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Abstract: Wearable assistant devices play an important role in daily life for people with disabilities.
Those who have hearing impairments may face dangers while walking or driving on the road. The
major danger is their inability to hear warning sounds from cars or ambulances. Thus, the aim of
this study is to develop a wearable assistant device with edge computing, allowing the hearing
impaired to recognize the warning sounds from vehicles on the road. An EfficientNet-based, fuzzy
rank-based ensemble model was proposed to classify seven audio sounds, and it was embedded
in an Arduino Nano 33 BLE Sense development board. The audio files were obtained from the
CREMA-D dataset and the Large-Scale Audio dataset of emergency vehicle sirens on the road,
with a total number of 8756 files. The seven audio sounds included four vocalizations and three
sirens. The audio signal was converted into a spectrogram by using the short-time Fourier transform
for feature extraction. When one of the three sirens was detected, the wearable assistant device
presented alarms by vibrating and displaying messages on the OLED panel. The performances of the
EfficientNet-based, fuzzy rank-based ensemble model in offline computing achieved an accuracy of
97.1%, precision of 97.79%, sensitivity of 96.8%, and specificity of 97.04%. In edge computing, the
results comprised an accuracy of 95.2%, precision of 93.2%, sensitivity of 95.3%, and specificity of
95.1%. Thus, the proposed wearable assistant device has the potential benefit of helping the hearing
impaired to avoid traffic accidents.

Keywords: edge computing; human vocalization; emergence vehicle siren; EfficientNet-based fuzzy
rank-based ensemble model; hearing impairment

1. Introduction

Hearing is an essential ability in daily life that aids in avoiding the risk of bodily
injuries [1]. People with hearing impairments have reduced sensitivity to sound, leading
to dangerous situations such as ignoring the warning sounds from vehicles. A study by
Donmez and Gokkoca showed that elderly people are involved in 31.5% of traffic accidents
in Turkey. Their hearing impairment was the main issue [2]. The reason for this is that
elderly people who are afflicted with hearing impairments cannot perceive the warning
sounds from vehicles. Tiwari and Ganveer proposed that 10.2% of those involved in traffic
accidents are hearing impaired [3]. Therefore, the development of a wearable assistant
device for recognizing the various warning sounds from ambulances and vehicles on the
road could help the hearing impaired, reducing the risk of traffic accidents.
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Recently, deep learning has been widely applied in voice recognition [4,5]. In 2021,
Bonaventure et al. proposed the FSER architecture, which converts speech files into spectro-
grams and inputs them into a two-dimensional, convolutional neural network (2D CNN)
for identification [6]. Its accuracy surpasses that of the one-dimensional convolutional
neural network (1D CNN), as 2D CNN models can extract finer features from the spec-
trogram [7]. Kevin et al. aimed to build a more accurate sound classification model and
proposed a two-stream neural network architecture that includes the EfficientNet-based
model [8]. Lee et al. utilized preoperative and postoperative voice spectrograms as fea-
tures to predict three-month postoperative vocal recovery [9]. This model could be widely
applicable for transfer learning in sound classification. Lu et al. used the morphology of
spectrograms as the input pattern to recognize speech using an EfficientNet model [10].
Padi et al. employed transfer learning to improve the accuracy of speech emotion recogni-
tion through spectrogram augmentation [7]. Additionally, Allamy and Koerich utilized a
1D CNN to classify music genres based on audio signals [11].

Ensemble learning is a powerful technique that involves the amalgamation of predic-
tions from multiple classifiers to create a single classifier, resulting in notably enhanced
accuracy compared to any individual classifier [12,13]. Research has demonstrated that an
effective ensemble consists of individual classifiers with similar accuracies, yet with dis-
tributed errors across different aspects [14,15]. Essentially, ensemble learning encompasses
two necessary characteristics: the generation of distinct individual classifiers, and their
subsequent fusion. Two common strategies for generating individual classifiers include the
heterogeneous type, which employs various learning algorithms, and the homogeneous
type, which uses the same learning algorithm but requires different settings. Thus, Tan et al.
proposed ensemble learning to classify human activities, combining a gated recurrent unit
(GRU), a CNN stacked on the GRU, and a deep neural network [16]. Xie et al. proposed
three DNN-based ensemble methods that fused a series of classifiers whose inputs are
representations of intermediate layers [17]. Erdal et al. proposed a voting-based ensemble
to improve identification results in tuberculosis classification, traditionally using a single
CNN model [12,18]. This fusion method uses a voting algorithm to determine the output.
However, its disadvantage is that it simply votes on the model’s output, only considering
the number of predicted results and not the probability value of the predictions. Kavitha
et al. proposed a weighted average-based ensemble to improve the accuracy of cell loca-
tions in cut electronic microscope images [19]. The disadvantage of this method is that
when a large error occurs in the same prediction result, the weighted average result would
be affected. Manna et al. proposed a fuzzy-based ensemble to improve the identification
results of cervical cancer based on different CNN models. The output results of the CNN
models, including InceptionV3, Xception, and DenseNet-169, were ensembled through
fuzzy rank-based fusion [20]. The advantages of fuzzy rank-based ensembles include less
computing time and memory consumption compared to fully connected layers.

