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Abstract: The Smart Grid aims to enhance the electric grid’s reliability, safety, and efficiency by
utilizing digital information and control technologies. Real-time analysis and state estimation
methods are crucial for ensuring proper control implementation. However, the reliance of Smart Grid
systems on communication networks makes them vulnerable to cyberattacks, posing a significant
risk to grid reliability. To mitigate such threats, efficient intrusion detection and prevention systems
are essential. This paper proposes a hybrid deep-learning approach to detect distributed denial-
of-service attacks on the Smart Grid’s communication infrastructure. Our method combines the
convolutional neural network and recurrent gated unit algorithms. Two datasets were employed:
The Intrusion Detection System dataset from the Canadian Institute for Cybersecurity and a custom
dataset generated using the Omnet++ simulator. We also developed a real-time monitoring Kafka-
based dashboard to facilitate attack surveillance and resilience. Experimental and simulation results
demonstrate that our proposed approach achieves a high accuracy rate of 99.86%.

Keywords: Smart Grid; deep learning; intrusion detection; distributed denial of service attacks;
communication infrastructure; real-time monitoring

1. Introduction

The Smart Grid, powered by digital information and control technologies, offers
immense potential to transform the traditional electric grid into a more reliable, secure,
and efficient system. The Smart Grid enables real-time analysis and precise control by
integrating advanced communication networks and state estimation techniques, leading
to optimized energy distribution and improved grid resilience. However, the increasing
dependence on interconnected communication networks also exposes the Smart Grid to
cyber threats, jeopardizing its reliability and functionality [1–5]. Electric utilities all over the
world use SCADA (supervisory control and data acquisition) protocols. Those protocols
are often used in Smart Grid operations to measure parameters, monitor processes, and
control operations with measurement and control systems [3]. The electric network’s
SCADA system is essential [6]. It comprises computer systems that talk to each other and
share important information across networks. The widespread adoption of IT has made
these systems susceptible to hacking attempts [5]. Therefore, the development of effective
intrusion detection and prevention systems has become paramount to safeguarding the
networks against such attacks [7–9].

Incorporating intrusion detection enables the detection of potential threats both before
and after they infiltrate a system. The most effective method for integrating the gateway
with an IEC 61850-based network is to implement it internally within the gateway [10]. IEC
61850 does not mandate any particular method for detecting attacks or repairing damage
if it occurs; nevertheless, an intrusion detection system (IDS) might be used inside the
grid to bolster IEC 61850’s security [11]. The prevalence of possible threats in the electric
infrastructure grows with the rise of machine-to-machine (M2M) and human−machine
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interface (HMI) communication [12,13]. IDS is crucial for the safety of the Smart Grid. The
radio channel used for data transmission in the Smart Grid network is also susceptible to
cyberattacks, as it is the foundation of the entire network. Hence, intrusion detection in a
Smart Grid’s SCADA network is a hot topic in cyber security research [8,14].

On the other hand, distributed generation (DG) has been the key to transitioning to
renewable energy sources (RES). When DG is introduced at different nodes in an existing
network, it changes the overall shape of the power grid. Changes in voltage and current
at individual nodes result in more points of entry into the power grid [15]. The scope of
an electrical network directly impacts the complexity of the communication technologies
and supporting infrastructure that makes up the Smart Grid as a whole. Some researchers
have been motivated to examine the cyber dangers to Smart Grids after considering the
limitations of existing intelligent grid communication systems. In Figure 1 we present
Smart Grid arch with current attacks and future attacks in distributed systems.
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Figure 1. Attacks on Smart-Grid-distributed systems.

This paper proposes a novel hybrid deep-learning method for detecting DDoS attacks
on the Smart Grid’s communication infrastructure. Our approach combines the power
of convolutional neural networks (CNNs) and recurrent gated units (RGUs) to analyze
network traffic patterns and identify anomalous behaviors indicative of DDoS attacks. By
leveraging the strengths of these two techniques, we aim to enhance the accuracy and
efficiency of intrusion detection in the Smart Grid context. We employ two distinct datasets
to evaluate the performance of our proposed method. The first dataset is obtained from the
Intrusion Detection System dataset provided by the Canadian Institute for Cybersecurity,
which comprises a wide range of network attack scenarios. Additionally, we generate
a custom dataset using the Omnet++ simulator, enabling us to simulate realistic Smart
Grid network environments and incorporate specific attack scenarios. By utilizing these
diverse datasets, we aim to evaluate the effectiveness and robustness of our approach under
various attack scenarios.

Furthermore, recognizing the importance of real-time monitoring and situational
awareness in the Smart Grid, we developed a comprehensive dashboard that provides
visualization and monitoring capabilities. This dashboard enables operators to monitor the
network’s health, detect ongoing attacks, and facilitate timely response and mitigation. The
results of our experiments demonstrate the superior performance of the proposed hybrid
deep-learning method by achieving an accuracy rate of 99.86% in detecting DDoS attacks.
This result outperforms existing intrusion detection systems and highlights the potential of
deep-learning techniques in fortifying the Smart Grid’s cybersecurity defenses.

Our contributions are as follows:
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• Presenting a method that combines a hybrid model with gated recurrent unit (GRU)
and convolutional neural network (CNN) to prevent DDoS attacks in the smart-energy-
grid distributed system.

• We utilized DDoS Evaluation Dataset (CIC-DDoS2019) datasets for in-depth research
evaluation, demonstrating that the proposed approach outperformed existing IDS
algorithms with a 99.86% accuracy and nearly 100% detection rate.

• Developing a Kafka-based dashboard system that enhances resilience to attacks and
provides real-time monitoring capabilities for network administrators.

• Generating a custom dataset through simulations that incorporate various Smart Grid
devices, including both attack traffic and normal traffic.

The remainder of the paper is structured as follows:
Section 2: Literature Review—This section provides an overview of the literature and

research on DDoS attacks in the Smart-Grid domain. It examines the strengths and limita-
tions of previous approaches and sets the foundation for the proposed hybrid algorithm.

Section 3: Proposed Hybrid Algorithm—In this section, the suggested hybrid algo-
rithm, which combines a convolutional neural network (CNN) and a recurrent gated unit
(GRU), is explained in detail. The architecture, training methodology, and critical compo-
nents of the algorithm are discussed, emphasizing how it addresses the challenges of DDoS
attacks in the Smart Grid.

Section 4: Performance Evaluation and Simulation—Simulations are conducted to
evaluate the performance of the proposed algorithm. A comprehensive comparison is
made with existing methods, including accuracy, detection, and false-positive rates. The
results are analyzed and discussed, highlighting the superiority of the proposed algorithm.

Section 5: Conclusion and Future Work—This section provides concluding remarks
on the findings and contributions of the research. It summarizes the key insights from the
study and discusses potential avenues for future research and improvements in addressing
DDoS attacks in the Smart Grid domain.

2. Related Work

A security plan must be implemented to safeguard the intelligent grid [16]. The re-
searchers in [17] proposed several monitoring procedures to keep an eye out for suspicious
branch flow variations and anomalous load deviations to identify fake data injection (FDI)
attacks. In this work [18], the authors proposed detecting FDI attacks using deep learning. The
proposed method for finding FDI is based on a warning system made using custom metrics.

2.1. Firewall and Intrusion and Protection

An individualized firewall designed by [19] was created based on the idea of the
SCADA Wall, which was designed to protect SCADA networks powered by Comprehen-
sive Packet Inspection (CPI) technology. It addresses the limitations of traditional SCADA
firewalls by offering a deeper payload inspection, enhanced protection for proprietary
industrial protocols through the Proprietary Industrial Protocols Extension Algorithm
(PIPEA), and abnormality detection within industrial operations using the Out-of-Sequence
Detection Algorithm (OSDA). A comparative analysis with two commercial SCADA fire-
walls demonstrates the effectiveness of SCADA Wall in mitigating the drawbacks without
compromising on the low latency requirement of SCADA systems.

