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Abstract: Proton Exchange Membrane Fuel Cells (PEMFCs) are critical components in renewable
hybrid systems, demanding reliable fault diagnosis to ensure optimal performance and prevent
costly damages. This study presents a novel model-based fault diagnosis algorithm for commercial
hydrogen fuel cells using LabView. Our research focused on power generation and storage using
hydrogen fuel cells. The proposed algorithm accurately detects and isolates the most common faults
in PEMFCs by combining virtual and real sensor data fusion. The fault diagnosis process began with
simulating faults using a validated mathematical model and manipulating selected input signals. A
statistical analysis of 12 residues from each fault resulted in a comprehensive fault matrix, capturing
the unique fault signatures. The algorithm successfully identified and isolated 14 distinct faults,
demonstrating its effectiveness in enhancing reliability and preventing performance deterioration or
system shutdown in hydrogen fuel cell-based power generation systems.

Keywords: hydrogen fuel cell; fault diagnosis; proton exchange membrane fuel cell

1. Introduction

Energy transition to renewable sources is necessary in the face of climate change and
decreasing non-renewable energy resources. A promising technological option considered
as one of the options to store and sustainably use energy is hydrogen [1]. Proton-exchange
Membrane Fuel Cells (PEMFCs) are currently one of the most promising technologies
for hydrogen utilization as electrochemical devices that convert the chemical energy of
hydrogen into electricity [2]. The fuel is oxidized at the anode, releasing electrons, while the
oxidant is reduced at the cathode, accepting electrons [3]. PEMFCs [4] have the advantages
of low operating temperatures, low weight, high energy density, good response to vari-
able loads, and no pollutant emissions in operation, making them a versatile technology
for multiple applications, from stationary generators to small, medium, and large-scale
portable units and electric vehicles [4]. However, PEMFCs, which must be fueled with
pure hydrogen, must be operated under optimal environmental conditions in order to
avoid damage or premature aging. In addition, the complexity of the auxiliary and control
systems of the PEMFC modules increases the chances of failure. Several research and devel-
opment efforts aimed at improving their resistance and reliability, focusing on developing
new materials [5], module management, status monitoring, and fault diagnosis [6,7] are
currently underway. One recent development in condition monitoring of PEMFC is the
integration of a flexible microsensor capable of measuring temperature, humidity, and
voltage [8].

Model-based diagnostic techniques use mathematical models to identify and locate
faults in the cell [9]. These techniques compare cell operating data with model results to
identify any discrepancies. Model-based diagnostic methods help identify faults in specific
cell components, such as the membrane or electrodes. Developing better fault diagnosis
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systems that allow the detection and isolation of any problems occurring in the stack is a
work in progress that will help generation systems that include PEMFCs to increase their
performance and reliability.

Typical PEMFC failures occur due to poor water management and exposure to high
temperatures, corrosive environments, and undesired chemical reactions. Researchers are
improving water and thermal management in PEMFCs to prevent flooding and drying [10].
Depending on how the failure can affect the operation of the PEMFC device, cell failures
can be classified into transient (recoverable) and permanent (fatal) failures [11]. In a third
group are classified the failures related to auxiliary devices such as actuators, sensors,
pressure regulators, humidifiers, etc.

Furthermore, failures can be classified into three main types. The first two are related
to water management: flooding and dehydration. The third type of failure is membrane
deterioration [12]. Both flooding and dehydration phenomena are transient conditions that
can be reversed before a significant failure occurs [13].

The water formed inside the cells is usually expelled through the bipolar plates and
diffusion channels. When the current increases, water production also increases, forming
water droplets that block the passage of protons. Flooding occurs when liquid water is
accumulated in the pores of the diffusion layer and the channels, which limits gas exchange
between the diffusion channels and between the cathode and anode channels. Flooding
occurs mainly on the cathode side due to three leading causes: insufficient evacuation
flow rate of produced water, excess inlet water vapor flow, and, finally, condensation
of water vapor due to sudden temperature drop. As a result, the active surface area
is reduced, increasing current density, increasing ohmic losses and decreasing fuel cell
performance [14].

Membrane dehydration occurs when the amount of water vapor produced is insuf-
ficient for a prolonged period of operation. In a PEMFC, proton transfer is ensured by
the water molecules contained in the membrane. Dehydration of the membrane increases
the electrical resistivity of the cell, limits the maximum current density, and reduces the
thickness of the membrane. The charge current must be increased, and the gas flux reduced,
to solve this issue [15].

Membrane deterioration failures are cumulative conditions produced over time. This
type of failure is considered a permanent and irreversible failure where membrane pa-
rameters are affected [16]. The diffusion constants are significantly altered in most cases
and the pressure gradient between the anode and cathode channels drops. Additionally,
drastic changes in the loading regime produce abrupt changes in the internal pressure
that eventually lead to mechanical fatigue of the membranes and their subsequent rup-
ture [17]. The leading causes of cell degradation are load regime changes (56.5%), starting
and stopping process (33.0%), overloading (5.8%), and idling (4.7%) [18]. Additionally, the
manufacturer, Ballard (Vancouver, Canada), reports that, during long storage periods, the
cell’s performance can reduce by about 10% per year [19].

The fault diagnosis process consists of three activities: fault detection, fault isolation
or identification, and fault analysis [20]. Fault detection occurs during system operation
and consists of discovering the occurrence of the fault. When the fault is detected, fault
isolation can be initiated, i.e., identifying where the fault has occurred. Finally, failure
analysis determines the failure’s magnitude, nature, or cause.

Petrone et al. [21] groups fault diagnosis methods in PEMFC devices into model-free
and model-based methods. Model-free methods allow detection and identification of the
fault through human experience and knowledge and in the use of techniques based on
analyzing input and output data. In model-based methods, the fault diagnosis is mainly
performed by comparing a real signal and a modeled one. Their difference or residual
allows us to presume the occurrence of a fault. Therefore, this method is also known as
residual-based diagnosis.

A more recent proposal [22] classifies, in more detail, the methods used in PEMFC
fault diagnosis, creating three groups: data-based methods, experimental test methods, and
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model-based methods. Experimental test methods, in turn, can be classified into failure
operation methods and magnetic field methods. Data-based methods are subdivided
into signal processing methods and pattern classification methods. Finally, model-based
methods are classified into black-box and analytical models (Figure 1).
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Within the research efforts related to fault diagnosis in PEMFC, ref. [23] makes an ap-
proach to the diagnosis of flooding and dehydration of the cells based on signal processing
and pattern recognition, where the voltage signal is processed by a Fast Fourier Transform
(FTT) to calculate the total harmonic distortion (TDH) that increases the amplitude of the
harmonics in case of drying and decreases them in case of flooding. Identification with
supervised and unsupervised classification methods achieved classifications from 84%
to 98.5%.

Another graphical approach for PEMFC cell failure diagnosis is proposed by [24]
that analyzes the one-dimensional (1D) voltage data of a single cell and converts it into a
two-dimensional (2D) image; optimal characteristics are determined by Fisher Discriminant
Analysis (FDA). The K-means clustering method analyzes the data collected from two
different single cells in flooding and dehydration failure states. Wavelet transform was
used for the analysis.

Mixing several techniques [25] employs an equivalent circuit model that was identified
by combining a genetic algorithm (GA) and the Levenberg–Marquardt (LM) algorithm. For
fault diagnosis, a method based on Adaptive Neural Fuzzy Inference System (ANFIS) and
Electrochemical Impedance Spectroscopy (EIS) was applied to a 12-cell 196 cm2 stack to
which the stoichiometric ratio and air humidity would be varied to produce membrane
flooding and drying. Most of these techniques have been applied to diagnose membrane
flooding or membrane dehydration failures applied to a cell or stack. However, a PEMFC
module is not only an array of cells. It is a device that integrates a series of equipment that
allows the autonomous operation of the module.

