering parameter selection approach to effectively
enhance the accuracy and efficiency of automatic processing of multibeam data [10].

Compared to filtering methods for multibeam bathymetric PCD, there have been
more mature ways available for Airborne LiDAR PCD. For instance, various methods have
been employed for Airborne LiDAR PCD processing, including using the difference in
slope between adjacent points as a criterion for outlier rejection [11–13], employing mathe-
matical morphology methods from images processing [14–16], utilizing irregular triangle
networks [17,18], deep learning approaches for filtering [19–21], and applying physical
model-based cloth simulation filtering (CSF) as demonstrated by Zhang et al. [22]. Given
the many similarities between these two types of PCD, techniques suitable for filtering Air-
borne LiDAR PCD can also be applied to that produced by multibeam sonar. Based on this,
Yang et al. used the quadratic surface Levenberg-Marquardt method to construct a transfer
iterative trend surface and implemented a bi-directional fabric simulation filtering (BCSF)
to eliminate the negative anomalies and solve excessive filtering [23]. Li et al. proposed an
improved adaptive surface interpolation filter with multiple levels of hierarchy, utilizing
a fabric simulation algorithm to generate effective initial ground seeds for constructing
high-quality terrain surfaces [24]. Notably, Mahphood and Arefi applied a novel model
inspired by tornadoes in nature to the ground point filtering of LiDAR point cloud [25],
providing a new way for underwater multibeam point cloud filtering.

In general, the aforementioned methods can provide effective filtering in areas with
relatively flat terrain. However, when confronted with complex and variable seabed
terrain, it is challenging for one single method to achieve desirable filtering results [26–28].
Typically, varying degrees of excessive or incomplete filtering may occur. In this paper, a
cone model filtering (CMF) method based on an improved tornado algorithm is proposed
in attempt to address the above issues. The method mitigates the occurrence of excessive
filtering in areas with intricate underwater terrain by introducing virtual grids and voxel
down-sampling.

2. Description of the CMF Methodology

The core procedures of the CMF method primarily involve cone model construction,
virtual grid segmentation, k-d tree data structure building and voxel grid division to select
model vertices. Next, the principles of the method are described in detail.

2.1. Cone Model Construction

The cone used in the CMF method possesses an infinite number of tangent planes and
satisfies the following equation:

(x − xv)
2 + (y − yv)

2 = (z − zv)
2 × (tanθ)2 (1)

where (xv, yv, zv) denotes three-axis coordinate of the cone vertex, and θ denotes the half
angle of the cone.
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In a regular cone, each cross-sectional shape is a perfect circle, while each longitudinal
section takes the form of an isosceles triangle. Therefore, the radius of any given transverse
section can be accurately determined by considering both H (the height of the cone) and θ,
as illustrated in Figure 1a.
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Figure 1. Cone model and its filtering principle. (a) Inverted cone model and its primary elements;
The red dotted line is tangent to the sloping ground, and β denotes the maximum slope angle of local
terrain. (b) Schematic diagram of outlier rejection principle.

To judge whether a point lies inside the cone, its horizontal distance from the axis of
the cone must first be calculated using the left-hand side of Equation (1), and then compared
with the radius of the cone at height z based on the right-hand side of Equation (1). If
(x − xv)

2 + (y − yv)
2 is less than or equal to (z − zv)

2 × (tanθ)2, as point p2 shown in
Figure 1b, the point is deemed to lie inside; otherwise, it lies outside [25]. The CMF method
dictates that points located inside the cone shall be deleted, while points situated outside
of it shall be retained.

2.2. Virtual Grid Segmentation

In general, the actual seabed terrain is complex and variable, which may result in
excessive or incomplete filtering if the CMF method is directly applied to the entire area. To
preserve detailed information on raw data as much as possible and enhance CMF efficiency,
this paper segments the raw point cloud into multiple regular virtual grids, as shown in
Figure 2. The specific segmentation steps are outlined below:
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Figure 2. Principle of virtual grid segmentation. GR denotes grid resolution. The blue dots denote
the raw PCD.

