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Abstract: Spectrum sensing in Cognitive radio (CR) is a way to improve spectrum utilization by
detecting spectral holes to achieve a dynamic allocation of spectrum resources. As it is often difficult to
obtain accurate wireless environment information in real-world scenarios, the detection performance
is limited. Signal-to-noise ratio (SNR), noise variance, and channel prior occupancy rate are critical
parameters in wireless spectrum sensing. However, obtaining these parameter values in advance is
challenging in practical scenarios. A lifting wavelet-assisted Expectation-Maximization (EM) joint
estimation and detection method is proposed to estimate multiple parameters and achieve full-blind
detection, which uses lifting wavelet in noise variance estimation to improve detection probability and
convergence speed. Moreover, a stream learning strategy is used in estimating SNR and channel prior
occupancy rate to fit the scenario where the SU has mobility. The simulation results demonstrate that
the proposed method can achieve comparable detection performance to the semi-blind EM method.

Keywords: cooperative spectrum sensing; expect the maximum algorithm; likelihood ratio test;
lifting wavelet

1. Introduction

With the rapid development of mobile intelligent terminals, wearable devices, and
industrial monitoring in 5G applications, the amount of mobile data traffic is growing
exponentially [1]. To ensure the reliability and real-time performance of user services,
higher transmission rates are required to achieve real-time data interaction. The research on
sixth-generation (6G) mobile communication aims to establish a powerful network to cover
ground, air, and sea communications and provide a solution superior to 5G that meets the
demands of high throughput, large capacity, and low latency. Cognitive radio (CR) is an
effective way to improve spectrum utilization [2]. Spectrum sensing aims to achieve real-
time monitoring of spectrum holes, which is a prerequisite in CR. In cognitive networks,
the secondary users (Sus) can continuously monitor and opportunistically use the licensed
idle frequency bands that are not being used by the primary user (PU) [3]. For the Sus,
once the PU signal is detected to re-access the currently authorized frequency, the SU must
immediately give up using the frequency to avoid affecting the normal communication
of the PU. The shortage of spectrum resources is widespread in various communication
systems, and spectrum sensing has also been found to be applied in many fields, not only
in cellular communication but also, for instance, in cognitive radar systems [4–7].

Generally speaking, different detecting techniques require different amounts of wire-
less environment information. According to the amount of prior information required,
spectrum sensing methods can be divided into un-blind detection, semi-blind detection,
and full-blind detection. The likelihood ratio test (LRT) based on the Neyman-Pearson
criterion is currently known as the optimal detection method, which requests a known
distribution of the received signal that is generally related to the PU information, the
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noise variance, and channel statistic characteristics. Therefore, the LRT is an un-blind
detection method [8]. Conversely, when the detection method relies only on the obtained
signal samples without any prior information, it is referred to as a fully blind detection
method. Cyclostationary detection utilized the periodic stationarity of communication sig-
nals to distinguish the PU signals from noise by analyzing the difference in cyclostationary
spectra [9]. As long detection times and high computational complexity are required for
cyclostationary detection, it is difficult to apply them in practice. Similarly, the maximum
minimum eigenvalue (MME) detection also demanded a significant amount of computation
as it involved matrix calculation [10–12].

Owing to the intricacy of the full-blind approach, several studies employed a semi-
blind approach. The semi-blind detection method expects knowledge of certain parameter
values such as noise variance, PU information, or channel occupancy. Energy detection
(ED) is widely used in spectrum sensing due to its easy implementation. However, the
detection accuracy is susceptible to noise uncertainty, as the noise variance should be
known to calculate its threshold value [13]. In addition, a generalized likelihood ratio test
(GLRT) has been developed to employ maximum likelihood estimation to replace the SNR
of the received signal in LRT [14]. However, the detection performance of GLRT cannot
be guaranteed when the channel environment changes rapidly. There were also studies to
discuss the application of GLRT in multi-antenna scenarios, which involved more complex
operations [15,16]. Two-step GLRT can make the calculation simple, Ref. [17] utilizes a
two-step GLRT method to achieve adaptive detection under the sub-Gaussian symmetric
alpha-stable sea clutter background, considering the unknown parameters of the signal
complex amplitude and covariance matrix. A semi-blind detection method for estimating
the SNR using the expectation maximization (EM) algorithm was derived in [18], which
achieved stable estimation performance in the presence of channel variations. Nonetheless,
it only considered unknown SNR and ignored scenarios where noise variance and channel
occupancy rate could not be obtained.

Compared with full-blind detection, semi-blind detection has the advantage of being
easy to implement and relies on the assumption of known noise variance. In practical
scenarios, it is difficult for semi-blind detection methods to obtain real-time noise variance
values, which makes semi-blind detection face challenges in practice where noise uncer-
tainty exists. The semi-blind detection method with known noise variance can availably
serve as a full-blind detection method in spectrum sensing when noise variance estimation
is conducted. In noise variance estimation, some special channels for noise variance esti-
mation can effectively avoid interference from the PU signal, but this estimation method
sacrifices spectrum utilization [19,20]. Moreover, the noise variance was estimated by
using the eigenvalues of the covariance matrix of the received signal samples, which leads
to high computational complexity [21]. In [22], a noise uncertainty estimation method
was proposed to improve the threshold set using the estimated noise uncertainty interval.
However, due to its demand for a huge quantity of signal samples, a large detection delay
is usually generated. In [23], empirical mode decomposition was used for noise variance
estimation, which transformed the traditional semi-blind ED and maximum eigenvalue
detection (MED) into blind detectors. In the end, wavelet decomposition was used to
separate the signal from the noise. A suboptimal cooperative sensing method based on
wavelet de-noising was proposed in [24]. Furthermore, the noise variance was estimated
by subtracting the de-noised signal, which was reconstructed from the original received
signal [25,26].