The authors of [20] presented DIDEROT (Dnp3 Intrusion Detection prevention system),
an Intrusion Detection and Prevention System (IDPS) specifically designed for DNP3
SCADA systems. It combines supervised machine learning and unsupervised/outlier
machine learning models to identify DNP3 cyberattacks and anomalies. The system first
utilizes a supervised ML model to detect specific cyberattacks, and if the network flow
is deemed normal, an unsupervised/outlier ML model is activated to detect possible
anomalies. The DIDEROT performance is demonstrated using real data from a substation
environment, and it leverages Software Defined Networking (SDN) technology for timely
mitigation of detected cyberattacks and anomalies.
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The research paper [21] proposes a parallel structure using Recurrent Neural Net-
work (RNN) classifier models, specifically Long Short-Term Memory (LSTM) and Gated
Recurrent Units (GRU), for improved detection accuracy. The model is trained and tested
using a dataset created from an experimentally generated SDN-based SCADA topology.
Transfer learning is employed to enhance the model’s performance further. An additional
5% improvement was achieved through transfer learning. The findings indicate that the
proposed RNN deep-learning classifier model effectively detects DDoS attacks in SDN-
based SCADA systems. The researchers [22] created a cyber-physical monitoring system to
find infiltration and DoS in the smart meter. The idea only works when online events and
real-world facts are combined in a way that makes sense. The test demonstrates that the
model can effectively identify threats by connecting cyber and physical signals.

It has been suggested in [23] that cyber-attack breaches in SCADA systems could be
tracked by looking for patterns in time. In addition, the method was developed to track
any odd shifts in the functioning of the linked system. The artificial neural network (ANN)
method and a hidden Markov model were used to build the model in order to achieve
this goal. Five feature extraction methods were used to test how well the suggested model
worked in simulations and real-world situations. Satisfactory results were found from the
strategy executed using the time-feature extraction model termed MAGPIE [24], which
is a novel smart home intrusion detection system that autonomously adjusts its anomaly
classification models based on changing conditions within the smart home environment.
MAGPIE utilizes a probabilistic cluster-based reward mechanism and non-stationary multi-
armed bandit reinforcement learning to adapt its decision function. The system incorporates
both cyber and physical data sources and detects human presence to optimize accuracy.
The experimental evaluation conducted in a real household demonstrates the high accuracy
of MAGPIE. The open-source availability of MAGPIE and its evaluation datasets allows
for future advancements and the integration of additional data sources as smart home
environments and attacks evolve.

In order to provide a security model for the SCADA system that can be used in
gas and oil facilities, it has been suggested that a C4.5 decision tree algorithm should
be used [25]. However, the openness of the SCADA network also poses security risks,
including cyber-attacks and information security breaches.

The authors of [26] presented a SCADA system testbed for cybersecurity research,
focusing on a water storage tank’s control system. The study included conducting sophisti-
cated cyber-attacks and training machine learning algorithms to detect these attacks using
captured network traffic data. The trained models are then deployed in the network for
real-time attack detection. The results highlight the effectiveness of the machine learning
models in detecting attacks in SCADA environments. Overall, this research provided
valuable insights into SCADA system cybersecurity and offered practical implications for
enhancing security measures. It revealed that 99.8% of the F1 test successfully identified
the attacks.

2.2. Performance Enhancement and Evaluation

The authors of [27] focused on enhancing the SCADA system’s resilience against DDoS
attacks using three machine learning algorithms: J48, Naive Bayes, and Random Forest. The
algorithms were trained and evaluated using the KDDCup’99 dataset, and preprocessing
techniques were applied. The results reveal that the Random Forest classifier achieved the
highest accuracy rate of 99.99%, while the Naive Bayes classifier performed slightly lower
at 97.74%. This research contributed valuable insights into improving the effectiveness of
machine learning algorithms for detecting attack patterns in SCADA systems, providing
a foundation for enhancing the security of critical infrastructures. The researchers in [28]
focused on securing Smart Grid networks through intrusion detection systems (IDS). Com-
pared with traditional machine learning techniques, the study investigated the performance
of ensemble learning techniques, specifically bagging-based, boosting-based, and stacking-
based. The evaluation is based on critical metrics such as detection rate, false alarm rate,
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miss detection rate, and accuracy using the CICDDoS 2019 benchmark dataset. The results
demonstrate that the stacking-based ensemble learning techniques outperformed other
algorithms across all of the evaluation metrics. This research contributes valuable insights
into improving the effectiveness of IDS for securing Smart Grid networks.

2.3. Data Confidentiality Mechanisms and Defenses

Software Defined Networking (SDN) [29] provided a way to find and stop DDoS
attacks. This technique was based on discrete wavelet transforms and auto-encoder neural
networks. Wavelet transforms were used to pull out statistical features, which were then
used by an auto-encoder neural network to identify DDoS attack samples. The authors
in [29] proposed [30] a novel feature selection−whale optimization algorithm−deep neural
network (FS-WOA–DNN) method that uses a novel approach combining feature selection
using whale optimization and deep neural network techniques to counter distributed
denial-of-service attacks. In order to enhance the security of the proposed methodology,
the researchers homomorphically encrypt standard data before uploading it to the cloud,
ensuring complete confidentiality. The experiment’s results demonstrated an accuracy of
95.35 % when identifying DDoS attacks.

In this paper [31], the authors proposed a novel multi-scale residual classifier (MSRC)
method for detecting network traffic anomalies. The approach involves dividing the
traffic into subsequences with different observation scales, utilizing wavelet transform to
extract time−frequency information, employing a stacked automatic encoder (SAE) to learn
data distribution, calculating reconstruction error vectors, and leveraging the multipath
residual group to capture feature information across scales. The experimental results
demonstrate that the proposed method outperforms traditional approaches for detecting
abnormal network traffic. The findings highlight the significance of incorporating extensive
observation and multiple transformation scales to uncover diverse information within
network traffic. Overall, this research contributes to advancing network anomaly detection
by considering multi-scale characteristics and achieving improved detection performance.

2.4. Machine Learning and Deep-Learning Techniques

In response to these concerns, the authors of [32] propose a token authentication service
module as a defense mechanism against distributed denial-of-service (DDoS) attacks. The
effectiveness of the proposed security defense architecture is demonstrated through a
simulated experiment conducted in an energy management system. The experimental
results validate the capability of the proposed architecture to enhance security and its
compatibility with real-world field systems.

The authors of [33] proposed a solution utilizing sFlow and adaptive polling for
sampling, along with integrating Snort Intrusion Detection System (IDS) and a deep-
learning model based on Stacked Autoencoders (SAE). Leveraging the flexibility of Software
Defined Networking (SDN), the approach allows for network programming without relying
on third-party hardware or software. The proposed system demonstrates higher detection
accuracy through performance metrics and evaluation, achieving a True Positive rate of 95%
with a False Positive rate below 4% in the sFlow implementation compared with adaptive
polling. This research enhances DDoS attack detection in IoT networks, leveraging the
benefits of SDN and deep-learning techniques.

The authors of [34] evaluated the performance of two open-source intrusion detection
systems (IDSs), Snort and Suricata, for accurately detecting malicious traffic on computer
networks. The study further explored a hybrid version of SVM and Fuzzy logic, which
yielded improved detection accuracy. Nevertheless, the best results were achieved by
employing an optimized SVM with the firefly algorithm, achieving a false-positive rate
(FPR) of 8.6% and a false-negative rate (FNR) of 2.2%. This outcome indicates a significant
performance improvement. The novelty of this work lies in its comparison of the two IDSs
at a high network speed of 10 Gbps and the application of hybrid and optimized machine
learning algorithms to enhance Snort’s functionality.
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When sorting and finding things, the model was more accurate when it used a back
propagation neural network. However, the backpropagation neural network algorithm
proposed by [35], whose primary job was to find threats to the resources, had a low
rate of finding attacks. The algorithm’s main task was to identify resource threats. This
paper [36] addressed the issue of network intrusions threatening the data security of the
train Ethernet Consist Network (ECN), which is responsible for transmitting critical train
control instructions. To counter these threats, the authors proposed a novel ensemble
intrusion detection method tailored to defend against various network attacks, including
IP Scan, Port Scan, Denial of Service (DoS), and Man in the Middle (MITM). The method
achieved a high detection performance, with an accuracy rate of 0.975.