Step 1. It is essential to ensure the availability of points in each virtual grid. The
resolution of a virtual grid should ideally exceed that of the raw point cloud. A smaller GR
value results in finer virtual grid segmentation.

Step 2. Determine the maximum and minimum values of raw PCD for both x and y
dimensions, and calculate the number of columns and rows using Equation (2). Ncol =

[
xmax−xmin

GR

]
+ 1

Nrow =
[

ymax−ymin
GR

]
+ 1

(2)

where “[ ]” denotes rounding down, Ncol denotes the number of columns, and Nrow
denotes the number of rows. In particular, when the result of xmax − xmin or ymax − ymin in
Equation (2) is exactly divisible by GR, “+1” is not needed.

Step 3. Compute the coordinates of each point in virtual grids according to Equation (3),
and subsequently allocate all points to their respective grids. Ci =

[
xi−xmin

GR

]
+ 1

Ri =
[

yi−ymin
GR

]
+ 1

(3)

Ci and Ri denote a column and row number, respectively.
Step 4. In an irregular area where the grid is void of any points, CMF filtering will not

be executed.

2.3. K-D Tree Data Structure

The k-d tree is a commonly used data structure for efficient point retrieval in k-
dimensional space [29,30]. In this study, a k-d tree was constructed to accelerate the spatial
indexing of point cloud and improve computational efficiency. Figure 3 illustrates the
principle of k-d tree construction.
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The segmentation order is determined based on the variance of the point cloud in x, y
and z dimensions. The hyperplane is then utilized to partition the space. For instance, as
illustrated in Figure 3, the x-axis served as the initial segmentation dimension. The median
is selected as the root node of the tree and utilized to divide the space into two parts with
a red frame. Subsequently, the z-axis serves as the segmentation dimension, and further
division of space is carried out using a green frame. Finally, by using the y-axis as another
segmentation dimension, four subspaces are subdivided into eight subspaces with a blue
frame to form leaf nodes. In this manner, recursive selection in each designated dimension
yields both final leaf nodes and root nodes.

Once the k-d tree has been established, the subsequent search for neighboring target
points follows the same building steps. In addition to locating the leaf node containing
the target point from the root node, it is also necessary to traverse back to the root node in
order to search for adjacent points. The search terminates when it is determined that no
closer nodes exist.

2.4. Voxel Grid Division

The voxel grid approach is a widely adopted technique for down-sampling massive
points. It utilizes the centroid to replace all points within each voxel grid, thereby preserv-
ing overall spatial structure information and ensuring uniform distribution of sampling
points [31,32].

Firstly, the virtual grid that has already been segmented is further subdivided into smaller
voxels, as illustrated in Figure 4a,b. Voxel size should be chosen to be larger than the resolution
of the raw PCD and smaller than the GR, ensuring that each voxel grid contains at least one
point. Equation (4) is used to calculate the centroid of all points within each voxel grid. The
red point in Figure 4c is the calculated centroid of points in each voxel grid.

xcentroid =

n
∑

i=1
xi

n

ycentroid =

n
∑

i=1
yi

n

zcentroid =

n
∑

i=1
zi

n

(4)
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where (xcentroid, ycentroid, zcentroid) denotes centroid coordinate of voxel, n denotes number
of points in a voxel.
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Figure 4. Voxel down-sampling in a virtual grid. The blue dots denote the raw PCD. (a) Raw points
in each virtual grid; (b) Subdivision of virtual grid into voxel grids (Top view); (c) Determination of
centroid in each voxel grid (Red points); (d) The shape of each voxel grid is a regular cube.

The size of the voxel grid should be determined based on the selected θ angle. For
example, when the terrain is flat and the θ angle is large, as shown in Figure 5a, increasing
the voxel size may be appropriate. Conversely, as depicted in Figure 5b for sloping terrain
with a decreasing θ angle, reducing the voxel size accordingly is necessary to ensure less
incomplete filtering.
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Figure 5. Principles of voxel grid size selection. The blue dots represent the raw PCD, while the red
dots represent the centroid of all point clouds in a voxel grid. The horizontal color lines indicate the
diameter of the base of the cone, and the vertical color lines represent its height. (a) Voxel grid size
selection strategy for flat terrain; (b) Voxel grid size selection strategy for sloping areas.