Due to the limitations of path loss and multipath fading, local spectrum sensing per-
formance may be affected. When reusing the licensed spectrum, it is usually hoped to
minimize the impact on the PU, which relies on highly reliable spectrum sensing tech-
niques for global sensing of the wireless channel. Cooperative spectrum sensing (CSS)
using spatial diversity among SUs is a good solution to achieve highly reliable spectrum
sensing [27]. In CSS, there are two types of fusion criteria based on the different forms of
data that local SUs upload to the fusion center (FC), which are hard fusion criteria and soft
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fusion criteria [28]. Hard fusion criteria represent the local decision results as 0 or 1 and
upload them to the FC. The commonly used hard decision criteria include OR, AND, and
K-out-of-M criteria [29]. Classic soft fusion methods include equal gain combining (EGC),
selecting combining (SC), and maximum ratio combining (MRC) [30–32]. The weighting
coefficients of MRC and SC are dependent on the SNR of the received signal for each
secondary user, and the weighting coefficient of EGC is usually set to a constant value of 1.
Soft fusion methods generally acquire abundant local detection information, which leads
to superior performance compared to hard fusion criteria [33].

In this paper, we investigate full-blind cooperative spectrum sensing based on the
classical optimal LRT. In order to eliminate the coupling between the unknown parameter
estimates, we independently discuss the noise variance estimation problem and combine it
with the EM estimation algorithm to achieve fully-blind detection. The main contributions
are: (1) in un-blind optimal likelihood ratio detection, many parameters need to be known
in advance. Traditional full-blind detection approaches are hard to use in practice as they
have high computational complexity. When the parameters are unknown, the detection
problem becomes a composite hypothesis. In order to achieve full-blind spectrum sensing
with multiple unknown parameters, the EM algorithm is used to estimate the noise variance,
SNR of the received signal, and channel prior occupancy rate. (2) Besides, a simple noise
variance estimation method based on the lifting wavelet transform is used in the EM
algorithm to further shorten the detection time and improve the detection performance and
fitness for actual scenarios with noise uncertainty. (3) Finally, the stream learning strategy
based on historical information is used in estimating SNR and the channel prior occupancy
rate, making the proposed method adaptable to the scenario where the SU has mobility.

The remainder of this paper is outlined as follows: The corresponding system model
and the optimal detection problem are described in Section 2. Section 3 presents the formula
for multi-parameter EM estimation and detection and proposes a Lifting Wavelet-assisted
EM estimation method. The simulation results under different scenarios are presented in
Section 4. Finally, the work of this paper is summarized in Section 5.

2. System Model

It is assumed that the cognitive radio network consists of one PU, one FC, and J SUs,
which is shown in Figure 1; each SU with only one antenna is not affected by interference
from other SUs. Meanwhile, the reporting channel between SUs and FCs is error-free [34].
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Figure 1. The network model of CSS. Figure 1. The network model of CSS.

Table 1 presents the main parameters used in the analysis, along with a description of
each parameter.
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Table 1. The main parameters used in the analysis.

Index Description

H1 The hypothesis that determines the presence of the PU signal
H0 The hypothesis that determines the absence of the PU signal
z The channel state/The presence or absence of PU signals.
x The signal of PU
hj The channel gain from PU to j-th SU
wj Noise signal received at j-th SU
M Number of sampling points
J Number of SU
P The transmission power of the PU signal
σ2

j The variance of the noise received at j-th SU

σ̃2 The noise variance for all SUs
γj The SNR of the received signal at j-th SU
γ̃ The SNR of the received signal for all SUs
Tj The local detection statistic at j-th SU
T̃ Local detection statistics for the entire network

πH0 The prior probability that the PU signal is absent
πH1 The prior probability that the PU signal is present
µLRT The threshold for the likelihood ratio test

µWEMJD The threshold for the lifting wavelet-assisted EM joint estimation and detection
θu The unknown parameter vector

Qj,n(H1) The posterior probability of the presence of the PU signal at the j-th SU in n-th round detection
Qj,n(H0) The posterior probability of the absence of the PU signal at the j-th SU in n-th round detection

E[·] Expectation operation
var[·] Variance operation

p The number of levels of lifting wavelet decomposition.
wp The high-frequency coefficients at the p-th level of wavelet decomposition
cp The low-frequency coefficients at the p-th level of wavelet decomposition
u The learning rate
S The prediction operator
U The update operator

a∗j,n(z) The predicted value of Q∗j,n(z)Tj,n after learning at j-th SU in n-th round detection
b∗j,n(z) The predicted value of Q∗j,n(z) after learning at j-th SU in n-th round detection

Pf False alarm probability
Pd Detection probability
T The random variables of chi-squared-type mixtures
ψj The weighting coefficient of Tj
Kl(T) The l-th cumulant of T

According to Neyman-Pearson criteria, the spectrum sensing problem can be modeled
as a binary hypothesis test, and the received signal sample at the SUj is defined as [35]{

yj(m) = wj(m), z = H0
yj(m) = hjx(m) + wj(m), z = H1

, (1)

where z represents the channel state, z = H0 and z = H1 represent the absence and presence
of the PU signal, respectively. The channel gain from the PU to SUj is denoted by hj, x(m)
(m = 1, 2, . . . , M) represents the m-th sampling point of the PU signal, which follows a
Gaussian distribution with a zero mean. wj(m) is the zero-mean Gaussian white noise at
the receiver of SUj with variance σ2

j . It can be assumed without loss of generality that x and
wj are independent and uncorrelated. The received signal obeys the following distribution:

yj ∼
{
N (0, σ2

j ), z = H0

N (0, P
∣∣hj
∣∣2 + σ2

j ), z = H1
(2)
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where P is the transmit power of the PU signal.
To better track the parameter changes in mobile scenarios, the local detection statistics

at j-th SU represented by Tj is computed by using small samples, and the corresponding
distribution can be described as