The growth of the Internet of Everything (IoE) has led to great innovation in smart
devices that connect to the internet, and in processing the necessary amounts of data.
The innovation has aimed to resolve the problems of traditional cloud computing by
decreasing burdensome bandwidth loads, increasing response speeds, and enhancing
transmission security. To address these requirements, edge computing technologies have
emerged as a promising solution [21,22]. Edge computing offers a more distributed and
localized approach to data, allowing data to be processed in real time at the source. Hochst
et al. proposed an edge artificial intelligence (AI) system to recognize bird species by
their audio sounds, utilizing EfficientNet-B3 architecture based on an NVIDIA Jetson
Nano board [23]. They demonstrated that the EfficientNet model could be efficiently
implemented on an edge device. Rahman and Hossain developed an edge IoMT system
using deep learning to detect various types of health-related COVID-19 symptoms based on
a smartphone [24]. Nath et al. provided an overview of studies related to stress monitoring
with edge computing, highlighting that computations performed using edge technology
can reduce response time and are less vulnerable to external threats [25].
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Based on the review of the above literature, the goal of this study is to develop a wear-
able assistant device with edge computing to help the hearing impaired to recognize the
warning sounds from ambulances and vehicles on the road. An EfficientNet-based, fuzzy
rank-based ensemble model was proposed to classify human vocalizations and warning
sounds from vehicles. This model was embedded in an Arduino Nano 33 BLE Sense devel-
opment board. The audio signals, including human vocalizations and the warning sounds
of vehicles, were obtained from the CREMA-D dataset [26] and a Large-Scale Audio dataset
of emergency vehicle sirens on the road [27], respectively. The categorization included
seven types of audio sounds: neutral vocalization, anger vocalization, fear vocalization,
happy vocalization, normal sound, car horn sound, siren sound, and ambulance siren
sound. The spectrogram of the audio signal served as the feature. When one of the car
horn, siren, or ambulance siren sounds was detected, the wearable assistant device pre-
sented alarms through a vibrator and displayed messages on the OLED panel. The results
generated by edge computing were very close to those classified using offline computing.
Moreover, we compared the performances between our proposed method and the iOS
system, finding that our method outperformed the results of the iOS method. The con-
tributions of this study included that the proposed EfficientNet-based, fuzzy rank-based
ensemble model could be executed in the Arduino Nano 33 BLE Sense development board,
and the performance of this model was better than the iOS system and the other deep
learning models.

2. Materials and Methods

Figure 1 illustrates the architecture of the proposed method, including the data process-
ing, training phase, and testing phase. The EfficientNet-based, fuzzy rank-based ensemble
model is utilized to recognize human vocalizations and emergency vehicle sirens. Dur-
ing the training phase, this model is executed on a personal computer (PC). In contrast,
during the testing phase, the proposed model is run on an Arduino Nano 33 BLE Sense
development board. When the system detects specific sounds, such as car horns, sirens, or
ambulance sirens, it alerts the user through the device’s vibrator and displays messages
on an OLED panel. The audio signal is converted into a spectrogram to serve as the input
pattern. The EfficientNet-based, fuzzy rank-based ensemble model includes three individ-
ual EfficientNet-based models and one fuzzy rank-based model. The EfficientNet-based
models estimate the weight of each class. Then, the fuzzy rank-based model determines
the winner of the classes. Once trained, the model is implemented in the wearable assistant
device, drawing the user’s attention to warning sounds from vehicles.