3. Experimental Section

This section presents an overview of bathymetric data acquisition and pre-processing
procedures, followed by a detailed description of PCD processing with the CMF method.
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3.1. Bathymetric Data Acquisition and Pre-Processing

The data utilized in this study was obtained from a project conducted in the sea
region of Zhejiang Province, China, as depicted in Figure 6a. The multibeam bathymetric
data were acquired using a Reason SeaBat T50-P shallow-water multibeam sonar system
with a beam opening angle set at 120 degrees and containing 512 beam points per ping.
Navigation and positioning system were facilitated by the POS MV OceanMaster from
Applanix Canada, while real-time sound velocity profiles were collected using the MTNOS
X SVPT from AML Canada. GNSS tide measurement was used to obtain accurate dynamic
tidal levels [33]. The water depth of the whole measurement area ranged from 2.40 m to
53.90 m, as shown in Figure 6b.
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Figure 6. Experimental area of this study. (a) Location of the experimental area; (b) Bathymetric map
of the study area.

The acquired multibeam bathymetric data was pre-processed using CARIS HIPS 11.3 soft-
ware, which includes sound velocity correction, installation deviation calibration, navigation
attitude correction and tidal level correction. Subsequently, the raw PCD was outputted and
four representative areas were selected for detailed depiction, including Area 1 characterized
a flat terrain as shown in Figure 7a, Area 2 featuring a sloping terrain as shown in Figure 7b,
Area 3 comprising a mixed terrain as shown in Figure 7c and Area 4 containing a steep terrain
in Figure 7d. The mixed area encompasses flat, sloping and locally steep terrain, representing
a common complex seafloor topography. Collectively, Area 1 comprises 75,283 bathymetric
points; Area 2 comprises 59,799 bathymetric points; Area 3 comprises 186,660 bathymetric
points; and Area 4 comprises 85,005 bathymetric points.
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Figure 7. Four representative areas selected from the experimental sea region. (a) Area 1 characterized
by a flat terrain; (b) Area 2 featuring a sloping terrain; (c) Area 3 comprising a mixed terrain; (d) Area
4 containing a steep terrain.

3.2. Point Cloud Filtering

To validate the efficacy of the CMF method, four filtering approaches, namely CUBE,
TSF, CSF, and CMF were employed to filter the raw PCD. The implementation of these four
methods were carried out using Qt in conjunction with Point Cloud Library (PCL). The
experiments were conducted on version 5.12.9 of Qt and version 1.8.1 of PCL. This section
primarily elucidates the workflow of the CMF method as shown in Figure 8.

Step 1. Statistical filtering method was used for spatial analysis of point cloud to
remove large-scale non-ground points. The mean and standard deviation can be calculated
using Equation (5) and Equation (6), respectively.

µ =

N
∑

i=1
Di

N
(5)

σ2 =

N
∑

i=1
(Di − µ)2

N
(6)



Sensors 2023, 23, 7483 9 of 17
Sensors 2023, 23, x FOR PEER REVIEW 9 of 18 
 

 

 
Figure 8. CMF flow chart. D1 represents the horizontal distance between a point and the central axis 
of the cone, while D2 denotes the radius of its transverse section at that corresponding height in the 
model. 

Step 1. Statistical filtering method was used for spatial analysis of point cloud to re-
move large-scale non-ground points. The mean and standard deviation can be calculated 
using Equation (5) and Equation (6), respectively. 

1

N

i
i

D
= 

N
μ = 


 (5)

( )2
2 1

N

i
i

D
=

N

μ
σ =

−
 (6)

By setting the standard deviation multiplier n, any points falling outside the range 
“µ ± n × σ” were identified as noise and eliminated. In order not to filter out sparse real 
ground and edge terrain, the n-value of the statistical filtering here should be set large. 

Step 2. Proceeded to determine the maximum extent of the PCD after statistical fil-
tering. Subsequently, divided the virtual grid based on PCD resolution and allocate cor-
responding PCD to its respective grid. 

