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Abstract: This study proposes a novel method for obtaining the electrocardiogram (ECG) derived
respiration (EDR) from a single lead ECG and respiration-derived cardiogram (RDC) from a res-
piratory stretch sensor. The research aims to reconstruct the respiration waveform, determine the
respiration rate from ECG QRS heartbeat complexes data, locate heartbeats, and calculate a heart
rate (HR) using the respiration signal. The accuracy of both methods will be evaluated by comparing
located QRS complexes and inspiration maxima to reference positions. The findings of this study will
ultimately contribute to the development of new, more accurate, and efficient methods for identifying
heartbeats in respiratory signals, leading to better diagnosis and management of cardiovascular
diseases, particularly during sleep where respiration monitoring is paramount to detect apnoea and
other respiratory dysfunctions linked to a decreased life quality and known cause of cardiovascular
diseases. Additionally, this work could potentially assist in determining the feasibility of using
simple, no-contact wearable devices for obtaining simultaneous cardiology and respiratory data from
a single device.

Keywords: respiration; cardiology; electrocardiogram; plethysmography; signal processing;
fantasia; MATLAB

1. Introduction

Biomedical data such as electrocardiograms (ECGs) and respiration rate (RR) mea-
surements are routinely collected in hospitals worldwide for health assessment purposes.
ECGs assist in diagnosing and managing cardiovascular diseases, while respiration rates
are typically monitored as part of patients’ critical vital signs [1]. The demand for these
medical measurements is on the rise, with cardiovascular diseases being the most common
non-communicable diseases globally, responsible for 17.9 million deaths in 2019, while
chronic respiratory disease was the third leading cause of death, with 4.1 million deaths in
the same year [2].

Monitoring patients’ vital signs in hospitals is essential to evaluate their conditions
and can help prevent health deterioration via timely intervention. However, nursing
staff are often busy, so monitoring patients in general hospital wards is often incomplete
with infrequent observations [3]. The “gold standard” measurement of respiration rates
outside of critical care depends on medical staff counting chest undulations over a minute.
However, this can be inaccurate primarily due to staff counting for a fraction of this time and
extrapolating because of high workloads [4]. Further, to contend with clinical uncertainty,
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continuous respiration rate measurements instead of single-threshold values need to be
collected [5].

Continuous extraction of RR from an ECG can be a more accurate and efficient method
of determining respiration rates [6]. Respiratory information, while not immediately present
as a waveform, is present as information contained in the ECG by three main mechanisms:
respiratory sinus arrhythmia, changes in the distance of the electrodes from the heart during
the respiration cycle, and changes to thoracic impedance [7]. Measuring ECG-derived res-
piration (EDR) using a single ECG lead can be done by R peak amplitude modulation, R-R
peak frequency modulation measuring sinus arrhythmia, baseline wander, and bandwidth
measurement using ECG and seismocardiograms (SCG) [8], among other methods.

On the other hand, cardiac oscillations are evident in many respiratory signals. Ob-
servations made during experiments using a simple, low-cost, contactless resistive chest
band to monitor respiratory effort and measure tidal and cardiac stroke volume can show
evidence of the heartbeat signal in calibrated volume data [9]. Cardiogenic oscillations re-
ported in signals obtained using respiratory inductive plethysmography are visible during
a held breath. The heartbeat signals in the respiratory data are synchronized with given
ECG signals [10].

Meanwhile, there is a trend toward using wearable devices to gather patient telemetry
within hospitals and, most importantly, outside when the patient returns home [11,12]. To
this extent, combining cardiac and respiratory monitoring from a single device that collects
respiration signals or cardiology signals and extracts the missing signal from the available
one would be more efficient. Similarly, with the increase in wearable devices such as finger
rings [13] and multisensory wearable devices [14], there will come an increased need to
develop algorithms that extract accurate cardiologic and respiratory information whether
that information has been obtained using ECG or some form of plethysmography, for the
diagnosis and management of many health conditions.

Given that no previous work has attempted to locate heartbeat peak locations over
long periods using a publicly available database, this study attempts to fill the gap in the
literature. It proposes an initial process for identifying heartbeats in respiratory signals
when the heartbeat signal is close to the noise floor. This work offers insights into the
strengths and limitations of the proposed technique and presents ideas for improved
algorithms that could increase the percentage of true positive heartbeat detection.

