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Abstract: Accurately measuring blood pressure (BP) is essential for maintaining physiological health,
which is commonly achieved using cuff-based sphygmomanometers. Several attempts have been
made to develop cuffless sphygmomanometers. To increase their accuracy and long-term variability,
machine learning methods can be applied for analyzing photoplethysmogram (PPG) signals. Here, we
propose a method to estimate the BP during exercise using a cuffless device. The BP estimation process
involved preprocessing signals, feature extraction, and machine learning techniques. To ensure the
reliability of the signals extracted from the PPG, we employed the skewness signal quality index and
the RReliefF algorithm for signal selection. Thereafter, the BP was estimated using the long short-term
memory (LSTM)-based neural network. Seventeen young adult males participated in the experiments,
undergoing a structured protocol composed of rest, exercise, and recovery for 20 min. Compared
to the BP measured using a non-invasive voltage clamp-type continuous sphygmomanometer, that
estimated by the proposed method exhibited a mean error of 0.32 ± 7.76 mmHg, which is equivalent
to the accuracy of a cuff-based sphygmomanometer per regulatory standards. By enhancing patient
comfort and improving healthcare outcomes, the proposed approach can revolutionize BP monitoring
in various settings, including clinical, home, and sports environments.

Keywords: blood pressure (BP); photoplethysmogram (PPG); skewness signal quality index (SSQI);
feature extraction; long short-term memory (LSTM); bidirectional LSTM; exercise

1. Introduction

Hypertension diagnosis is a common procedure in clinical practice, and its associated
morbidity has doubled over the past decade [1]. Thus, early diagnosis and treatment are
critical for preventing hypertension. For blood pressure (BP) monitoring, daily home mea-
surements of BP are preferred over clinical situations owing to the white-coat effect [2,3].

To mitigate the risks of high BP, physicians recommend behavioral and lifestyle
changes with dietary control, appropriate nutrition, and quality sleep. Moreover, exercise
aids in lowering BP, managing weight, and relieving mental stress. Although BP may
be temporarily elevated after exercise, extreme fluctuations may indicate hypertension.
Physiologically, systolic blood pressure (SBP) increases during exercise, whereas diastolic
blood pressure (DBP) remains relatively stable. Therefore, controlling and monitoring BP
during exercise is essential, especially during therapy.

Cuff-based measurement paradigms have dominated ambulatory BP measurement
for decades. However, the accurate measurement of BP during exercise is challenging
owing to the complexity of modeling the physiological dynamics. Currently, cuffless sphyg-
momanometers are gaining prominence as they provide adequate accuracy and validity
for measuring BP at rested conditions [4–6]. Noninvasive optical-based cuffless methods
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offer various advantages, such as continuous measurements that do not cause disturbance
and provide an unconstrained modality to the subjects. However, motion artifacts create
challenges for optical-based cuffless sphygmomanometry, and measurements during ex-
ercise have not been attempted [7,8]. Moreover, the proposed model must consider rapid
alterations in physiological parameters during exercise.

Various biological applications of machine learning have been studied, such as in-
dividualized blood pressure control methods [9] and prediction of hypotension [10]. In
particular, machine learning (ML) continuous non-invasive blood pressure (NIBP) moni-
toring is currently attracting attention in the field of health monitoring due to its various
potential benefits, including early prediction of blood pressure [11]. Among them, it has
been reported that the MAX86150 module’s sensing and machine learning have resulted
in blood pressure estimation accuracy with an error 5.7 ± 5.5 mmHg (±mean ± standard
deviation) [12]. Many of these noninvasive optical-based cuffless methods based on ma-
chine learning assume resting conditions. This is because changes in vascular resistance
and cardiac output associated with exercise are thought to affect the relationship between
each parameter obtained from the PPG waveform used in machine learning and blood
pressure. In the detection of steep blood pressure fluctuations, which is the target of this
study, updating the learning model according to changes in vascular dynamics is an issue.
In addition, since body motion artifacts are generated in the PPG signal due to movement,
it is necessary to take countermeasures against deterioration of signal quality.

Although a significant increase in systolic BP is a risk factor [13] and needs to be
monitored accurately, motion artifacts negatively affect the accuracy of BP measurements.
In this study, we proposed a new preprocessing technology and performed BP estimation
during exercise.

2. Principle

To date, various methods have been developed to estimate BP using cuffless sphygmo-
manometers, including the photoplethysmogram (PPG)-based cuffless sphygmomanome-
ter that utilizes the PPG signal singularly or coupled with other biosignals, such as the
electrocardiogram, phonocardiogram, impedance signal, and ballistocardiogram [14]. An
alternative method for estimating blood pressure involves utilizing pulse demodulation
with a second derivative signal extracted from the PPG. Pulse demodulation analysis (PDA)
is a technique used to evaluate arterial pressure by tracking mechanical events, such as
heart contractions and pressure pulse reflections in the central and peripheral arteries. In
particular, prior research has identified two major reflection sites in central arteries.