2.1. Features

In this study, human vocalizations and emergency vehicle sirens on the road were
classified. The human vocalizations, including neutral, anger, fear, and happy vocalizations,
were sourced from the CREMA-D dataset, an emotional multimodal actor dataset [26]. A
total of 5324 audio files were extracted from this dataset, and these files were augmented to
create a total of 10,648 files. The emergency vehicle sirens on the road were acquired from
the Large-Scale Audio dataset [27]. This dataset contains 3432 audio files featuring the car
horn sound, siren sound, and ambulance siren sound. These files were augmented to a total
of 6864 audio files using the RandAugment method [28]. The files were then divided into
80% for training, 10% for testing, and 10% for validation. The audio signals were segmented
into 0.5 s intervals and transformed into spectrograms using the short-time Fourier trans-
form. Each sample was represented by three spectrograms (1.5 s), which served as features
for the classification of emergency vehicle sirens. Therefore, for the samples of emotional
vocalizations, the numbers of training, testing, and validation samples were 25,555, 3195,
and 3194, respectively. For the samples of emergency vehicle sirens, the numbers of training,
testing, and validation samples were 16,474, 2058, and 2060, respectively.
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Figure 1. The architecture of proposed wearable assistant system allowing the hearing impaired to
recognize warning sounds from vehicles.

2.2. EfficientNet-based Model

To recognize the human vocalizations and emergency vehicle sirens in real time with
edge computing, the EfficientNet-based model was used to estimate the weights of all
classes. The EfficientNet-based model is a deep learning model that has achieved top
performance in image classification tasks and has demonstrated State-of-the-Art (SOTA)
performance in the ImageNet image classification challenge [29]. The EfficientNet-based
model builds on the base architectures of ResNet [30] and MobileNet [29,31] and leverages
the compound scaling method [32] to achieve a balance between model size, computational
efficiency, and accuracy. As a result, the EfficientNet-based model has become one of the
most popular convolutional neural network models in current research. The structure of
model is shown in Figure 2, which has one layer of Conv3 × 3, one layer of MBConv1,
k3 × 3, six layers of MBConv6, k3 × 3, nine layers of MBConv6, k5 × 5, and one layer of
full connection. The number of output layers is seven. The resolution and channel number
of each layer are described in Table 1. Each row describes a stage i with L̂i layers, with
input resolution {Ĥi, Ŵi} and output channels Ĉi. The hyperparameters of the EfficientNet-
based model, as shown in Table 2, were used for all experiments. The optimizer is the
Adam, learning rate is 1 × 10−5, batch size is 16, and the number of epochs is 1000. The
sum of label smooth cross entropy loss function (LLSCE) [33] and focal cross entropy loss
function (LFCE) [34] is defined as the total loss function (LT) to validate the performance of
EfficientNet-based model.

LLSCE =
−1
N ∑N

j=1 ∑M
i=1 Pjilog

(
f
(
xj
)

, (1)

where N is the number of samples, M is the number of categories, f (∗) is the classifier, xj is
the sample. When xj belongs to lth class, Pji = 1 − ε, and Pji = ε/M − 1 for the other classes.
ε is 0.2.

f (∗) =
{

p, if y = 1
1 − p, otherwise

, (2)
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where p is the probability of the target.

LFCE =
−1
N ∑N

j=1 ∑M
i=1 αi

(
1 − f

(
xj
) γlog

(
f
(
xj
)

, (3)

where αi is the weight of loss function and γ is 2.

LT = LLSCE + LFCE (4)
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Table 1. EfficientNet-based model, the stage i with L̂i layers, with input resolution
〈

ĤI , Ŵi

〉
and

output channels Ĉi.

stage
i

Operator
F̂i.

Resolution
ĤI×Ŵi

#Channels
Ĉi

#Layers
L̂i

1 Conv3 × 3 224 × 192 32 1
2 MBConv1, k3 × 3 112 × 96 16 1
3 MBConv6, k3 × 3 112 × 96 24 2
4 MBConv6, k5 × 5 56 × 48 40 2
5 MBConv6, k3 × 3 28 × 24 80 3
6 MBConv6, k5 × 5 28 × 24 112 3
7 MBConv6, k5 × 5 14 × 12 192 4
8 MBConv6, k3 × 3 7 × 6 320 1
9 Conv1 × 1 & Flatten & FC 7 × 6 1280 1

Table 2. Hyperparameters for training.

