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Abstract: The use of a Machine Learning (ML) classification algorithm to classify airborne urban
Light Detection And Ranging (LiDAR) point clouds into main classes such as buildings, terrain, and
vegetation has been widely accepted. This paper assesses two strategies to enhance the effectiveness
of the Deep Learning (DL) classification algorithm. Two ML classification approaches are developed
and compared in this context. These approaches utilize the DL Pipeline Network (DLPN), which is
tailored to minimize classification errors and maximize accuracy. The geometric features calculated
from a point and its neighborhood are analyzed to select the features that will be used in the input
layer of the classification algorithm. To evaluate the contribution of the proposed approach, five
point-clouds datasets with different urban typologies and ground topography are employed. These
point clouds exhibit variations in point density, accuracy, and the type of aircraft used (drone and
plane). This diversity in the tested point clouds enables the assessment of the algorithm’s efficiency.
The obtained high classification accuracy between 89% and 98% confirms the efficacy of the developed
algorithm. Finally, the results of the adopted algorithm are compared with both rule-based and
ML algorithms, providing insights into the positioning of DL classification algorithms among other
strategies suggested in the literature.

Keywords: LiDAR; point cloud; classification; buildings; vegetation; terrain; urban areas; deep
learning; machine learning; geometric features

1. Introduction

Airborne Light Detection And Ranging (LiDAR) is a remote sensing system that
enables users to scan rural and urban environments with high accuracy, precision, and
flexibility. The three-dimensional dataset obtained from LiDAR facilitates the precise
mapping and measurement of terrain, building, and vegetation heights, and other features
with unparalleled accuracy [1]. By integrating LiDAR sensors onto Unmanned Aerial
Vehicles (UAVs), a new tool for LiDAR data generation has emerged. Drone-based LiDAR
data exhibit high point density (several hundred points per square meter) and position
accuracy (between 5 and 10 cm). Furthermore, this scanning technology is accessible to
engineering companies of various scales and can be applied to projects of different sizes
and purposes. However, challenges still persist in terms of adhering to UAV regulations,
particularly in urban areas and controlled airspaces [2]. Despite the disparities between
airborne LiDAR data collected via drones and those obtained through manned aircraft (see
Section 3), the efficacy of automated data-processing tools for both types of data requires
further investigation.

LiDAR data-processing tools can be categorized based on four main aspects. Firstly,
according to their functionality, such as visualization, classification, and modeling tools [3].
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Secondly, based on their level of automation, they can be classified as manual, semi-
automatic, or fully automatic tools [4]. Thirdly, according to the target class, these tools can
focus on a long list of classes such as buildings, terrain, vegetation, roads, powerlines, and
railways. Finally, the employed processing algorithms can be grouped into rule-based and
Machine Learning algorithms [1].

In recent years, Machine Learning algorithms have emerged as a prominent trend
in the automated processing of LiDAR data [5]. Various algorithms, including Random
Forest [6], Support Vector Machine (SVM) [7], and Deep Learning (DL) [8], are being utilized
in this context. This paper adopts two DL strategies for the automatic classification of
airborne LiDAR point clouds in urban areas, focusing on three classes: terrain, vegetation,
and buildings. In this context, the DL network consists of three main parts, which are the
input layer, hidden layers, and output layer. In fact, the success of the classification network
does not depend only on the network structure but also on the used data features in the
input layers. The research significance and value of using and calculating the geometric
features (GFs) is to help the DL model to be able to distinguish between the classes of point
cloud, based on the resulting proprieties of each class. Geometric features can reflect the
geometry of the object that the point belongs to when analyzing the relationship between
each point in the point cloud and its neighbors. Thus, this paper analyzes the geometric
features to select the more efficient ones, to employ them in the input layer of the DL
algorithm, which can play a major role in the success of the classification result. Hence, the
novel contributions of this paper can be summarized as follows:

• Analysis and recognition of the relevant geometric features to be employed in Machine
Learning (ML) classification algorithms specifically designed for urban areas.

• Assessment of two classification strategies that achieve highly accurate results.
• Testing and analysis of the developed classification ML algorithm using data obtained

from both unmanned and manned airborne laser scanning.
• Analysis of the sensitivity of DL classification algorithms across different urban typologies.