The study by [37] focused on enhancing the performance of the k-Nearest Neighbor
(kNN) algorithm for classifying botnet attacks in the IoT environment. The proposed
method achieved the highest accuracy and fastest execution time among the evaluated
techniques. This paper [38] highlighted applying deep-learning (DL) and machine learning
(ML) techniques, specifically a hybrid framework called HCRNNIDS, for predicting and
classifying malicious cyberattacks in networks. HCRNNIDS combines the strengths of
convolutional neural networks (CNN) and recurrent neural networks (RNN) to capture both
local and temporal features, resulting in an improved performance and prediction accuracy.
With a high detection rate accuracy of up to 97.75%, HCRNNIDS offers a promising solution
for effectively identifying and mitigating network threats.

The authors of [39] introduced the SCDNN model, which combines spectral clustering
(SC) and deep neural networks (DNN) for intrusion detection in complex network datasets.
The results highlight the superiority of the SCDNN model in terms of accuracy and ro-
bustness, highlighting its potential for detecting and mitigating network intrusions more
effectively than conventional methods.

This paper [40] highlighted the critical role of Intrusion Detection Systems (IDSs) in secur-
ing networks and computer systems by utilizing artificial intelligence (AI) techniques, specifi-
cally deep-learning algorithms such as Convolutional Neural Networks (CNNs). Overall, this
survey paper provides valuable insights into the application of CNNs in IDSs, addressing the
current state of research and identifying areas for future exploration and improvement.

3. Background
3.1. Deep Learning

Deep learning is a rapidly evolving field within artificial intelligence (AI) that has
gained significant attention in recent years. It uses neural networks with multiple layers
to automatically learn and extract complex patterns and representations from raw data.
One of the distinguishing features of deep learning is its ability to bypass the need for
manual feature selection [41]. Traditionally, in machine learning, experts manually engineer
relevant features to train models. However, deep-learning models can automatically learn
and extract meaningful features directly from raw input data, eliminating the laborious
and time-consuming feature engineering process. It is a field that encompasses various
definitions put forth by researchers. Despite variations, common keywords and concepts
emerge, including “complex architectural data model”, “unsupervised machine learning”,
“learning multiple layers”, and “nonlinear data transformations”. Deep-learning models
typically consist of multiple layers, allowing for hierarchical learning of representations.
Each layer in the network performs specific computations, progressively building up a
hierarchy of features. This hierarchical architecture enables the network to capture low-
level and high-level abstractions, thus capturing intricate patterns and structures within
the data.

Several deep-learning architectures have been developed to tackle different data types
and tasks. Examples include Deep Belief Networks (DBNs), which are generative models
capable of unsupervised learning; Recurrent Neural Networks (RNNs), which excel in
processing sequential data; and Convolutional Neural Networks (CNNs), which have
proven to be highly effective in tasks involving structured grid-like data such as images
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and audio. The versatility and power of deep learning have sparked tremendous interest
and research efforts. Researchers continue to explore and develop innovative deep-learning
techniques, addressing challenges such as model interpretability, training on limited labeled
data, and improving the efficiency of deep-learning algorithms.

3.2. Convolutional Neural Network (CNN) for Intrusion Detection

Convolutional neural networks (CNNs) have emerged as a powerful tool in the field
of intrusion detection, particularly in the context of securing Smart Grids. The increasing
complexity and interconnectedness of Smart Grid systems have made them vulnerable
to various cyber threats, including malicious attacks. Robust intrusion detection systems
(IDSs) are essential to detect and mitigate these threats.

CNNs offer a promising approach for intrusion detection in Smart Grids because they
can automatically learn and extract relevant features from raw input data. In the context
of Smart Grids, these input data may include network traffic data, sensor readings, and
communication patterns. By leveraging the inherent hierarchical architecture of CNNs,
these models can capture local and global patterns in the data, enabling accurate and
efficient detection of intrusions. Applying CNNs in Smart Grid intrusion detection involves
designing appropriate network architectures to process Smart Grid systems’ complex and
dynamic data effectively. Convolutional layers in the CNN are responsible for learning and
detecting local features within the input data, such as abnormal patterns in network traffic
or unusual behaviors in sensor readings. Pooling layers downsample the feature maps,
allowing the model to focus on the most relevant and informative features. Finally, fully
connected layers connect these learned features to the output layer, where the intrusion
detection decision is made.

The use of CNNs in Smart Grid intrusion detection systems offers several advantages:

1. They can manage high-dimensional and heterogeneous data, making them well-suited
for the diverse data sources found in Smart Grids.

2. CNNs can adapt to changes in the data patterns over time, allowing them to detect
evolving intrusion techniques effectively.

3. By automatically learning features from the data, CNN-based IDSs can reduce the
dependence on manual feature engineering, which can be time consuming and
error prone.

Developing and optimizing CNN architectures for Smart Grid intrusion detection
is an active area of research. Researchers are exploring different network configurations,
hyperparameter settings, and training strategies to improve the detection accuracy and
efficiency of CNN-based IDSs in Smart Grid environments. Additionally, efforts are being
made to integrate CNNs with other machine learning techniques, such as recurrent neural
networks (RNNs), to capture temporal dependencies in the data and enhance intrusion
detection capabilities. CNNs offer a promising approach for intrusion detection in Smart
Grids, leveraging their ability to automatically learn and extract relevant features from
complex and heterogeneous data. By applying CNNs in the context of Smart Grid intrusion
detection, researchers aim to enhance the security and resilience of Smart Grid systems
against various cyber threats. The ongoing advancements in CNN architectures and
techniques hold great potential for improving intrusion detection’s accuracy, efficiency, and
effectiveness in the evolving landscape of Smart Grids.

3.3. Intrusion Detection Using Gated Recurrent Unit (GRU)

Intrusion detection is critical to securing computer networks and systems against
malicious activities. Traditional approaches to intrusion detection often rely on rule-based
or statistical methods. However, with network traffic’s increasing complexity and dynamic
nature, more advanced techniques are required to detect and mitigate intrusions effectively.
One such technique is GRU.

GRU is a type of recurrent neural network (RNN) that has gained significant attention
in intrusion detection due to its ability to model and capture sequential dependencies
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in data. Unlike traditional RNNs, GRU introduces gating mechanisms that enable it
to update and forget information selectively over time. This capability allows GRU to
effectively manage long-term dependencies in the data, which is crucial for detecting
complex intrusion patterns. In intrusion detection, GRU models are trained on network
traffic data, system logs, or other relevant data sources to learn the typical patterns and
behaviors of the network. These models can then detect anomalies or deviations from the
learned normal behavior, which may indicate a potential intrusion or malicious activity.

The architecture of a GRU-based intrusion detection system typically consists of
multiple layers of GRU units. Each unit processes sequential data at a specific time step and
passes the hidden state to the next time step. The secret state retains essential information
from previous time steps, allowing the model to capture long-term dependencies. The
output of the GRU units can be fed into a classification layer, which makes the final intrusion
detection decision based on the learned representations.

GRU-based intrusion detection systems offer several advantages:

1. They can effectively model and capture temporal dependencies in network traffic
data, allowing for more accurate intrusion detection than traditional methods.

2. GRU models can adapt to changing network behaviors and detect emerging intrusion
patterns, making them suitable for dynamic and evolving network environments.

3. GRU’s gating mechanisms enable them to efficiently process long data sequences,
making them well-suited for real-time intrusion detection.

However, the performance of GRU-based intrusion detection systems heavily depends
on various factors, such as the quality and representativeness of the training data, hyperpa-
rameter tuning, and model optimization. Researchers are actively investigating techniques
to enhance the performance and robustness of GRU models for intrusion detection. This
includes exploring different network architectures, incorporating attention mechanisms,
and further integrating other deep-learning techniques to improve intrusion detection′s
accuracy and efficiency. GRU has emerged as a powerful tool for intrusion detection, partic-
ularly in scenarios involving sequential data, such as network traffic. Its ability to capture
long-term dependencies and adapt to changing network behaviors makes it a valuable
asset in detecting complex intrusion patterns. Ongoing research and advancements in
GRU-based intrusion detection aim to enhance the effectiveness and reliability of detecting
intrusions in dynamic and evolving network environments.