Hyperparameter Selected Value

Loss function LTotal = LLSCE + LFL
Optimizer Adam

Learning rate 1 × 10−5

Batch size 16
Epoch 1000

2.3. Fuzzy Rank-Based Model

The fuzzy rank-based model takes the results from the three EfficientNet-based models
and calculates two fuzzy ranks by applying the exponential function and hyperbolic tangent
function transformations, R1 and R2 [20].

R1ik = 1 − exp(− (Pik − 1)2

2
), k = 1, 2, 3 (5)

R2ik = 1 − tanh(
(Pik − 1)2

2
), k = 1, 2, 3 (6)
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where Pik is the estimating weight of ith category on kth EfficientNet-based model. RS is
the fused rank score.

RSik = R1ik × R2ik (7)

The confidence score of a particular category, CS, is the sum of RSsk.

CSi =
3

∑
k=1

RSik (8)

The category with the minimum confidence score is considered the winner.

2.4. Wearable Assistant Device

This system operates on the Arduino Nano 33 BLE Sense development board [35],
which is linked to various hardware modules such as an OLED panel, vibrator, GPS
positioning module, microphone, and relay module, as depicted in Figure 3. The relay
module governs the power of the OLED panel to conserve energy, while the microphone
captures the audio sound. When the wearable assistant device detects a car horn, siren, or
ambulance siren, it activates the vibration module and displays a message on the OLED
panel. Figure 4 shows a photo of the wearable assistant device being worn on the wrist. Its
size is 3.9 cm × 3.1 cm × 2.5 cm.
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2.5. Performances

The results of the tests are summarized in a confusion matrix, outlined in Table 3.
This matrix illustrates the relationship between the actual and estimated classes in the
test set, with each row corresponding to the actual classes and each column representing
the estimated classes. According to the proposed method, a sample is classified as a true
positive (TP) if the activity is correctly recognized, a false positive (FP) if the activity is
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incorrectly recognized, a true negative (TN) if the activity classification is correctly rejected,
and a false negative (FN) if the activity classification is incorrectly rejected. To evaluate the
performance of the proposed model, metrics such as accuracy, sensitivity, specificity, and
precision are utilized, as described in Equations (9)–(12).

Accuracy =
TP + TN

TP + TN + FP + FN
(9)

Sensitivity =
TP

TP + FN
(10)

Specificity =
TN

TN + FP
(11)

Precision =
TP

TP + FP
(12)

Table 3. Confusion matrix.

Estimated Class

Actual Class
Positive Negative

Positive TP (True Positive) FN (False Negative)
Negative FP (False Positive) TN (True Negative)

3. Results

The proposed model underwent training, validation, and testing processes on a
computer equipped with an 8-core CPU (Intel Xeon W-3223), 64 GB of RAM, a GPU (RTX
3090) with 24 GB of graphics memory, and 10,496 CUDA cores. PyTorch was the framework
used for the implementation.

Table 4 presents the confusion matrix for the EfficientNet-based, fuzzy rank-based
ensemble model in offline computing. The results clearly show that the study achieved an
accuracy of 97.05%, a precision of 97.79%, a sensitivity of 96.8%, and a specificity of 97.04%.

Table 4. The confusion matrix of EfficientNet-based, fuzzy rank-based ensemble model in
offline computing.

Neutral Anger Fear Happy Car Horns Sirens Ambulance Siren

Neutral 2590 10 5 4 0 0 0
Anger 10 2588 14 5 5 0 0
Fear 6 11 2594 3 0 2 0

Happy 8 6 2 2598 0 0 0
Car Horns 0 0 0 0 1094 17 25

Sirens 0 0 0 0 13 1105 35
Ambulance Siren 0 0 1 0 26 21 1096

In order to evaluate the robustness of the EfficientNet-based, fuzzy rank-based en-
semble model in a noisy environment, we collected audio samples of road noise and
superimposed the spectrogram of road noise over the testing samples. In this experiment,
the number of testing samples is the same as the number used with the EfficientNet-based,
fuzzy rank-based ensemble model in offline computing. Table 5 shows the confusion matrix
of the EfficientNet-based, fuzzy rank-based ensemble model in offline computing under the
noisy environment. It is evident that this study achieved an accuracy of 96.84%, precision
of 96.17%, sensitivity of 96.13%, and specificity of 96.90%. We found that our proposed
model exhibited high robustness. The accuracy, precision, sensitivity, and specificity only
dropped 0.21%, 1.62%, 0.67%, and 0.14%, respectively.
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Table 5. The confusion matrix of the EfficientNet-based, fuzzy rank-based ensemble model in
offline computing under the noisy environment. The testing samples were superimposed over the
road noise.