The structure of this paper is organized as follows: Section 1 introduces the topic and
highlights the novel aspects. Section 2 provides a review of related studies found in the
literature. Subsequently, Section 3 presents and analyzes the five datasets used in the study.
Sections 4–6 delve into the analysis of geometric features, the proposed algorithms, and the
discussion of the results obtained. Finally, Section 7 presents the overall research budget
and summarizes the main findings.

2. Related Works

The state-of-the-art ML classification approaches in the literature for classifying LiDAR
data can be categorized into three families based on the level of supervision: unsupervised,
weakly supervised or semi-supervised, and supervised.

In the unsupervised ML approach family, Zhang et al. [9] proposed an unsuper-
vised domain-adaptive 3D detection method that utilizes data adaptation from a LiDAR
point cloud. Their model was trained by transferring instances from a source domain
to target domain scenes through adaptive point distribution. They also introduced an
instance-transferring method for selecting and transferring appropriate instances from
the source domain to the target domain scene. Furthermore, they employed an adaptive
downsampling function to adjust the point-cloud distribution of the transferred instances
to approximate the point distribution of the target domain. Similarly, Wang et al. [10]
proposed a Nearest-Neighbor-based Contrast Learning Network (NNCNet) as an unsuper-
vised learning algorithm. NNCNet learns discriminative feature representations using large
amounts of unlabeled data and incorporates a nearest-neighbor-based data-augmentation
scheme to capture accurate inter-modal semantic alignments. The goal of their approach
was to learn an encoder that encodes similar data of the same type while maximizing the
differences between encoding results of different data classes.

Cortes et al. [11] presented an unsupervised domain-adaptation training strategy for
LiDAR point-cloud 3D obstacle detection. Their method utilizes raw points after filtering
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based on image candidates, and the features encoded by PointNet-like backbones are
domain-independent. They significantly improved the accuracy of the model on the target
domain without using additional labels by incorporating auxiliary domain classifiers and
gradient reversal layers. Zhai et al. [12] adopted a self-supervised approach to enhance
the understanding of the point-cloud network by employing a multigrid autoencoder
(MA). The MA constrained the coder part of the classification network to gain a deeper
understanding of the point cloud during reconstruction. Through self-supervised learning,
the performance of the original network also improved.

In the semi-supervised category of the ML approach family, Lei et al. [13] proposed
a multi-branch Weakly Supervised Learning Network (WSPointNet) to address the limi-
tations of existing semantic segmentation methods that require a large amount of labeled
data, which is labor-intensive and time-consuming. Their method consisted of a basic
weakly supervised framework along with a multi-branch weakly supervised module.
Yin et al. [14] investigated the potential of weakly supervised semantic segmentation in-
tegrated with self-training (WSSS-ST) in handling extensive labeled data training. They
introduced a Weakly Supervised Semantic Segmentation (WSSS) framework based on a
Semantic Query Net (SQN) to train Deep Neural Networks (DNNs). Their approach aimed
to enhance the understanding of 3D scenes, object identification, and the construction of
3D reconstruction models.

Additionally, Li et al. [15] proposed a triplet semi-supervised deep network (TSDN)
for the fusion classification of hyperspectral and LiDAR data. They introduced a pseudo-
label acquisition strategy to increase the number of available training samples in the
semi-supervised learning setting. Their approach also incorporated an attention module
to enhance the model’s representation of deep information. The TSDN triplet branch-
fusion classification network consisted of a 1-D CNN for spectral feature extraction in
hyperspectral imagery (HSI), a 2-D CNN for spatial feature extraction in hyperspectral
data, and a Cascade Net for elevation feature extraction in LiDAR data.

In the third family of ML classification approaches, Hassan et al. [16] proposed a deep,
hierarchical 3D point-based architecture for object classification and part segmentation.
Their architecture captured fine-grained contextual geometric information in the local
region, allowing it to learn robust geometric features that are invariant to geometry and
orientation. Zhou et al. [17] suggested the Transfer learning-based Sampling Attention
Network (TSANet) for the semantic segmentation of 3D urban point clouds, with a fo-
cus on developing an effective semantic model for multi-class object detection in urban
environments. Xue et al. [18] demonstrated a dynamically sized optimal neighborhood
recovery method for 3D point clouds, which considers the correlation between point clouds
and the surface variation of local neighborhoods. They extracted local geometric features
within the optimal neighborhood to improve the classification accuracy of 3D point clouds.
He et al. [19] presented the Stereo Red Green and Blue (RGB) and Deeper LiDAR (SRDL)
framework for 3D object detection in autonomous driving, leveraging both semantic and
spatial data. They introduce a residual-attention learning mechanism to extract deeper
geometric features from irregular 3D point clouds.

