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Abstract: With the advent of Artificial Intelligence (AI) and even more so recently in the field of
Machine Learning (ML), there has been rapid progress across the field. One of the prominent examples
is image recognition in the medical category, such as X-ray imaging, Computed Tomography (CT),
and Magnetic Resonance Imaging (MRI). It has the potential to alleviate a doctor’s heavy workload
of sifting through large quantities of images. Due to the rising attention to lung-related diseases, such
as pneumothorax and nodules, ML is being incorporated into the field in the hope of alleviating the
already strained medical resources. In this study, we proposed a system that can detect pneumothorax
diseases reliably. By comparing multiple models and hyperparameter configurations, we recommend
a model for hospitals, as its focus on minimizing false positives aligns with the precision required
by medical professionals. Through our cooperation with Poh-Ai Hospital, we acquired a total of
over 8000 X-ray images, with more than 1000 of them from pneumothorax patients. We hope that
by integrating AI systems into the automated process of scanning chest X-ray images with various
diseases, more resources will be available in the already strained medical systems. Our proposed
system showed that the best model that is used for transfer learning from our dataset performed
with an AP of 51.57 and an AP75 of 61.40, with accuracy at 93.89%, a false positive of 1.12%, and
a false negative of 4.99%. Based on the feedback from practicing doctors, they are more wary of
false positives. For their use case, we recommend another model due to the lower false positive
rate and higher accuracy compared with other models, which in our test shows a rate of only 0.88%
and 95.68%, demonstrating the feasibility of the research. This promising result showed that it
could be utilized in other types of diseases and expand to more hospitals and medical organizations,
potentially benefitting more people.

Keywords: artificial intelligence; machine learning; X-ray; magnetic resonance imaging; Detectron2;
lung diseases classification; image recognition

1. Introduction

Pneumothorax is a disease that can be caused by multiple different factors, which
leads to a cavity between the lung and the chest wall, which is also known as a collapsed
lung. It occurs when air escapes from the envelopment of the lung. The symptoms of
pneumothorax are sudden chest pain, shortness of breath, and blue-colored lips (cyanosis),
which can be caused by hypoxemia. Pneumothorax can also be caused by gun or stab
wounds or some other chest traumas [1]. There are around 17 patients per 100 thousand
people, and over half of the afflicted (11 out of 100,000) will be hospitalized [2]. Compared
with other types of lung diseases, pneumothorax needs to be identified and given care
more urgently [3]. Treatment can be done from multiple aspects, from the severity of the
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disease. Spontaneous pneumothoraxes are more often than not regarded as harmless if the
size is smaller than 50% of the hemithorax, the patient does not experience breathlessness,
and there is no underlying lung disease [4]. Regarding the disease’s spontaneous nature, it
sometimes is able to automatically resolve by itself. A larger area with breathlessness symp-
toms shown can be treated with aspiration [1]. Aspiration decreases the size of the cavity
in most of the patients treated (>50%), reducing hospital admissions without increasing
the risk of complications [5]. In other cases, it can also be treated with a chest tube treated
with anesthesia [5]. Due to the circumstances mentioned above, although the difficulty
of detecting pneumothorax by using AI is considered more difficult compared with other
types of diseases, we decided to focus on it first in our research, heeding the advice of a
professional doctor. Other types of diseases will be tried at a later time. Convolutional
Neural Network (CNN) has already achieved remarkable results in CT imaging segmenta-
tion and proved to be even more successful in traditional detection in recent years [6,7].
In 2017, Meta Research (then Facebook AI Research, FAIR initiative) introduced software
that implemented various object detection and segmentation algorithms, including Faster
R-CNN, RetinaNet, and Mask R-CNN. Various research groups are currently utilizing this
software for their research in medical imaging.

In the present stage, we proposed a deep learning model that identifies pneumothorax
and gives a clear label to the chest X-ray image annotated with confidence values that can
be used by medical professionals to obtain a grip on the usability and rough area of the
disease. Our dataset was built from chest X-ray images taken from a hospital’s database and
manually labeled before being rechecked and verified again by doctors from the hospital.