The findings of this study could contribute to the development of new, more accurate, and
efficient methods for identifying heartbeats in respiratory signals, leading to better diagnosis
and management of cardiovascular diseases, particularly during sleep where respiration
monitoring is paramount to detect apnoea and other respiratory dysfunctions linked to a
decreased life quality and known cause of cardiovascular diseases. Additionally, this work
could potentially assist in determining the feasibility of using simple, no-contact wearable
devices for obtaining simultaneous cardiology and respiratory data from a single device.

2. Related Work

In the current literature, numerous works addressed deriving respiratory information
from ECG signals. Varon et al. [15] alone evaluate ten methods for recovering respiration
from a single lead ECG and cite 12 articles using different methods for deriving respi-
ration from ECG signals. A vast number of ways are discussed for the identification of
QRS waveforms in noisy or otherwise compromised databases for the identification of
many cardiovascular diseases, including, for example, abnormal heartbeat, myocardial
infarction [16], arrhythmia [17], and COPD [18].

However, the literature on locating heartbeats from respiratory data is scant. Methods
of heartbeat identification that have been used mainly belong to two categories: visual
inspection [9,10,19,20] and empirical mode decomposition (EMD) [21,22].
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2.1. Heartbeat Identification

Recent research discusses resistive and inductive methods for obtaining respiratory
and cardiac tidal volume measurements from chest bands, where the presence of the
heartbeat is shown by visual inspection between breaths [9,10,19]. Hornero et al. [20]
discuss electrical impedance plethysmography for breathing, pressure registration, and
cardiac activity from piezoelectric sensors in prosthetic limbs of 5 lower leg amputees.

Other studies [21,22] have used EMD to isolate the heartbeats obtained from various
methods. Still, despite attempts by Puizzi et al. [21] to incorporate principal component analy-
sis, it was reported that employing the EMD technique automatically and straightforwardly
is not easy because it requires individual detection and a proper combination of the IMFs
associated with heart activity. To compensate, Fontecave-Jallon et al. [23], Piuzzi et al. [21],
and Kroshel [24] utilized signal processing methods such as bandpass filters and Fourier
transforms to highlight the heartbeats present in non-ECG signals.

2.2. Derived Respiration

Respiration rate (RR) and ECG-derived respiration (EDR) are well-investigated areas
in the literature. Due to this, finding comparative studies that combine many studies
and compare the efficiency of many methods is not difficult. One study assessed over
300 algorithms for RR estimation [25], while another paper reviewed 12 studies that used
alternate methods of acquiring EDR [15]. Four other studies examined more than three
methods using the Fantasia database as a reference [26–29].

To extract the RR from a photoplethysmography (PPG), over 100 algorithms have been
proposed [25]. Respiration rates can be derived using different approaches. One way is
monitoring variations in the amplitude or frequency of R- and S-waves. Another method
involves tracking bandwidth modulation or the difference in R-S amplitude. Additional
techniques include comparing the area of the QRS complexes or analyzing changes in the
slopes and angles of the QRS complexes [15]. More advanced methods incorporate deduc-
ing information from the QRS complexes using principal component analysis techniques
such as discrete wavelet transformation, empirical mode decomposition, variational mode
extraction, and variable-frequency complex demodulation [15].

Sharma and Sharma [27] measure the RR using a novel method employing Hermite
basis functions and compare their algorithm to seven other methods of RR derivation. In
contrast, another study that determined RR using EDR techniques by Schmidt et al. [28]
employed fourth-order central moments, and Dong et al. [26] recreated a respiration
waveform using seven known methods to verify the effectiveness of their two-stage EDR
algorithm using multiple interacting models smoother on the features derived from the
first moment (mean frequency) of the power spectrum.

There exists a plethora of studies attempting to determine RR from EDR processes
and several studies that recreate some form of respiration waveform using cubic spline
interpolation; however, there has been no attempt to create a composite waveform using
multiple QRS variation data points to assemble an averaged waveform. A description of
the process to determine true and false positive and false negative designations of peak
locations was also not found. In both respects of EDR and RDC, there were no available
comparisons of calculated peaks with recorded peaks in the time domain using sensitivity
and precision on a standardized database.

3. Method

The aims of this research are accomplished by developing algorithms in MATLAB
environment using the Fantasia database [30]. The Fantasia database is a publicly accessible
database with the ECG and respiration recordings of 40 participants who watched the
movie Fantasia when the data was taken. The recordings were taken from a single lead (lead
II), and respiration data were recorded from the thorax. There were 20 young and 20 elderly
study participants. Ten young (21–34 yr) and ten elderly (68–81 yr) “rigorously screened
healthy” study participants were initially recorded before 1996, with another 20 participants
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added after 2000. The recordings were made to observe healthy sinus rhythm cardiac
interval dynamics according to age [30]. The recordings were made publicly available via
the Physionet databank; however, no more is known about the study participants.