Yang et al. [20] adopted a cross-modality feature-fusion network for few-shot 3D point-
cloud classification, aiming to recognize objects with only a few labeled samples, even in the
presence of missing points in the point-cloud data. They investigated the Support-Query
Mutual Attention (SQMA) module for updating support and query features, considering all
support features for query feature updating. Chen et al. [21] demonstrated the error feature
back-projection-based local-global (EB-LG) feature-learning module to improve point-cloud
representation. The EB-LG module facilitated learning hidden features between local and
global features, enriching the semantic information of local features. Küçükdemirci et al. [22]
suggested a Convolutional Neural Network (CNN) for detecting clearance cairns, which
serve as important markers of past agricultural activities. They trained the algorithm using
LiDAR-derived datasets that they annotated and created, aiming to develop a specific
pre-trained model for the segmentation of specific archaeological features.
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Miao et al. [23] proposed Multiscale Feature Fusion (MFFR) based on RandLA-Net [24],
which utilized encoder-decoder modules of varying depths to effectively fuse high and low
levels of semantic information in point clouds. This technique enhanced the utilization of
feature information extracted from the network. Cao et al. [25] presented two semantic
segmentation strategies for point clouds: Semantic-Based Local Aggregation (SLA) and
Multiscale Global Pyramid (MGP). These strategies addressed the issue of local-feature
clustering by leveraging semantic similarity in the local region and incorporating global
features in the local feature aggregation. Fan et al. [26] utilized the Multiscale Learning
and Attention Enhancement Network (MSLAENet) for the end-to-end classification of HSI
and LiDAR data. The network employed a two-branch CNN structure with self-calibrated
convolutions and a hierarchical residual structure, enabling the extraction of spectral and
spatial information at multiple scales.

Kermarrec et al. [27] compared existing algorithms for the classification of Terres-
trial Laser Scanner (TLS) point clouds in landslide monitoring. They analyzed both ML
classification algorithms based on manual feature extraction from point clouds and Point-
Net++ [28], a DL approach that automatically extracts features. Their study aimed to
determine the benefits and drawbacks of various classification algorithms. Lei et al. [29] em-
ployed a Hierarchical Convolutional Neural Network (H-CNN) model and high-resolution
multi-temporal Google Earth images. They explored the combination of hierarchical classi-
fication and CNNs to enhance classification accuracy in dense forests. Li et al. proposed
the Multi-Level Feature-Extraction Layer (MFEL), which models point clouds at different
levels to capture local contextual features and global information. The MFEL extends the
GAPLayer [30] and enables feature extraction at three different scales: single point, point
neighborhood, and point set, facilitating the extraction of multi-granularity features from
point clouds.

Terrain-net, proposed by Li et al. [31], is an end-to-end and highly efficient network that
combines the 3D point convolution operator and self-attention mechanism. It effectively
captures local and global features for UAV point-cloud ground filtering. This parameter-
free DL network is specifically designed for processing UAV point clouds in forested
environments. Morsy and Shaker [32] aimed to reduce training data and evaluate the
relevance of sixteen LiDAR-derived geometric features for the classification process. They
selected the most important features and employed a pointwise classification method based
on random forests on a 3D point cloud of a university campus building collected by a
TLS system.

Kuprowski and Drozda [33] proposed a single multi-class approach that utilizes a
single network to classify all four basic classes (excluding ground) in a power supply
domain. They carefully selected features for classifying the airborne LiDAR point cloud,
aiming to achieve accurate automatic classification and reduce manual labor. The algorithm
utilizes height-based features relative to the ground and requires the creation of a digital
terrain model from ground points.

Wang et al. [34] presented a point-cloud processing method based on the Graph
Convolution MultiLayer Perceptron (GC-MLP). Their approach improves generalization
performance through sparse convolutional links and enhances model capability through
dynamic weights and the global receptive field of the MLP. Deng et al. [35] developed a
weighted sampling method based on Farthest Point Sampling (FPS) with a DL network
that incorporates balanced sampling and hybrid pooling. They adjust the sampling weight
values based on the model’s loss to equalize the sampling process and include the relational
learning of the sampling center point’s neighborhood space in the feature-encoding process,
using a self-attention model to determine feature importance.