Our main contributions to this research are as follows:

i. Various pneumothorax models are also augmented with multiple techniques that
are available for download [8].

ii. A comparison between different parameters of a model.
iii. A comparison of various implementations of models.
iv. Metrics (high accuracy, low false positives) that are applicable to the medical imag-

ing sector.
v. The potential for transfer learning to other diseases.

The rest of the paper is arranged as follows. Section 2 discusses previous research
in Machine Learning and deep learning in X-ray image and MRI segmentation. Section 3
introduces the dataset used for training the model, the architecture, and the workflow.
The result analysis of the proposed model is conferred in Section 4. In Section 5, we draw
conclusions based on the finding of this research and discuss potential avenues for future
research and work.

2. Related Works

We utilized a method frequently used in medical imaging called Mask R-CNN [9],
as recommended by a professional doctor, and transferred training upon a modified
ResNet [10] to train and build an image recognition system that can be used to identify dif-
ferent diseases by using X-ray images, which can help doctors on diagnosing pneumothorax
and various other diseases. With the assistance of image recognition technology, we hope
to minimize the time needed for general practices and, with that, decrease the maintenance
cost of staff and increase the throughput of medical care attended. Moreover, this will help
doctors to understand the root cause of diseases faster, more precisely, and correct snap
decisions can be made, thus improving the overall medical quality. The research can be
used as a basis for future research and development and to improve the model of image
recognition in this field.

We hope to help doctors diagnose a patient faster and increase the detection rate of
chest-related diseases. We also aim to assist doctors in making a more informed decision
on diseases by decreasing the time doctors need to collect information. Our research is a
project on building a lung disease X-ray imaging recognition system by utilizing AI. The
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system aims to offer benefits to the healthcare system overall because doctors can save time
that also could be spent instead on tests, consultations, and treatments.

Of the vast landscape of research available to us, we can gain inspiration from a
plethora of different methods and types of diseases being tried, and so we briefly review
some of the common methods used in the below section.

Machine Learning was applied in many types of medical fields, such as pharmaceutical
research. One such application was on the targeting of NLRP3 protein by Ishfaq and
colleagues [11].

Another method is by using different approaches to the data inputs, such as by
utilizing Ribonucleic acid (RNA) sequencing that generates RNA expression levels to send
to a classifier algorithm [12], using segmented structures and extracting attributes from
lung images as a basis of the classification step [13], or simply labeling multiple types of
diseases as simply sick or healthy [14].

Chronic Obstructive Pulmonary Disease (COPD) will become the third leading cause
of death worldwide by 2030 from the estimation of the World Health Organization; thus,
Ramalho et al. [13] and A. Poreva et al. [14] are tackling these problems with different
results, with various degrees of successes, with the paper from A. Poreva et al. even trying
five different types of methods to determine which will be the better choice. They used
134 patients’ data for their research and obtained accuracy results ranging from the worst
of 53% on logistic regression to the best of 88% on an SVM classifier, and Ramalho et al. [13]
managed an accuracy of 79% and 85% on the two methods they have used. COPD patients
sometimes also manifest a checkup if the patient occurred a breathlessness effect, as it
might be a case of pneumothorax, too [5].

Another aspect of the use of ML in medical imaging detection is for brain tumors.
According to the World Health Organization’s International Agency for Research for Cancer
2020 World Cancer Report, cancer of the brain and central nervous system was the 17th
most common cancer type, with an estimated 297,000 new cases worldwide [15]. Often than
not, the 5-year relative survivability of the infected is estimated at around 33% according to
the SEER database [16]. Thus, there were various research groups targeting this aspect of
ML.

K. Sharma et al. [17] used a method that converted MRI imagery to black and white
before extracting features based on texture, while J. Amin et al. [18] used a combination of
statistical and ML methods to achieve a high precision rate ranging from 88% to 97% on
their proposed method. G. Hemanth et al., on the other hand, tuned the convolution mask
to better retain the features of the images and reached a 91% accuracy [19]. Aamir et al. [20]
increased the visual quality of MRI images by using a low-complexity algorithm before
segmenting pneumothorax images.