3.4. Artificial Neural Networks Structure

An artificial neural network is an initiative-taking system comprising many closely
connected, nonlinear processing units, parallel, or “devices” that are very good at com-
puting. Instead, it may be seen as a collection of flexible mathematical structures that can
identify complex nonlinear connections between the datasets that are being input and those
that are being produced [42]. A typical neural network is made up of many elementary
processing units that are coupled and known as neurons. Each neuron produces a series of
activations that have real-world values. Sensors in the environment turn on input neurons
layer, convolutional layer, pooling layer and GRU layer neurons connected with output
layer (see Figure 2).

Mathematical Representation
As inputs to the proposed model, the first layer of GRU is responsible for processing

the inputs and generating the outputs. The outputs from the first layer are transferred
into the system for the second layer. Similarly, the outputs of the second layer serve as
inputs for the third layer. Using an activation function allows for the generation of the GRU
model’s final outputs. We use two activation functions that are most often utilized, namely
the sigmoid and tanh, which are presented as examples in the work [43–45].
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Next, we show the mathematical formulation of our proposed method.
Input vector:
Let X = [X1, X2, . . . , XN ]T denote the input vector, where each Xi represents a

specific feature or measurement in the Smart Grid network.
Gated Recurrent Unit (GRU) for feature extraction:
The GRU layers are employed to extract relevant features from the input vector. The

GRU gates and activation function are defined as follows:

Zt = σ
(

Wz[Xt , H{t−1} ]
+ Bz

)
(1)

Rt = σ
(

Wr[Xt , H{t−1} ]
+ Br

)
(2)

H′t = tanh
(

Wh[Xt , Rt∗H{t−1} ]
+ Bh

)
(3)

Ht = (1− Zt) ∗ H{t−1} + Zt ∗ H′t (4)

Here, Zt represents the update gate, Rt is the reset gate, H′t is the candidate activation,
Ht denotes the output of the GRU unit at time t, and Xt corresponds to the input at time
t. Wz, Wr, Wh, Bz, Br, and Bh are the weight matrices and bias vectors of GRU. The matrix
transpose operation is denoted by the superscript “T”.

Convolutional Layers:
The extracted features from the GRU layers are passed through a series of convolu-

tional layers for further processing. Let H1, H2, H3, and H4 denote the hidden feature maps
obtained after each convolutional layer, respectively:

H1 = ConvBlock1(Ht) (5)

H2 = ConvBlock2(H1)
(6)
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H3 = ConvBlock3(H2)
(7)

H4 = ConvBlock4(H3)
(8)

ConvBlocki functions represent the operations performed within each convolutional layer.
Pooling and Flattening:
The feature maps obtained from the convolutional layers undergo pooling and flatten-

ing. The average pooling operation is applied to summarize the features, and the flattened
output is denoted as F:

P = AvgPooling(H4) (9)

F = Flatten(P) (10)

Fusion and Classification:
The features from the GRU layers (Ht) and the flattened features (F) are concatenated

to capture the combined information:

C = Concatenate(Ht, F) (11)

Average pooling:
Ψn = P(avg)(Ψn−1) (12)

where:
Ψn represents the pooled feature map at level n.
P(avg) is the average pooling function.
Flattening layer:

L = f latten
(

h4
)

(13)

where:
L denotes the flattened representation.
h4 is the output of the fourth convolutional layer.
Concatenation of GRU and CNN outputs:

c t = concate(K, L) (14)

Softmax function for classification:

ŷ(z)_i = ê(z_i) /
(
∑(n = 1)̂(c_t) êz_n

)
(15)

where:
ŷ(z)_i represents the i-th element of the predicted output vector using the Softmax

function.
z_i is the i-th element of the input vector.
c_t represents the total number of classes.
Cross-entropy loss function:

E_p(l) = −1/b ∑ _(i = 1)̂n y_i log_2(ŷ_i) (16)

where:
E_p(l) denotes the cross-entropy loss.
b represents the batch size.
y_i is the true label of the i-th sample.
ŷ_i is the predicted label of the i-th sample using the Softmax function.
The concatenated features (C) are then passed through fully connected layers and an

appropriate activation function for classification purposes.
Output and Loss Function:
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The final output of the model, denoted as y_pred, represents the predicted class
probabilities. The choice of activation function and loss function depends on the specific
classification task and requirements of the Smart Grid intrusion detection system.

4. Proposed Hybrid Model

The proposed hybrid deep-learning method for the intrusion detection system that
can be seen in Figure 3 includes both CNN and GRU models. This option was chosen
because it is widely believed that CNN is superior to other methods for accurately capturing
position-invariant properties. The GRU module keeps track of long-term dependencies
and uses memory cells to obtain valuable information from the collected data. The reset
gate is used to delete or remove useless data. Several factors affected the GRU model
choice. In order to further deepen the network, the algorithmic architecture was outfitted
with three GRU blocks and four CNN blocks. The main goal of the convolution layer is
to perform its namesake function so that a feature map can be made from the input data
by extracting the features. The convolutional kernel in a convolutional network multiplies
the input data. A nonlinear function then sets off the network. This action is performed
inside the convolutional network to capture feature mapping. The convolution kernel
randomly determines the weights and biases [46]. After the completion of each CNN layer
comes the addition of a normalization layer and a max pooling layer. A “pooling operation”
determines the most significant or typical value for all of the characteristics in a particular
area’s nearby vicinity.
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The GRUs’ output and the CNNs’ output are merged in the concatenation layer, which
also receives the output of the CNN layers after it has been flattened. After the concatenation
layer, two layers that were already linked are joined together. In order to avoid overfitting,
a dropout layer is added after the last layer that is ultimately linked. The SoftMax layer,
connected to the classification layer, maps the output to a probability distribution. This
enables the classification layer to make accurate predictions about the kinds of labels. We
evaluated this algorithm by applying it to the NSL-KDD99 and local generated dataset
and compared the results by using hybrid model of CNN and the GRU deep-learning
model. The hybrid model outperformed in terms of accuracy, precision, detection rate,
false-positive rate (FPR), and F1 score. However, the researchers in [47] argued that the
NSL-KDD99 dataset is no longer valid. They mentioned that since the network traffic in
that dataset was generated in 1998, it may not fully represent current network topologies
and attack dynamics. Therefore, we intend to utilize the CIC-DDOS2019 cyber security
dataset with the algorithm. This dataset contains a wide range of contemporary attack
scenarios, enabling the simulation of real-world conditions.

4.1. Details of Dataset

The CIC-DDoS2019 dataset [34] comprises 50,063,112 records, with 50,006,249 rows
corresponding to DDoS attacks and 56,863 rows representing benign traffic. Each row in
the dataset contains 86 features. Table 1 provides an overview of the attack types in the
CIC-DDoS2019 dataset and a brief description of each attack.

Table 1. Dataset characteristics for the testbed.

Attacks Type Records Training
Records Test Records Label

BENIGN 133,795 106,874 26,921 0

DDoS 1,311,770 997,054 314,716 1

The training dataset includes 12 different DDoS attacks, namely, Domain Name System
(DNS), Network Time Protocol (NTP), Lightweight Directory Access Protocol (LDAP),
Network Basic Input Output System (NetBIOS), Microsoft SQL Server (MSSQL), Simple
Network Management Protocol (SNMP), User Datagram Protocol (UDP), Simple Service
Discovery Protocol (SSDP), UDP-Lag, SYN, WebDDoS, and TFTP. On the other hand, the
test dataset contains seven attacks, including MSSQL, NetBIOS, PortScan, LDAP, UDP, UDP-
Lag, and SYN, observed during the testing day. Each attack type represents a specific DDoS
attack methodology. For instance, the NTP-based attack utilizes the reflection technique
to flood a target with increased UDP traffic by exploiting Network Time Protocol servers.
Similarly, the other attack types leverage various network protocols or vulnerabilities to
launch DDoS attacks.

Overall, the CIC-DDoS2019 dataset provides a comprehensive collection of records captur-
ing DDoS attacks and benign traffic, enabling the evaluation of intrusion detection models for
Smart Grid networks. Creating specialized datasets facilitates the analysis of machine learning
and deep-learning approaches in binary and multi-class classification scenarios, allowing for a
thorough assessment of their efficiency in tackling various attack types.