Tj =
M

∑
m=1

∣∣∣yj(m)
∣∣∣2 =

{
σ2

j χ2
M, z = H0

σ2
j (1 + γj)χ

2
M, z = H1

(3)

where the random variable χ2
M represents a central chi-square distribution with M degrees

of freedom, and γj = P
∣∣hj
∣∣2/σ2

j is the SNR of the received signal at SUj.
From (3), the probability density function (pdf) of Tj and its logarithmic forms are:

fH0

(
Tj

∣∣∣σ2
j

)
=

1
2σ2

j

(
Tj

2σ2
j

)M
2 − 1

Γ
(

M
2

) e
−

Tj
2σ2

j (4)

LH0

(
Tj

∣∣∣σ2
j

)
= (

M
2
− 1) ln(Tj)−

M
2

ln(2σ2
j )− ln

(
Γ
(

M
2

))
−

Tj

2σ2
j

(5)

fH1

(
Tj

∣∣∣σ2
j , γj

)
=

1
2σ2

j (1 + γj)

(
Tj

2σ2
j (1+γj)

)M
2 − 1

Γ
(

M
2

) e
−

Tj
2σ2

j (1+γj) (6)

LH1

(
Tj

∣∣∣σ2
j , γj

)
= (

M
2
− 1) ln(Tj)−

M
2

ln(2σ2
j (1 + γj))− ln

(
Γ
(

M
2

))
−

Tj

2σ2
j (1 + γj)

(7)

The detection statistic, SNR, and noise variance for all SUs in the entire network
are denoted as T̃ =

{
T1, . . . Tj, . . . TJ

}
, γ̃ =

{
γ1, . . . γj, . . . γJ

}
, σ̃2 =

{
σ2

1 , . . . σ2
j , . . . σ2

J

}
,

respectively. The logarithmic probability density function for all SUs is the sum of each SU
probability density function and can be represented as

Lz(T̃ |σ̃2, γ̃) = log
J

∏
j=1

fz(Tj|σ2
j , γj) =

J

∑
j=1

Lz(Tj

∣∣∣σ2
j , γj) (8)

According to the likelihood ratio detection principle, the decision expression based on
the log-likelihood ratio function for the whole work can be written as [36]

LH1(T̃ |σ̃
2, γ̃)− LH0(T̃ |σ̃

2)
H0
≷
H1

η, (9)

where η is the threshold value of the detection. If the difference is larger than η, it indicates the
channel is occupied by the PU. Otherwise, the channel is absent and can be used by the SUs.

By substituting (5) and (7) into (9), the decision expression can be simply described as

J

∑
j=1

γj

σ2
j (1 + γj)

Tj
H1
≷
H0

µLRT , (10)

where, µLRT = 2η + M
J

∑
j=1

ln
(
1 + γj

)
is the decision threshold, which is related to the

received SNR of γj and the threshold of η. According to (10), the global statistic is a linear
combination of the detection statistic of Tj, the SNR and the noise variance.
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3. Blind Spectrum Sensing Based on the EM Estimation

According to (10), the decision can be made if the SNR and the noise variance for each
SU are known. However, these parameters usually vary in a dynamic environment. In
order to determine the state of the channel, it is necessary to estimate the SNR and the noise
variance of each SU. The unknown parameter vector is defined as θu =

{
θ, πH0 , πH1

}
,

where θ =
{

γ̃, σ̃2}. According to the maximum likelihood estimation theory, when the
exact distribution of Tj is known, the optimal estimation of unknown parameters could
be obtained by applying the logarithmic maximum likelihood estimation, which can be
represented as

θ∗u = argmax
θu

J

∏
j=1

f (Tj
∣∣θu) = argmax

θu

J

∑
j=1

log f (Tj
∣∣θu) , (11)

Since the channel occupancy is unknown when SUs acquire the detection statistic of
Tj, therefore z is a hidden variable during estimation. The expectation-maximization (EM)
algorithm can be used to solve the maximum likelihood estimation problem with hidden
variables [37]. In the EM algorithm, two steps are used to obtain the estimation parameter
values, which are called the E-step and M-step, respectively. The E-step aims to obtain the
conditional expectation, whereas the conditional expectation maximum is conducted to
produce a new set of parameter estimates for the next round of detection in the M-step.

In the n-th detection, the Qj,n(z) = P
(

z = Hz

∣∣∣Tj,n, πz,n, σ2
j,n, γj,n

)
is defined as the

posterior probability of the channel occupancy state. Qj,n(H1) represents the posterior
probability of the channel being occupied based on the value of Tj,n for the n-th detection
statistic for the j-th SU. According to Bayes’ rules, Qj,n(z) can be expressed as

Qj,n(H1) = P
(

z = H1

∣∣∣Tj,n, πH1,n, σ2
j,n, γj,n

)
=

πH1,n fH1

(
Tj,n

∣∣∣σ2
j,n ,γj,n

)
πH0,n fH0

(
Tj,n

∣∣∣σ2
j,n

)
+πH1,n fH1

(
Tj,n

∣∣∣σ2
j,n ,γj,n

)
=

[
1 +

πH0,n
πH1,n

fH0

(
Tj,n

∣∣∣σ2
j,n

)
fH1

(
Tj,n

∣∣∣σ2
j,n ,γj,n

)
]−1

(12)

Qj,n(H0) = 1−Qj,n(H1) (13)

where πH0 = P(z = H0) and πH1 = P(z = H1) are channel prior occupancy rate.