The Fantasia database is being used for this study as it contains a tolerable difficulty
level in reconstructing the EDR, as the subjects are awake but supine—the sleeping and
driving datasets investigated by Varon et al. [15] were found to be easier and more challeng-
ing to work with, respectively, making the Fantasia database an excellent proving ground
for newly developed algorithms.

3.1. Heartrate Identification

Attempts to incorporate EMD in this work do not perform as well as the method
adopted in this study. Pre- and post-processing are still required to increase the accuracy
of the EMD process. A bandpass filter is required as a preparatory step to avoid signal
distortion. Additionally, post-EMD signal manipulations were needed to locate heartbeats
effectively. Excluding the EMD step at that juncture improves positive outcomes. Therefore,
this paper’s proposed method of finding heartbeats from respiratory data does not use
EMD. In summary, our method incorporates the following steps: Signal Preparation, Signal
manipulation, and lastly, detection as outlined below.

3.1.1. Signal Preparation

Identifying heartbeats in the respiration signal involves bandpass filters, filtering
subtractions, and array operations. The process is visualized in the following flowchart, as
Figure 1.
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Figure 1. The signal processing method is used to locate the heartbeats in the respiration signal.

The HR is estimated using the respiration rate as a first step to locate the heartbeat.
This is achieved using a band pass filter allowing only frequencies from 0.2 to 0.5 Hz from
the participants respiratory data. The number of breaths is determined using an automated
algorithm. The probable heartbeat-to-beat interval is found by dividing the average time of
breaths by three. Using a constant ratio of three heartbeats per breath as a caveat introduces
inaccuracies when searching for heartbeat locations where the ratio varies. Heart rates per
breath in the Fantasia database are four to 1.8 heartbeats per located breath; the average is
3.06. Future algorithm improvements would be updating heart inter-beat intervals using
detected heartbeats.

The original respiration signal is passed through a bandpass filter, removing all
information below 1 Hz and above 9 Hz. This effectively eliminates powerline noise (50 or
60 Hz) and baseline wander (0–0.15 Hz), as well as respiration (0.15 to 0.8 Hz).

The number of data points determined from heart inter-beat interval time at the sample
rate of 250 Hz is used to determine the frame length for a 3rd-order Savitzky–Golay filter.
This filter effectively preserves high-frequency signal components and is popularly used
for smoothing data. A 3rd order setting achieves the required results without adding
unnecessary computational requirements. The output from this filter is subtracted from the
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band-passed signal and is presented in Figure 2. The upper panel shows the raw respiration
signal and the lower panel shows the filtered heartbeat signal, respectively. This process
sharpens the heartbeat R wave, elongating the peak without introducing other peaks at the
height of respiration (which plagues the process if a longer frame length is used).
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Figure 2. Filtered respiration is a cardiological signal. The heartbeats can just be observed in
the original waveform between breaths indicated by vertical lines in the first panel. The filtered
waveforms in the second panel are more precise but still contain noise artifacts.

3.1.2. Signal Manipulation

The resulting filtered signal can still contain significant noise, and the filtered heart-
beats in Figure 2 can be difficult to distinguish, with equally energetic R and T peaks in
many cases. Interference from the noise floor may include respiration harmonics, which
cannot be removed without affecting the heartbeat visibility in the resulting signal. Appar-
ent noise or lack of heartbeat peaks may consist of signal differentiation due to the physical
morphology of the participant.

A process to increase the definition of the R waves is outlined next. First, a moving
average filter with a frame length of 30 ms is used to find the average of the filtered signal, as
shown in Figure 3a. The 30 ms time period is chosen as long as the T peak but longer than
the R peak. When the averaged signal is subtracted from the filtered signal, the height of
merged peaks is reduced, and the bulk of the oscillations in the elongated T wave are lowered,
as shown in Figure 3b. The process distinguishes the desired R wave peak and removes
low-frequency noise from the signal. Subsequently, the signal derived in Figure 3b is added
to the mean of its absolute values in an array operation, moving the entire waveform into
the positive domain. The resulting array is then squared and amplified to obtain the signal
in Figure 3c, where the longer R peaks are easily distinguished from the surrounding data.
This signal is passed through another bandpass filter, which passes frequencies from 0.5 Hz to
5 Hz, and all negative values are set to zero. This signal is used to locate the heartbeats using
the MATLAB peak function algorithm. Finally, Figure 3d shows the found and annotated
heartbeats with the participant’s ECG data for the same period.
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Figure 3. Sections of signal from participant 6 data show the filtering steps used to isolate the
heartbeats for detection. The heartbeat indicated by an orange circle is no longer occluded, and the
noise shown in blue has been significantly reduced. (a) shows the filtered signal, with the supplied
annotations revealing correct heartbeat locations. Additionally, shown in black is the result of a
moving mean filter 30 ms wide. (b) shows the result of subtracting the moving mean from the filtered
signal. (c) shows the result in blue by adding the absolute mean of the signal in (b) and squaring the
result. This signal, bandpass filtered to remove high-frequency noise, is shown in orange. Detected
peaks are indicated with black circles. (d) shows the supplied ECG signal, supplied annotations in
red asterixis, and the discovered annotations from the signal in (c) as black circles.