Step 3. The point cloud within each virtual grid was organized into a k-d tree struc-
ture and again statistical filtering was applied. The statistically filtered results were used 
to calculate the slope angle. The n-value should be set small here in order to improve the 
accuracy of the angle calculation. The slope angle of each point relative to its eight nearest 
neighbors was calculated after statistical filtering. In the virtual grid, the maximum of 
these slope angles was chosen as the β angle. 

Figure 8. CMF flow chart. D1 represents the horizontal distance between a point and the central axis of
the cone, while D2 denotes the radius of its transverse section at that corresponding height in the model.

By setting the standard deviation multiplier n, any points falling outside the range
“µ ± n × σ” were identified as noise and eliminated. In order not to filter out sparse real
ground and edge terrain, the n-value of the statistical filtering here should be set large.

Step 2. Proceeded to determine the maximum extent of the PCD after statistical
filtering. Subsequently, divided the virtual grid based on PCD resolution and allocate
corresponding PCD to its respective grid.

Step 3. The point cloud within each virtual grid was organized into a k-d tree structure
and again statistical filtering was applied. The statistically filtered results were used to
calculate the slope angle. The n-value should be set small here in order to improve the
accuracy of the angle calculation. The slope angle of each point relative to its eight nearest
neighbors was calculated after statistical filtering. In the virtual grid, the maximum of these
slope angles was chosen as the β angle.

In this study, the angle β was classified as follows: when it is greater than 0 degrees
but less than 20 degrees, it is identified as a flat terrain; when is greater than or equal to
20 degrees but less than 50 degrees, it is recognized as a sloping terrain; otherwise, it is
considered as a steep terrain. All three types of terrain (flat, sloping and steep) were selected
to determine the threshold of θ angle—a crucial parameter in the cone model—whose range
can be determined using Equation (7).

θ < 90◦ − β (7)

Step 4. Down-sampled the PCD in voxel grids to determine the vertices of the model.
Certainly, the number of model vertices should be determined considering the size of the
selected θ angle.
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Step 5. Judged whether a point lies inside the model. As dictated, a point would be
removed as a non-ground point if D1 was less than or equal to D2.

Step 6. Applied cone models in one virtual grid to reject non-ground points, followed
by traversing other virtual grids until all PCD judgments were completed.

It should be noted that through the procedures above only the positive anomalies can be
eliminated. To remove negative anomalies deeper than the actual seafloor topography, the PCD
needs to be flipped and steps 3—step 6 be repeated to realize bi-directional CMF filtering.

4. Results and Discussion

This section encompasses two aspects. Firstly, a viable range of model parameters was
derived through two sets of comparative experiments, involving the selection of different
θ angles for a fixed voxel size and the selection of different voxel sizes for a fixed θ angle.
Secondly, the filtering results obtained from four methods (CUBE, TSF, CSF and CMF) were
comparatively analyzed across three different terrain types (flat, sloping and mixed).

4.1. Selection of Model Angles

The evaluation standard for filtering accuracy employed a method that integrated Type
I error, Type II error, and Total error. During the experiment, a voxel size of 1 × 1 × 1 m
was selected, and filtration efficiency was measured at different angles. The experimental
findings are presented in Figure 9.
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In Figure 9, it can be observed that the curves representing Type I error closely aligned
with the total errors when comparing error results for the three area types. This is due to
a significantly smaller number of non-ground points compared to ground points. As the
selected θ angle increased, more internal points of the cone were eliminated, resulting in a
decrease in Type II error.

As depicted in Figure 9a, within a flat terrain, the Type II error gradually diminished
with an increasing θ angle due to the model’s enhanced capability in eliminating non-ground
points. When the θ angle was below 60 degrees, there was minimal occurrence of Type I error.
However, when it exceeded 60 degrees, there was a noticeable increase in Type I error as
genuine ground points were mistakenly filtered out by the model. Henceforth, it is advised
that the θ angle should not exceed 60 degrees to avoid excessive filtering for flat terrains.