f (Tj,n

∣∣∣γj,n, σ2
j,n) = πH0,n fH0(Tj,n

∣∣∣σ2
j,n) + πH1,n fH1(Tj,n

∣∣∣γj,n, σ2
j,n) (14)

which can be seen as the marginal distribution of Tj,n with respect to z.
The conditional expectation of (8) given the posterior probability of the channel

occupancy state of Qj,n−1(z) is denoted as

Λ(θn , πz,n) = E

[
J

∑
j=1

Lz(Tj,n

∣∣∣σ2
j,n , γj,n)

∣∣∣Qj,n−1(z)

]
=

H1
∑

z=H0

J
∑
j

Qj,n−1(z) log
{

πHz ,n fHz

(
Tj,n

∣∣∣γj,n , σ2
j,n

)}
=

J
∑
j

Qj,n−1(H0) log
(

πH0,n fH0

(
Tj,n

∣∣∣σ2
j,n

))
+

J
∑
j

Qj,n−1(H1) log
(

πH1,n fH1

(
Tj,n

∣∣∣γj,n , σ2
j,n

)) (15)
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In the M-step, the corresponding estimation parameters of θn =
{

γ̃n, σ̃2
n
}

, πH0,n, and
πH1,n in n-th round of detection are obtained by maximizing the Λ(θn, πz,n), where the
posterior probability is calculated using the estimates got from the last detection:

Qj,n−1(H1) ≈ Q∗j,n−1(H1) =

1 +
π∗H0,n−1

π∗H1,n−1

fH0

(
Tj,n−1

∣∣∣σ2∗
j,n−1

)
fH1

(
Tj,n−1

∣∣∣σ2∗
j,n−1, γ∗j,n−1

)
−1

(16)

Qj,n−1(H0) ≈ Q∗j,n−1(H0) = 1−Q∗j,n−1(H1) (17)

From (15), the conditional expectation Λ(θn, πz,n) involves optimizing multiple pa-
rameters. In order to reduce the complexity of the estimation process, when one parameter
is estimated, the other parameters are assumed to have fixed values. The noise variance is
estimated first by setting ∂Λ(θn ,πz,n)

∂σ2
j,n

= 0, and the estimated value is

σ2∗
j,n = max

Q∗j,n−1(H0)Tj,n + Q∗j,n−1(H1)Tj,n/
(

1 + γ∗j,n−1

)
M
(

Q∗j,n−1(H0) + Q∗j,n−1(H1)
) , 0

 (18)

By substituting (18) into (15) and let the ∂Λ(θn ,πz,n)
∂γj,n

= 0:

γ∗j,n = max

(
Q∗j,n−1(H1)Tj,n

MQ∗j,n−1(H1)σ2∗
j,n
− 1, 0

)
(19)

Finally, we compute the π∗H1,n and π∗H0,n by setting ∂Λ(θn ,πz,n)
∂πH1,n

= 0:

∂L
(
θn, θ∗n−1

)
∂πH1,n

=
J

∑
j=1

Q∗j,n−1(H0)

πH0,n
−

Q∗j,n−1(H1)

1− πH0,n
= 0 (20)

π∗H1,n =
J

∑
j=1

Q∗j,n−1(H1)

J
, π∗H0,n = 1− π∗H1,n (21)

The detailed solution to the optimization problem is given in Appendix A.
According to the above derivation, this multi-parameter estimating method using the

EM principle is denoted as a fully Blind-EM estimation and detection method.

3.1. Noise Variance Estimation Based on Lifting Wavelets

Because the estimated values of noise variance and SNR are coupled with each other,
the performance of multi-parameter estimation will be affected in fully Blind-EM estimation
and detection. Consequently, we consider decoupling the two estimates. Since the noise
variance in the received signal is mainly concentrated in the high-frequency part and the
wavelet transform can realize the variable resolution decomposition of the signal, the noise
variance value can be estimated by using the high-frequency coefficient decomposed by
the wavelet transform.

The dynamic environment caused by SU mobility puts forward a higher demand for
detection delay; a shorter detection delay will help the fusion center estimate and track
the changes in various parameters promptly. The traditional wavelet transform relies
on the Fourier transform and has complex operations, so it is not suitable for dynamic
scenarios. The lifting wavelet can realize the specific wavelet function by designing different
prediction operators and update operators, which has the advantages of fast decomposition
speed and small memory consumption and is completely equivalent to the traditional
Mallat algorithm [38]. A low-complexity noise variance estimation method based on lifting



Sensors 2023, 23, 7428 8 of 20

wavelets can play a role in the EM blind estimation and detection method to enhance the
performance and accelerate the convergence speed of the algorithm.

The decomposition process of the p-th layer is shown in Figure 2. The lifting wavelet
mainly uses prediction and update to decompose the original signal. wp(m) and cp(m)
represent the high-frequency sub-band and low-frequency sub-band coefficients of lifting
wavelet decomposition, respectively. First, the signal yp(m) is divided into even sequence
ep(m) and odd sequence op(m), where p represents the decomposition number of the
layer, and then the repeated prediction and updating processes are conducted to complete
the wavelet decomposition. Both wp(m) and cp(m) can be initialized separately using
op(m) and ep(m), respectively. In terms of prediction, wp(m) can be predicted by using a
prediction operator S and cp(m), which can be expressed as

w(k+1)
p (m) = w(k)

p (m)− S[c(k)p (m)] (22)

which can be seen as the lifting of the high-pass sub-band using the low-pass sub-band,
and k represents the number of prediction times.
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Similarly, cp(m) can be updated by using an update operator U and wp(m), which can
be expressed as

c(k+1)
p (m) = c(k)p (m) + U[w(k+1)

p (m)] (23)

where cp(m) reflects a coarse version of the original signal, which can be seen as a process
of lifting the low-frequency sub-band through the high-frequency sub-band.