Under the PEMFC module concept and with a model-based approach, ref. [26] per-
formed process estimation, waste generation, and a hierarchical method for FDD detection
and diagnosis that creates a multi-stage structure. In the first stage, faults were diagnosed
at the subsystem level and then at the component level. Residuals were used as fault indi-
cators, considering various abrupt and degradation faults. Experimental results verified
the accuracy of the model-based approach and demonstrated that the proposed multi-stage
hierarchical method effectively diagnosed faults in a system. Failures were detected when
the residuals were outside the limits set for regular operation.

Finally, cutting-edge fault diagnosis integrates real-time data via advanced algorithms,
surpassing model-based methods. It adapts dynamically, enhancing accuracy and timeli-
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ness in identifying and addressing faults across complex systems. In their study, ref. [27]
developed a convolutional neural network (CNN) model. The system accurately identifies
particle parameters based on PLDD-TENG output signals, even distinguishing particle
types within mixed solutions. This innovation culminates in an intelligent visualization
system enabling real-time monitoring of sediment particles, with significant implications
for understanding the triboelectric effect in two-phase flow dynamics.

According to the literature review, it was found that there is a primary group of
research works on PEMFC fault diagnosis, which encompasses the majority of publications.
In this group, fault diagnosis techniques are focused on understanding the effects of fault
conditions on individual cells, particularly those related to cell dehydration or flooding.
These techniques are applied to a single cell and are developed under controlled laboratory
conditions, where temperature and pressures are managed. Some notable works in this
area include: [6–8,13–17,24,25].

A second group of research works investigates models applied to individual cells (or
stacks of cells). Similar to the previous group, these studies aim to establish the impacts
of improper operating conditions. To achieve this, experiments are conducted under
controlled temperature and pressure conditions, and the stack’s operation is simulated
to estimate voltage response to a current profile. In this context, PEMFC models are
primarily of the black-box or equivalent circuit type [9,11,12,18,20,21,23]. Up until this
point, fault diagnosis is performed by monitoring signals and seeking the replication of
the previously induced fault. Published works on PEMFC diagnostic algorithms rely on
expert knowledge and apply techniques such as fault hierarchy, wherein subsystems isolate
a detected fault and then by components without using models. These works serve as
diagnostic guidelines [26].

Therefore, specific issues can be concluded after studying the literature for PEMFC
fault diagnosis. First, the operating temperature of the cells conditions their electrical
performance and cell life, creating situations of flooding or dehydration of the membranes.
Moreover, the diagnostic techniques based on models apply to a more significant number of
PEMFC devices. In general terms, the greater the complexity of the model, the greater the
capacity for fault diagnosis and condition monitoring, being the analytical model’s valuable
tools. In addition, most models study the electrical behavior of the cell, i.e., the relationship
between current as the input signal and voltage as the output signal, taking temperature
and gas pressures as controlled variables under laboratory conditions. Therefore, an
improvement in the diagnosis of PEMFC failures requires a model that considers the
operating temperature and allows the simulation of various operating conditions and
failures without resorting to tests that reduce the useful life of the PEMFC module.

The fault algorithm proposed in this study is based on analytical models and observers.
The employed model considers the PEMFC module’s actual behavior, and its block design
provides a wide array of signals. The integration of the model and the diagnostic algorithm
distinguishes itself from current methods in the following ways: (a) The use of a complex
analytical model with 12 observers or residuals, (b) The segmentation of signals into
different operational zones of the module, (c) Statistical analysis of data to establish the
significance of the fault relative to the median and the standard deviation values of the
residuals, (d) The utilization of a fault matrix weighted with nine possible classifications of
the fault signature—four positive values, four negative values, and zero.

This work’s scientific contribution lies in identifying and discussing specific issues
related to PEMFC fault diagnosis, which are essential for advancing the field and improving
the reliability of hydrogen fuel cell-based power generation systems. Although all the
results are applied to a specific PEMFC, the methodology can be used to develop failure
diagnosis for cells with the same characteristics. The equations representing the physical
phenomena occurring within the stack are grouped into blocks. Such blocks utilize both real
and calculated input and output signals. The calculated signals serve as virtual sensors that
generate non-measured signals. Real or virtual measured signals are compared with the
digital twin simulation to generate the residuals. With more observers, the characterization
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or signature of faults becomes more detailed, enabling more accurate fault isolation. A
virtual sensor’s accuracy depends on the precision of the identification process, so it is
always preferred to have real measured data and create observers only for signals that can
not be measured or are very expensive to measure. The proposed technique uses virtual
sensors to avoid including extra sensors in the cell, allowing the direct use of the proposed
diagnoser in commercial PEMFCs.

The organization of the paper is as follows. After this introduction, Section 2 describes
the fuel cell and its model, the model identification process, and the faults considered in
this study. The results are presented in Section 3, which includes a deep statistical study of
the residuals and the development of the failure signatures based on the residual medians
and the standard deviation (SD). Finally, discussion and future work are addressed in
Sections 4 and 5.

2. Materials and Methods
2.1. The PEMFC Power Module

The tested fuel cell module is a NEXA 1.2 kW Ballard (Vancouver, BC, Canada)
unit, installed in the Distributed Energy Resources Laboratory (LabDER [28]) at Uni-
versitat Politècnica de València (Valencia, Spain) (UPV). Table 1 shows the datasheet of the
Module [29].

Table 1. Nexa 1.2 kW fuel cell main characteristics [29].

Signal Value

Nominal Power 1200 W
Working voltage range 22–50 V

Maximum current 55 A
Hydrogen consumption <18.5 slpm

Air inlet flow 90 slpm
Fuel Cell Stack Temperature 5–80 ◦C

The Nexa fuel cell integrates all the necessary accessories for its operation, including an
automatic inlet valve and a pressure regulator. The air required for the reaction is taken from
the environment, filtered, and compressed by the device. The flow is measured through
a mass flow meter. The speed regulation of the fan is used to regulate the temperature
of the module, which is also measured. The stack voltage is measured for the whole cell
assembly, so it is possible to determine if there are hydrogen residues and remove them
with the accumulated impurities when the purge valve is opened.

As a protective measure, if the current produced by the fuel cell exceeds the maximum
value, the controller opens a relay and acts on the air compressor to maintain the correct
stoichiometric ratio. Nexa’s subsystems include a hydrogen regulation system and an
automatic system that performs the device’s control, monitoring, and safety functions. The
fuel cell operation is subdivided into the following subsystems [29].

2.1.1. Hydrogen Subsystem

The Nexa module requires a supply of pure and dry hydrogen. The module’s hydrogen
regulator allows the fuel to remain pressurized inside the cells while the hydrogen is
consumed. The subsystem includes the following components: a pressure transducer to
monitor and guarantee the hydrogen supply, a pressure relief valve, a solenoid valve to
shut off the hydrogen supply on device shutdown, a pressure regulator, and a hydrogen
level detector to detect fuel leaks.

2.1.2. Oxidizing Air Subsystem

The Nexa module is supplied by excess oxidizing air generated by a compressor that
draws air from the environment and filters it. The air passes through a moisture exchanger
that takes advantage of the humidity produced at the device cathode. A mass flow sensor
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detects the amount of air entering the stack and allows regulation of the compressor speed
to match the demanded current. Excess water production is discharged from the module
as liquid and vapor in the air exhaust.