3.1.3. Heartbeat Detection

Peaks are located using the MATLAB built-in (findpeaks) function with the minimum
peak distance setting of 65% of the expected heartbeat-to-beat distance calculated earlier
and over 8% of the average height. These percentages allow the search to re-center on
the following heartbeat peaks after a false identification. The array of heartbeat locations
derived is then corrected for an average physiological delay of 120 ms and compared to the
supplied annotations in MATLAB. This physiological delay agrees with Hornero et al. [21],
who found a delay of about 150 ms between both signals. The located heartbeats are shown
in Figure 3c as small circles. Additionally, shown as asterisks are the supplied annotations
for the ECG signal in the Fantasia database.

To inspect the sensitivity and precision of calculated heartbeat designations, the arrays
containing the time locations for detected heartbeats were compared with the reference
heartbeat annotation locations. One comparison was made for true and false positives,
which used the found locations array to compare placement within the given annotations.
Another comparison used the given annotations to locate false negative placements by
comparing the located arrays.

Any deviations between the found and the given annotations within 140 ms (35 data
points at a sample rate of 250 Hz) are treated as true positives. False negatives are deter-
mined when a calculated notation did not occur within 140 ms of the supplied Fantasia
annotations, as shown in Figure 4. Any other placement is defined as a false positive or
a false negative. False negatives are also recorded if no peak was discovered between
annotations at an offset of 140 ms before peaks. In contrast, an incorrect peak is designated
if it is within a minimum distance of 0.32 s or 80 data points.
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Figure 4. The determined areas for true and false positive results and false negative designations for
heartbeats were discovered using the algorithm. The error used was 140 ms or 35 data points at a
250 Hz sample rate. The blue line is the ECG QRS waveforms showing two R peaks. The red asterixis
show the reference annotation positions.

Incorrectly identified T waves are recorded within a maximum distance after a heart-
beat annotation of 320 ms. This information may be helpful in future improvements in the
algorithm for error correction to measure an increase in true positives and a reduction in
false negatives.

The provided heartbeat annotations and the heartbeats located by the algorithm are
analyzed using a best-fit comparison, with both array sets split into one-minute sections,
taken in increasing steps of 10 s per sample. The annotations are also compared for each
new minute section with and without performing ‘best-fit’ adjustments but otherwise
as per the process outlined by Sharma and Sharma [27]. Agreement of the determined
HR and the expected HR are compared using Pearson’s coefficient rho values (ρp) with a
p-value for the ρp correlation significance, a normalized root mean square error (NRMSE)
of the average HR, as well as the mean absolute error (MAE), percentage error (PE) and
concordance correlation (ρc). The equations used are detailed below.

Normalized root mean square.

NRMSE =

√
1
n ∑n

i=1 (bpmi
re f − bpmi

calc)
2

bpmre f (max) − bpmre f (min)
(1)

Mean absolute error.

MAE =
1
n ∑n

i=1

∣∣∣bpmi
re f − bpmi

calc

∣∣∣ (2)

Percentage error.

PE =
1
n ∑n

i=1

∣∣∣bpmi
re f − bpmi

calc

∣∣∣
bpmi

re f
× 100% (3)
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Pearson’s coefficient.

ρp =
∑n

i=1(bpmi
re f −

1
n ∑n

i=1 bpmre f )(bpmi
calc −

1
n ∑n

i=1 bpmcalc)∣∣∣∑n
i=1 (bpmi

re f −
1
n ∑n

i=1 bpmre f )
2 − (bpmi

calc −
1
n ∑n

i=1 bpmcalc)
2
∣∣∣ (4)

Concordance correlation.