If the case of p = 1 is considered, the db2 wavelet transform can be achieved by per-
forming two predictions and one update, and the corresponding operator can be written as

S1 =
√

3, U1 =

√
3− 2
4

Z +

√
3

4
, S2 = −Z−1 (24)

where Z and Z−1 represent the left and right shifts of the signal in the time domain, respectively.
The specific calculation process is as follows:

w(1)
1 (m) = w(0)

1 (m)−
√

3× c(0)1 (m)

c(1)1 (m) = (
√

3/4)× w(1)
1 (m) + (

√
3/4− 1/2)× w(1)

1 (m + 1) + c(0)1 (m)

w(2)
1 (m) = c(1)1 (m− 1) + w(1)

1 (m)

(25)

In the end, by multiplying the normalization factors by the final wavelet factorization
coefficient, the following can be obtained:{

w1(m) = k1 × w(2)
1 (m) = (

√
3/
√

2− 1/
√

2)× w(2)
1 (m)

c1(m) = k0 × c(2)1 (m) = (
√

3/
√

2 + 1/
√

2)× c(2)1 (m)
(26)
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The noise variance can be estimated using the high-frequency coefficients obtained
from the current period’s decomposition [25].

σ̂2∗
j,n =

median(|w1(m)|)
0.6745

(27)

where median(w1(m)) indicates the median value of the w1(m).
The noise variance estimation conducted in the Blind-EM algorithm is replaced by

the estimation through the lifting wavelet, which is called the lifting wavelet-assisted EM
iteration joint estimation method (WEMJD), which performs estimation of other unknown
parameters by setting σ2∗

j,n = σ̂2∗
j,n. The new decision expression can be denoted as

J

∑
j=1

γ∗j,n

σ̂2∗
j,n(1 + γ∗j,n)

Tj,n
H1
≷
H0

µWEMJD (28)

where µWEMJD is the threshold value of WEMJD, which can be determined using a constant
false alarm probability, is a detailed description, please refer to Section 3.3.

3.2. The SNR and CPOR Estimation

Compared with batch learning, which needs to wait until all the observed data are
obtained, online learning is better suited for scenarios where data arrives continuously [39].
The parameters can be estimated and predicted over time using online streaming learning
to enhance the tracking capability of parameter estimation by utilizing historical available
information in dynamic environments. The related variables Q∗j,n−1(z)Tj,n and Q∗j,n−1(z)
for parameter estimation in (19) and (21) can be written in the following form:(

a∗j,n−1(z)
b∗j,n−1(z)

)
=

(
a∗j,n−2(z)
b∗j,n−2(z)

)
+ u

(
aj,n−1(z)− a∗j,n−2(z)
bj,n−1(z)− b∗j,n−2(z)

)
(29)

(
aj,n−1(z)
bj,n−1(z)

)
=

(
Q∗j,n−1(z)Tj,n

Q∗j,n−1(z)

)
(30)

where u is the learning rate and a∗j,n−1(z) and b∗j,n−1(z) are the predicted values of Q∗j,n−1(z)Tj,n

and Q∗j,n−1(z), respectively.
By replacing (19) and (21) with (29), the final estimating expression of SNR and channel

prior occupancy rate can be expressed, respectively, as

γ∗j,n = max

(
a∗j,n−1(H1)

Nb∗j.n−1(H1)σ2∗
j,n
− 1, 0

)
(31)

π∗H1,n =
J

∑
j=1

b∗j.n−1(H1)

J
, π∗H0,n = 1− π∗H1,n (32)

As the noise samples are independent of each other and do not have a correlation,
it should be noted that historical learning is not suitable for predicting and tracking the
irregular changes in the noise variance. Hence, only the sliding window is used to smooth
the noise variance estimation results.

3.3. Initialization and Decision Thresholds
3.3.1. Initialization

Due to the sensitivity of the EM algorithm to the initial values, reliable initial values
can help the EM algorithm converge to the global maximum and greatly reduce the iteration
time of the algorithm. Since the PU activity status is independent of the noise variance and
SNR, it is assumed that the probability of the channel being occupied and unoccupied is
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equal at the initial time, therefore π∗H0,0 = π∗H1,0 = 0.5 is set. For the initial noise variance
estimation, we consider that FC has no prior knowledge of PU activity. The initial estimate
of the noise variance can be acquired by (27). The initial value of the instantaneous SNR
in the WEMJD method is consistent with the initial estimate value adopted in the GLRT
algorithm, which can be obtained using maximum likelihood estimation and expressed as

ΛGLR = log

 fH1

(
Tj

∣∣∣σ2∗
j,0 , γj,0

)
fH0

(
Tj

∣∣∣σ2∗
j,0

)
 =

Tjγj,0

2σ2∗
j,0
(
1 + γj,0

) − N
2

ln
(
1 + γj,0

)
(33)

γ∗j,0 = argmax
γj≥0

ΛGLR = max

(
Tj,1

Mσ2∗
j,0
− 1, 0

)
(34)

3.3.2. Threshold Calculation

To evaluate the performance of a detection method, its ability to correctly detect the
presence of a target signal can be determined by using the false alarm probability and
detection probability.

The ability of the detection method to correctly detect the presence of a target signal can
be described by using the false alarm probability and detection probability. The detection
probability Pd = P(H1|z = H1) is the probability of correctly detecting the existence of the
target signal. The false alarm probability Pf = P(H1

∣∣∣z = H0) refers to the probability that
the SU falsely claims PU activity when the channel is not occupied by the PU signal.

Based on the Neyman-Pearson criterion, the threshold value should maximize the
detection probability with constraint Pf = a, which is known as constant false alarm rate
(CFAR) detection. In CFAR detection, the threshold setting is related to the preset false
alarm probability. The detection statistic in (10) is the positive weighted sum of chi-square

random variables: T =
J

∑
j=1

ψjTj, Tj ∼ χ2
M(u2

r ). The signal energy of Tj here follows a

non-central chi-square distribution, hence, u2
r = 0.