The journey of our implementation started with the definitive paper of R-CNN [21]. R.
Girshick et al. proposed a concept called Region Convolutional Neural Network (R-CNN),
in which the region meant classify segments of an image instead of the whole image,
and that yielded a more accurate picture of the local sector, which was advantageous in
providing the local maxima in the accuracy of classification tasks. Their work at that time
surpassed all other methods and everyone’s expectations and broke through the stalemate
of detection in ML before, which also achieved results that were not only more accurate but
also faster due to the locality nature.

Fast forwarding a year later, the same team provided the world with a follow-up over
the previous R-CNN, calling it Fast R-CNN [22]. Fast R-CNN improved upon R-CNN by
increasing the training speed over R-CNN by 9× and decreasing the training pipeline to
single-stage. This allowed more features to be packed into the network and, in turn, also
pushed Moore’s law by a few stages if no improvement had happened in the ML scene for
the next few years, further improving the viability of ML.

Faster R-CNN [23] by S. Ren et al. improved upon Fast R-CNN by introducing a new
network called Region Proposal Network (RPN), which shares its convolutional features
with the detection network, resulting in cost-effective region proposals. RPN is a fully
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convolutional network that simultaneously predicts object bounds and objectness scores at
each position. By combining the detection from Fast R-CNN and RPN, a Faster R-CNN
further improved the accuracy of the network.

The main network we used in this research is based on a framework called Mask
R-CNN [9] developed by He et al., and the aforementioned Faster R-CNN is authored
partially by He, too. Mask R-CNN proposed a model that can classify objects and segment
those said detected objects that are called the Region of Interest (RoI) at the same time
on top of the improvement on RPN. The biggest impact it had on our research is that by
reducing the classification volume, the computational difficulty is drastically decreased,
thus lowering the bar for entering image classification and image segmentation.

Pneumothorax can also be caused by gun or stab wounds or some other chest trau-
mas [1]. There are around 17 patients per 100 thousand people, and over half of the afflicted
(11 out of 100,000) will be hospitalized [2]. Compared with other types of lung diseases,
pneumothorax needs to be identified and given care more urgently [3].

3. Methodology

This research project aims to build a usable X-ray images lung disease detection
system. Our dataset consists of over 8000 X-ray images, with more than 1000 of them
from pneumothorax patients. In this project, we utilized a software called LabelMe [24],
as shown in Figure 1. LabelMe annotation project is a standard software that is used to
annotate interest segments from a given image and to classify those said segmented images.
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Figure 1. LabelMe in action on annotating pneumothorax, with the red shadow marking the ground
truth of the affected area of the pneumothorax disease.

After annotation, the images were rechecked by the hospital’s doctors, and passing
images made their way into the dataset, while rejected images were handled on a case-by-
case basis with the doctors. Then, we resized the images. It was set to a maximum size
of 800 on either side, whichever was the longest. After that, we chose model candidates
for transfer learning. We used Detectron2 [25] in our research to detect pneumothorax
because it is open source and quite useful in our endeavor. The main model choices were
separated into two categories, which are ResNet [10] and ResNeXt [26]. These are the
choices available on Detectron2. For ResNet, we used and compared model baselines that
used Feature Pyramid Network (FPN) [27] because their COCO [28] instance segmentation
baseline contained the best mask AP results; thus, R50-FPN and R101-FPN were chosen
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for the comparison. For ResNeXt, the only option was X101-FPN. Furthermore, we also
compared the COCO dataset [28] implementation to the LVIS dataset [29] implementation
for the respective ResNet50 (R50), ResNet101 (R101), and ResNeXt101 (X101) models. For
both selections, they were first given to the model candidate to process to mask and later to
FPN. Combining those, we will get various segments which are processed using Region of
Interest Align (RoI Align). After the synchronization, this is separated into 2 networks, one
for bounding box prediction and the other for mask segmentation for respective results. In
this research, only the mask segmentation part will be relevant because the bounding box
is not the final step and is not to our concern. The process of the transfer learning of the
X-ray image detection system is as in Figure 2.
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The training set consists of 784 images of pneumothorax instances. We ran the test
with multiple different configurations, and for comparison, we laid out the results, too, in
Table 1. These configurations are all from the R101-FPN baseline because X101 requires
192% of the time to run compared with R101, and R50 is more inaccurate compared with
R101 and only saves 34% of the time [30]. We chose the 26-1501 config as the baseline due
to the low false positive rate and accuracy. The selected config was as follows: 100,000
iterations, the learning rate was 0.001, the weight decay was 0.0001, and the batch size per
image was 512. The decay steps, which were for each target iteration, and the learning rate
would be decreased to 0.1× of the previous value, were 25 k, 40 k, 50 k, 60 k, 70 k, 80 k,
85 k, 90 k, and 95 k. This step was to slowly transition the descent to fine-tune the gradient.