As shown in Figure 9b, maintaining Type I error was more effective when the θ angle
was kept below 40 degrees for sloping area. Once it exceeded this threshold, the error rate
started to increase due to excessive filtering of sloping ground points. On the other hand,
Type II error decreased as θ angle increases and dropped below 30% when θ angle surpasses
40 degrees. Therefore, it is suggested that the θ angle should not exceed 40 degrees to avoid
excessive filtering for sloping terrains.

As illustrated in Figure 9c, the steep terrain was more sensitive to the change in θ
angle than the other two terrains. As the θ angle increased, the Type I and Type II errors
showed more variation, especially the Type I error. This is because the β angle of the
steep terrain was very large, and as the angle of the model continues to increase, it will
lead to the deletion of more sloping ground points, i.e., the phenomenon of excessive
filtering. Therefore, it is recommended that the θ angle should not exceed 20 degrees to
avoid excessive filtering for steep terrain.

4.2. Determination of Voxel Size

The vertex is another crucial parameter of the cone model. In this section, we employed
the voxel grid method to select the vertices of the cone model and conducted a comparative
analysis in a mixed area. To verify the relationship between θ angle and voxel size, we fixed
θ angles at 20 degrees, 40 degrees and 60 degrees, respectively. Subsequently, different
voxel sizes were selected for quantitative analysis of the filtering results. The experimental
results are shown in Table 1.

Table 1. Method accuracy and execution time at different voxel sizes.

θ Angle (◦) Voxel Size (m) Type I Error (%) Type II Error (%) Time (s)

20

1 × 1 × 1 0.04 56.36 2.606
2 × 2 × 2 1.21 57.54 2.563
3 × 3 × 3 0.80 58.54 2.534
4 × 4 × 4 0.66 59.62 2.467
5 × 5 × 5 0.56 60.69 2.417

40

1 × 1 × 1 1.77 31.00 2.466
2 × 2 × 2 1.73 42.23 2.416
3 × 3 × 3 1.17 45.54 2.384
4 × 4 × 4 1.03 49.46 2.378
5 × 5 × 5 0.95 51.15 2.343

60

1 × 1 × 1 5.27 13.77 2.445
2 × 2 × 2 4.54 21.85 2.399
3 × 3 × 3 3.32 27.77 2.342
4 × 4 × 4 2.95 35.69 2.326
5 × 5 × 5 2.88 38.23 2.306

As shown in the table, the trends of Type I error and Type II error varied with voxel
size. Specifically, Type I error was inversely proportional to the voxel size; decreasing voxel
size led to an increase in Type I error, particularly for larger θ angles. This can be attributed
to the fact that selecting more vertices at larger model angles may result in removal of
real ground points around those vertices, thereby increasing the likelihood of a Type I
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error. It was worth noting that the smallest Type I error occurred when the θ angle was
20 degrees and the voxel size was 1 × 1 × 1 m. This can be described to the similarity
between the resolution of the raw PCD and the selected voxel size, resulting in a sparse
point distribution within each voxel grid. Additionally, due to an insufficiently small θ
angle for the experimental area, the outliers were not effectively filtered.

On the contrary, if the θ angle was small and the selected model vertices were equally
few, the spacing between the two models was large and the outliers in the middle part
would not be removed. According to the results in the table, with the increase of voxel size,
the Type II error increased, and the filtering effect decreased significantly. Therefore, it is
suggested that more vertices should be selected in the case of smaller θ angle. This will
eliminate noise and will also suppress the excessive filtering phenomenon.

In addition, the results presented in Table 1 indicated that the execution time of CMF
experienced a slight decrease when the voxel size increased from 1 to 5. This outcome can
be attributed to the fact that with an increase in voxel size, there was a reduction in the
number of model vertices and frequency of judgments made, leading to a corresponding
decrease in time. However, this change was not significant owing to fewer point cloud
being present within the selected area.

In summary, the number of selected vertices is inversely proportional to the size of the
voxel grid, while the θ angle is inversely proportional to the number of selected vertices.
For flat terrains, it is recommended to set a large θ angle for effective filtering and reduce
the voxel size in order to avoid filtering out more ground points near the vertices, thus
improving operational efficiency. For sloping and steep terrains, increasing the selection
number of vertices and decreasing the θ angle are necessary to ensure accurate filtration.