In general, the exact distribution of the weighted sum is difficult to obtain, So we ap-
proximate T by the chi-square distribution with d degrees of freedom forms like
R = αχ2

d + β [40–42]. The first three cumulative moments of R and T is:

K1(R) = αd + β (35)

Kl(R) = 2l−1(l − 1)!αld, l = 2, 3 (36)

K1(T) = M
J

∑
j=1

ψj, K2(T) = 2M
J

∑
j=1

ψ2
j , K3(T) = 8M

J

∑
j=1

ψ3
j (37)

where ψj = γ∗j /(1 + γ∗j ), and Appendix B provides an explanation.
Let the first three cumulative moments of R and T be the same, it is obtained that

α =
K3(T)

4K2(T)
, d =

8K3
2(T)

K2
3(T)

, β = K1(T)−
2K2

2(T)
K3(T)

(38)

The approximate distribution of T is given by:

FT(t) ≈ FR = P(R ≤ t) = P
(

χ2
d ≤

t− β

α

)
(39)

The value of d in (38) is generally not an integer. The distribution of χ2
d is actually a

gamma distribution with a scale parameter of 2 and a shape parameter of d/2. Therefore,
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the chi-square distribution in (39) can be approximated by a gamma distribution and
replaced as

FT(t) ≈ FGa = P
(

X ≤ t− β

α

)
, X ∼ Ga

(
d
2

, 2
)

(40)

Refer to Appendix C, the global detection threshold can be expressed as follows

µWEMJD = αF
−1

Ga

(
1− Pf

)
+ β (41)

Figure 3 shows the algorithm execution process of WEMJD at the secondary users and
the fusion center.
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The algorithm complexity is evaluated under the case of J SUs, M sampling points,
and N detection times. At FC, for WEMJD, Semi-blind EM and GLRT have the same
computational complexity is O(J ∗ N + M), while the complexity of matrix inversion for
eigenvalue detection is O(M3). In the case of a small sample size, M is the same size as N,
while J is usually smaller than M and N, so the proposed method has a lower degree of
complexity. At SUs, we assume that the length of the prediction operator is ls and the length
of the update operator is lu, and the number of decomposition layers is p, the complexity
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of the noise estimation part is O(J ∗ p ∗ (ls + lu)). Considering the case of p = 1, the total
complexity of the proposed algorithm is O(J ∗ N + M) + O(J ∗ (ls + lu)).

4. Simulation Results and Analysis

In this section, the simulation results under different settings are shown. To make
the results more realistic and reliable, we performed R = 104 Monte Carlo experiments to
obtain the final results by setting the threshold based on the CFAR, where it is assumed
that all SUs have the same false alarm probability of Pf .

In the network, due to the random distribution of SUs, differences in geographic
location also bring about differences in received SNR. Therefore, we define the global
average SNR as

γG =
1
J

J

∑
j=1

γj (42)

where γj represents the average SNR at SUj.
In order to evaluate the estimation performance of the proposed algorithm, the mean

squared error (MSE) is used as the evaluation metric. The MSE for the n-th detection is
defined as

MSE(θ∗n) =
1

RJ

R

∑
r=1

J

∑
j=1

(
θ∗j,n − θj,n

)2
(43)

Results and Discussions

To discuss the convergence of the method, it is first assumed that the secondary
users are stationary and have the same nominal noise variance of σ2

j = 1. The simulation
parameters are M = 32, γG = −3 dB, N = 150, and Pf = 0.01. Figure 4 shows the MSE
for SNR estimations vary with different iteration times of n. It can be seen that the smaller
MSE is obtained if the smaller u is chosen as the iteration time of n is increased. Clearly, a
smaller u allows the historical data to be more thoroughly trained and it will slow down
the convergence speed. In addition, since too small u will lead to over-learning of history
data, it will not further enhance the detection performance by blindly reducing the value of
u. Through considering the compromise between the convergence speed and the estimated
performance, u = 0.1 is selected for subsequent simulation.

Figure 5 plots the relationship between detection probability and the number of
iterations for different methods. The simulation parameters are set as follows M = 32,
γG = −3 dB, N = 150, and Pf = {0.1, 0.01}. As the SemiBlind-EM method requires fewer
joint parameter estimations compared to Blind-EM, it indicates faster method convergence.
Compared with the Blind-EM which estimates all parameters by using the EM algorithm,
the WEMJD algorithm exhibits a faster convergence speed as it utilizes the lifting wavelet
to obtain noise variance information. Due to the limited historical information for learning
in the early stages of detection, the performance of SemiBlind-EM, Blind-EM, and WEMJD
methods is poor. However, as historical data accumulates, the method’s performance
gradually stabilizes. It can be observed that both SemiBlind-EM and the proposed WEMJD
outperform the semi-blind GLRT method, which does not incorporate learning strategies.
Furthermore, the fully blind WEMJD achieves performance comparable to SemiBlind-EM
while maintaining an adjacent convergence speed. Considering the convergence speed and
detection performance of the method, WEMJD exhibits significant advantages, which we
will mainly discuss its performance below.