ρc =
2Sre f .calc

S2
re f + S2

calc +
{(

1
n ∑n

i=1 bpmi
re f

)
−
(

1
n ∑n

i=1 bpmi
calc

)}2 (5)

where, for ρc

sre f ·calc =
1
n ∑n

i=1

[
(bpmi

re f −
1
n ∑n

i=1 bpmre f )(bpmi
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i=1 bpmcalc)
2

(8)

3.2. Respiration Derivation

The method used here to isolate respiration information from the successive QRS
complexes largely follows accepted and well-researched processes. However, differences
in peak position and shape in the processed data are used without reference to the original
ECG, as this increases overall accuracy for respiration peak detection. The respiration
information is accessed in three ways, and the data is used to reconstruct a composite
waveform. The process used is shown in Figure 5 below.
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Figure 5. Shows the process used to determine a composite wave from the ECG data. The Q trough
minima are isolated using a different process to the R peak amplitude and frequency modulation.

Outlier data is removed by replacement with previous data, with a simple for-loop
using settings determined using visual inspection. This is a necessary step due to the level
of interference in some respiration datasets and one ECG dataset, which significantly affects
the mean. This enables better peak detection, using minimum peak height and distance.
The respiration data obtained from the plethysmograph is passed through a bandpass filter
with settings of 0.15 Hz and 0.5 Hz, and the MATLAB built-in function is used with settings
of 2.5% of maximum height for minimum peak prominence and a minimum peak distance
of 250. This data is later used to compare the accuracy of the reconstructed waveform.

The ECG data is processed with a bandpass filter to exclude frequencies below one
and above 25 Hz. The QRS is then squared once and averaged twice with a moving mean
filter with a frame length of 75 data points. Then, MATLAB is used to locate peaks with a
minimum peak distance of 160 data points and a minimum peak prominence of 0.5% of
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the maximum of the processed waveform. The resultant peak data are used to determine
changes in height and distance, which reveals the amplitude modulation of the R peaks and
the frequency modulation of the heart’s sinus rhythm. The Q waveform and the squared
ECG signals are shown in Figure 6.

Sensors 2023, 23, x FOR PEER REVIEW 9 of 15 
 

 

the maximum of the processed waveform. The resultant peak data are used to determine 
changes in height and distance, which reveals the amplitude modulation of the R peaks 
and the frequency modulation of the heart’s sinus rhythm. The Q waveform and the 
squared ECG signals are shown in Figure 6. 

 
Figure 6. The filtered ECG and respiration signals. The central panel shows the squared electrocar-
diogram (ECG) waveforms, where the positive data is removed, and the signal is inverted on the x-
axis before squaring. The third panel shows the cubic-spline reconstructed waveforms of the vari-
ance between QRS amplitude and frequency modulation. Additionally, shown is the Q trough var-
iance obtained from the inverted, halved, and squared signals. 

To locate the Q trough minima, the ECG is filtered with a bandpass filter to exclude 
frequencies below 0.1 Hz and above 25 Hz to include bandwidth information within the 
respiration frequencies. Then, the data is altered to leave only the negative (below the x-
axis) data, which is subsequently inverted on the horizontal. This waveform is averaged 
three times using the moving mean filter with a frame length of 75 points. The MATLAB 
inbuilt function is again used but with a setting of 10% of the maximum height of the 
waveform and a minimum search distance of 160 data points. 

In all three cases of QRS wave peak and Q wave trough peak detection, outliers are 
again removed in some cases with settings determined using visual inspection. Then, all 
variance beyond 300% of the mean of the absolute value is removed. The absolute mean 
determination reduces the mean peak height to a percentage value for all three datasets. 
The three waveforms are then added to each other, averaged, and passed through a mov-
ing mean filter with a frame length of 300. The result is then passed through a bandpass 
filter excluding frequencies less than 0.15 Hz and greater than 0.5 Hz.  

The detected peaks are then compared to those detected in the original respiratory 
data to assess the accuracy of determined peaks. This is accomplished by obtaining the 
average difference between expected inspiration peaks and reference peaks for the entire 

Figure 6. The filtered ECG and respiration signals. The central panel shows the squared electrocardio-
gram (ECG) waveforms, where the positive data is removed, and the signal is inverted on the x-axis
before squaring. The third panel shows the cubic-spline reconstructed waveforms of the variance
between QRS amplitude and frequency modulation. Additionally, shown is the Q trough variance
obtained from the inverted, halved, and squared signals.