Neutral Anger Fear Happy Car Horns Sirens Ambulance Siren

Neutral 2538 20 10 12 0 0 0
Anger 35 2549 33 20 0 0 0
Fear 24 27 2568 7 0 0 0

Happy 17 19 3 2571 0 0 0
Car Horns 0 0 0 0 1079 66 46

Sirens 0 0 0 0 18 1067 28
Ambulance Siren 0 0 0 0 39 12 1082

The iOS system, developed by Apple Inc., Cupertino, CA, USA, is one of the most
prevalent mobile operating systems, holding a substantial market share. Thanks to its vast
user base, the iOS system has become highly popular. Starting with version 14, iOS has
integrated sound recognition functionality, providing options to recognize various sounds
such as alarms, car horns, and shouting, among others. To compare our proposed method
with the iOS system, we utilized the sound recognition feature in iOS to classify emergency
vehicle sirens [36]. The training, validation, and testing samples were the same as those
used in the offline computing experiment with the EfficientNet-based, fuzzy rank-based
ensemble model. Table 6 displays the confusion matrix for the iOS system in offline com-
puting, showing an accuracy of 70.82%, precision of 76.67%, recall of 76.22%, and specificity
of 71.02%. Comparing the results in Tables 4 and 6, our proposed model outperformed
the iOS system. The accuracy, precision, sensitivity, and specificity of our model exceeded
those of the iOS system by 26.23%, 21.57%, 20.58%, and 26.02%, respectively.

Table 6. The confusion matrix of iOS system in the offline computing. All samples are the same as
in Table 4.

Neutral Anger Fear Happy Car Horns Sirens Ambulance Siren

Neutral 1927 215 192 794 0 0 0
Anger 143 1589 776 118 0 0 0
Fear 230 743 1521 101 0 0 0

Happy 314 68 127 1597 0 0 0
Car Horns 0 0 0 0 1065 23 16

Sirens 0 0 0 0 26 1045 43
Ambulance Siren 0 0 1 0 47 77 1097

In this study, we embedded the trained EfficientNet-based fuzzy rank-based ensemble
model into the Arduino Nano 33 BLE Sense development board. The testing samples were
played through the speaker of a PC. The board was recording the sounds and recognized
the class of each sound. If the sound belonged to a car horn, siren, or ambulance siren, it
would start the vibrator and send a message to the OLED. Then, we counted the numbers
of all categories. The testing samples were the same as those used in the experiment on
the EfficientNet-based, fuzzy rank-based ensemble model in offline computing. Table 7
shows the confusion matrix of the EfficientNet-based, fuzzy rank-based ensemble model in
edge computing. The performances of edge computing achieved an accuracy of 95.22%,
precision of 93.19%, sensitivity of 95.27%, and specificity of 95.09%. According to the results
shown in Tables 4 and 7, we find that the performances of edge computing are close to
those of offline computing. Our proposed model exhibited the better performance. The
accuracy, precision, sensitivity, and specificity only dropped 1.83%, 4.6%, 1.53%, and 1.95%,
respectively. The testing video shows that the motorcycle horn and ambulance siren trigger
the wearable assistant device, displaying the siren’s category [37].
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Table 7. The confusion matrix of the EfficientNet-based fuzzy rank-based ensemble model in edge
computing. The testing samples were the same as in the experiment involving offline computing.