The pressure waveform obtained by applying the PDA and its second derivatives
reveals the typical trend of PPG signals and the characteristics of their second derivatives
in Figure 1. The downward-traveling primary pressure pulse (#1) gives rise to the upward-
traveling pulses #2 and #3, originating from the renal and iliac reflection sites, respectively,
which are impinged upon by pulse #1. The amplitude ratio of the first reflection pulse (#3)
to the primary systolic pulse (#1) can be utilized to track changes in the central beat-to-beat
SBP [15]. The time difference between the arrival of the first and second reflection pulses
(P3) is referred to as T1–3, which represents the variations in arterial PP. Conventionally,
BP is estimated by analyzing the pulse peaks and parameters integrated within the PDA
model [15–19].

Lumped parameter models of the cardiovascular system are commonly employed in
PDA to simulate the arterial BP waveform and wave propagation, wherein the SBP and
DBP are fitted using the resistor impedance and capacitance. Thus, BP can be measured
not only by a pressure sensor but also by r by analyzing the PPG waveforms as a reference.
Herein, the second derivative of the PPG (SDPPG) signal was analyzed based on the
amplitudes of waves a–e, which were produced during the systolic phase of the heart
cycle [20] (Figure 1). Moreover, the wave amplitudes were normalized to b/a, c/a, d/a,
and e/a. As the SDPPG signal contains information on the aortic compliance and stiffness,
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which are highly correlated with BP, neural networks and a support vector machine can be
employed for numerical analysis of the BP based on the PPG and SDPPG signals.
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Figure 1. PPG signal and its derivative (gray line).

However, as suggested in previous studies, physiological dynamics during physical
exercise differ from that prevailing in the rest state [21–23]. For instance, exercise alters
the behavior of the baroreflex. It also affects the relationship between the heart rate and
the pre-ejection period. Therefore, the BP variations occurring during exercise cannot be
accurately predicted using the rest state model. In this study, we assumed that BP regulation
strives to stably maintain the BP values during exercise by considering the preceding and
subsequent readings of BP in addition to the current measurements. In order to incorporate
this assumption, a neural network layer consisting of long short-term memory (LSTM)
was employed to capture the informative PPG features over a specific time period for
predicting blood pressure. To incorporate this assumption, a neural network layer of long
short-term memory (LSTM) was used to associate the informative PPG features over three
different timespans for BP prediction. The response of PPG parameters such as heart
rate and waveform shape to exercise is rapid. In contrast, changes in blood pressure are
relatively gradual. PPG parameters should be considered not only unique features but
also the context of the time series. Therefore, we selected LSTM because it is the only one
capable of capturing features of long-term time series data for estimating blood pressure
fluctuations in this study. We expect that the combined approach of physical modeling
and data-driven approaches will provide an accurate BP measurement during exercise,
especially in data-scarce scenarios.

3. Data Collection and Signal Processing

In this study, the proposed BP estimation method involved signal preprocessing,
feature extraction, and BP estimation; the processing procedure is illustrated as a flowchart
in Figure 2.
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3.1. Experimental Method

Data were collected from 20 young males (age: 19.7 ± 1.22 years; range: 18–23 years;
BMI: 21.62 ± 2.83; range: 16.23–29.06). The age range of the participants was narrow
because of the relatively high safety involved with young participants during long-term
exercise.

For reference, the SBP, DBP, and PPG were measured sequentially using a voltage
clamp-type continuous BP monitor (CNAP, CNSystem, Graz, Austria). CNAP is based
on the vascular unloading technique. It is the basic principle for detecting blood volume
changes in the finger and transforming plethysmographic signals into continuous blood
pressure information. Blood pressure can then be calculated beat-to-beat, after calibration
with the built-in standard oscillometric measurement (NBP) of the monitor. From these
protocols, the gap between intermittent NBP and continuous invasive blood pressure is
bridged. Before and after the experiments, a cuff-based sphygmomanometer (HEM-7511T,
Omron, Kyoto, Japan) was used to measure the SBP and DBP for further reference.

The experiment consisted of three parts. After sitting on an ergometer (TE3PLUS-70,
Showa Denki Group, Osaka, Japan), the subjects initially rested for 20 min, followed by
exercise with the ergometer for another 20 min at 80 W and 50 rpm; after this, the subjects
were allowed to recover for 20 min. Due to the challenges related to measurement, peri-
exercise has received less investigation as an effective method for inducing significant
variations in blood pressure. To the best of our knowledge, this is one of the few studies
dedicated to cuffless BP estimation during exercise [24,25]. The experiment was approved
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by the Ethics Committee of the Tokyo Metropolitan College of Industry Engineering
(SanGisenkanAra #578) and written informed consent was obtained from each participant
prior to the experiment. The strength and intensity of the exercise followed the Karvonen
formula, defined as the maximum and resting heart rates with the desired training intensity
to obtain the target heart rate:

Target Heart Rate = [(max HR − resting HR) × % intensity] + resting HR benchmark,

where max HR was defined as 220 and age % intensity was set as 0.7 based on a previous
report [26].