To locate the Q trough minima, the ECG is filtered with a bandpass filter to exclude
frequencies below 0.1 Hz and above 25 Hz to include bandwidth information within the
respiration frequencies. Then, the data is altered to leave only the negative (below the
x-axis) data, which is subsequently inverted on the horizontal. This waveform is averaged
three times using the moving mean filter with a frame length of 75 points. The MATLAB
inbuilt function is again used but with a setting of 10% of the maximum height of the
waveform and a minimum search distance of 160 data points.

In all three cases of QRS wave peak and Q wave trough peak detection, outliers are
again removed in some cases with settings determined using visual inspection. Then, all
variance beyond 300% of the mean of the absolute value is removed. The absolute mean
determination reduces the mean peak height to a percentage value for all three datasets.
The three waveforms are then added to each other, averaged, and passed through a moving
mean filter with a frame length of 300. The result is then passed through a bandpass filter
excluding frequencies less than 0.15 Hz and greater than 0.5 Hz.

The detected peaks are then compared to those detected in the original respiratory
data to assess the accuracy of determined peaks. This is accomplished by obtaining the
average difference between expected inspiration peaks and reference peaks for the entire
recording. The average mean distribution is determined using allocating bins of 0.2 s,
and the entire composite waveform shifts to a maximum of 1.4 s. The inspiration peak
locations are again assessed, using 50% of one average heartbeat period for true positive
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designations. Any designations outside this timing are recorded as a false negative. Peaks
within 50–100% of one heartbeat are also labeled inaccurate peaks. The output is shown in
Figure 7.
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Figure 7. The reconstructed respiration waveform overlayed on the bandpass-filtered respiration
waveform. On visual inspection, both the timing and amplitude are in close agreement. The blue
circles indicate the true positive, false positive, true negative or inaccurate peak designation for each
located peak indicated with red circles or missed peak as compared to the reference locations shown
by red asterisk.

The respiration rates were assessed using the process used by other studies [15,27–29],
where one-minute segments at increasing segments of ten seconds are compared for MAE,
PE, and concordance correlation. Pearson’s correlation coefficients and NRMSE were also
calculated per the methods of Schmidt et al. [28]. In addition, the waveform correlation
performed by Dong et al. [26] and Varon et al. [15] was accomplished using the “xcorr”
MATLAB function, using both randomized ten-minute sections of data and also by comparison
of the entire database in 32-s sections using the +/− three-second best-fit adjustment that was
also used by Sharma and Sharma [27].

4. Results
4.1. Heartbeat Location
True and False Positives

For participants with typical PQRST (PQRST describes the normal sequence of wave-
forms within a single heartbeat. The P wave designates atrial depolarisation, the QRS
shows the period of ventricular polarisation, and ventricular repolarization is represented
by the T section of the waveform complex.) waveform ECG signals, where the heartbeat
waveform is distinguishable from background noise. The process outlined in this study
performed exceptionally well in cases where the estimated HR agreed with the actual HR.
Table 1 shows the true positive, false positive, precision, sensitivity, percentages, percentage
error, and other metrics for all participants in the Fantasia database.

As seen in Table 1, the algorithm’s results were >60% for true positive heartbeat
location for 12 participants with typical ECG heartbeat waveforms and heartbeat-to-breath
ratios. True positives averaged 52.36% for all participants, with the incorrect T peak being
located instead, an average of 8.44% of the time. On average, false positives at 40.5% and
negatives at 45.73% remain significant issues for noisy or atypical database signals and low
reference HR.
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Table 1. The Pearson’s coefficient (ρp), Concordance correlation (ρc), mean absolute error (MAE),
percentage error (PE), normalized root mean square error (NRMSE), and location data for the
respiration-derived cardiology (RDC). The ‘best fit’ method yielded worse results than the unadjusted
per-minute evaluations.

Results of Heartbeat
Extraction

Young Subjects Older Subjects Total
AveragesAverages ‘Best Fit’ Averages ‘Best Fit’

MAE (bpm) 5.84 6.35 8.64 9.94 7.24

PE 10.51 10.72 13.53 18.6 12.02

ρc 0.34 0 0.25 0.02 0.3

ρp 0.59 0.01 0.53 0.02 0.56

p value 0.00 0.24 0.01 0.27 0.01

NRMSE 0.13 0.71 0.16 0.95 0.15

True positive (%) 55.6 n/a 49.1 n/a 52.35

False positive (%) 40.2 n/a 40.8 n/a 40.50

True negative (%) 41.8 n/a 49.7 n/a 45.75

Precision (%) 59.8 n/a 55.4 n/a 57.60

Sensitivity (%) 57.2 n/a 49.8 n/a 53.50

Annotations (%) 98.6 n/a 91.4 n/a 95.00

4.2. Correlation and Error

The MAE, PE, and NRMSE values reflect the precision and sensitivity of the algorithm
as compared to the reference annotations, at 7.24 bpm, 12%, and 0.15 for the entire database,
respectively. Pearson’s coefficient suggests a fair correlation, at 0.56, with an associated
p-value of 0.01. These measurements reflect the true precision and sensitivity of the results
and have not been adjusted for best fit.