Neutral Anger Fear Happy Car Horns Sirens Ambulance Siren

Neutral 1272 14 12 11 8 12 10
Anger 12 1274 13 23 10 8 12
Fear 23 8 1268 12 5 10 11

Happy 9 10 4 1267 7 3 5
Car Horns 15 20 10 8 1084 14 6

Sirens 7 2 18 9 13 1079 7
Ambulance Siren 10 12 9 14 9 5 1095

4. Discussion

In ensemble learning, the voting and weight average methods are popular methods [38,39].
When a predicted class achieves the maximum voting number, the class is considered
the winner. The main disadvantage of the voting method that it ignores the probabilities
of true and false classes. It only focuses on the numbers of true classes. Although the
weight average method could create a balance of true and false classes, this method would
determine the wrong winner when the number of false classes is larger than the number
of true classes. In this study, we proposed the fuzzy rank-based model to determine the
winner amongst the classes. The model uses the two nonlinear functions, exponential
function and hyperbolic tangent function, respectively, to estimate the ranks. The two
functions are antisymmetric functions. Thus, they can inhibit the incorrect decisions
caused by large amounts of false classes. Figure 5 shows the performances of the non-
using ensemble (the EfficientNet-based model), voting and weight average methods (the
EfficientNet-based voting ensemble model and the EfficientNet-based weight ensemble
model), and the EfficientNet-based, fuzzy rank-based ensemble model. The results are: the
accuracies of 83.31%, 87.23%, and 91.25%; the precisions of 82.87%, 86.82%, and 91.73%;
the sensitivities of 83.01%, 87.11%, and 90.96%; and the specificities of 83.33%, 86.74%, and
91.17%. The performances of the EfficientNet-based, fuzzy rank-based ensemble model
are the best, with an accuracy of 97.05%, precision of 97.79%, sensitivity of 96.8%, and
specificity of 97.04%.
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When compared to the iOS system, our method demonstrated significantly higher
accuracy, outperforming it by a remarkable margin of 26.23%. This performance could be
considered the main contribution of this study. The advantage of the EfficientNet-based,
fuzzy rank-based ensemble model is that it not only recognized the warning sounds, but
also identified the emotions within human vocalizations. The iOS system lacks the ability
to recognize emotion. This reason indicates that our method is better than the iOS system.

Table 8 presents a comparative analysis of our proposed method against other stud-
ies that utilized the CREMA-D dataset [26]. Previous studies [40–43] only classified
four sounds, while our study classified seven. As shown, the proposed EfficientNet-based,
fuzzy rank-based ensemble model achieved an accuracy of 97.05%, which ranks the best
result within these literatures. For the Large-Scale Audio dataset of emergency vehicle
sirens on the road [16], a previous study showed that the best result for the classification
of four sounds was an accuracy of 97%. This result was very close to that of our study.
However, we emphasized that our approach classified seven sounds, broadening the scope
of sound recognition.

Table 8. Comparative results of various methods using the CREMA-D dataset.

Ref. Classification Method F1-Score (%) Accuracy (%)

[40] ResNet18 NA 57.42%
[41] CNN-LSTM 79.23% 78.52%
[42] Metric Learning-Based Multimodal NA 65.01%
[43] Triplet Loss-based modal NA 58.72%

NA EfficientNet-based fuzzy rank-based
ensemble model NA 97.05%.

In this study, we used two datasets, the CREMA-D dataset and the Large-Scale Audio
dataset to evaluate the performance of the EfficientNet-based, fuzzy rank-based ensemble
model. The number of each category is very different. The samples’ numbers of neutral
vocalizations, anger vocalizations, fear vocalizations, happy vocalizations, car horn sounds,
siren sounds, and ambulance sirens sound were 7921, 7834, 7621, 8568, 7128, 7484, and
5979, respectively. Moreover, the target output used one-hot encoding. If the model uses
general cross entropy loss, the model may have poor training results due to a sample
imbalance. The label smooth cross entropy loss function and focal loss function could
overcome these problems [33,34]. Thus, we used the sum of two loss functions to validate
the performance of the proposed model to avoid overfitting and local minimum problems
in the training phase.

5. Conclusions

We proposed a wearable assistant device to help the hearing impaired recognize
the warning sounds from vehicles on the road. By employing edge computing in the
Arduino Nano 33 BLE Sense development board, we executed the EfficientNet-based, fuzzy
rank-based ensemble model. To evaluate the performance of this model, we used the
CREMA-D dataset and the Large-Scale Audio dataset for training and testing. In offline
computing, the accuracy reached 97.05%, while in edge computing, it also achieved 95.22%
accuracy. Because the audio signals were obtained from the open datasets, we did not
explore the performance of the wearable assistant device under different types of audio
signals and background noises. These problems will directly affect the response time of the
user when faced with an approaching vehicle. In the future, we will explore the sensitivity
and robustness of the wearable assistant device and increase the response time of the user.
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