3.2. Skewness Signal Quality Index

During the preprocessing, a skewness signal quality index (SSQI) was applied to each
PPG signal. As motion artifacts can affect the PPG signals during exercise, the signal quality
must be appropriately annotated. The increased skewness of the PPG signals revealed a
detailed morphology of the pulse waveform [27]. Therefore, skewness (i.e., the optimal
SQI) can potentially be used to improve the diagnosis and monitoring of abnormalities
such as hypertension. The optimal SQI for PPG-based technologies forms the first step
toward BP estimation. We focused on improving the accuracy of diagnoses and the quality
of care by applying SSQI to acquire high-quality signals in various conditions (e.g., resting,
exercise, and recovery). The annotation of the entire signal was based on the most dominant
beat wave quality within the signal, which enabled clear classification of the groups into
acceptable and unfit signals for estimating the SBP and DBP exhibited in Figure 3.
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Skewness is a measure of the symmetry (or lack thereof) of a probability distribution,
defined as follows:

SSQI =
1
N ∑N

i=1

[
xi −

µ̂x

σ

]3
, (1)

where µ̂x and σ denote the empirical estimate of the mean and standard deviation of xi,
respectively, and N indicates the number of samples in the PPG signal. The SSQIs were
calculated for each PPG signal.

The distribution of each SQI within a given subset exhibited significant variability,
making a simple fixed threshold inadequate for optimal classification. A linear support
vector machine (SVM) was utilized as the classifier, and each annotator annotated the PPG
signals based on the most dominant PPG signal. Our primary focus was to determine the
optimal SQI for which a simple classifier with a fixed threshold would be satisfactory. How-
ever, there were variations in the distribution of each SQI, making a simple fixed threshold
unsuitable as an optimal classifier. Consequently, the robust SQIs were determined for each
phase.
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3.3. Feature Extraction

To extract information from the signal, all signals were normalized using the Z-score
techniques and obtaining the amplitude-limited data.

Zscore =
n

∑
i=1

[(yi −M)/SD], (2)

where M and SD, respectively, denote the mean and standard deviation of the feature value
yi, and n indicates the number of samples.

The 17 features presented in Figure 4 and Table 1 were selected from a single PPG
signal and its derivatives. Subsequently, the feature selection was performed using the
RReliefF algorithm [28,29], which is a feature selection algorithm that randomly selects
instances and adjusts the weights of the respective elements depending on the nearest
neighbor. The built-in functions of MATLAB were used in this study.
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Table 1. Features of PPG signals.

PPG Signal

Systolic peak 1 The amplitude of first peak from PPG waveform

Diastolic peak 2 The amplitude of first peak from PPG waveform

Systolic peak time 3 The time interval from the foot of the waveform to
the systolic peak (‘t1’)

∆T 4 The time interval from systolic peak time to diastolic
peak time

Diastolic peak time 5 The time interval from systolic peak time to diastolic
peak time

Pulse interval 6 The distance between the beginning and the end of
the PPG waveform

Augmentation
index 7 The ratio of diastolic peak amplitude and systolic

peak amplitude

Second derivative PPG signal

Peak a 8 The first maximum peak from the second derivative
of the PPG waveform

b 9 The first minimum peak from the second derivative
of the PPG waveform

c 10 The second maximum peak from the second
derivative of the PPG waveform
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Table 1. Cont.

PPG Signal

d 11 The second minimum peak from the second
derivative of the PPG waveform

e 12 The third maximum peak from the second
derivative of the PPG waveform

Ta 13
The time interval from the foot of the PPG waveform
to the time at which first peal of second derivative

occurred

Tb-a 14 The time interval from first maximum peak to first
minimum peak

Tb-c 15 The time interval from first minimum peak to
second maximum peak

Tc-d 16 The time interval from second maximum peak to
second minimum peak

Td-e 17 The time interval from second minimum peak to
third maximum peak

3.4. Machine Learning Model: Long Short-Term Memory

After feature extraction, the feature matrix was trained using machine learning al-
gorithms. The analysis was performed in three phases: rest, exercise, and recovery. The
LSTM layer, designed for sequence learning, proves effective in estimating BP [30]. In this
study, we employed it as the primary component of our learning model. To validate the
fundamental assumption, the LSTM comprised a single-layer bidirectional LSTM (BiLSTM),
followed by three layers of LSTM, a fully connected (FC) layer, and a regression layer as
the output. In particular, the BiLSTM was used in the first layer to capture information
from the accepted input signal. All three phases used the same model with an architecture,
initiating with a single layer of BiLSTM, consisting of 100 hidden units, followed by three
LSTM layers with hidden sizes of 200, 400, and 800 units, respectively. The mini-batch size
was 256 with 850 epochs and an initial learning rate of 0.004. The details of the architecture
are displayed in Figure 5. In each phase, 70%, 15%, and 15% of data were used as training,
test, and evaluation data, respectively.
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3.5. Error Metrics

To measure the error from the models used in the experiments, mean absolute error
(MAE), root mean square error (RMSE), and standard deviation (STD) were evaluated from
the experiments.