The setting of the false alarm probability is related to the threshold value. From Figure 5,
a lower probability of false alarms usually results in a higher threshold, which leads to the
detection probability reducing with the decrease in false alarm probability. In Appendix B,
during the threshold calculation, we employ the estimated value instead of the true value,
which also causes the calculation of the threshold to be affected by the estimation error. So
here, the threshold is related not only to the false alarm probability but also to the estimation
algorithm used. The detection probability analysis reveals that the likelihood ratio test (LRT)
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exhibits the lowest sensitivity to false alarm probability, meaning its detection performance
is less affected by changes in false alarm probability. On the other hand, the detection
probability of Blind-EM, which involves the estimation of more parameters, experiences the
most significant reduction as the false alarm probability increases.
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By taking account of the scenario of changing channel conditions, it is assumed that
the SUs exhibit mobility, which means that the received SNR at the SUs changes over time.
In the presence of J = 3 and M = 64, the estimated SNR for each user using the WEMJD
method is shown in Figure 6. It can be seen that the estimated value does not conform
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to the change law of instantaneous SNR at the beginning. When the required number of
iterations is reached, the WEMJD can effectively track and estimate the instantaneous SNR
of each user’s received signal.
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To observe the sustained performance of the method, the simulation parameters are
set as J = 3, Pf = 0.01, γG = −3 dB, and N = 1000. As shown in Figure 7, the detection
probability increases as the SNR increases. It can also be observed that the detection
performance continuously improves as the sample size of M increases with the same SNR.
Moreover, the difference in detection probability between the WEMJD and SemiBlind-EM
gradually becomes larger as the sample size of M decreases. It can be interpreted that the
estimation performance of the proposed WEMJD method will be degraded as the noise
variance estimation becomes poorer as the number of sample points used becomes smaller.

Figure 8 shows the relationship between detection probability and global average
SNR with different numbers of users. Obviously, as the number of users involved in
cooperation increases, the detection performance improves. Moreover, with a fixed SNR,
the performance improvement is more pronounced as the number of users increases from 3
to 5 compared to the increase from 5 to 7 users, which indicates that simply increasing the
number of SUs in the network cannot continuously enhance the detection performance. Fur-
thermore, the detection performance for the proposed method approximately approaches
that of the optimal LRT method as more secondary users participate in spectrum sensing.

To observe the performance of different estimation and detection methods with noise
uncertainty. It is assumed that the noise variance follows a uniform distribution within a

certain range, σ2
n ∼ U( σ2

n
uc

, ucσ2
n) where uc is the fluctuation ratio, and the noise uncertainty

is defined as un = 10 log10(uc). In practice, it is challenging to obtain real-time accurate
values of noise variance for semi-blind detection methods, while it is relatively easy to
obtain the nominal power and fluctuation range of the noise variance. Therefore, the
weighting coefficients are calculated by using the maximum noise variance fluctuation
value σ2

nmax = ucσ2
n for the semi-blind method to minimize the impact on PU.
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numbers of users when SUs exhibit mobility.

Figure 9 illustrates the interrelationship among detection probability, false alarm prob-
ability, and SNR in the presence of noise uncertainty. The simulation parameters are set
as Pf = 0.01, M = 32, γG = −3 dB, N = 1000. From Figure 9a,c, it can be seen that
the detection probabilities of the SemiBlind-EM and GLRT decrease with the increase in
noise uncertainty. Compared to the two semi-blind methods, the proposed WEMJD has a
more stable detection probability under noise uncertainties as it has real-time noise variance
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estimation capabilities. For the ideal detection LRT, the real-time variation of the known noise
variance is considered, so the performance of the LRT is not affected by the noise uncertainty.

Sensors 2023, 23, x FOR PEER REVIEW 17 of 21 
 

 

noise variance is considered, so the performance of the LRT is not affected by the noise 

uncertainty. 

It may be noted that the false alarm probability of the proposed method fluctuates 

around the set value as the global average SNR is varied, which is shown in Figure 9b. 

When the SNR is greater than −0.5 dB, the actual false alarm probability of WEMJD is less 

than the set value of 0.01, conversely, when 0.5SNR  −  dB , the actual false alarm proba-

bility exceeds 0.01. The observed phenomenon can be attributed to the fact that at high 

SNR, the noise variance estimates increase, causing the SNR estimate in (31) to descend. 

Consequently, the weighting coefficient in (37) of each user decreases, which will lead to 

a lower false alarm probability compared to the predetermined threshold value. On the 

contrary, the 
fP   will become higher at a smaller SNR. For safety considerations, we 

adopted 2

maxn  to obtain a lower decision threshold. Therefore, in the presence of noise 

uncertainty, the actual false alarm probability of the SemiBlind-EM and GLRT is less than 

0.01 in Figure 9d. Moreover, by comparing Figure 9b,d, it can be seen that the false alarm 

probability of WEMJD has increased as noise uncertainty exists. Comparing Figure 9a,c, 

this increase in false alarm probability can be seen as sacrificing a certain level of false 

alarm probability to maintain the detection probability. 

  

(a) (b) 

  

(c) (d) 

Figure 9. Relationship among the detection probability, the false alarm probability, and the SNR 

under noise uncertainty. (a) Detection probability under un = 0 dB; (b) False alarm probability under 

un = 0 dB; (c) Detection probability under un = 1 dB; (d) False alarm probability under un = 1 dB. 

  

Figure 9. Relationship among the detection probability, the false alarm probability, and the SNR
under noise uncertainty. (a) Detection probability under un = 0 dB; (b) False alarm probability under
un = 0 dB; (c) Detection probability under un = 1 dB; (d) False alarm probability under un = 1 dB.

It may be noted that the false alarm probability of the proposed method fluctuates
around the set value as the global average SNR is varied, which is shown in Figure 9b.
When the SNR is greater than −0.5 dB, the actual false alarm probability of WEMJD is
less than the set value of 0.01, conversely, when SNR < −0.5 dB, the actual false alarm
probability exceeds 0.01. The observed phenomenon can be attributed to the fact that
at high SNR, the noise variance estimates increase, causing the SNR estimate in (31) to
descend. Consequently, the weighting coefficient in (37) of each user decreases, which will
lead to a lower false alarm probability compared to the predetermined threshold value.
On the contrary, the Pf will become higher at a smaller SNR. For safety considerations, we
adopted σ2

nmax to obtain a lower decision threshold. Therefore, in the presence of noise
uncertainty, the actual false alarm probability of the SemiBlind-EM and GLRT is less than
0.01 in Figure 9d. Moreover, by comparing Figure 9b,d, it can be seen that the false alarm
probability of WEMJD has increased as noise uncertainty exists. Comparing Figure 9a,c,
this increase in false alarm probability can be seen as sacrificing a certain level of false
alarm probability to maintain the detection probability.