2.1.3. Cooling Subsystem

To maintain the module’s operating temperature close to 65 ◦C, a sensor located in the
cathode exhaust measures the temperature. With this information, a fan installed at the fuel
cell’s base is controlled and blows air through the stack’s vertical cooling channels. During
normal operating conditions, small amounts of hydrogen are occasionally released into the
cooling system to purge the system. A hydrogen sensor at the cathode exhaust provides
hydrogen concentration information to keep fuel levels below the lower flammability limit
(4% hydrogen by volume).

2.1.4. Electronic Control System

A digital analog control system operates the Nexa fuel cell with a sampling time of 200
ms. The system uses input signals from the various sensors and commands the hydrogen
valve and purge valve, the air supply compressor speed, the cooling system fan speed, and
the load relay. When the operating variables reach the safety limits, alarms are triggered,
and the shutdown protocol of the device can be activated. Some alarms, such as hydrogen
leakage, failures in the test system, and software faults, are considered non-resettable and
do not allow the start-up of the fuel cell until the intervention of specialized personnel.

2.2. PEMFC Model

A detailed model of the Nexa fuel cell is presented in [30]. The model was fitted
with measurements from different Nexa operations periods. In addition to manufacturer
information, measured data included the stack temperature and voltage, pressures, current,
and intake airflow.

The model was developed using LabView, and it consists of several equation blocks
regarding different features such as voltage losses, heat losses, active pressure, and overall
potential. Each block allows the estimation of non-measured variables, such as the reaction’s
temperature, the voltage of the terminal, or inner pressures. Figure 2 shows a scheme of
the model and the coefficients of each equation block. Figure 3 shows the results of the
fitting process. In Figure 3a, real and simulated voltage signals are represented, and in
Figure 3b, temperature signals are shown. The model’s coefficients were fitted using a
Scout Evolutionary Algorithm and achieved an error rate of 2.21% for the voltage signal
and 1.97% for the temperature signal.

The complete list of signals of the model is shown in Table 2. The signals have been
classified as:

• Inputs: input signals provided by the Nexa module.
• Virtual: model calculated signals.
• Outputs: output signals provided by the Nexa Module.

The model utilizes six signals measured by the fuel cell stack’s sensors. It measures
the output voltage and temperature. Aside from being used as an output signal, the
temperature also serves as an input signal. While this increases the model’s complexity,
it allows for estimating the module’s thermal behavior. The model employs 47 equations
to calculate phenomena such as gas diffusion, partial pressures, Gibbs free energy, cell
potential, conservation of matter, and thermodynamic energy balance, among others. These
equations are adjusted using 16 coefficients. Among them, four are associated with partial
gas pressures, four with voltage drops, two with cell potential, three with thermal dynamics,
two with temperature and voltage inertia, and finally, one with the overall module behavior.
Given the model’s nonlinearity and the intricate interaction of the equations, parameter
adjustment is performed using evolutionary optimization algorithms.
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Table 2. Nexa 1.2 kW fuel cell model variables.

Signal Classification Description

TInitial Input Initial temperature of the cell

TRoom Input Temperature of the cell
environment

I Input Cell demand current
AFlow Input Airflow

PAnode Input Anode pressure
PCathode Input Cathode pressure

P_H2 Virtual Hydrogen partial pressure
P_O2 Virtual Oxygen partial pressure
Act_1 Virtual Activation voltage drops
Act_2 Virtual Activation voltage drops
Conc Virtual Concentration voltage drops
Omh Virtual Ohmic voltage drops
VCell Virtual Individual cell voltage

∆G Virtual Gibbs free energy
TReaction Virtual Reaction temperature

TLoss Virtual Temperature loss
Vout Virtual Terminal output voltage

VStack Output Stack output voltage
TStack Output Stack temperatureSensors 2023, 23, x FOR PEER REVIEW 7 of 27 
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Model Validation and Operating Modes

In the Nexa PEMFC, values such as internal pressures, reaction temperature, or
voltages, among others, change non-linearly depending on the temperature and the current.
For this reason, it is necessary to establish differences in the operating current ranges of
the module. These ranges are also related to the conditions with more significant cell
degradation [18]. Specifically, in the Nexa PEMFC, the operating zones have been divided
depending on the range of the demand current and its trend into four zones: idle, load
ramp, discharge ramp, and load regime change. Figure 4 shows real data current demand
curves applied to the fuel cell.
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The model described in Section 2.2 (fitted as explained in [30]) has been validated
with different real current data profiles (shown in Figure 4). Considering the two main
outputs (voltage and temperature), the overall mean error is lower than 2.5%. Therefore, it
is concluded that the model can be used as a digital twin of the Nexa PEMFC.

2.3. PEMFC Faults

The NEXA fuel cell issues two types of alerts, warnings and fault alerts, which differ
in the sensor measurement range. Warning alerts indicate potential issues that require
attention but do not disrupt immediate operation. Fault alerts signify critical malfunctions
that demand immediate action to prevent system failure. When the controller detects a
warning alert, it modifies the module’s operating conditions, while a failure alert forces
the module to shut down. On the other hand, alerts can be resettable or non-resettable.
Non-resettable faults present safety risks. Appendix A shows the list of Nexa module alerts
according to the reading levels, and the possible causes have been included. Appendix A
provides guidelines on possible abnormal operating situations of the Nexa fuel cell. It shows
a list of alerts associated to some symptoms and their possible causes, offering procedures
to improve the safety and performance conditions of the module, and constituting a basis
for fault diagnosis tasks. However, it is necessary to deepen the activities related to the
detection, isolation, and identification of faults in the PEMFC.

The list of considered faults has been created considering the fuel cell operation
manual (see Appendix A) and the most common failures described in the literature [31].
Because of the cost of the fuel cell and the conservative behavior of the controller, it is not
possible to physically generate failures in the system. Therefore, all faults are simulated in
the digital twin validated in the previous section.

The faults are simulated by modifying input signals or parameters of one of the
equation blocks. As a result, the signals of the digital twin are altered. A fault-free model
runs in parallel and allows the residual generation for all the available signals. In this case,
the residuals are the point-to-point difference between the digital twin’s output signals and
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the fault-free model’s output signals. Table 3 summarizes the faults and the signals that
must be changed to conduct simulations.

Table 3. List of faults and generation actions.

Element Fault Description Simulation Fault ID

Room temperature sensor Sensor fault: stuck at min value Tinitial = 0% F1
Sensor fault: stuck at max value Tinitial = 121% F2

Cells
Cell degradation Cell area lowered to 80% F3

One cell fault Number of cells decreased F4

Control board

H2 inner pressure sensor fault H2_Press = 0% F5
O2 inner pressure sensor fault O2_Press = 0% F6

Current sensor calibration fault (low) I sensor measures 10%
under the real value F7

Current sensor calibration fault (high) I sensor measures 10%
over the real value F8

Fuel feed H2 intake press drop-leakage H2_Press = 80% F9

O2 intake
Compressor fault Air = 0% F10

Filter blockage Air decreased by 10% F11
No filter or duct breakage Air increased by 10% F12

Air intake
Fan fault %Fan = 0% F13

Blockage of the ventilation system %Fan decreased by 20% F14

3. Fault Diagnosis Process

One of the most used model-based diagnosis techniques is the residual analysis. A
fault-free model runs in parallel with the real system, and the signals from both systems
are compared. Differences between real and simulated signals are called residuals and can
be used to detect abnormal behaviors such as aging or faults.

Model-based observers can be used as virtual sensors based on analytical models for
fault diagnosis and condition monitoring. Depending on the model’s level of detail, it is
possible to perform the diagnosis in real operating conditions, obtaining the possibility
to perform online diagnostics. The block design of the PEMFC model and its level of
detail allow for the diagnosis using both real and observed output signals to compute
the residuals.