Two criteria were used to evaluate the performance of the LSTM algorithms in esti-
mating the BP. Xp represents the predicted data, X denotes the ground truth data, and N
indicates the number of samples.

MAE: The absolute error denotes the predicted error, whereas the MAE represents the
mean of all absolute errors.

MAE =
1
N ∑N

∣∣Xp − X
∣∣. (3)

ME: ME calculates the squared sum of the errors, representing the expected value of
the squared-error loss.

ME =
∑
∣∣Xp − X

∣∣
N

. (4)

RMSE: The RMSE denotes the standard deviation of the residuals (prediction error).

RMSE =

√
∑
∣∣Xp − X

∣∣2
N

. (5)

Correlation coefficient (R):

R =

√
1− MSE(Model)

MSE(Standard)
, (6)

where MSE =
∑dX−meanXe2

N
.

4. Results

The present experiment included 20 participants; however, the BP values for three
participants could not be measured by the continuous sphygmomanometer. Thus, the
dataset for analysis contained BP data from 17 participants.

4.1. Preprocessing

The typical examples of PPG signals with acceptable and unsuitable waveforms
are presented in Figure 6. Although the second peak was clearly observed in the PPG
waveforms during rest and recovery, it exhibited a low amplitude during exercise. The
rejection ratios of the PPG signals after SSQI analysis are listed in Table 2, wherein the
rejection rates were 23.9% at rest, 69.0% during exercise, and 16.1% during recovery.

Table 2. Rejection rate of PPG signal in each phase.

Rest Exercise Recovery

Before processing 14,290 21,174 17,193
After processing 10,878 6566 14,419
Rejection rate [%] 23.88 68.99 16.13
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4.2. Feature Extraction

The SBP and DBP scores are summarized in Table 3. As the negative scores were
relatively high during exercise, the features with negative scores were eliminated from the
LSTM input gate.

Table 3. Feature score at various phases.

FeatureScore 1© 2© 3© 4© 5© 6© 7© 8© 9© 10© 11© 12© 13© 14© 15© 16© 17©

Rest
SBP 0.0084 0.0066 0.0012 0.0025 0.0020 0.0017 0.0047 0.0013 0.0011 0.0017 0.0032 0.0047 −0.0001 0.0004 −0.0015 −0.0001 0.0014
DBP 0.0070 0.0065 0.0016 0.0034 0.0031 0.0032 0.0050 0.0036 0.0011 0.0018 0.0029 0.0049 −0.0001 0.0016 −0.0008 0.0001 0.0022

Exercise
SBP 0.0309 0.0203 0.0088 0.0152 0.0164 0.0218 0.0156 0.0202 0.0226 0.0269 0.0288 0.0275 −0.0012 0.0117 0.0100 0.0102 0.0148
DBP 0.0273 0.0202 0.0081 0.0162 0.0175 0.0246 0.0168 0.0199 0.0179 0.0269 0.0284 0.0303 −0.0008 0.0125 0.0106 0.0125 0.0174

Recovery
SBP 0.0101 0.0076 0.0003 0.0027 0.0030 0.0001 0.0061 0.0022 0.0039 0.0079 0.0057 0.0075 −0.0004 −0.0008 −0.0009 −0.0003 0.0009
DBP 0.0092 0.0080 0.0002 0.0026 0.0026 0.0005 0.0057 0.0033 0.0030 0.0081 0.0061 0.0064 −0.0003 −0.0003 −0.0003 0.0002 0.0012

4.3. BP Estimation

The estimation errors before and after SSQI processing are plotted in Figure 7, and the
predicted SBP and DBP values are summarized in Table 4. The extraction of the chaotic
features from vital signals improved the accuracy of the BP estimation results. Notably, the
BP estimation results were evaluated using ISO standards.
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Table 4. BP statistics.

SBP DBP

MAE ME SD MAE ME SD

Rest 4.98 0.50 7.19 3.34 0.39 5.48
Exercise 4.80 0.32 7.76 3.47 –0.91 7.15

Recovery 4.80 –0.48 7.55 2.76 –1.77 6.94

The Bland–Altman plots are visualized in Figure 8; all data were statistically acceptable
within the 95% confidence limit.

Sensors 2023, 23, 7399 10 of 14 
 

 

Table 4. BP statistics. 

 SBP DBP 
 MAE ME SD MAE ME SD 

Rest 4.98 0.50 7.19 3.34 0.39 5.48 
Exercise 4.80 0.32 7.76 3.47 –0.91 7.15 
Recovery 4.80 –0.48 7.55 2.76 –1.77 6.94 

The Bland–Altman plots are visualized in Figure 8; all data were statistically accepta-
ble within the 95% confidence limit. 