Nahhas et al. [36] presented a DL strategy for building detection, and they developed
a framework based on an autoencoder to reduce feature dimensionality and a CNN to
distinguish between building and non-building objects. Rottensteiner et Briese [37] pro-
posed a method to automatically generate 3D building models from directly observed point
clouds collected by LIDAR sensors.
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In the context of existing ML- and DL-based methods for point-cloud semantic classifi-
cation, since PointNet and PointNet++ [28] were introduced in 2017, this has been a very
active area of research. Hence, most of the suggested semantic classification approaches
focus on the network form to improve their efficiency. This paper focuses on the selection
of GFs to enhance the classification results. In turn, the purpose of this work is to evaluate
the accuracy of an ML classification strategy for distinguishing the major classes (buildings,
terrain, and vegetation) in urban areas. This paper intends to develop and provide a
model that highlights the role of geometric features to classify an urban LiDAR point cloud
(Figure 1). In this context, our initial focus is on using supervised Machine Learning (ML)
techniques commonly used in LiDAR data processing but with a pointed selection of input
layer features. Once the target is reached, the next stage will be to create a high-accuracy
unsupervised ML classifier.
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3. Input Data

In this paper, five datasets are used to test the effectiveness of the suggested classifica-
tion approach explained in Section 5 (Table 1). The selected point clouds represent various
urban typologies, with varying point densities and acquisition dates. This choice allows for
assessing the reliability of the classification approach across different urban typologies. The
first dataset is obtained from Elvis-Elevation and Depth Mapping [38] (see Figure 2). This
data sample represents an airborne scan of Brisbane City in Australia (referred to as Bris-
bane 1 in Table 1). It was acquired between 22 June and 28 October 2014, using a fixed-wing
aircraft. The LiDAR sensors used for this scan are ALS50 (Leica, Heerbrugg, Switzerland),
SN069, and Riegl 680i (Riegl, Horn, Austria). The creation of the LiDAR dataset involved
the utilization of an Inertial Measurements Unit (IMU) and post-processed airborne Global
Navigation Satellite System (GNSS) maps in conjunction with the waveform device data.
The point cloud captured in this dataset contains various classes, as illustrated in Figure 2,
such as building roofs, high and low vegetation, cars, house curbs, sidewalks, swimming
pools, utility poles, and sunshades. This paper specifically focuses on extracting three main
classes: buildings, high vegetation, and a ground class encompassing other objects.

Table 1. Tested datasets.

Brisbane 1 Brisbane 2 Brisbane 3 Vaihingen Christchurch [39]

Area (ha) 100 7 98.7403 3 60

Number of points 12,217,017 35,000,000 10,683,855 230,303 12,029,508

Flight height (m) 2000 55 2060 500 -

Mean density (point/m2) 12.2 500 - 7.5 19

Theoretical density (point/m2) 2 250 2 4–6.7 -

Point accuracy (cm) 30–80 5–10 30–80 10–30 -
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The second point cloud originates from the southern region of Queensland, Australia,
near the city center (refer to Figure 3). It was collected in 2022 using a UAV platform
equipped with a DJI M300 RTK and the LiDAR payload Zenmuse L1. The third point
cloud is also obtained from Elvis-Elevation and Depth Mapping [38]; this point cloud will
be used in Section 6 to analyze the accuracy of the proposed approach. This data sample
represents an airborne scan belonging to Brisbane City in Australia. The fourth dataset
used in this study pertains to the city of Vaihingen in Germany (see Figure 4), covering an
area with small, detached houses and abundant vegetation. Notably, the trees associated
with buildings exhibit a significant variation in quality and volume. Lastly, the fifth point
cloud represents Christchurch City (see Figure 5) in the Environment Canterbury Regional
Council of New Zealand.
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Figure 5. Christchurch city point cloud.

Table 1 provides a clear distinction between two types of point density: the mean
point density and the theoretical point density. The mean point density is calculated by
dividing the number of points within the horizontal area of the scanned zone, while the
theoretical point density is provided by the LiDAR provider company. It is worth noting
that the mean density should be greater than the theoretical density. This is because the
theoretical density does not consider the overlapping areas between scan strips and only
considers the beneficial points.