The detection of failures, understood as the activation of residuals, starts with verifying
the statistical normality of the data. However, thanks to the central limit theorem and
the large sample size (n > 50), the non-normality of the data can be hindered. Otherwise,
applying the Kolmogorov–Smirnov test with the Lilliefors correction, developed as an
alternative to the Shapiro–Wilk test, is necessary.

The Kolmogorov–Smirnov and Shapiro–Wilk [32] tests are statistical methods used to
assess the normality of a dataset. The Kolmogorov–Smirnov test compares the cumulative
distribution of the data with a theoretical normal distribution, yielding a single statistic. The
Shapiro–Wilk test calculates a statistic based on the correlation between the data and the
expected normal distribution. Both tests provide a p-value that indicates whether the data
significantly deviates from a normal distribution. A low p-value suggests non-normality.
While the Kolmogorov–Smirnov test is sensitive to deviations throughout the distribution
(it is used for n ≥ 50 samples), the Shapiro–Wilk test is particularly effective for smaller
sample sizes (n < 50 samples).

The second step is to determine statistically whether the residuals are affected by
the failure or are due to modeling errors, for which the t-Student test is applied with a
significance level of 0.5%. It is also necessary to determine whether there is a significant
difference between the residuals of the signals. This issue is resolved by applying a one-way
ANOVA test that can be parametric or non-parametric, i.e., to define whether the residuals
have equal variance. It is defined by Lenvene’s homoscedasticity test of the data. In this
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work, the non-parametric Kruskal–Wallis one-way ANOVA test is applied. The Kruskal–
Wallis [33] test is a non-parametric statistical test used to determine if there are significant
differences in the medians of three or more independent groups. It is an extension of the
one-way ANOVA for situations where data does not meet the assumptions of normality or
homogeneity of variances.

The next step is to analyze which residuals have significant differences. This analysis
is done with the Dwass–Steel–Critchlow–Fligner (DSCF) test, which compares the residuals
pairwise. It is tuned using the Wilcoxon (W) statistic with a p-value of 5%. The DSCF
test [34] is a non-parametric multiple comparison test used to assess differences between
multiple groups in statistical data. It is particularly useful when data violate assumptions of
normality and homogeneity. DSCF extends the pairwise Wilcoxon rank-sum test to provide
adjusted p-values for multiple comparisons while controlling the familywise error rate.

In the tests performed, the data are non-homoscedastic. Therefore, the median statistic
is used as an initial tool for fault isolation. The standard deviation is another positive
residual comparison statistic that can be used in fault isolation.

3.1. Data Analysis Example

The documents published by the module manufacturer consistently highlight a re-
current current sensor calibration failure (F7). This specific fault can potentially cause
erroneous current signals, either higher or lower than the actual values, consequently
affecting the oxidant and ventilation supply of the module and, in turn, impacting its
temperature. This section presents a comprehensive simulation and analysis of the F7
fault scenario.

A real current demand profile has been used as an input of the digital twin (Figure 4b).
This profile includes three of the four fuel cell operating zones mentioned in the previous
section: idle with minimum current levels (time = [0, 100]), a loading ramp where the
current increases (time = [1000, 2000]), and load regime changes (time = [2000, 2547]).
Obtaining real data in overload conditions is not possible due to the performance of the fuel
cell protection systems. Figure 4b shows the input current profile, and Figure 5a,b show
the simulated output signals of voltage (V) and temperature (T) when fault F7 is active.
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Residuals never reach zero values because of modeling errors or signal noise. More-
over, for fault detection purposes, data must be brought to comparable values between
residuals, i.e., it is needed to relativize or normalize the residuals point to point. Therefore,
each residual data is divided by the real signal data, so the relative residual data rk is
calculated employing the following equation:

rk =
sr − ss

sr
(1)

where sr is the signal measured from the real system, and ss is the simulated data.
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Then, the data for each fault and each residual are divided into the operation zones
under the nomenclature Fi_Zj, where Fi identify the fault (i = [1, 2, . . ., 14]) and Zj represents
the operation zone (idling—Z1, load ramp—Z2, load regime variation—Z3).

The statistical analysis of the data must be carried out independently for each operating
zone to establish whether the residues are due to the induced failure and not only to the
stochasticity of the process. The application of statistical tests allows proving if there are
significant statistical differences between the residues or if all the residues were affected in
the same magnitude.

This section also shows the data analysis process applied to the first operating zone,
idling, of the first fault (F7_Z1). The rest of the faults and operation zones in each fault
show the graphical result, the median tables for all faults, and operation zones.

For failure detection, the first step is the normality check, which was performed using
the Kolmogorov–Smirnov test with the Lilliefors correction, developed as an alternative
to the Shapiro–Wilk test for normality analysis when the sample size is greater than 50.
Table 4 shows the test results for Z1. The rows contain each of the 12 residual signals. W
represents the Shapiro–Wilk statistical operator, and p represents the p-value.

Table 4. Normality test results for F7_Z1.

Residual Mean SD Minimum Maximum
Shapiro-Wilk

W p

n −0.00126 2.97 × 10−4 −0.00140 1.47 × 10−10 0.728 <0.001
2 −0.00126 2.97 × 10−4 −0.00141 6.69 × 10−9 0.728 <0.001
3 9.09 × 10−4 2.11 × 10−4 0.00000 0.00101 0.723 <0.001
4 0.07570 0.00187 0.06269 0.07712 0.298 <0.001
5 0.08115 0.02484 −0.05517 0.26950 0.578 <0.001
6 0.10856 0.00113 0.10741 0.11638 0.318 <0.001
7 −0.00291 3.04 × 10−4 −0.00487 −1.68 × 10−4 0.416 <0.001
8 9.24 × 10−5 2.17 × 10−5 −4.35 × 10−11 1.03 × 10−4 0.725 <0.001
9 0.09929 0.00229 0.09084 0.10063 0.778 <0.001

10 0.10008 1.95 × 10−5 0.10000 0.10009 0.725 <0.001
11 −0.00291 3.04 × 10−4 −0.00487 −1.68 × 10−4 0.416 <0.001
12 −4.27 × 10−4 10.00 × 10−5 −4.78 × 10−4 −2.21 × 10−6 0.729 <0.001

Since the p-value in each of the residuals is less than 0.05, it is concluded that the
residual signals do not have a normal distribution. Despite this and given that, by the
central limit theorem, the non-normality of the data for large samples can be hindered, it is
resorted to the t-Student test.

Table 5 presents the application of the t-test to each residual, where the second column
(t) represents the t-statistic, Dof represents the degrees of freedom equivalent to the number
of data minus one (N − 1), and p is the p-value.

Based on the obtained results, the failure significantly impacts all the residuals. None
of them exhibit a mean of zero within the 5% significance level.

The next step is the isolation of the failure. This process can be approached by
establishing which residuals the failure affects. From a statistical point of view, a one-way
ANOVA test is helpful for this analysis. Nevertheless, before the test can be implemented
(as it can be parametric or non-parametric), the homoscedasticity of the data must be
established using the Lenvene test. Table 6 shows the results of this test. The residuals are
not equal variances because the p-value is less than the 5% significance level. In Table 6, F
is Fisher’s test statistic, which is based on the ratio of the sum of squares of the residuals,
Dof represents the degrees of freedom of the residuals, and p represents the p-value.
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Table 5. t-test data results for F7_Z1.

Residual t Dof p

1 −120 999 <0.001
2 −120 999 <0.001
3 122 999 <0.001
4 1274 999 <0.001
5 106 999 <0.001
6 3029 999 <0.001
7 −306 999 <0.001
8 121 999 <0.001
9 1357 999 <0.001
10 162,214 999 <0.001
11 −306 999 <0.001
12 121 999 <0.001

Table 6. Levene’s test for homogeneity of variances for F7_Z1.