Table 1. Various configurations and their respective results.

Configuration
Candidate Iterations Learning

Rate
Weight
Decay Decay Steps

False
Positive

(%)

False
Negative

(%)

Accuracy
(%)

AP
(%)

AP50
(%)

AP75
(%)

22-0710 37,500 0.1 0.005
1 k, 2 k, 5 k, 10

k, 15 k, 20 k,
30 k

3.16 9.41 87.43 48.15 81.89 46.17

23-1518 500,00 0.1 0.005
1 k, 2 k, 5 k, 10

k, 15 k, 20 k,
30 k

3.11 11.24 85.65 47.55 81.06 45.98

23-2251 50,000 0.1 0.005
500, 10 k, 20 k,
30 k, 35 k, 40

k, 45 k
2.97 11.68 85.35 43.25 78.90 43.05

24-1814 50,000 0.01 0.005
5 k, 10 k, 15 k,
20 k, 25 k, 30 k,
35 k, 40 k, 45 k

3.29 16.18 80.53 43.67 78.71 41.99

26-1501 100,000 0.001 0.0001
25 k, 40 k, 50 k,
60 k, 70 k, 80 k,
85 k, 90 k, 95 k

1.09 3.68 95.23 46.82 76.61 50.46

When the best hyperparameter was contributions to this research are models. The
candidates are as follows: ResNet50 (COCO), ResNet101 (COCO), ResNeXt101 (COCO),
ResNet50 (LVIS), ResNet101 (LVIS), and ResNeXt101 (LVIS).
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Our training with all the configurations was paired with various augmentations to the
X-ray images to reduce the probability of overfitting during the session. The parameters of
the augmentations were as follows:

• Rotation is set to be randomly shifted by 5 degrees.
• Brightness is set to be randomly tuned in a 20% range on the original luminosity of

the image.
• Contrast is set to be randomly tuned in a 20% range of the original image.
• Saturation is set to be randomly tuned in a 20% range of the original image.

From observation, our test with four images per batch used around 10.2 GB of VRAM
in the process. Without augmentations, five images per batch can be achieved for 10.8 GB.
We used an RTX 3080 Ti, and 100 k iterations took 9 h and 30 min to complete.

4. Results

After training, the best results were dependent on the metrics. For false positives and
accuracy, the best model is ResNeXt101 (COCO), while ResNeXt101 (LVIS) is the best for
false negatives. ResNet101 (LVIS) performs best by a larger margin in both AP and AP75,
with ResNet50 (LVIS) on AP50. The AP metric is from calculating the average between
10 precision-recall pairs from 50% to 95% with 5% increments in between. These are shown
in Table 2.

Table 2. Various models and their respective results.

Transfer Learning Model False Positive (%) False Negative (%) Accuracy (%) AP (%) AP50 (%) AP75 (%)

ResNet50 (COCO) 1.33 4.38 94.29 48.76 80.34 53.35

ResNet101 (COCO) 1.09 3.68 95.23 46.82 76.61 50.46

ResNeXt101 (COCO) 0.88 3.44 95.68 44.61 78.95 49.20

ResNet50 (LVIS) 1.47 5.91 92.62 49.26 84.20 53.45

ResNet101 (LVIS) 1.12 4.99 93.89 51.57 79.46 61.40

ResNeXt101 (LVIS) 1.05 3.40 95.55 49.50 82.20 50.79

Below are the output results for the test images set, from Figures 3–7, which are not in
the training or validation set used for training the models.
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We used an RTX 3080 Ti, and 100 k iterations took 9 h and 30 min to complete. 