4. Geometric Features (GFs)

The geometric features (GFs) are used to study and describe the relationship between
each point in the point cloud and its neighbors. Due to the distinct properties resulting
from its calculation for each class, the model will be able to easily distinguish between
the classes. Indeed, one point and its local neighborhood allow for calculating a list of
geometric features [40]. The values of these features express the relative location of these
points. In this paper, 11 GFs are tested (Equations (1)–(11) [41]): sum of eigenvalues,
omnivariance, eigenentropy, anisotropy, planarity, linearity, PCA1, PCA2, surface variation,
sphericity, and verticality. They are based on the eigenvalues λi, i ∈ {1, 2, 3}, eigenvector,
and the normal vector.
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• The sum of eigenvalues is calculated using

∑ λi = λ1 + λ2 + λ3 (1)

• Anisotropy

A =
λ1 − λ3

λ1
(2)

• Omnivariance

O = 3
√

λ1 × λ2 × λ3 (3)

• Eigenentropy

E = −∑ λi ln(λi) (4)

• Planarity
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• Linearity
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(10)

• Verticality

V = 1− |nz| (11)

The verticality is derived from the vertical component nz of the normal vector n ∈ R3.
To analyze the various geometric features in the dataset, the Brisbane 1 point cloud is

used (see Table 1 and Figure 2). Indeed, the selected point cloud represents a wide area
(100 ha), and the terrain topography is not flat. Moreover, different building typologies
are present, and the trees are distributed in different forms, e.g., individual trees, groups
of connected trees, and trees surrounding buildings. That is why this point cloud can be
considered a representative sample. Then, the point cloud is manually classified using
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CloudCompare software to separate the different classes: building, terrain, and vegetation.
Each geometric feature is then calculated for the three main classes. To evaluate the feature
values, a histogram graph is generated for each class, representing the list of feature values
in the point cloud.

Histograms of calculated anisotropy feature values are shown in Figure 6a–c. The
histograms show that most terrain points have distributions with values between 0.9 and 1,
while building points have values close to 1 and the vegetation class has distributions with
values between 0.75 and 1. This difference in histogram behavior highlights the importance
of the anisotropy feature.
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The histograms of the eigenentropy feature are shown in Figure 7a–c. In fact, the
majority of points have values less than 0.3 for the terrain class, values between 0.7 and 0.8
for the building class, and values between 0.3 and 0.75 for the vegetation class. As a result,
the eigenentropy feature can be useful for the separation between the three classes.
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Figure 7. Histograms of different values of the eigenentropy feature. (a) Terrain class; (b) Building
class; (c) Vegetation class.

The eigenvalues sum is represented as a histogram for each class shown in Figure 8a–c.
It can be noted that the value distributions differ significantly between the vegetation,
buildings, and terrain classes. This feature is useful to extract terrain classes, but it cannot
separate building and vegetation classes.

Figure 9a–c shows the calculated linearity feature values. The histograms show that
the distribution of points is nearly identical. Furthermore, despite the histogram spike
in variant points, the difference between them is still insignificant, and thus the linearity
feature will not aid in the separation of the classes.
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Figure 10a–c shows the calculated omnivariance-feature value distributions very
clearly between the classes. The terrain points have values between 0.0025 and 0.016,
the vegetation points have values between 0.01 and 0.13, and the values for the building
points are between 0.03 and 0.1. As a result, this feature cannot aid in distinguishing the
three classes.
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Figure 10. Histograms of different values of the omnivariance feature. (a) Terrain class; (b) Building
class; (c) Vegetation class.

The calculated PCA1 feature values are shown in Figure 11a–c. The majority of points
for each class have a distribution interval between 0.5 and 0.8 or 0.9. These minor differences
in the histogram of the PCA1 feature will not support the separation of the vegetation,
building, and terrain classes; hence, this geometric feature will be ignored.
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Figure 11. Histograms of different values of PCA1 feature. (a) Terrain class; (b) Building class;
(c) Vegetation class.

The same remake is observed for the PCA2 feature. As a result, the calculated PCA2
values in Figure 12a–c show that the distribution of points in all classes will not benefit us
in distinguishing between them.
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Figure 12. Histograms of different values of PCA2 feature. (a) Terrain class; (b) Building class;
(c) Vegetation class.

Figure 13a–c shows histograms of the values derived from the calculated planarity
features. Each histogram has a different distribution of points, but they all have similar
distribution intervals of between 0 and 1. This feature will not be effective for distinguishing
buildings and vegetation from the terrain.
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(c) Vegetation class.