F Dof p

293 119,888 <0.001

According to the Levene test results, the ANOVA test to be applied is the Kruskal–
Wallis one-way non-parametric ANOVA, which allows for determining if there are sig-
nificant differences between the residual signals. Table 7 shows the signal analyzed, the
Chi-square, the degrees of freedom, and the p-value.

Table 7. ANOVA Kruskal-Wallis for F7_Z1.

χ2 Dof p

293 119,888 <0.001

As presented in Table 7, the p-value, being less than 5%, confirms a significant dif-
ference among the residual signals. This indicates that at least one residual significantly
deviates from the others. To investigate these differences further, a pairwise analysis of the
residuals is conducted using the Dwass–Steel–Critchlow–Fligner test. The results of the
pairwise comparison, performed with a p-value of 5%, are shown in Table 8, employing the
Wilcoxon (W) statistic.

p-values equal to 1.0 indicate that the medians of the residuals are identical, for
example, in the pair (1, 2). p-values greater than 0.05 show that the medians are similar,
for example, the pair (3, 6). In these cases, it is impossible to distinguish the failure’s effect
in these residuals. p-values less than 0.05 indicate a difference in the medians compared,
verifying the usefulness of the medians of the residuals as an initial tool for fault isolation.

The medians of each residual are shown in Table 9, which also shows the mean and
the standard deviation.

Figure 7 graphically shows the results of Table 9 using the box-and-whisker plot. It is
observed that the signal of residue 5 is the most affected by the failure; residues 5 and 6
are also remarkable for their value but not for their dispersion. The test shows that some
pairs are indistinguishable ((1, 2) and (7, 11)). Therefore, residues 3, 4, 5, 6, 8, 9, 10, and 12
are isolable.

The previous procedure is repeated for each of the zones of operation of each failure
as an extension of the example that has been presented. Figure 8 shows the graphical result
for F7_Z2, where the general behavior of the residuals is similar to the previous one but
with greater dispersion and magnitude. Residuals are isolable except for pairs (1, 2) and
(7, 11). Being remarkable, residual 5 changes its sign and increases its dispersion concerning
residual 6.
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Table 8. Dwass–Steel–Critchlow–Fligner test for F7_Z1.

Residuals W p Residuals W p

1 2 −1.58 0.994 4 8 −54.76 <0.001
1 3 54.77 <0.001 4 9 54.76 <0.001
1 4 54.76 <0.001 4 10 54.81 <0.001
1 5 52.46 <0.001 4 11 −54.76 <0.001
1 6 54.76 <0.001 4 12 −54.77 <0.001
1 7 −54.18 <0.001 5 6 49.78 <0.001
1 8 54.76 <0.001 5 7 −52.46 <0.001
1 9 54.76 <0.001 5 8 −52.46 <0.001
1 10 54.81 <0.001 5 9 38.51 <0.001
1 11 −54.18 <0.001 5 10 42.31 <0.001
1 12 49.83 <0.001 5 11 −52.46 <0.001
2 3 54.77 <0.001 5 12 −52.46 <0.001
2 4 54.76 <0.001 6 7 −54.76 <0.001
2 5 52.46 <0.001 6 8 −54.76 <0.001
2 6 54.76 <0.001 6 9 −54.76 <0.001
2 7 −54.17 <0.001 6 10 −54.81 <0.001
2 8 54.76 <0.001 6 11 −54.76 <0.001
2 9 54.76 <0.001 6 12 −54.76 <0.001
2 10 54.81 <0.001 7 8 54.76 <0.001
2 11 −54.17 <0.001 7 9 54.76 <0.001
2 12 49.84 <0.001 7 10 54.81 <0.001
3 4 54.76 <0.001 7 11 0.00 1.000
3 5 52.46 <0.001 7 12 54.58 < 0.001

Table 9. Residuals medians of residuals for F7_Z1.

Residual Mean Median SD

1 −0.00113 −0.00126 2.97 × 10−4

2 −0.00113 −0.00126 2.97 × 10−4

3 8.15 × 10−4 9.09 × 10−4 2.11 × 10−4

4 0.07539 0.07570 0.00187
5 0.08292 0.08115 0.02484
6 0.10868 0.10856 0.00113
7 −0.00295 −0.00291 3.04 × 10−4

8 8.28 × 10−5 9.24 × 10−5 2.17 × 10−5

9 0.09826 0.09929 0.00229
10 0.10007 0.10008 1.95 × 10−5

11 −0.00295 −0.00291 3.04 × 10−4

12 −3.83 × 10−4 −4.27 × 10−4 10.00 × 10−5
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3.2. Failure Signature and Failure Identification

The previous section illustrates the procedure to determine which residuals can be
used for fault identification. The specific combination of residuals for each failure and their
values define the fault signature for each failure. The failure signature from the medians
can be built, taking into account the size of the median, so the residual will not be binary.
Each residual median can be classified according to Table 10. Medians falling within the
(−0.05, 0.05) range were assigned a “0”. This range replaces values that are less than ±5%,
corresponding to twice the magnitude of the modeling error.

Table 10. Median weighting quartiles.

Quartile Range Value Quartile Range Value

Q1 [0.05 < x < 0.25) 1 −Q1 [−0.05 > x > −0.25) −1
Q2 [0.25 < x < 0.50) 2 −Q2 [−0.25 > x > −0.50) −2
Q3 [0.50 < x < 0.75) 3 −Q3 [−0.50 > x > −0.75) −3
Q4 x > 0.75 4 −Q4 x < −0.75 −4

Table 11 shows the failure signature matrix for failure F7. Besides the median quartile
for each residual, ØZ makes a horizontal count of the weighted residuals different from “0”,
and Σr is the vertical summation of the values of the weighted residuals of the operating
zones of each fault. The Z4 values of the residuals have not been considered due to the
absence of data.

Table 11. Weighted median failure signature for F7.

Failure Zone R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 ØZ

F7

Z1 0 0 0 1 1 1 0 0 1 1 0 0 5
Z2 0 0 0 0 −1 1 0 0 1 1 0 0 4
Z3 0 0 0 0 −1 1 0 0 1 1 0 0 4
Z4 - - - - - - - - - - - -
Σr 0 0 0 1 −1 3 0 0 3 3 0 0

The complete median residual matrix failure signature is shown in Appendix B. This
table has to be analyzed to study which failures can be isolated. An easy way to look for
different failure signatures is by looking at ØZ and Σr. The following cases are presented:
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• Case 1: ØZ in a zone is different from any other fault. This is the case, for example,
of F10 at zone 3. This failure could be identified when the PEMFC is working in
that zone.

• Case 2: ØZ in a zone is equal to another fault, but Σr is not. This is the case, for
example, of failures F7 and F8. These failures could be isolated because both residual
signatures are different.

• Case 3: ØZ and Σr values are equal in all the zones, as in faults F4, F5, F6, F9, F12,
and F14. These failures could not be isolated, making it necessary to use other fault
characteristics for the diagnosis process.

With this procedure, it can be evidenced that failures F1, F2, F3, F7, F8, F10, F11, and
F13 present different marks to those of the most residuals, making them isolable. However,
failures F4, F5, F6, F9, F12, and F14, cannot be distinguished, necessitating using another
characteristic for the isolation.

A similar treatment to that applied to the medians of the failures was employed with
the standard deviation as another helpful feature in the isolation of the failure. Table 12
shows the part of the matrix related to F7. The complete matrix can be seen in Appendix C.
It can be seen that any fault has a unique fault signature when combining information from
the weighted median and the standard deviation.

Table 12. Weighted standard deviation failure signature for F7.