 
(a) SYS 

 
(b) DIA 

Figure 8. Bland–Altman plots of reference and estimated (a) SYS and (b) DIA BPs at rest, exercise, 
and recovery. 

5. Discussion 
The BP estimation was accurate with noise reduction and feature extraction machine 

learning techniques.  
Motion artifacts during exercise affected the PPG measurement. The SSQI exhibited 

relatively high signal quality indices (SQIs). In particular, a higher rejection rate for high-
error signals and a lower MAE were achieved. As such, daily BP monitoring requires con-
siderable care when attaching a PPG sensor.  

The heightened cardiac pulse during exercise expands the arterial wall which then 
decreases the thickness of the arterial wall depending on arterial stiffness. We assumed 
that the arterial wall is incompressible, isotropic, and exhibits no strain in the axial direc-
tion. Accordingly, the elasticity E can be expressed as follows: 𝐸 = 1 ∆∆ / ,  (7)

where r0 denotes the end-diastolic radius, h0 indicates wall thickness, Δp represents pulse 
pressure, and Δh denotes the variation in thickness per cardiac cycle [31,32]. 

The second peak corresponded to the lower elasticity, which altered the pulse pres-
sure and wall thickness. During exercise, the first peak corresponds to a large pulse pres-
sure and thinner wall thickness, which bears a lower elasticity. As the second peak corre-
sponds to the reflected wave, the second peak is typically lower owing to the lower 

Figure 8. Bland–Altman plots of reference and estimated (a) SYS and (b) DIA BPs at rest, exercise,
and recovery.

5. Discussion

The BP estimation was accurate with noise reduction and feature extraction machine
learning techniques.

Motion artifacts during exercise affected the PPG measurement. The SSQI exhibited
relatively high signal quality indices (SQIs). In particular, a higher rejection rate for high-
error signals and a lower MAE were achieved. As such, daily BP monitoring requires
considerable care when attaching a PPG sensor.

The heightened cardiac pulse during exercise expands the arterial wall which then
decreases the thickness of the arterial wall depending on arterial stiffness. We assumed that
the arterial wall is incompressible, isotropic, and exhibits no strain in the axial direction.
Accordingly, the elasticity E can be expressed as follows:

E =
3
8

(
1 +

2r0

h0

)
∆p

∆h/h0
, (7)

where r0 denotes the end-diastolic radius, h0 indicates wall thickness, ∆p represents pulse
pressure, and ∆h denotes the variation in thickness per cardiac cycle [31,32].

The second peak corresponded to the lower elasticity, which altered the pulse pressure
and wall thickness. During exercise, the first peak corresponds to a large pulse pressure
and thinner wall thickness, which bears a lower elasticity. As the second peak corresponds
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to the reflected wave, the second peak is typically lower owing to the lower elasticity
(Figure 9). A typical example of a PPG waveform in three distinct phases is presented in
Figure 9 to clearly illustrate the differences across the rest, exercise, and recovery phases.
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Figure 9. Second peak of PPG amplitude at rest, exercise, and recovery.

The Bland–Altman plot of SBP error indicated a systemic error. Although the range of
the systolic BP was extremely narrow, the error between the reference and estimated BPs
was linear. The time course of BP at three distinct epochs is depicted in Figure 10, during
which the trend of the estimated systolic BP closely followed the reference BP at the rest
and recovery phases. However, during exercise, the SBP did not progress appropriately
due to the high rejection rate. As the LSTM algorithm is specialized on time series features,
an exceedingly high rejection rate may induce large variations instead of slight fluctuations.
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Automated sphygmomanometers, which are currently widely used, are compliant
with resting state (ISO 81060-2:2018, Non-invasive sphygmomanometers—Part 2: Clinical
investigation of automated measurement type) and blood pressure variation (ISO DIS 81060-
3.2, Non-Invasive Sphygmomanometers—Part 3: Clinical Investigation Of Continuous
Automated Measurement Type).

According to the above standards, the resting accuracy of automated sphygmo-
manometers is defined as within ±5 ± 8 mmHg (±mean ± standard deviation), and
the blood pressure estimation accuracy required for cuffless sphygmomanometers is also
considered to meet this standard.

The device used as a reference in this study (CNAP, CNSystem, Austria) calibrates
the blood pressure curve using NBP approved by ISO81060-2 (NBP), and the accuracy of
continuous blood pressure has been confirmed.

The errors of the proposed method for systolic blood pressure are 0.50 ± +/− 7.19 mmHg,
0.32 ± 7.76 mmHg, and −0.48 ± 7.55 mmHg (±mean ± standard deviation) for resting, ex-
ercise, and recovery periods, respectively; for diastolic blood pressure, 0.39 ± 5.48 mmHg,
−0.91 ± 7.15 mmHg, and −1.77 ± 6.94 mmHg (±mean ± standard deviation) at rest,
during exercise, and during recovery, respectively. The accuracy was confirmed to follow
the accuracy set by ISO standards.
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Although the accuracy of the proposed method meets the accuracy of a cuff-type
automated sphygmomanometer, there are still issues to be addressed regarding the clinical
application of the proposed method. The small number of subjects is one of them. Since
the waveform shape used in this study varies with gender and age, it is necessary to verify
the method in a wide subject population in the future. In particular, when applied to detect
blood pressure fluctuations in diseased groups, it is possible that a change trend different
from that of the young adults targeted in this study may occur.