Also, the histograms of the values obtained from the calculated sphericity features
are shown in Figure 14a–c. The feature values have different distribution intervals, with
the vegetation interval being [0, 0.35], the terrain interval being [0, 0.1], and the building
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interval being [0, 0.05]. In fact, this feature is important in distinguishing terrain, building,
and vegetation classes.
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Figure 14. Histograms of different values of sphericity feature. (a) Terrain class; (b) Building class;
(c) Vegetation class.

Figure 15a–c shows histograms of the calculated surface-variation feature values. The
histograms show the distribution of points at the interval [0, 0.075] for terrain points, for
the building class, most points have values at the interval [0, 0.02], whereas vegetation class
points have values at the interval [0, 0.15]. Finally, the surface-variation feature can aid in
the target classification.
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Histograms of the calculated verticality feature values are shown in Figure 16a–c.
Most terrain points are located between 0 and 0.05, whereas building points vary from 0
to 0.1 and vegetation class points are between 0 and 1. However, the verticality feature is
regarded as efficient.
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In summary, the obtained features list will be utilized to assess neighborhood charac-
teristics, shape, and data distribution within the point cloud. These results will facilitate the
implementation of the DL pipeline algorithm for recognizing and distinguishing vegetation,
building, and terrain points. There are six features that exhibit distinct distributions and
values for each class, and they will serve as inputs for the DL pipeline algorithm, along with
the coordinates of each point. Table 2 and Figure 17 provide a summary of the geometric
features’ scores to test their effectiveness as point-cloud classification criteria.

Table 2. Summary of feature values illustrated in Figures 3–13.

Feature VC TC BC Acceptance

Sum of eigenvalues 0.1–0.52 0.02–0.12 0.4–0.73 No

Omnivariance 0.01–0.13 0.0025–0.016 0.03–0.1 No

Eigenentropy 0.3–0.75 0.1–0.3 0.7–0.8 Yes

Planarity 0.05–0.85 0–0.8 0.2–0.96 No

Sphericity 0–0.3 0–0.1 0–0.04 Yes

Surface variation 0–0.15 0–0.07 0–0.02 Yes

Verticality 0–1 0–0.05 0–0.1 Yes

Anisotropy 0.75–1 0.9–1 0.96–1 Yes

Linearity 0.1–0.95 0.2–1 0.04–0.8 No

PCA1 0.48–0.92 0.52–0.96 0.5–0.82 No

PCA2 0.06–0.46 0.02–0.46 0.18–0.49 No
VC: Vegetation Class; TC: Terrain Class; BC: Building Class.
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Figure 17. Graphical representation of geometric features.

From Table 2 and Figure 17, it is evident that the input layer of the proposed clas-
sification network will incorporate only six geometric features. These features include
omnivariance, eigenentropy, sphericity, surface variation, verticality, and anisotropy. After
analyzing the geometric features and selecting the relevant ones, the subsequent section
will provide a comprehensive description of the proposed classification network.
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5. Suggested Algorithm

Most of the suggested classification approaches in the literature focus on developing
a complex ML classification network for the automatic classification of LiDAR data. The
approach suggested in this paper focuses on improving the input layer using basic DL
networks. Indeed, it calculates the geometric features of the input point cloud and analyses
their values regarding the class that they belong to (see Section 4). Once the efficient
geometric features are recognized and adopted in the input layer, the training stage can
start to calculate the trained classification model.

In this section, the proposed algorithm primarily focuses on classifying the point cloud
into four major classes: buildings, vegetation, ground, and noise. It is important to note
that the noise class may encompass various unconsidered objects typically found in urban
environments, such as cars, house curbs, sidewalks, swimming pools, utility poles, low
vegetation, powerlines, and traffic lights. Grouping these objects into a single noise class is
a deliberate choice, as the three considered classes collectively account for more than 85% of
the analyzed urban point clouds (refer to Table 3). This remake highlights the importance
of the three considered classes. The decision is taken to consider the buildings, vegetation,
and terrain as the main three components of an urban scene point cloud, and that all other
points can be classified within one class currently named “noise class”. Future research
will focus on the automatic extraction of different minor classes from noise class regarding
their importance in the final 3D city model.

Table 3. Percentage of class points in studied point clouds.

Point Cloud Vegetation (%) Buildings (%) Terrain (%) Sum (%)

Brisbane 1 21.78 10.1 63.29 95.17

Brisbane 2 26.34 31.34 32.24 89.92

Christchurch 8.36 35.2 41.9 85.46

Vaihingen 12.16 25.5 50.4 88.06

5.1. Classification Network

The input layer is the labeled point cloud that contains the coordinates and the
calculated features of each point. The hidden layers of the MLP classifier can be one
hidden layer or more. The output layer is the result obtained by the hidden layer’s strict
calculations. Figure 18 demonstrates the process and how the DL works.