As illustrated before, Table 1 presents the characteristics of the dataset used. The initial
stages in the preparation stage include replacing not a number (NaN), cleaning of data, and
endless fields with the mean value of the column. This is completed before moving on to the
next stage. The characteristics are then transformed into numerical features and included
in the dataset with any other numerical features that may already be present. In addition,
the labels in the dataset go through a process that turns them into numbers. This makes
the label “harmless” equal to 0 and “DDoS” equal to 1. In order to reduce the number of
distinct feature variations, the dataset was normalized and mapped out similarly. [0, 1]
denotes the range of the uniform mapping interval. Figure 4 shows that the correlation
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matrix was not used in this research because the dataset had no extraneous qualities or
features related to each other. Because of this, each of the accessible characteristics affected
how the model made decisions.

Sensors 2023, 23, x FOR PEER REVIEW 13 of 29 
 

 

scenarios, allowing for a thorough assessment of their efficiency in tackling various attack 

types. 

As illustrated before, Table 1 presents the characteristics of the dataset used. The ini-

tial stages in the preparation stage include replacing not a number (NaN), cleaning of data, 

and endless fields with the mean value of the column. This is completed before moving 

on to the next stage. The characteristics are then transformed into numerical features and 

included in the dataset with any other numerical features that may already be present. In 

addition, the labels in the dataset go through a process that turns them into numbers. This 

makes the label “harmless” equal to 0 and “DDoS” equal to 1. In order to reduce the num-

ber of distinct feature variations, the dataset was normalized and mapped out similarly. 

[0, 1] denotes the range of the uniform mapping interval. Figure 4 shows that the correla-

tion matrix was not used in this research because the dataset had no extraneous qualities 

or features related to each other. Because of this, each of the accessible characteristics af-

fected how the model made decisions. 

Table 1. Dataset characteristics for the testbed. 

Attacks Type Records Training Records Test Records Label 

BENIGN 133,795 106,874 26,921 0 

DDoS 1,311,770 997,054 314,716 1 

 

Figure 4. Omnet++ experiment simulation. 

The outcomes of normalization on the dataset are shown in the list in Table 1. Due to 

the normalizing process, all character attributes have been changed into the numbers that 

correspond with them. The dataset was then divided into a training set and a testing set, 

with a ratio of 66:33 between the two sets. The remaining 33 % of the data were used for 

validation and testing once the first training was completed, utilizing 66 % of the data. 

The four essential features that come together to form the confusion matrix are the 

ones that are used to set the measurement parameters for the classifier.  
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The outcomes of normalization on the dataset are shown in the list in Table 1. Due to
the normalizing process, all character attributes have been changed into the numbers that
correspond with them. The dataset was then divided into a training set and a testing set,
with a ratio of 66:33 between the two sets. The remaining 33 % of the data were used for
validation and testing once the first training was completed, utilizing 66 % of the data.

The four essential features that come together to form the confusion matrix are the
ones that are used to set the measurement parameters for the classifier.

The following are some of them: The term “true positive”, abbreviated as “TP”, refers
to the correct forecast made by an algorithm. In addition, a “true negative”, shortened
to “TN”, is an accurate but pessimistic prediction made by the algorithm. “FP” stands
for “false positive”, which is when an algorithm predicts a positive class even though the
actual class is negative. A label is said to be falsely negative (sometimes abbreviated as
FN) if an algorithm predicts that it would be negative, but it turns out to be positive. The
performance metrics that judge how well an algorithm works are its Accuracy, Precision,
Recall, and F1score.

Accuracy =
TP + TN

TP + TN + FP + FN
(17)

Precision =
TP + TN
TP + FP

(18)
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Recall =
TP + TN
TP + FN

(19)

F1score =
2(precision× recall)

precision× recall
(20)

4.2. Determining Convolutional Layers and GRU Units

The architecture of a hybrid deep-learning model significantly influences its performance
and generalization capabilities. We employed a systematic and iterative approach to determine
the optimal number of convolutional layers and GRU Units for our hybrid model.

a. Convolutional Layers: A model′s number of convolutional layers impacts its ability
to extract spatial features from the input data. We initiated our experimentation with
a baseline architecture and gradually increased the number of convolutional layers
while keeping other hyperparameters constant. Through this process, we monitored
the model′s performance on the validation set, focusing on accuracy, precision, recall,
and F1score metrics. We aimed to strike a balance between model complexity and
performance improvement. When we observed diminishing returns or signs of
overfitting, we selected the configuration that demonstrated the most promising
trade-off.

b. GRU Units: Similarly, the number of GRU units in our model′s GRU layers influenced
its capacity to capture temporal patterns within sequential data. We began with
a baseline configuration and iteratively adjusted the number of GRU units. Our
objective was to identify the point at which increasing the number of units led to
diminishing returns in performance. By evaluating the model′s performance on the
training and validation sets, we ensured that the chosen configuration effectively
captured temporal dependencies without overfitting.

Our methodology for determining the number of convolutional layers and GRU units
aimed to optimize the hybrid model′s architecture for intrusion detection within Smart
Grid networks. It considered the complexities of the data and the potential trade-offs
between model complexity and performance gains.

5. Experiment Details

In this section, we present comprehensive implementation details of our research to
ensure the reproducibility and transparency of our experiments. Our primary objective
was to develop a robust and efficient intrusion detection system (IDS) tailored specifically
for Smart Grid networks. The primary objective of our research was to develop a robust
and efficient intrusion detection system (IDS) explicitly tailored for Smart Grid networks.
To achieve this, we proposed a novel ensemble learning approach that combines the
power of deep-learning techniques, such as CNN and GRU networks. The hybrid deep-
learning model was trained and evaluated using a comprehensive dataset comprising
real-world Smart Grid network traffic and a simulated intrusion scenarios custom dataset.
We conducted extensive experiments to assess the model’s accuracy, precision, recall, and
F1-score performance. Additionally, various parameters, including learning rates, batch
sizes, and network architectures, were fine tuned to optimize the model’s efficiency. The
results of our experiments demonstrated the superiority of our proposed approach over
traditional methods, showcasing its potential to enhance the security and resilience of
smart energy grids against malicious cyber-attacks.

5.1. Custom-Based Dataset Generation

To create a realistic and diverse dataset for resilient, intelligent grid attack detection,
we employed a multi-step methodology leveraging OMNeT++ and various other tools and
technologies. This process encompassed the following key steps:
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a. Design the Smart Grid Topology: We defined the network topology, representing the
various components of the Smart Grid, including power plants, substations, smart
meters, and communication infrastructure.

b. Model Normal Traffic: We simulated normal traffic patterns within the Smart Grid
network, incorporating power consumption, data exchange, and communication
protocols. These simulations accounted for variations in traffic volume, timing, and
network conditions.

c. Identify Attack Scenarios: We identified a set of attack scenarios based on established
Smart Grid attack vectors, such as Denial of Service (DoS), false data injection,
tampering with meter readings, and compromising communication channels.

d. Define Attack Parameters: The characteristics of each attack scenario were specified,
encompassing attack type, duration, intensity, and targeted components. These
parameters were diversified to ensure the dataset’s richness.

e. Select Deep-Learning Algorithms: Suitable deep-learning algorithms, including CNN
and GRU, were chosen based on their proven performance in intrusion detection tasks.

f. Generate Deep-Learning Predictions: The chosen deep-learning algorithms were
applied to the simulation data, generating ensemble predictions for normal and
attack traffic instances. This step contributed to capturing diverse attack patterns for
enhanced detection accuracy.

g. Collect Simulation Data: Network traffic, communication logs, sensor readings, and
system events were collected during simulations for normal and attack scenarios.

h. Feature Extraction: Relevant features were extracted from the collected data, includ-
ing packet attributes, communication patterns, energy consumption, and network
performance metrics.

i. Labeling and Augmentation: Instances were labelled appropriately based on simula-
tion conditions (normal or attack). Data augmentation techniques were employed to
introduce feature variations, enhancing dataset diversity.

j. Split the Dataset: The generated dataset was divided into training, validation, and
testing sets to assess the performance of the ensemble-learning-based intrusion
detection model.

k. Train Ensemble Learning Models: The training set was used to train ensemble
learning models by optimizing multiple base learners’ parameters to achieve high
detection accuracy.

l. Performance Evaluation: The performance of ensemble-learning models was evalu-
ated using validation and testing sets, with metrics such as accuracy, precision, recall,
and F1-score.

m. Fine Tuning and Optimization: Models were fine-tuned based on evaluation out-
comes to enhance their robustness, sensitivity, and specificity when detecting Smart
Grid attacks.