6. Conclusions

In summary, we proposed a novel waveform-based LSTM model for continuous blood
pressure estimation using PPG waveforms. The proposed model extracted the essential
features and captured the temporal variations, yielding BP measurement accuracies that
satisfy the existing regulatory standards. The present study addresses the need for non-
invasive and accurate blood pressure monitoring during exercise, providing a potential
solution for improving patient comfort and healthcare outcomes.

The research demonstrates the feasibility of utilizing machine learning algorithms
to analyze PPG signals for blood pressure estimation, demonstrating the effectiveness of
the proposed model. The proposed method will aid in the development of cuffless blood
pressure monitoring devices, offering a noninvasive and accurate alternative to traditional
cuff-based sphygmomanometers.

Note that the limitations of this research include the small sample size and the need
for validation in larger cohorts to ensure generalizability and reliability of the proposed
model. Thus, in the future, research should focus on refining the model and exploring its
performance in diverse populations as well as investigating its integration into wearable
devices for real-time blood pressure monitoring.

Author Contributions: K.H., Y.M., T.Y., M.H. and T.T. developed the protocol, performed the exper-
iments and drafted and revised the manuscript. Y.M., T.Y., M.H. and T.T. developed the protocol,
integrated measurement devices with wearable sensors, and performed the experiments. All authors
have read and agreed to the published version of the manuscript.

Funding: We are grateful for the financial support received from the Grant-in-Aid for Scientific
Research (C) (Kakenhi) (#17K01440, #21K12760, #23K02029) and the Japan Agency for Medical
Research and Development (Grant no. JP22dk0310111).

Institutional Review Board Statement: The study was conducted in accordance with the Declaration
of Helsinki and approved by the Institutional Review Board of Tokyo Metropolitan College of
Industrial Technology (protocol code: 3-ITArakawa578; date of approval: 18 November 2011) for
studies involving humans. This approval includes all cooperated institutions of Waseda University
and University of Tokyo.

Informed Consent Statement: Written informed consent was obtained from all participants involved
in this study, supervised by an appropriate ethics approval committee.

Data Availability Statement: Data sharing not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in hypertension prevalence and progress in treatment and control

from 1990 to 2019: A pooled analysis of 1201 population-representative studies with 104 million participants. Lancet 2021, 398,
957–980. [CrossRef] [PubMed]

2. George, J.; MacDonald, T. Home Blood Pressure Monitoring. Eur. Cardiol. Rev. 2015, 10, 95–101. [CrossRef] [PubMed]
3. Asayama, K.; Thijs, L.; Brguljan-Hitij, J.; Niiranen, T.J.; Hozawa, A.; Boggia, J.; Aparicio, L.S.; Hara, A.; Johansson, J.K.; Ohkubo,

T.; et al. Risk Stratification by Self-Measured Home Blood Pressure across Categories of Conventional Blood Pressure: A
Participant-Level Meta-Analysis. PLOS Med. 2014, 11, e1001591. [CrossRef] [PubMed]

4. Tamura, T. Cuffless Blood Pressure Monitors: Principles, Standards and Approval for Medical Use. IEICE Trans. Commun. 2021,
E104B, 580–586. [CrossRef]

https://doi.org/10.1016/S0140-6736(21)01330-1
https://www.ncbi.nlm.nih.gov/pubmed/34450083
https://doi.org/10.15420/ecr.2015.10.2.95
https://www.ncbi.nlm.nih.gov/pubmed/30310433
https://doi.org/10.1371/journal.pmed.1001591
https://www.ncbi.nlm.nih.gov/pubmed/24465187
https://doi.org/10.1587/transcom.2020HMI0002


Sensors 2023, 23, 7399 13 of 14

5. Mukkamala, R.; Stergiou, G.S.; Avolio, A.P. Cuffless Blood Pressure Measurement. Annu. Rev. Biomed. Eng. 2022, 24, 203–230.
[CrossRef]

6. Almeida, T.P.; Cortés, M.; Perruchoud, D.; Alexandre, J.; Vermare, P.; Sola, J.; Shah, J.; Marques, L.; Pellaton, C. Aktiia cuffless
blood pressure monitor yields equivalent daytime blood pressure measurements compared to a 24-h ambulatory blood pressure
monitor: Preliminary results from a prospective single-center study. Hypertens. Res. 2023, 46, 1456–1461. [CrossRef]

7. Stergiou, G.S.; Mukkamala, R.; Avolio, A.; Kyriakoulis, K.G.; Mieke, S.; Murray, A.; Parati, G.; Schutte, A.E.; Sharman, J.E.; Asmar,
R.; et al. Cuffless blood pressure measuring devices: Review and statement by the European Society of Hypertension Working
Group on Blood Pressure Monitoring and Cardiovascular Variability. J. Hypertens. 2022, 40, 1449–1460. [CrossRef]