Fault Zone R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 ØZ

F7

Z1 1 1 1 1 2 1 1 1 1 1 1 1 13
Z2 2 2 2 1 2 2 1 1 1 1 1 1 17
Z3 1 1 1 1 2 1 1 1 1 1 1 1 13
Z4 - - - - - - - - - - - -
Σr 4 4 4 3 6 4 3 3 3 3 3 3

3.3. Fault Diagnosis Algorithm

The algorithm to monitor the PEMFC and perform failure detection and isolation is
shown in Figure 9. The algorithm starts with failure detection by monitoring any residual
deviation. The residuals’ median and standard deviation are calculated in the second step.
In the third step, it is checked if the calculated medians exceed the detection threshold.
If this condition is not met, the system continues monitoring the PEMFC module. If the
condition is completed, the fault signature is created by weighting the medians and SD in
the fourth step. The fifth step compares the median fault signature with the fault matrix.
If the fault can be isolated, the process ends with some recommendations. Otherwise, the
SD failure signature is compared with the SD failure matrix in the sixth step. Positive
fault isolation leads to the recommendations table. Otherwise, it is understood that it is an
unknown fault, and this is characterized. The failure matrix is updated in the eighth step,
and the system returns to the fifth step.

The intervention actions are a guide provided to the operator to facilitate the inspection
of the module and, if necessary, to remedy the situation. The faults detected and the
suggested actions are listed in Table 13 below.

Table 13. Intervention guidelines according to the isolated failure.

Failure Action

F1 Check the external temperature sensor
Check the environmental operating conditions of the moduleF2

F3 Initiate cell rejuvenation procedure
Periodic parametric identification

F4
Inspection of the gas diffusion channels of the stack

Inspection of cell connections
Initiate cell rejuvenation procedure
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Table 13. Cont.

Failure Action

F5
Hydrogen pressure sensor check

Hydrogen availability check
Hydrogen supply system check

F6 Oxygen sensor check
Oxygen supply system check

F7 Current sensor check

F8 Control board check

F9 Hydrogen sensor check
Control board check

F10
Compressor overhaul

Compressor electrical connections check
Mass airflow sensor overhaul

F11 Compressor filter overhaul
Review of air supply and exhaust ducts

F12 Compressor filter overhaul
Duct check

F13 Overhaul of the fan motor
Review of fan electrical connections.

F14
Review of fan fastening

Filter overhaul
Review of ducts
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4. Discussion

Traditionally, significant advances in PEMFC fault diagnosis and condition monitoring
have focused on faults arising from water management, i.e., detecting membrane flooding
or dehydration. However, there are few comprehensive approaches to PEMFC module
fault diagnosis. The PEMFC fault diagnosis process developed in this paper applies to the
entire Nexa 1.2 kW PEMFC module and, if adjustments are made, readily applies to many
other commercial modules.

The work presented integrates the application of many techniques that generate
advances for improving PEMFC technology. To reach this point, it was necessary to refer
to a previous complex work that included the development of an analytical model of a
PEMPC that takes into account the temperature as an output and feedback signal, the study
and application of different optimization algorithms for the parametric adjustment of the
model, and, finally, the creation of this proposal for fault diagnosis for PEMFC.

Since the model identification process can be performed periodically at a low compu-
tational cost, the developed tools can complement other fault diagnosis techniques, such as
parametric identification. Another technique that can be integrated into the diagnosis is
the periodic characterization of the stack using the module polarization curve because the
output voltage can be easily contrasted, evidencing the voltage drops of the module that
are symptoms of internal phenomena of obstruction or degradation of the membrane.

A model that behaves as a digital twin allows multiple nondestructive tests. However,
the diagnosis has an uncertainty inherent to an analytical model limited to the available
signals and the fitting process. Including new sensors in the PEMFC and the availability
of real signals to validate the virtual sensors listed in Table 2, will contribute to reducing
this uncertainty. Therefore, it will be interesting to include pressure sensors for P_H2 and
P_O2 signals, measuring the differential pressure between different points of the diffusion
channels of the cells. More quickly, voltage sensors could be added to measure the behavior
of the voltages of each of the cells as a function of the current and to determine the values
of voltage drops represented by: Act_1, Act_2, Conc, and Ohm. Temperature sensors are
easy to include in the commercial Module to measure gains and heat losses for different
points of the stack. These sensors would provide information to contrast the signals Tloss
and TReaction. Nevertheless, it is only possible to measure the dG signal indirectly due to
the characteristics of the units. The installation of all these sensors could be approached
in two ways: as a supervisory system external to the PEMFC whose connection does not
interfere with the control and safety board of the module or by integrating the sensors
within the fault diagnosis and status monitoring software on the module control board, the
latter option being the ideal alternative.

5. Conclusions

This paper presents a model-based fault diagnosis method for fuel cells developed
in LabView. Based on expert knowledge of the Nexa fuel cell, its operation was divided
into four modes: idling, load increase, speed changes, and load reduction. Then, with
the modification of the model input signals, 14 failures were simulated, and thanks to
the model design, it was possible to extract 12 output signals that were compared using
residual techniques. Output signals from the modules are not measured in the commercial
version of the fuel cell, but they can be estimated by models acting as virtual sensors.
Comparison between real and measured data (with real or virtual sensors) generates a set
of residuals.

The residual data were analyzed with statistical methods to characterize them and
thus create a fault signature. The analysis of the data, separated into zones or modes of
operation, evidenced: that the data do not obey a normal distribution, that the non-zero
residuals are the result of the fault simulation, and that there are significant differences
between the medians of the residuals. This process was repeated for the three zones of
operation of the 14 faults, for a total of 42 data sets.
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From the data analysis, it was possible to create a signature for faults: F1, F2, F3, F7, F8,
F10, F11, and F13. In a second step, a weighting of the standard deviations of the 42 data
sets was done, thus isolating the rest of the faults: F4, F7, F6, F9, F12, and F14. With these
tools, a combined fault matrix was consolidated. The matrix was validated with a second
data set. Still, with a load profile that includes a new module operation zone containing
a decreasing current ramp and with it, the matrix was updated to obtain four operation
zones. With the application of the diagnostic algorithm, the fault matrix was updated, and
two other load profiles were validated, obtaining results that conclude the fault diagnosis
process is valid. The time required for analyzing the residuals of this second load profile
with 1500 s was 14 ms, using an AMD Ryzen 5 5500U processor.

According to the conducted tests, the most likely failures on the PEMFC are related to
temperature and water within the module, meaning membrane flooding or dehydration. In
the second place, membrane-related failures can be mentioned, either due to degradation
or cracks. However, common failures result from a direct fault in some devices, such as the
fan, pressure regulators, gas flow sensors, etc.

The importance of this work lies in identifying and discussing specific issues related
to PEMFC fault diagnosis, which are essential for advancing the field and improving the
reliability of hydrogen fuel cell-based power generation systems. Although all the results
are applied to a specific PEMFC, the methodology can be used to develop failure diagnosis
for cells of the same characteristics.

Future efforts will concentrate on enhancing the analytical model through the mod-
ularization of equations to encapsulate clusters of cells. This method will facilitate the
individual assessment of cell degradation, enabling the generation of notifications for
implementing rejuvenation strategies or partial stack replacements. Another avenue of
development involves the incorporation of sensors within the Module, augmenting the
count of measurable signals accessible for an extended diversification of fault categorization
within the fault matrix.

Author Contributions: Conceptualization, A.C.; methodology, C.V.-S. and A.C.; software, E.A. and
A.C.; validation, E.A. and A.C.; formal analysis, A.C., C.V.-S. and E.A.; investigation, E.A., A.C.
and C.V.-S.; resources, E.A. and A.C.; data curation, E.A.; writing—original draft preparation, A.C.;
writing—review and editing, A.C., C.V.-S. and E.A.; visualization, E.A.; supervision, C.V.-S. and E.A.;
project administration, C.V.-S. and A.C.; funding acquisition, E.A. and C.V.-S. All authors have read
and agreed to the published version of the manuscript.