The above approach facilitated the creation of a comprehensive and realistic custom
dataset for resilient Smart Grid attack detection, enhancing the authenticity and effective-
ness of the training and evaluation process.

The proposed method enabled the creation of a comprehensive and realistic custom
dataset for resilient Smart Grid attack detection. Combining OMNeT++ simulation, other
tools and technologies, attack-scenario design, and ensemble-learning techniques enhanced
the dataset’s variability, accuracy, and generalization capabilities. By incorporating diverse
attack patterns and utilizing ensemble predictions, the generated dataset facilitated the
development and evaluation intrusion detection systems that can effectively mitigate Smart
Grid attacks.

5.1.1. Omnet++ Simulation for Dataset Generation

To evaluate the performance of the intrusion detection system (IDS) in the context of a
Smart Grid, a custom dataset was generated using the OMNeT++ simulation framework.
Using a custom dataset allowed us to emulate realistic scenarios and capture various types
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of network traffic and attacks specific to Smart Grids. OMNeT++ provides a powerful
platform for simulating network behavior and interactions. It allowed us to model the
communication infrastructure of a Smart Grid, including the different components such as
smart meters, data aggregators, control centers, and communication channels. We could
generate various data packets, network flows, and system events by simulating the net-
work environment. In the process of generating the custom dataset, we considered various
factors that influence the behavior of a Smart Grid network. These factors included the
number of devices, communication protocols, data transfer rates, network topologies, and
attacks. By manipulating these parameters, we created realistic network traffic scenarios
encompassing normal system operations and different attack scenarios. The dataset gener-
ation process involved the creation of different attack scenarios, such as Denial of Service
(DoS) attacks, Distributed Denial of Service (DDoS) attacks, replay attacks, injection attacks,
and data manipulation attacks. Each attack scenario was carefully designed to reflect the
techniques and strategies commonly employed by attackers targeting Smart Grid networks.
Furthermore, the dataset included a variety of network traffic patterns, such as periodic
data exchanges, event-driven communication, and command−response interactions. This
ensured that IDS could effectively capture and analyze different traffic patterns and identify
deviations from normal behavior.

To enhance the diversity and realism of the dataset, we incorporated variations in
the network conditions and system parameters. This included simulating fluctuations in
network bandwidth, latency, packet loss rates, and changes in the Smart Grid’s operational
state and load conditions. Considering these factors, we aimed to create a dataset represen-
tative of real-world Smart Grid environments. The generated custom dataset serves as a
valuable resource for training and evaluating the performance of the IDS for detecting and
mitigating intrusions within Smart Grids. It provides a comprehensive set of network traffic
samples and attack scenarios that can be used to validate the effectiveness and robustness
of the intrusion detection algorithms and techniques employed in the system. In summary,
the custom dataset generated using the OMNeT++ simulation framework allows for eval-
uating and validating the Smart Grid intrusion detection system. It enables the testing
of the system’s capability to detect and respond to various types of attacks and network
anomalies, thereby enhancing the security and resilience of Smart Grid infrastructures.

5.1.2. Attacking Tools-Based Dataset

To assess the effectiveness of the intrusion detection system (IDS) in detecting and
mitigating Distributed Denial of Service (DDoS) attacks in a real-world scenario, a custom
dataset was generated using DDoS attack tools. The utilization of such tools allowed for
the replication of DDoS attack patterns and for the creation of realistic attack scenarios for
evaluation purposes. DDoS attacks pose a significant threat to the availability and reliability
of network services, making them a critical concern for intrusion detection systems. We
generated a custom dataset focusing on DDoS attacks to enhance the IDS’s capability
to accurately identify and respond to these types of attacks in our research context. We
selected widely used DDoS attack tools from the cybersecurity community to create this
custom dataset. These tools facilitated the simulation of real-world attacker behavior and
enabled the initiation and control of DDoS attacks. The attack tools were chosen based on
their proven effectiveness, versatility, and compatibility with our target environment.

The custom dataset encompassed various DDoS attacks, including, but not limited
to, ICMP Flood, UDP Flood, SYN Flood, HTTP Flood, and DNS Amplification attacks.
Each attack type was carefully configured with appropriate parameters to emulate different
attack intensities, traffic patterns, and vectors. This allowed for a comprehensive evalu-
ation of IDS’s ability to detect and mitigate diverse DDoS attack scenarios. During the
dataset generation process, considerations were given to factors such as attack duration,
attack volume, attack sources, and attack variations. By manipulating these factors, we
created a dataset that closely resembled real-world DDoS attacks, capturing the complexity
and diversity of attack patterns commonly observed in network environments. We also
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included normal network traffic alongside the DDoS attacks to ensure the dataset’s realism.
This combination of normal and attack traffic provided a representative environment for
evaluating IDS’s ability to distinguish between legitimate traffic and malicious activities
during an attack. It enabled the system to learn and adapt to the unique signatures and
characteristics associated with DDoS attacks, improving its accuracy and reducing false
positives. The generated custom dataset using DDoS attack tools serves as a valuable
resource for training, testing, and evaluating the performance of IDS in detecting and
mitigating DDoS attacks.

5.2. Suricata with Kafka and Garafana Dashboard

In order to enhance the resilience of smart energy grids and improve real-time moni-
toring capabilities for intrusion detection, we integrated Suricata with Kafka and utilized
the Grafana Dashboard. This combination of tools and technologies provided a compre-
hensive solution for effective intrusion detection in Smart Grid networks. Suricata is an
open-source intrusion detection and prevention system that offers robust network traffic
analysis and threat detection capabilities. By deploying Suricata within the Smart Grid
environment, we could continuously monitor the network traffic for potential intrusions
and attacks. Suricata employs a variety of detection mechanisms, including signature-based
detection, protocol analysis, and anomaly detection, to identify malicious activities within
the network. To facilitate real-time monitoring and analysis of the network traffic data
generated by Suricata, we leveraged Kafka as a distributed streaming platform. Kafka
enables the collection, storage, and processing of high volumes of streaming data in a
scalable and fault-tolerant manner. By integrating Suricata with Kafka, we ensured that
the network traffic data were efficiently captured and made available for further analysis,
as shown in Figure 5. To visualize the collected network traffic data and gain actionable
insights, we utilized the Grafana Dashboard. Grafana is a powerful data visualization and
analytics platform that offers a wide range of customizable dashboards and visualizations.
By leveraging Grafana, we were able to create a user-friendly and intuitive interface to
monitor the network traffic in real time. The dashboard provides detailed information
about network activities, identified intrusions, and potential security threats, allowing
operators to promptly respond to any anomalies or attacks, as shown in Figure 6.

The integration of Suricata with Kafka and the utilization of the Grafana Dashboard
offers several benefits for intrusion detection in Smart Grid networks. Firstly, it enables real-
time monitoring of network traffic, allowing for quick detection and response to potential
intrusions or attacks. Secondly, the scalability and fault-tolerance provided by Kafka
ensure that the network traffic data are reliably collected and available for analysis. Lastly,
the Grafana Dashboard offers a visually appealing and easily interpretable interface to
monitor the network traffic and identify any security-related events. By employing Suricata
with Kafka and utilizing the Grafana Dashboard, our proposed approach enhanced the
resilience of smart energy grids by enabling efficient intrusion detection and real-time
monitoring. The integration of these tools facilitated the timely identification of potential
threats, ensuring the security and reliability of Smart Grid networks.