Sensors 2023, 23, 7428 17 of 20

5. Conclusions

As it is often difficult to obtain accurate wireless environment information in real-
world scenarios, the estimation and detection methods of cooperative spectrum sensing in
dynamic environments are studied in this paper. Based on the LRT theory, it is required
to estimate the noise variance, the signal-to-noise ratio, and the channel prior occupancy
in the blind scenario with varied channel conditions. A lifting wavelet-assisted EM joint
estimation and detection algorithm is proposed to estimate multiple parameters and achieve
full-blind detection. Moreover, the lifting wavelet technique is applied in noise variance
estimation to improve detection probability and convergence speed. At the same time,
a stream learning method is used in estimating SNR and channel prior occupancy rate
to fit the dynamic environment. The simulation results demonstrate that the proposed
full-blind method can achieve comparable detection performance to the semi-blind EM
method. It can adapt to mobile scenarios where the SNR varies over time and exhibit a
certain robustness against noise uncertainty.
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Appendix A

The solution of the estimates involves variable optimization problems with an inequal-
ity constraint. Take the estimation of SNR as an example. The optimization problem can be
described as

γ∗j,n = argmax
γj,n≥0

Λ(θn, πz,n)

= argmin
γj,n≥0

(−Λ(θn, πz,n))
(A1)

Take the derivative of the −Λ(θn, πz,n) with respect to γj,n, we have:

−∂Λ(θn, πz,n)

∂γj,n
= Qj,n−1(H1)

 M
1 + γj,n

−
Tj,n

σ2∗
j,n(1 + γj,n)

2

 (A2)

The Karush-Kuhn-Tucker (KKT) conditions are

Qj,n−1(H1)
(

Mσ2∗
j,n

(
1 + γj,n

)
− Tj,n

)
− λσ2∗

j,n
(
1 + γj,n

)2
= 0, λγj,n = 0, λ ≥ 0, −γj,n ≤ 0 (A3)

where λ is the Lagrange multiplier.
When γj,n > 0 the constraints are inactive, so λ = 0, the KKT conditions reduce to

Qj,n−1(H1)
(

Mσ2∗
j,n

(
1 + γj,n

)
− Tj,n

)
= 0, γj,n > 0 (A4)

so we obtain γ∗j,n =
Tj,n

Mσ2∗
j,n
− 1, and the inequality requires Tj,n > Mσ2∗

j,n.
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When γj,n = 0 the constraints are active, the KKT conditions reduce to

Qj,n−1(H1)
(

Mσ2∗
j,n − Tj,n

)
− λσ2∗

j,n = 0, λ ≥ 0 (A5)

so we obtain λ =
Qj,n−1(H1)

(
Mσ2∗

j,n−Tj,n

)
σ2∗

j,n
, and the inequality requires Tj,n < Mσ2∗

j,n.

The SNR estimate at j-th SU can be written as

γ∗j,n = max

(
Tj,n

Mσ2∗
j,n
− 1, 0

)
(A6)

Appendix B

The first three cumulants of T can be calculated using the following formulas:

K1(T) = E(T), K2(T) = var(T), K3(T) = E(T − ET)3 (A7)

According to (10), the global statistic T can be written as

T =
J

∑
j=1

γj

σ2
j (1 + γj)

Tj (A8)

Since at FC, the calculation of the weighting coefficient uses estimates of the SNR and
noise variance, the actual global statistic is

T =
J

∑
j=1

γ∗j

σ2∗
j (1 + γ∗j )

Tj (A9)

where Tj is the practical energy of the received signal, so E[Tj] = Mσ2
j and var[Tj] = 2Mσ4

j ,
then each cumulative quantity can be calculated from (A7):

K1(T) = M
J

∑
j=1

γ∗j σ2
j

σ2∗
j (1 + γ∗j )

, K2(T) = 2M
J

∑
j=1

(
γ∗j σ2

j

σ2∗
j (1 + γ∗j )

)2

, K3(T) = 8M
J

∑
j=1

(
γ∗j σ2

j

σ2∗
j (1 + γ∗j )

)3

(A10)

In full-blind detection, we treat the estimate as the true value, so the above formula becomes

K1(T) = M
J

∑
j=1

ψj, K2(T) = 2M
J

∑
j=1

ψ2
j , K3(T) = 8M

J

∑
j=1

ψ3
j (A11)

where ψj = γ∗j /(1 + γ∗j ).

Appendix C

The cumulative distribution function (CDF) of T is defined as

FT(t) = P(T < t) =
t∫

−∞

fT(t)dt(−∞ < t < ∞) (A12)

when z = H0, the detection threshold is µ, then the false alarm probability can be expressed as

Pf = P(T > µ) =

∞∫
µ

fT(t)dt = 1− FT(µ) (A13)
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In constant false alarm rate (CFAR) detection the threshold can be obtained by (A14)

µ = F−1
T (1− Pf a) (A14)

Here we use the random variable of the form R = αX + β, X ∼ Ga
(

d
2 , 2
)

to approxi-
mate the distribution of T, therefore

Pf = P(X >
µ− β

α
) =

∞∫
(µ−β)/α

fGa(x)dx (A15)

µ = αF
−1

Ga

(
1− Pf

)
+ β (A16)
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