8. Mukkamala, R.; Shroff, S.G.; Landry, C.; Kyriakoulis, K.G.; Avolio, A.P.; Stergiou, G.S. The Microsoft Research Aurora Project:
Important Findings on Cuffless Blood Pressure Measurement. Hypertension 2023, 80, 534–540. [CrossRef]

9. Evangelos, K.; Erica, S.; Marc, A.S.; Rohan, K. Individualising intensive systolic blood pressure reduction in hypertension using
computational trial phenomaps and machine learning: A post-hoc analysis of randomised clinical trials. Lancet Digit. Health 2022,
4, e796–e805. [CrossRef]

10. Hatib, F.; Jian, Z.; Buddi, S.; Lee, C.; Settels, J.; Sibert, K.; Rinehart, J.; Cannesson, M. Machine-learning Algorithm to Predict
Hypotension Based on High-fidelity Arterial Pressure Waveform Analysis. Anesthesiology 2018, 129, 663–674. [CrossRef]

11. Ismail, S.N.A.; Nayan, N.A.; Jaafar, R.; May, Z. Recent Advances in Non-Invasive Blood Pressure Monitoring and Prediction
Using a Machine Learning Approach. Sensors 2022, 22, 6195. [CrossRef] [PubMed]

12. Nidigattu, G.R.; Mattela, G.; Jana, S. Non-invasive modeling of heart rate and blood pressure from a photoplethysmography by
using machine learning techniques. In Proceedings of the International Conference on COMmunication Systems & NETworkS
(COMSNETS), Bangalore, India, 7–11 January 2020; pp. 7–12.

13. Kurl, S.; Laukkanen, J.; Rauramaa, R.; Lakka, T.; Sivenius, J.; Salonen, J. Systolic Blood Pressure Response to Exercise Stress Test
and Risk of Stroke. Stroke 2001, 32, 2036–2041. [CrossRef] [PubMed]

14. Elgendi, M.; Fletcher, R.; Liang, Y.; Howard, N.; Lovell, N.H.; Abbott, D.; Lim, K.; Ward, R. The use of photoplethysmography for
assessing hypertension. NPJ Digit. Med. 2019, 2, 60. [CrossRef]

15. Baruch, M.C.; Warburton, D.E.; Bredin, S.S.; Cote, A.; Gerdt, D.W.; Adkins, C.M. Pulse Decomposition Analysis of the digital
arterial pulse during hemorrhage simulation. Nonlinear Biomed. Phys. 2011, 5, 1. [CrossRef] [PubMed]

16. Elgendi, M. On the Analysis of Fingertip Photoplethysmogram Signals. Curr. Cardiol. Rev. 2012, 8, 14–25. [CrossRef] [PubMed]
17. Epstein, S.; Willemet, M.; Chowienczyk, P.J.; Alastruey, J. Reducing the number of parameters in 1D arterial blood flow modeling:

Less is more for patient-specific simulations. Am. J. Physiol. Circ. Physiol. 2015, 309, H222–H234. [CrossRef]
18. Shin, H.; Min, S.D. Feasibility study for the non-invasive blood pressure estimation based on ppg morphology: Normotensive

subject study. Biomed. Eng. Online 2017, 16, 10. [CrossRef]
19. Gratz, I.; Deal, E.; Spitz, F.; Baruch, M.; Allen, I.E.; Seaman, J.E.; Pukenas, E.; Jean, S. Continuous Non-invasive finger cuff

CareTaker®comparable to invasive intra-arterial pressure in patients undergoing major intra-abdominal surgery. BMC Anesthesiol.
2017, 17, 48. [CrossRef]

20. Liu, M.; Po, L.-M.; Fu, H. Cuffless Blood Pressure Estimation Based on Photoplethysmography Signal and Its Second Derivative.
Int. J. Comput. Theory Eng. 2017, 9, 202–206. [CrossRef]

21. Liu, Q.; Yan, B.P.; Yu, C.-M.; Zhang, Y.-T.; Poon, C.C.Y. Attenuation of Systolic Blood Pressure and Pulse Transit Time Hysteresis
During Exercise and Recovery in Cardiovascular Patients. IEEE Trans. Biomed. Eng. 2014, 61, 346–352. [CrossRef]

22. Miki, K.; Yoshimoto, M. Exercise-Induced Modulation of Baroreflex Control of Sympathetic Nerve Activity. Front. Neurosci. 2018,
12, 493. [CrossRef] [PubMed]

23. Pilz, N.; Andreas, P.; Tomas, L.B. The pre-ejection period is a highly stress dependent parameter of paramount importance for
pulse-wave-velocity based applications. Front. Cardiovasc. Med. 2023, 10, 1138356. [CrossRef] [PubMed]