5.3. Integration of SLIPS with CNN and GRU for Real-Time Intrusion Detection

In this section, we delve into the integration of the StratosphereLinuxIPS (SLIPS),
a cutting-edge Behavioral Machine Learning-Based Intrusion Prevention System, with
Convolutional Neural Networks (CNN) and Gated Recurrent Units (GRU) to achieve
real-time and accurate intrusion detection. SLIPS has been designed to target malicious
behaviors within network traffic, focusing on identifying targeted attacks and command
and control channels. Notably, SLIPS offers a comprehensive visualization tool that aids
analysts in comprehending network security status effectively. The system operates in
real time, analyzing diverse data inputs, including live network traffic, pcap files, and
network flows generated by tools such as Suricata, Zeek/Bro, and Argus. Leveraging its
core behavioral analysis framework, SLIPS processes these input streams, identifying and
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highlighting anomalous behaviors that warrant immediate attention from security analysts.
Through its synergy with advanced machine learning techniques such as CNN and GRU,
SLIPS enhances its capabilities to swiftly identify and respond to evolving threats, further
solidifying its role as a robust intrusion prevention system. This integration exemplifies
the continual evolution of intrusion detection mechanisms to address the ever-evolving
landscape of network security challenges, which are presented in Figure 6.
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5.4. Experiment Environment

Our experiments were conducted in a controlled environment to ensure consistency
and repeatability.

5.4.1. Hardware

Our experiments were conducted on a Dell PowerEdge R760 server with an Nvidia
A100 GPU. The server’s robust computational capabilities, coupled with the cutting-edge
performance of the Nvidia A100 GPU, allowed us to process complex deep-learning com-
putations efficiently. The GPU’s parallel processing prowess greatly expedited the training
and evaluation of our hybrid model, enabling us to handle the intricate tasks associated
with intrusion detection within Smart Grid networks.

5.4.2. Software

We utilized two prominent deep-learning frameworks, TensorFlow and PyTorch, to
construct, train, and evaluate our hybrid deep-learning model. These frameworks offered
extensive libraries and tools tailored for designing and optimizing neural networks. Tensor-
Flow and PyTorch empowered us to implement intricate architectures and customize model
components to suit the specific requirements of our intrusion detection system. In addition
to the deep-learning frameworks, we employed OMNeT++ version 5.7 for simulating the
Smart Grid network environment during custom dataset generation. OMNeT++ provided
a robust simulation framework that allowed us to replicate real-world network behaviors,
interactions, and attack scenarios within a controlled environment. This facilitated the
creation of a diverse and comprehensive dataset, enhancing the authenticity of our exper-
iments. Additionally, the OMNeT++ simulation framework was employed for custom
dataset generation, as previously described in Section 5.1.1.

6. Results

In this section, we show a complete list of the simulation results with our proposed
method. We describe our suggested algorithm performance and compare it to some of its
primary competitors, such as CNN and GRU.

To assess the impact of different hyperparameter configurations on the performance of the
CNN−GRU intrusion detection model, we conducted a series of experiments using various
values for key hyperparameters, as shown in Table 2. The following hyperparameters were
considered: learning rate, number of convolutional layers, number of GRU units, dropout rate,
batch size, and number of epochs. We observed that the choice of learning rate significantly
impacted the convergence and overall performance of the model. Higher learning rates
resulted in faster convergence, but increased the risk of overshooting the optimal solution.
A learning rate of 0.001 consistently yielded a good performance across different datasets. The
number of convolutional layers played a crucial role in capturing hierarchical features from the
input data. Increasing the number of layers beyond two led to diminishing returns in terms of
performance. Therefore, we recommend using two to three convolutional layers for optimal
results. The number of GRU units determined the complexity of the temporal modeling. We
found that a moderate number of units, such as 32, 64, or 128, balanced capturing temporal
dependencies and avoided overfitting. Applying dropout regularization helped mitigate
overfitting and improved the model generalization ability. Dropout rates between 0.2 and
0.5 yielded favorable results. The choice of batch size impacted the convergence speed and
memory consumption. Larger batch sizes accelerated training, but required more memory.
We found batch sizes ranging from 16 to 128 suitable for our experiments. Finally, the number
of epochs influenced the model’s training duration and convergence stability. Training for
50 to 100 epochs generally yielded a good performance, but exceeding the optimal number of
epochs risked overfitting.
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Table 2. Hyperparameter configuration for CNN−GRU.

No Hyperparameter Recommended Values

1 Learning Rate 0.001

2 Number of Convolutional Layers 2–3

3 Number of GRU Units 32, 64, 128

4 Dropout Rate 0.2–0.5

5 Batch Size 16–128

6 Number of Epochs 50–100

By carefully tuning these hyperparameters, we achieved improved performance and
generalization capabilities for our CNN−GRU-based intrusion detection model. The
optimal hyperparameter configuration provided an accuracy of 99.86, precision of 99.5%,
recall of 99.83%, and F1 score of 99.68% on the test dataset. These results demonstrate the
importance of selecting appropriate hyperparameters for effective intrusion detection in
the Smart Grid environment.

A heat map, as shown in Figure 7, is a powerful tool for analyzing and visualizing
complex multivariate datasets. It is a two-dimensional matrix presented as a picture,
enabling a comprehensive understanding of the data. Heat maps specifically highlight
correlations among numerical variables, allowing for the identification of patterns and
deviations from the norm. By assigning color coding to the correlation matrix, a heat
map aids in selecting attributes that are most influential in machine learning models. The
correlation matrix depicts the relationships between variables on a spectrum ranging from
highly positive to strongly negative. This representation is achieved by assigning colors to
individual cells, each representing a specific measurement at a particular distance from the
starting point. Through its visual representation, a heat map facilitates the interpretation of
extensive datasets, employing various colors to convey a wide range of values within the
tabular format of the two-dimensional data.

The input features, such as the destination port, forward header length, flow bytes, sub-
flow forward packet, minimum packet length, active mean, packet length mean, average
packet size, active max, packet length variance, ideal mean, and ideal max are shown in a
heat map in Figure 7, which illustrates the correlation matrix between the target variable
and the input features.

In order to evaluate the performance of the proposed algorithm, additional simu-
lations were conducted using the hyperparameter values listed in Table 2. Remarkably,
the suggested algorithm demonstrated a superior ability to converge towards a solution
compared with the other algorithms under comparison. Specifically, the method achieved
an outstanding validation performance of 0.01435 at epoch 290, representing the highest
attainable validation performance. Among the evaluated algorithms, the GRU algorithm
exhibited the best performance, achieving a validation performance of 0.01960 at the 132th
epoch. Notably, the CNN method also outperformed the LSTM algorithm, reaching a signif-
icant validation performance of 0.026267 at the 157th epoch, whereas the LSTM algorithm
attained its best validation performance of 0.02990 at the 42th epoch. It is important to note
that both algorithms were evaluated on the same dataset, allowing for a fair and direct
comparison of their performance (see Figure 8).
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6.1. Ablation Study Results and Insights

To comprehensively assess the contributions of individual modules within our pro-
posed CNN−GRU hybrid model, we conducted an ablation study involving three distinct
scenarios: the Full CNN−GRU Hybrid Model (Baseline), the CNN-Only Model, and the
GRU-Only Model. Each scenario was evaluated on a common dataset, and performance
metrics, including accuracy, precision, recall, and F1-score, were utilized to quantify the
impact of each module.

a. Full CNN−GRU Hybrid Model (Baseline)

The Full CNN−GRU Hybrid Model, representing our complete proposed architecture,
demonstrated a robust performance across all of the evaluation metrics. This scenario
served as the benchmark against which the effectiveness of the individual components was
measured. The hybrid model exhibited a balanced ability to capture spatial and temporal
patterns within the data, yielding a favorable overall detection accuracy. The full CNN and
GRU hybrid model results are presented in Figure 9.
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b. CNN-Only Model

The CNN-Only Model, where the GRU module was excluded, provided valuable
insights into the contribution of the convolutional neural network component. Interestingly,
this scenario exhibited a strong performance in terms of precision, highlighting its effective-
ness in correctly identifying positive instances, particularly true intrusion cases. However,
there was a noticeable reduction in recall and F1-score, indicating a potential limitation in
capturing the long-term temporal dependencies characteristic of specific attack patterns.
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c. GRU-Only Model

The GRU-Only Model, isolating the gated recurrent unit component, highlighted a
different facet of the model’s performance. This scenario excelled in capturing temporal
patterns and dependencies within the data, leading to higher recall rates than the CNN-
Only Model. However, precision was relatively lower, suggesting a higher likelihood of
false positives. This could be attributed to the GRU’s ability to capture nuances in temporal
behavior, which may occasionally lead to misclassification.

d. Comparative Analysis

Comparing the scenarios, we observed that the hybrid model’s performance struck
a balance between the strengths of the individual modules. While the CNN module
emphasized accurately detecting spatial features, the GRU module emphasized temporal
aspects, as seen in Figure 10. The ablation study highlighted the constructive collaboration
between these components in the hybrid model, resulting in the ability to capture spatial
and temporal patterns effectively. This will achieve a higher accuracy and a balanced
F1score, indicating a well-rounded intrusion detection capability.
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The results of the ablation study offer insights that can guide the design and opti-
mization of future intrusion detection systems. The CNN module excels in capturing
immediate spatial signatures of specific attack types, making it suitable for quick response
scenarios. On the other hand, the GRU module’s proficiency in recognizing temporal
behavior suggests its utility in detecting attacks that manifest over a longer duration. Our
ablation study underscores the value of the hybrid approach, highlighting the interplay
between spatial and temporal pattern recognition. The balanced performance achieved by
the hybrid model underlines its potential to offer enhanced intrusion detection capabilities
in complex Smart Grid networks.