4. Results 
After training, the best results were dependent on the metrics. For false positives and 

accuracy, the best model is ResNeXt101 (COCO), while ResNeXt101 (LVIS) is the best for 
false negatives. ResNet101 (LVIS) performs best by a larger margin in both AP and AP75, 
with ResNet50 (LVIS) on AP50. The AP metric is from calculating the average between 10 
precision-recall pairs from 50% to 95% with 5% increments in between. These are shown 
in Table 2. 

Table 2. Various models and their respective results. 

Transfer Learning Model False Positive (%) False Negative (%) Accuracy (%) AP (%) AP50 (%) AP75 (%) 
ResNet50 (COCO) 1.33 4.38 94.29 48.76 80.34 53.35 

ResNet101 (COCO) 1.09 3.68 95.23 46.82 76.61 50.46 
ResNeXt101 (COCO) 0.88 3.44 95.68 44.61 78.95 49.20 

ResNet50 (LVIS) 1.47 5.91 92.62 49.26 84.20 53.45 
ResNet101 (LVIS) 1.12 4.99 93.89 51.57 79.46 61.40 

ResNeXt101 (LVIS) 1.05 3.40 95.55 49.50 82.20 50.79 

Below are the output results for the test images set, from Figures 3–7, which are not 
in the training or validation set used for training the models. 

 
Figure 3. From left to right: Ground Truth, ResNet50 (COCO), ResNet101 (COCO), ResNeXt101 
(COCO), ResNet50 (LVIS), ResNet101 (LVIS), and ResNeXt101 (LVIS). This patient had pneumotho-
rax in their right chest. 

 

Figure 4. From left to right: Ground Truth, ResNet50 (COCO), ResNet101 (COCO), ResNeXt101
(COCO), ResNet50 (LVIS), ResNet101 (LVIS), and ResNeXt101 (LVIS). This patient had pneumothorax
in their top-left chest.
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Figure 7. From left to right: Ground Truth, ResNet50 (COCO), ResNet101 (COCO), ResNeXt101 
(COCO), ResNet50 (LVIS), ResNet101 (LVIS), and ResNeXt101 (LVIS). This patient had pneumotho-
rax in their left chest while having a fixation due to a probable accident. 

We chose a few examples to demonstrate the capabilities of various models. These 
images consisted of X-ray images of pneumothorax patients with different areas of disease 
inflicted. The inclusion of multiple positions and areas in the figures lets us observe the 
possible outcomes and the differences between the models. In Figures 3 and 6, the patients 
had pneumothorax on the right side of their chest, with the patient in Figure 6 only affect-
ing the top part, while the patient in Figure 3 had pneumothorax on the outside wall of 
their right lung. In Figures 4, 5 and 7, the patients had pneumothorax in the left side of 
their chest, while the patients in Figures 4 and 5 had the upper part of their left lung mostly 
collapsed, indicating a serious issue of pneumothorax disease. In Figure 5, there are cavity 
areas at the bottom part, too. In the same image, the ground truth included a portion pro-
truding below the area of the top detection portion due to the late-stage pneumothorax 
with most of the upper part of the lung collapsing, and all models were unable to detect 
the cavity of the protruded part. In Figure 7, the patient is seen with a fixation, with the 
pneumothorax affecting the top left lung, albeit with a smaller area. 

  

Figure 5. From left to right: Ground Truth, ResNet50 (COCO), ResNet101 (COCO), ResNeXt101
(COCO), ResNet50 (LVIS), ResNet101 (LVIS), and ResNeXt101 (LVIS). This patient had a large area of
pneumothorax in their left chest.
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Figure 6. From left to right: Ground Truth, ResNet50 (COCO), ResNet101 (COCO), ResNeXt101
(COCO), ResNet50 (LVIS), ResNet101 (LVIS), and ResNeXt101 (LVIS). This patient had pneumothorax
in their right chest.
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Figure 7. From left to right: Ground Truth, ResNet50 (COCO), ResNet101 (COCO), ResNeXt101
(COCO), ResNet50 (LVIS), ResNet101 (LVIS), and ResNeXt101 (LVIS). This patient had pneumothorax
in their left chest while having a fixation due to a probable accident.