Funding: This research was partially funded by the Government of Colombia, “Colciencias/Minciencias,
PBDCEx—COLDOC. Convocatoria 561”.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Acknowledgments: The authors would like to thank the help of Doyra Mariela Muñoz Añasco from
the Universidad del Cauca (Colombia) for her assistance in the statistical data treatment.

Conflicts of Interest: The authors declare no conflict of interest.



Sensors 2023, 23, 7383 20 of 25

Appendix A. Warnings and Alerts in the NEXA Fuel Cell

Subsystem Failure Symptom or Condition Alert
Alert Level

Warning Failure Reboot

Environmental External elements

Elevated ambient
temperature

Module temperature >71 ◦C >73 ◦C Yes

Elevated ambient
temperature (during

power-up)
Ambient Temperature N/A <3 ◦C Yes

Environmental pollution O2 concentration <19.2% <18.7% Yes

Supply of
contaminated H2

Module voltage <23 V <18 V Yes

Cell Voltage (torque) N/A 0.85 V/cell Yes

No fuel Hydrogen pressure <1.0 Barg <0.5 Barg Yes

Cells
by cell degradation

Reduced module
performance

Module voltage <23 V <18 V Yes

Cells Voltage N/A 0.85 V/cell Yes

Module current >65 A >75 A Yes

by cell cracking
Leakage in the fuel

supply system
H2 concentration (ppm) 180% 100% (10.000) No

Hydrogen pressure <1.0 Barg <0.5 Barg Yes

Control and/or
Sensors

Short circuit
between cells

Short circuit outside cells Module voltage <23 V <18 V Yes

Electrical
connections

Short circuit in cells Low Cell Voltage N/A 0.85 V/cell Yes

of the Relay
The battery current

exceeds 70 A
Module current >65 A >75 A Yes

of the CVC system
Conditions of operation Purge Cell Voltage <0.8 V <0.7 V Yes

CVC System Pin
Connection Issues

Low Cell Voltage N/A 0.85 V/cell Yes

Current Sensor

Decalibrated current
sensor

Module voltage <23 V <18 V Yes

Low Cell Voltage
(torque)

N/A 0.85 V/cell Yes

The battery current
exceeds 70 A

Module current >65 A >75 A Yes

of the pressure
sensor

The system has no fuel Hydrogen pressure <1.0 Barg <0.5 Barg Yes

on the control
board.

Module voltage is
very low

Module temperature >71 ◦C >73 ◦C Yes

High module
output power

Module current >65 A >75 A Yes

Module temperature >71 ◦C >73 ◦C Yes

on the control board
Low Cell Voltage

(torque)
N/A 0.85 V/cell Yes

Overheating in the cells Low Cell Voltage N/A 0.85 V/cell Yes

Conditions of operation
Purge Cell Voltage

(Torque)
<0.8 V <0.7 V Yes

mass air
flow sensor

Insufficient or
polluted air

V module <23 V <18 V Yes

O2 sensor Environmental pollution O2 concentration <19.2% <18.7% Yes

N/A
Discharge or

deterioration of the
battery at start-up

Battery voltage N/A <18 V Yes

Purge in the Purge Valve
The purge valve is

not working
Module voltage <23 V <18 V Yes
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Subsystem Failure Symptom or Condition Alert
Alert Level

Warning Failure Reboot

Refrigeration

in the Fan
Increased H2
concentration

H2 concentration (ppm) −20% 100% (10.000) No

H2 concentration (ppm) 80% 100% (10.000) No

for duct obstruction
Obstruction of the
ventilation system

Module temperature >71 ◦C >73 ◦C Yes

Overheating in cells
Low Cell Voltage

(torque)
N/A 0.85 V/cell Yes

Oxidizing Air
Supply

compressor

Insufficient amount of
air or polluted air

Module voltage <23 V <18 V Yes

Air pump failure Low Cell Voltage N/A 0.85 V/cell Yes

filter
Insufficient or
polluted air

Module voltage <23 V <18 V Yes

Air pump failure Low Cell Voltage N/A 0.85 V/cell Yes

for obstruction
of ducts

Insufficient or
polluted air

Module voltage <23 V <18 V Yes

Blockage in the inlet or
outlet of oxidizing air

Low Cell Voltage N/A 0.85 V/cell Yes

in the moisture
exchanger

Inadequate
humidification of the air

Module voltage <23 V <18 V Yes

Fuel supply

H2 regulator

Blocked purge system
elements (tubes,
regulator, valve)

Low Cell Voltage N/A 0.85 V/cell Yes

The system is out of fuel Hydrogen pressure <1.0 Barg <0.5 Barg Yes

of purge valve
Blocked purge system

elements (tubes,
regulator, valve)

Low Cell Voltage
(torque)

N/A 0.85 V/cell Yes

on the closed
intake valve

The system is out of fuel Hydrogen pressure <1.0 Barg <0.5 Barg Yes

for obstruction
of ducts

Blocked purge system
elements (tubes,
regulator, valve)

Low Cell Voltage
(torque)

N/A 0.85 V/cell Yes

in feed ducts Fuel leaks
H2 pressure <1.0 Barg <0.5 Barg Yes

H2 concentration (ppm) 80% 100% (10.000) No

Appendix B. Weighted Median Failure Signature Matrix

Fault Zone R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 ØZ

F1

Z1 1 1 −1 0 0 −1 0 0 3 0 0 0 5
Z2 0 0 0 0 0 0 0 0 0 0 0 0 0
Z3 0 0 0 0 0 0 0 0 0 0 0 0 0
Z4 - - - - - - - - - - - -
Σr 1 1 −1 0 0 −1 0 0 3 0 0 0

F2

Z1 0 0 0 0 0 0 0 0 −1 0 0 0 1
Z2 0 0 0 0 0 0 0 0 0 0 0 0 0
Z3 0 0 0 0 0 0 0 0 0 0 0 0 0
Z4 - - - - - - - - - - - -
Σr 0 0 0 0 0 0 0 0 −1 0 0 0

F3

Z1 0 0 0 0 0 0 0 0 0 0 0 0 0
Z2 0 0 0 0 0 0 0 0 0 0 0 0 0
Z3 −1 −1 1 0 0 0 1 0 0 0 1 0 5
Z4 - - - - - - - - - - - -
Σr −1 −1 1 0 0 0 1 0 0 0 1 0
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Fault Zone R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 ØZ

F4

Z1 0 0 0 0 0 0 0 0 0 0 0 0 0
Z2 0 0 0 0 0 0 0 0 0 0 0 0 0
Z3 0 0 0 0 0 0 0 0 0 0 0 0 0
Z4 - - - - - - - - - - - -
Σr 0 0 0 0 0 0 0 0 0 0 0 0

F5

Z1 0 0 0 0 0 0 0 0 0 0 0 0 0
Z2 0 0 0 0 0 0 0 0 0 0 0 0 0
Z3 0 0 0 0 0 0 0 0 0 0 0 0 0
Z4 - - - - - - - - - - - -
Σr 0 0 0 0 0 0 0 0 0 0 0 0

F6

Z1 0 0 0 0 0 0 0 0 0 0 0 0 0
Z2 0 0 0 0 0 0 0 0 0 0 0 0 0
Z3 0 0 0 0 0 0 0 0 0 0 0 0 0
Z4 - - - - - - - - - - - -
Σr 0 0 0 0 0 0 0 0 0 0 0 0