In situations where a false positive heartbeat was detected in place of a true positive
one, the frequency of the expected heartrates was maintained, so the true positive as
the false positive heartbeat detections contribute to the low MAE and PE, as well as the
high Pearson’s coefficient, which is all calculated using heart rates. However, the more
significant metric is the precision and sensitivity of heartbeat detection, which indicates
considerable room for improvement in the algorithm.

As the process of assessing the algorithm using heart rates does not reveal the accuracy of
located heartbeats, it does not correctly show the benefit of the algorithm for the detection of
cardiovascular disease and conditions such as extra-systolic beats. For this reason, comparing
precision and sensitivity is an essential step in evaluating the algorithm’s effectiveness.

4.3. Respiration Derivation
True and False Positives

Overall, as shown in Table 2, the algorithm located 80% of respiration peaks to within
one-half of a heartbeat of the reference inspiration maxima, with a simple average phase
difference adjustment performed for each participant’s data where required. The algorithm
also located an average of 104% of respiration peaks, similar to the result for PE of 4.78%
for the best fit per minute analysis shown in Table 3. The results for the older subjects
were slightly better than those for the younger subjects regarding sensitivity and reduced
somewhat for precision.
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Table 2. True positive, false positive, false negative, precision, and sensitivity for located respiration
peaks were assessed using reference peaks for the Fantasia database.

Results of Respiration Detection
Averages

Young Old Total

True positive % 79.90 78.66 79.28

False positive % 23.44 28.86 26.15

False negative % 7.28 6.20 6.74

Precision % 77.63 75.28 76.46

Sensitivity % 91.11 92.29 91.70

Annotations % 103.44 105.04 104.24

Table 3. The waveform correlation for EDR utilising 12 methods across three studies, [1] Dong et al.
used a random ten-minute section of data for each participant, assessing 32-s increments to calculate
waveform correlation, [2] removed all one-minute sections with MAE > 2.0, [3] used ten minutes of
data to calculate RR correlation, [3] adjusted +/− 3 s for best fit with every minute, with increments
of 10 s each iteration, [4] use +/− 3 s for wave morphology correlation).

Waveform Correlation

[1]

Method QR RR RR + IMM QRSW QRS

Waveform
correlation 0.76 0.73 0.78 0.51 0.58

Method RS R angle QRSA FMS FMS + IMM

Waveform
correlation 0.54 0.56 0.73 0.77 0.8

Proposed method

Method Composite

Waveform correlation

Total 0.76

Randomised 10
min 0.69

[4]
Method Normal

Waveform
correlation 0.71

4.4. Correlation and Error

The algorithm performed well compared to other methods that use a single EDR
method in terms of MAE and percentage error, with an MAE of 0.89 and 1.07 and PE of
4.78% and 6.60% for young and old subjects, respectively. These values match the accuracy
level of the results obtained by Orphanidou et al. [29], who excluded all one-minute sections
that exceeded two bpm mean absolute error. Pearson’s coefficient is relevant at >0.6 for
both groups and NRMSE values of 0.21 across the entire database, as per Table 3.

The best-fit waveform correlation was better using the entire signal for each participant
at 0.76, with randomly acquired ten-minute sections having average values of 0.69, within
the ranges of other methods described by [26] of between 0.51 and 0.8, as seen in Table 4.

4.5. Suggested Improvements and Future Work

As the heartbeats are more strongly evident during periods of held breath, the heart
rate could be calculated from the inter-beat interval at these locations and used to determine
a more accurate heart rate for the succeeding respiration period. The heart rate defines a
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minimum distance for peak location search. This algorithm assumes three heartbeats per
breathing cycle. However, where this rate is lower, there are higher rates of missed heartbeats.

Table 4. The Pearson’s coefficient (ρp), Concordance correlation (ρc), mean absolute error (MAE),
percentage error (PE), and normalized root mean square error (NRMSE) statistics for the derived
respiration rate using the Fantasia database for 15 methods across four studies, [1] used a random
ten-minute section of data for each participant, assessing 32-s increments to calculate waveform
correlation, [2] removed all one-minute sections with MAE > 2.0, [5] used ten minutes of data to
calculate RR correlation, [3] adjusted +/−3 s for best fit with every minute, with increments of 10 s
each iteration, [4] use +/−3 s for wave morphology correlation).