We chose a few examples to demonstrate the capabilities of various models. These
images consisted of X-ray images of pneumothorax patients with different areas of disease
inflicted. The inclusion of multiple positions and areas in the figures lets us observe the
possible outcomes and the differences between the models. In Figures 3 and 6, the patients
had pneumothorax on the right side of their chest, with the patient in Figure 6 only affecting
the top part, while the patient in Figure 3 had pneumothorax on the outside wall of their
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right lung. In Figures 4, 5 and 7, the patients had pneumothorax in the left side of their
chest, while the patients in Figures 4 and 5 had the upper part of their left lung mostly
collapsed, indicating a serious issue of pneumothorax disease. In Figure 5, there are cavity
areas at the bottom part, too. In the same image, the ground truth included a portion
protruding below the area of the top detection portion due to the late-stage pneumothorax
with most of the upper part of the lung collapsing, and all models were unable to detect
the cavity of the protruded part. In Figure 7, the patient is seen with a fixation, with the
pneumothorax affecting the top left lung, albeit with a smaller area.

5. Discussion

In this paper, we used ML to detect pneumothorax with promising results. First, the
collected images were preprocessed by resizing. Various hyperparameter configurations
are tested for the best results. There were multiple options to go for, namely iterations,
learning rate, decay steps, and weight decay. Iterations affect the final outcome, including
false positives, false negatives, and overall accuracy. However, iterations that are too high
will lead to overfitting. This can be partially mitigated by setting a stopgap measure after
the accuracy has not been improving for a while. We recommend 100 k iterations for 1 k
images with augmentations in consideration. The learning rate dictates the speed at which
the learning occurs. Too small and the learning will take a long time, while too large will
diverge the loss rate. We recommend a value of 0.001 for an adventurous exploration phase
for the beginning and stepping down later to a fine-tuning phase. Decay steps decrease
the learning rate by a factor of 10, slowly transitioning the model to fine-tuning the model
itself. Our best results emerged from nine decay steps, occurring from 25 k to 95 k. Weight
decay improved the overfitting issue aforementioned in the iterations part, but too high
will lead to the learning rate being too slow or diverging outright. We recommend 0.0001
while increasing the decay steps count. After selecting the hyperparameter combination
with the suitable results, which were dictated by the overall accuracy and AP with our
choice of configurations, we used that config to train against different baseline models with
the same X-ray images. After training, we picked our model following two criteria, AP
(Average Precision) and false positives. AP was chosen due to it being the default metric
recommended by the Detectron2 repository in their codebase. Secondly, the false positives
metric was chosen based on the feedback from practicing doctors, who were more wary of
false positives. Our proposed system showed that the best model after transfer learning
from our study is ResNet101 (LVIS), with an AP of 51.57 and an AP75 of 61.40. The accuracy
of the detection is 93.89%, with a false positive of 1.12% and a false negative of 4.99%. For
the doctors’ use case, we recommend ResNeXt101 (COCO) due to the lower false positive
rate and higher accuracy compared with other models, which in our test shows a rate of
only 0.88% and 95.68%.

The research showed promising results, while more data will be needed for accurate
comparison, which in the current state are more prone to overfitting the model and later
to the possibility of utilization of the X-ray images on various different lung diseases, and
eventually to a detection system to be used in the real world.

The current dataset consisted of data from our local hospital only, so we hoped to
expand the dataset by cooperating with other hospitals from various areas around Taiwan.
We are also discussing the possibility of including X-ray images from different machine
models and manufacturers. Stronger machines are more cheaply available with each
passing day. We can expand our resources for a faster training routine and a larger model
to work with. With our experience gained in this research, we look forward to expanding
the usage of this model type into other lung diseases or even other illnesses, providing a
better future in the healthcare sector.
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