24. Esmaili, A.; Mohammad, K.; Mahdi, S. Nonlinear Cuffless Blood Pressure Estimation of Healthy Subjects Using Pulse Transit
Time and Arrival Time. IEEE Trans. Instrum. Meas. 2017, 66, 3299–3308. [CrossRef]

25. Sun, S.; Bezemer, R.; Long, X.; Muehlsteff, J.; Aarts, R.M. Systolic blood pressure estimation using PPG and ECG during physical
exercise. Physiol. Meas. 2016, 37, 2154–2169. [CrossRef]

26. Yabe, H.; Kono, K.; Onoyama, A.; Kiyota, A.; Moriyama, Y.; Okada, K.; Kasuga, H.; Masuda, A. Predicting a target exercise
heart rate that reflects the anaerobic threshold in nonbeta-blocked hemodialysis patients: The Karvonen and heart rate reserve
formulas. Ther. Apher. Dial. 2021, 25, 884–889. [CrossRef]

27. Elgendi, M. Optimal Signal Quality Index for Photoplethysmogram Signals. Bioengineering 2016, 3, 21. [CrossRef]
28. Shuzan, N.I.; Chowdhury, M.H.; Chowdhury, M.E.H.; Murugappan, M.; Hoque Bhuiyan, E.; Ayari, M.A.; Khandakar, A. Machine

Learning-Based Respiration Rate and Blood Oxygen Saturation Estimation Using Photoplethysmogram Signals. Bioengineering
2023, 10, 167. [CrossRef]

29. Chowdhury, M.H.; Shuzan, N.I.; Chowdhury, M.E.; Mahbub, Z.B.; Uddin, M.M.; Khandakar, A.; Reaz, M.B.I. Estimating Blood
Pressure from the Photoplethysmogram Signal and Demographic Features Using Machine Learning Techniques. Sensors 2020, 20, 3127.
[CrossRef]

30. Li, Y.-H.; Harfiya, L.N.; Purwandari, K.; Lin, Y.-D. Real-Time Cuffless Continuous Blood Pressure Estimation Using Deep Learning
Model. Sensors 2020, 20, 5606. [CrossRef]

https://doi.org/10.1146/annurev-bioeng-110220-014644
https://doi.org/10.1038/s41440-023-01258-2
https://doi.org/10.1097/HJH.0000000000003224
https://doi.org/10.1161/HYPERTENSIONAHA.122.20410
https://doi.org/10.1016/s2589-7500(22)00170-4
https://doi.org/10.1097/ALN.0000000000002300
https://doi.org/10.3390/s22166195
https://www.ncbi.nlm.nih.gov/pubmed/36015956
https://doi.org/10.1161/hs0901.095395
https://www.ncbi.nlm.nih.gov/pubmed/11546894
https://doi.org/10.1038/s41746-019-0136-7
https://doi.org/10.1186/1753-4631-5-1
https://www.ncbi.nlm.nih.gov/pubmed/21226911
https://doi.org/10.2174/157340312801215782
https://www.ncbi.nlm.nih.gov/pubmed/22845812
https://doi.org/10.1152/ajpheart.00857.2014
https://doi.org/10.1186/s12938-016-0302-y
https://doi.org/10.1186/s12871-017-0337-z
https://doi.org/10.7763/IJCTE.2017.V9.1138
https://doi.org/10.1109/tbme.2013.2286998
https://doi.org/10.3389/fnins.2018.00493
https://www.ncbi.nlm.nih.gov/pubmed/30083091
https://doi.org/10.3389/fcvm.2023.1138356
https://www.ncbi.nlm.nih.gov/pubmed/36873391
https://doi.org/10.1109/TIM.2017.2745081
https://doi.org/10.1088/0967-3334/37/12/2154
https://doi.org/10.1111/1744-9987.13628
https://doi.org/10.3390/bioengineering3040021
https://doi.org/10.3390/bioengineering10020167
https://doi.org/10.3390/s20113127
https://doi.org/10.3390/s20195606


Sensors 2023, 23, 7399 14 of 14

31. Patel, D.J.; Janicki, J.S.; Vaishnav, R.N.; Young, J.T. Dynamic Anisotropic Viscoelastic Properties of the Aorta in Living Dogs. Circ.
Res. 1973, 32, 93–107. [CrossRef]

32. Miyachi, Y.; Arakawa, M.; Kanai, H. Accuracy improvement in measurement of arterial wall elasticity by applying pulse inversion
to phased-tracking method. Jpn. J. Appl. Phys. 2018, 57, 07LF08. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1161/01.RES.32.1.93
https://doi.org/10.7567/JJAP.57.07LF08

	Introduction 
	Principle 
	Data Collection and Signal Processing 
	Experimental Method 
	Skewness Signal Quality Index 
	Feature Extraction 
	Machine Learning Model: Long Short-Term Memory 
	Error Metrics 

	Results 
	Preprocessing 
	Feature Extraction 
	BP Estimation 

	Discussion 
	Conclusions 
	References