Correlation and Accuracy

Algorithms Younger Subjects Older Subjects

Composite
Waveform (Proposed
Algorithm)

MAE PE % ρc ρp p Value NRMSE MAE PE % ρc ρp p Value NRMSE

‘Best fit per minute’ 0.89 4.78 0.55 0.61 0.00 0.20 1.07 6.60 0.56 0.62 0.00 0.22

Average phase shift 1.33 7.79 0.51 0.58 0.00 0.10 1.18 7.21 0.51 0.58 0.00 0.10

RHDSD [4] 1.37 10.8 0.71 1.01 7.1 0.81

RH DE 1.38 10.9 0.7 1.02 7.1 0.81

RPCA 1.55 12.2 0.65 1.14 7.9 0.78

RRamp 1.47 11.5 0.68 1.1 7.5 0.79

RRSA 1.26 9.2 0.79 1.81 11.9 0.5

RUS 1.85 12.7 0.6 1.99 13.8 0.44

RDS 1.56 12.2 0.66 1.84 12.8 0.61

RANG 1.83 12.7 0.59 1.92 13.6 0.56

Mmom [3] 2.2 13.49 1.48 8.04

Mslope 2.97 18.6 2.37 14.51

Mrsa 2.27 13.16 3.42 19.73

RSA [2] 0.83 4.9 0.97 5.7

RPA 1.31 7.8 0.98 5.7

RSA/RPA 0.81 4.8 0.84 4.9

Additionally, as per the method used by Pan and Tompkins [31], heartbeats could
be identified more accurately by a recursive search at distances indicated by nearby
heartbeat locations.

The authors of this work intend to use the developed algorithms for private databases
of respiration and ECG signals recorded using improved versions of the resistive bands
developed by Garguilo et al. [9].

5. Conclusions

The algorithm developed for RDC does not perform well at low reference heart rates
when significant noise is present, as the noise is located where a heartbeat is wrongly
expected. The low concordance correlation indicates a small range of heart rates and a
significant correlation to predicted rates. However, the NRMSE value of 0.14 for the entire
database is encouraging, indicating close agreement with expected heart rates.

Obtaining clearer datasets with a higher SNR for further study would be beneficial,
as would better methods of determining projected heart rates using sections of data at
respiration minima, which could improve heartbeat detections. However, this study has
demonstrated the ability of the developed algorithm to locate heartbeats in respiratory
data and compensate for undetectable heartbeats. The resulting waveform could derive
heartbeat signals from simple, low-cost wearable devices. The proposed improvements
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and suggestions for better data acquisition methods could lead to more accurate heartbeat
identification and improved outcomes for diagnosing and managing cardiovascular disease.
Overall, the foundation for further research has been made into identifying heartbeats in
respiratory signals.

The algorithms described herein are intended to investigate recorded signals acquired
using the wearable electroresistive band developed by [9,19], where heartbeats have been
visually confirmed in the respiration data. It is hoped that the methods could also be used
to investigate SCG signals, and perhaps also for other respiration or heartbeat signals, with
some variation in process as required.

The EDR algorithm shows improved MAE and PE values than other methods, at the
expense of slightly lower but still significant correlation coefficients. The algorithm has
demonstrated comparable performance with different single-method respiration wave-
forms and derived respiration rates.

It has been shown that it is possible to retrieve a respiratory rate effective to within
4.7% of the actual RR of young study participants. The composite waveform accurately
detects inspiration peaks, averaging 4.24% of the exact number of breaths at high precision.

Using both methods, the study has shown that obtaining heart and respiration rates is
possible using a single signal. The accuracy of the heart rates may depend on eliminating
noise from the respiration signal during retrieval, such as by using resistive chest bands.
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Abbreviations

Abbrev. Description
ECG Electrocardiogram
EDR Electrocardiogram derived respiration
EMD Empirical mode decomposition
HR Heart rate
MAE Mean absolute error
NRMSE Normalized root mean square error
PE Percentage error
PPG Photoplethysmography
PQRST Term describing ECG heartbeat waveform morphology
QRS Term referring to heartbeat complexes in an ECG
RDC Respiration derived cardiogram
RR Respiration rate
SCG Seismocardiograms
SNR Signal to noise ratio
ρc Concordance correlation
ρp Pearson’s correlation
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