F7

Z1 0 0 0 1 1 1 0 0 1 1 0 0 5
Z2 0 0 0 0 −1 1 0 0 1 1 0 0 4
Z3 0 0 0 0 −1 1 0 0 1 1 0 0 4
Z4 - - - - - - - - - - - -
Σr 0 0 0 1 −1 3 0 0 3 3 0 0

F8

Z1 0 0 0 −1 −1 −1 0 0 −1 −1 0 0 5
Z2 0 0 0 0 1 −1 0 0 −1 −1 0 0 4
Z3 0 0 0 0 1 −1 0 0 −1 −1 0 0 4
Z4 - - - - - - - - - - - -
Σr 0 0 0 −1 1 −3 0 0 −3 −3 0 0

F9

Z1 0 0 0 0 0 0 0 0 0 0 0 0 0
Z2 0 0 0 0 0 0 0 0 0 0 0 0 0
Z3 0 0 0 0 0 0 0 0 0 0 0 0 0
Z4 - - - - - - - - - - - -
Σr 0 0 0 0 0 0 0 0 0 0 0 0

F10

Z1 0 0 0 0 0 0 0 0 −1 0 0 0 1
Z2 2 2 −1 1 1 −1 −1 0 −1 0 −1 1 10
Z3 −2 −2 −2 4 4 −2 −2 −1 −2 −1 −2 4 12
Z4 - - - - - - - - - - - -
Σr 0 0 −3 5 5 −3 −3 −1 −4 −1 −3 5

F11

Z1 0 0 0 0 0 0 0 0 0 0 0 0 0
Z2 0 0 0 0 0 0 0 0 0 0 0 0 0
Z3 −1 −1 1 0 0 0 0 0 0 0 0 0 3
Z4 - - - - - - - - - - - -
Σr −1 −1 1 0 0 0 0 0 0 0 0 0

F12

Z1 0 0 0 0 0 0 0 0 0 0 0 0 0
Z2 0 0 0 0 0 0 0 0 0 0 0 0 0
Z3 0 0 0 0 0 0 0 0 0 0 0 0 0
Z4 - - - - - - - - - - - -
Σr 0 0 0 0 0 0 0 0 0 0 0 0

F13

Z1 0 0 0 0 0 0 0 0 −1 0 0 0 1
Z2 0 0 0 0 0 0 0 0 0 0 0 0 0
Z3 1 1 −2 1 1 −1 −1 0 1 0 −1 1 10
Z4 - - - - - - - - - - - -
Σr 1 1 −2 1 1 −1 −1 0 0 0 −1 1

F14

Z1 0 0 0 0 0 0 0 0 0 0 0 0 0
Z2 0 0 0 0 0 0 0 0 0 0 0 0 0
Z3 0 0 0 0 0 0 0 0 0 0 0 0 0
Z4 - - - - - - - - - - - -
Σr 0 0 0 0 0 0 0 0 0 0 0 0
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Appendix C. Weighted Standard Deviation Failure Signature Matrix

Fault Zone R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 ØZ

F1

Z1 1 1 1 1 1 1 1 1 2 1 1 1 13
Z2 2 2 2 1 1 2 1 1 2 1 1 1 17
Z3 1 1 1 1 1 2 1 1 2 1 1 1 14
Z4 - - - - - - - - - - - -
Σr 4 4 4 3 3 5 3 3 6 3 3 3

F2

Z1 1 1 1 1 1 1 1 1 2 1 1 1 13
Z2 2 2 2 1 1 2 1 1 2 1 1 1 17
Z3 2 2 2 2 2 1 2 1 2 1 2 2 21
Z4 - - - - - - - - - - - -
Σr 5 5 5 4 4 4 4 3 6 3 4 4

F3

Z1 2 2 2 1 1 2 1 1 2 1 1 1 17
Z2 2 2 2 2 2 1 2 1 1 1 2 2 20
Z3 1 1 2 1 1 2 1 1 2 1 1 1 15
Z4 - - - - - - - - - - - -
Σr 5 5 6 4 4 5 4 3 5 3 4 4

F4

Z1 1 1 1 1 1 1 1 1 2 1 1 1 13
Z2 2 2 2 2 2 1 2 1 2 1 2 2 21
Z3 1 1 1 1 1 2 1 1 2 1 1 1 14
Z4 - - - - - - - - - - - -
Σr 4 4 4 4 4 4 4 3 6 3 4 4

F5

Z1 4 0 0 0 0 0 1 1 1 1 1 0 9
Z2 2 1 1 1 1 1 1 1 1 1 1 1 13
Z3 2 2 2 1 1 1 1 1 2 1 1 1 16
Z4 - - - - - - - - - - - -
Σr 8 3 3 2 2 2 3 3 4 3 3 2

F6

Z1 0 0 0 0 0 0 0 0 0 0 0 0 0
Z2 0 0 0 0 0 0 0 0 0 0 0 0 0
Z3 0 0 0 0 0 0 0 0 0 0 0 0 0
Z4 - - - - - - - - - - - -
Σr 0 0 0 0 0 0 0 0 0 0 0 0

F7

Z1 1 1 1 1 2 1 1 1 1 1 1 1 13
Z2 2 2 2 1 2 2 1 1 1 1 1 1 17
Z3 1 1 1 1 2 1 1 1 1 1 1 1 13
Z4 - - - - - - - - - - - -
Σr 4 4 4 3 6 4 3 3 3 3 3 3

F8

Z1 1 1 1 1 2 1 1 1 1 1 1 1 13
Z2 1 1 1 1 2 2 1 1 1 1 1 1 14
Z3 1 1 1 1 2 2 1 1 1 1 1 1 14
Z4 - - - - - - - - - - - -
Σr 3 3 3 3 6 5 3 3 3 3 3 3

F9

Z1 4 0 0 0 0 0 1 1 1 1 1 0 9
Z2 2 1 1 1 1 1 1 1 2 1 1 1 14
Z3 2 2 2 1 1 1 2 1 1 1 2 1 17
Z4 - - - - - - - - - - - -
Σr 8 3 3 2 2 2 4 3 4 3 4 2

F10

Z1 2 2 2 1 1 2 1 1 2 1 1 1 17
Z2 2 2 2 2 2 1 2 1 1 1 2 2 20
Z3 1 1 1 1 1 1 2 1 1 1 2 1 14
Z4 - - - - - - - - - - - -
Σr 5 5 5 4 4 4 5 3 4 3 5 4

F11

Z1 2 2 2 1 1 2 1 1 2 1 1 1 17
Z2 2 2 2 2 2 1 2 1 1 1 2 2 20
Z3 1 1 2 1 1 2 1 1 2 1 1 1 15
Z4 - - - - - - - - - - - -
Σr 5 5 6 4 4 5 4 3 5 3 4 4
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Fault Zone R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 ØZ

F12

Z1 2 2 1 1 1 2 1 1 2 1 1 1 16
Z2 2 2 2 2 2 1 2 1 1 1 2 2 20
Z3 1 1 1 1 1 2 1 1 2 1 1 1 14
Z4 - - - - - - - - - - - -
Σr 5 5 4 4 4 5 4 3 5 3 4 4

F13

Z1 1 1 1 1 1 1 1 1 2 1 1 1 13
Z2 2 2 2 2 2 2 2 1 2 1 2 2 22
Z3 1 1 1 1 1 2 1 1 2 1 1 1 14
Z4 - - - - - - - - - - - -
Σr 4 4 4 4 4 5 4 3 6 3 4 4

F14

Z1 1 1 1 1 1 1 1 1 2 1 1 1 13
Z2 2 2 2 2 2 2 2 1 2 1 2 2 22
Z3 2 2 2 2 2 2 2 1 2 1 2 2 22
Z4 - - - - - - - - - - - -
Σr 5 5 5 5 5 5 5 3 6 3 5 5
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