4.3. Performance Comparison of Different Filtering Methods
4.3.1. Qualitative Analysis

The filtering results obtained through four distinct methods (CUBE, TSF, CSF and CMF)
in three different areas, namely Area 1, Area 2 and Area 3, are illustrated in Figures 10–12,
respectively.
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Figure 12. Comparison of filtering results in Area 3 using different methods. (a) CUBE; (b) TSF;
(c) CSF; (d) CMF.

In Area 1, all four filtering approaches demonstrated satisfactory results. However, the
CUBE method exhibited limited effectiveness in removing a few large-scale points at the
edges of Figure 10a. The TSF method displayed localized areas of excessive filtering and was
unable to adequately filter out small-scale outliers at the edges of Figure 10b. As depicted
in Figure 10c, the CSF method effectively eliminated positive anomalies, it still left behind
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a small fraction of negative anomalies and may result in excessive filtering. In contrast,
the CMF method exhibited no signs of excessive filtering and achieved superior noise
reduction as shown in Figure 10d. The comparative analysis revealed that by increasing the
θ angle and reducing vertex numbers the CMF method can ensures a decrease in excessive
filtering while maintaining optimal performance.

In Area 2, the CUBE method exhibited incomplete filtering as shown in Figure 11a.
While both the TSF method as shown in Figure 11b and the CSF method as shown in
Figure 11c demonstrated excessive filtering, the latter achieved a more optimal filtering
effect. The former showed the most obvious degree of excessive filtering, as the fitted trend
surface did not reflect the complex seafloor topography well. The CMF method achieved
the optimal filtering results as shown in Figure 11d due to its refined parameter selection
strategy that effectively reduced θ angle and increased vertex numbers.

In Area 3, the CUBE method achieved the smoothest surface of the seafloor topog-
raphy as depicted in Figure 12a. However, excessive filtering occurred where there was
high variability in the topography, leading to a loss of some smaller geomorphic features.
According to the filtering results of the TSF method as depicted in Figure 12b and the CSF
method as illustrated in Figure 12c, it can be seen that both methods showed different
degrees of excessive filtering due to the limitations of the surface fitting function and fabric
stiffness. Moreover, the former also exhibited incomplete filtering phenomenon. In contrast,
the CMF method can not only effectively remove most of outliers but also preserve genuine
topographic features by reducing θ angle and voxel size as shown in Figure 12d.

4.3.2. Quantitative Analysis

The methods presented in this paper were quantitatively analyzed by comparing the
results obtained from HCI filtering, which were taken as true values, with the four methods
for assessing mutual differences. The summarized findings can be found in Table 2.

Table 2. Statistical analysis of mutual difference between HCI filtering and four other filtering methods.

Experimental
Areas

Filtering
Methods

Difference in
Max Depth (m)

Difference in
Min Depth (m)

Difference in
Average Depth

(m)

Difference in
Variance

Difference in
Standard
Deviation

Area 1

CUBE 0.01 −2.07 −0.001 0.0106 0.0038
TSF 2.11 −0.35 −0.001 0.0100 0.0036
CSF 2.11 0.00 −0.010 −0.0147 −0.0053
CMF −0.01 −0.02 −0.003 0.0036 0.0012

Area 2

CUBE 0.00 0.06 0.000 0.0085 0.0017
TSF 0.00 0.11 0.289 −1.2135 −0.2495
CSF 0.00 0.00 0.003 0.0146 0.0029
CMF −0.04 0.00 0.000 0.0033 0.0007

Area 3

CUBE 0.01 0.08 −0.008 0.2042 0.0187
TSF 6.56 0.11 0.219 −2.4851 −0.2330
CSF 4.44 0.00 −0.099 0.1166 0.0107
CMF 0.44 0.00 0.005 −0.0082 −0.0007