Figure 10 demonstrates the confusion matrices that show how well each algorithm per-
forms. The evaluation of the algorithms is conducted with the use of a confusion matrix, with
the parameters being things such as accuracy, precision, recall, and the rate of false positives.
Figure 11 below represents the evaluation matrices of CNN and GRU. Figure 12 represents
normal traffic detection rate and attack detection rate for the CNN and GRU model.
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Figure 13 compares the proposed method overall accuracy, precision, recall, and
F1score to those of the other algorithms. The simulation results reveal that the suggested
method achieved an accuracy of 99.7%, a precision of 98.1%, a recall of 99.9%, and an
F1score of 98.9%, respectively. GRU all attained an accuracy of 98.6%, a precision of 99.5%,
a recall of 97.4%, and an F1score of 98.5%. CNN had a recall rate of 97.3%, an accuracy rate
of 98.5%, a precision rate of 99.8%, and a score of 98.5% on the F1score scale. The LSTM
achieved an accuracy rate of 98.5%, a precision rate of 99.9%, a recall rate of 97%, and an
F1score of 98% FPR. In every category except for recall, the suggested model performed
much better than the other algorithms. The algorithm’s strong focus on generating false
positives (FP) was the reason behind the decrease in recall achieved with the suggested
method. The higher number of FP contributed to the denominator in the recall calculation,
leading to a decreased recall value.
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6.2. Comparison with State-of-the-Art Models

The comparison of our proposed model’s performance against existing state-of-the-art
techniques, including the CNN and RNN-based ensemble model [36] and the machine-
learning-based ensemble model [38], reveals its remarkable capabilities in intrusion de-
tection. Notably, our model outperformed its competitors regarding true-positive rate
(TPR), achieving consistently higher scores across all of the evaluated metrics. Specifically,
our model achieved an exceptional TPR of 100%. Furthermore, our model demonstrated
competitive results in accuracy (ACC) and F1score compared with the leading models.
While there is room for improvement in the false-positive rate, our model’s ACC was high
enough and highlights its high level of performance as mentioned in Table 3.

Table 3. Hyperparameter configuration for CNN−GRU.

Paper Models True Positive
Rate % Accuracy % F1Score % False

Positive %

[38] RNN - 91.97 91.20 8.00

[36] Ensemble - 97.50 97.20 3.45

Our Hybrid 100 99.86 99.68 0.22

In the case of the CIC-DDOS2019 datasets, our model achieved the highest TPR of
99.96% and 100%, respectively, as shown in Table 2. These outcomes underscore our
model’s efficacy in detecting Denial of Service (DoS) and Distributed Denial of Service
(DDoS) attacks across benchmark and custom datasets. Achieving a high TPR is vital for
accurately detecting these attacks, and our model’s consistent performance across multiple
datasets underscores its robustness and effectiveness.

7. Conclusions

This paper presented a novel approach for intrusion detection in a smart energy grid
using a hybrid CNN−GRU-based deep learning algorithm. Integrating Suricata and Kafka
facilitated real-time monitoring and flow collection, enabling parallel analysis with the
deep-learning model for attack surveillance. Additionally, Grafana was utilized as a visual-
ization tool to provide a comprehensive view of network activity and enhance resilience.
The proposed hybrid CNN−GRU model demonstrated an exceptional performance in
detecting and classifying intrusions. By leveraging the power of deep learning, the model
achieved a high accuracy rate of 99.86%, precision of 99.5%, recall of 99.3%, and F1score
of 99.2% on the test dataset. These results signify the effectiveness of the hybrid model in
accurately identifying malicious activities and providing reliable security measures for the
smart energy grid. Integrating Suricata and Kafka allowed for real-time monitoring and
immediate response to potential threats. This combination enhanced the system’s ability to
detect and mitigate attacks promptly, thereby ensuring the resilience of the smart energy
grid against intrusion attempts. Kafka and Grafana, as flow collectors and visualization
tools, enabled comprehensive and intuitive network monitoring. They provided a central-
ized view of network traffic, facilitating the identification of any anomalies or suspicious
patterns. The combination of real-time tracking, deep-learning-based intrusion detection,
and visualization through Grafana created a robust and resilient defense mechanism for
the smart energy grid. Overall, the hybrid CNN−GRU-based deep-learning algorithm,
integrated with Suricata, Kafka, and Grafana, highlighted a remarkable performance in
intrusion detection for the smart energy grid. This approach ensured real-time monitoring
and attack surveillance and provided the necessary resilience to safeguard critical infras-
tructure. The findings of this study contribute to the advancement of intrusion detection
systems in the context of smart energy grids and pave the way for further research and
development in securing the evolving landscape of energy distribution systems.
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Our study has introduced a pioneering hybrid CNN−GRU model that highlights en-
couraging outcomes for detecting DoS/DDoS attacks within Smart Grid systems. However,
this is only the starting point, and exciting avenues exist in intrusion detection.

8. Future Directions

One promising avenue for future research lies in harnessing the power of ensemble-
learning techniques. These techniques involve the collaboration of multiple models, each
contributing its unique strengths to create a more robust and accurate intrusion detec-
tion system. By amalgamating the capabilities of architectures such as Long Short-Term
Memory, Bidirectional Recurrent Neural Networks (BRNN), and Convolutional Neural
Networks within an ensemble framework, we envision a heightened understanding of
intricate patterns residing in Smart Grid network traffic. Extending our study to encom-
pass Smart Grids—a cornerstone of modern energy distribution systems—is a natural
progression. Smart Grids are vulnerable to cyber threats, including DDoS attacks, and
adapting our hybrid model to this unique environment is a compelling future step. By
embracing ensemble-learning techniques in this context, we aim to bolster the precision
and dependability of anomaly detection within critical infrastructure networks.

The essential aspect of our research will be the advancement of explainable AI tech-
niques. As deep-learning models gain traction in critical systems, the need for compre-
hensible decisions becomes paramount. Striving to unravel the decision-making process
and provide meaningful insights into the detection process will elevate the practicality
of our proposed system in real-world scenarios. Our study has laid the groundwork for
further exploration in the intricate realm of intrusion detection for SCADA and Smart
Grid environments. Through the convergence of ensemble learning, expansion to Smart
Grids, and heightened interpretability, we endeavor to bolster the cybersecurity of critical
infrastructures and combat the ever-evolving landscape of cyber threats. Stay tuned as we
embark on this exciting journey of discovery and innovation.
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Abbreviations

Abbreviation Full Form
SCADA Supervisory Control and Data Acquisition
DoS Denial of Service
DDoS Distributed Denial of Service
IDS Intrusion Detection System
CNN Convolutional Neural Network
GRU Gated Recurrent Unit
LSTM Long Short-Term Memory
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SCADA-Wall SCADA Firewall
DIDEROT Dnp3 Intrusion Detection and Prevention System
SDN Software Defined Networking
RNN Recurrent Neural Network
MAGPIE Multi-Armed Bandit Probabilistic Inference Engine
AI Artificial Intelligence
ML Machine Learning
BRNN Bidirectional Recurrent Neural Network
IoT Internet of Things
ACC Accuracy
TPR True-Positive Rate
FPR False-Positive Rate
FNR False-Negative Rate
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