In Area 1, the results reveal that all four methods exhibited favorable overall per-
formance. Among them, the TSF and CSF method showed a max-depth deviation of
approximately 2.1 m from the true values due to a few remaining outliers. Combined with
Figure 10b,c, it can be seen that there were small-scale anomalies that were not filtered out
in both methods, and a small degree of excessive filtering occurred in the CSF method.
Therefore, the standard deviation of CSF differed the most among the four methods with
0.0053 compared to the true values. The standard deviation obtained by the CUBE method
was similar to that of the TSF method, but as seen in Figure 10c, there were still large-scale
outliers that were not removed. The CMF method did not show excessive filtering and had
the smallest standard deviation of 0.0012 from the true value.
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In Area 2 and Area 3, there was a large gap between the experimental results obtained
by the TSF method and the true values, and the difference of standard deviation was 0.2495
and 0.2330, respectively. Because the TSF method was plagued by uncertainties in surface
fitting function, incomplete filtering and the unreasonable removal of some water depth
points [34]. As a result, in Figures 11b and 12b, the method appeared a large degree of
excessive filtering and incomplete filtering. In addition, the standard deviation obtained by
the CSF method was closer to the true values. However, in Area 3, the max-depth obtained
by the method differed from the true value by 4.44 m, with an average deviation of about
0.099 m. Combined with Figure 12c, it can be seen that the method was less effective in
filtering negative anomalies and there was obvious excessive filtering.

In Area 2, the results obtained from the CUBE and CMF methods were comparable,
and the differences between the two methods and the true values were small. However, for
complex terrain, the CUBE method may remove more of the true seafloor topography [35].
As shown in Figure 12a, there was excessive filtering in the CUBE method with a standard
deviation of 0.0187 from the true value. In contrast, the CMF method showed the smallest
variance deviation from the true value in Area 2 and Area 3, which proved the stability and
reliability of the results. However, in Area 3, the maximum depth obtained by the CMF
method differed from the true value by 0.44 m, because some small-scale anomalies were
not removed, as shown in Figure 12d.

To ensure accurate comparison between the two methods, we utilized the latest
standard published by the International Hydrographic Organization (IHO) [36]. The results
are presented in Table 3.

Table 3. A comparison of the accuracy between CMF and CUBE based on IHO criteria.

Experimental
Areas

Filtering
Methods

Total Points
before

Filtering

Total Points
after Filtering

Total Points
Meeting IHO

Standards
Accuracy (%)

Area 1
CUBE 75,283 75,253 74,820 99.42
CMF 75,017 74,858 99.78

Area 2
CUBE 59,799 59,781 59,649 99.78
CMF 59,708 59,677 99.94

Area 3
CUBE 186,660 186,657 179,636 96.24
CMF 185,464 185,123 99.81

As indicated in Table 3, the CMF method demonstrated improved accuracy compared
to the CUBE method across various areas. Notably, the disparity between these two
methods was minimal in Area 1 and Area 2, with differences of merely 0.36% and 0.16%,
respectively. However, in Area 3, the CMF method exhibited a significant enhancement of
3.57% over the CUBE method, thus validating the efficacy of our proposed approach.

5. Conclusions

This paper proposes a novel CMF method based on an enhanced tornado algorithm
for filtering multibeam bathymetric data. The core procedures of the proposed method
mainly include four aspects, which are cone model construction, virtual grid segmentation,
k-d tree data structure building and voxel grid division, respectively.

The cone model is primarily characterized by its angles and vertices, with the con-
straint that the sum of the model angle and maximum terrain slope should not exceed
90 degrees to prevent excessive filtering. Based on experimental findings, it is recom-
mended to restrict the θ angle to 60 degrees for flat terrains to avoid excessive filtering. For
sloping terrains, a suggested upper limit of 40 degrees for the θ angle is advised. In case of
steep terrains, it is highly advisable not to surpass a θ angle of 20 degrees. The voxel size
is correlated to the resolution of the PCD, and it has been observed that the model angle
tends to be inversely proportional to the number of vertices.

The results demonstrate that the CMF method exhibits the smallest standard deviation
when compared to the actual value through comprehensive comparisons across different
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areas and methods. These findings not only highlight the effectiveness and stability of the
CMF method but also underscore its significant potential in addressing excessive filtering in
complex terrain. In terms of future development, it is suggested to consider incorporating
self-adaptive adjustment of model parameters and enhancing automation and precision by
improving the accuracy of β angle calculations.
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