Sensors 2023, 23, x FOR PEER REVIEW 15 of 30 
 

 

Table 3. Percentage of class points in studied point clouds. 

Point Cloud Vegetation (%) Buildings (%) Terrain (%) Sum (%) 
Brisbane 1 21.78 10.1 63.29 95.17 
Brisbane 2 26.34 31.34 32.24 89.92 

Christchurch 8.36 35.2 41.9 85.46 
Vaihingen 12.16 25.5 50.4 88.06 

5.1. Classification Network 
The input layer is the labeled point cloud that contains the coordinates and the cal-

culated features of each point. The hidden layers of the MLP classifier can be one hidden 
layer or more. The output layer is the result obtained by the hidden layer’s strict calcula-
tions. Figure 18 demonstrates the process and how the DL works. 

 
Figure 18. DL model architecture. 

The activation function employed is the logistic function (Equation (13)), where HL 
is the hidden layers. In this paper, ten HLs are used. m is the number of dimensions equal 
to nine (XYZ coordinates plus six selected features—see the GFs section). The parameters 
and hyperparameters in a neural network can affect the model’s performance. The main 
parameters are weights, biases, learning rate, number of hidden layers, and the activation 
function. Each node has a certain amount of weight that is assigned to it in the network. 
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The selection of activation function controls how perfectly a network model works to 
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The activation function employed is the logistic function (Equation (13)), where HL is
the hidden layers. In this paper, ten HLs are used. m is the number of dimensions equal
to nine (XYZ coordinates plus six selected features—see the GFs section). The parameters
and hyperparameters in a neural network can affect the model’s performance. The main
parameters are weights, biases, learning rate, number of hidden layers, and the activation
function. Each node has a certain amount of weight that is assigned to it in the network.
The weighted sum of the inputs and the bias is calculated using Equation (12) [42].

S = b + ∑m
k=1 xikwik (12)

where S(.) : Rm → Ro , m is the number of input dimensions, and o is the number of output
dimensions [43,44]. X = [x1, x2, . . . , xm] is the input features, W = [w1, w2, . . . , wm]
their weights, and b is a bias term [45].

Hence, the activation function receives the results of the calculated sum S, and it
returns the accurate result from the node based on the output received (see Equation (13)
which represents the logistic sigmoid activation function [46]).

ϕ(S) = logistic(S) =
1

1 + e−S (13)

The selection of activation function controls how perfectly a network model works
to learn the training dataset while in the output layer, and it determines the types of
predictions a model can generate. Once the final output is obtained, the loss function
is employed to compute the difference between the predicted and the resulting outputs;
it measures how well the neural network models the training data. The loss function
employed by MLP is the log-loss calculated using Equation (14) [47].

L(P, Y) = − 1
N

N

∑
i=0

K

∑
k=0

yi,klog(p i,k

)
(14)

where N is the number of samples and K is the number of labels, Y = [y 1, y2, . . . , yN ] matrix
of true labels, yi,k = 1 if sample i has label k taken from a set of K labels, P = [p 1, p2, . . . , pN ]
is a matrix of probability estimated, with pi,k = Pr(yi,k = 1).

To calculate the percentage of correct predictions made by a given model, the accuracy
score is used. In ML applications, the accuracy score is an evaluation metric that compares
the number of correct predictions made by a model to the total number of predictions
made. It is computed by dividing the total number of predictions by the number of correct
predictions using Equation (15) [47].

Accuracy(ŷi, yi) =
Number o f correct predictions
Total number o f predictions

=
1
m∑m−1

i=0 1(ŷi = yi) (15)

where ŷi is the predicted value of the ith sample and yi is the corresponding true value,
then the fraction of correct predictions over m is the number of input dimensions.

5.2. Method

To achieve LiDAR point-cloud classification, this paper proposes two strategies. The
first strategy involves applying the proposed algorithm to the point cloud, extracting all
four classes simultaneously. The second strategy follows a two-step classification process.
Firstly, the point cloud is classified into buildings and non-buildings, and then the non-
building class is further classified into vegetation, terrain, and noise classes based on the
features calculated in the geometric feature (GF) section.

The primary focus of this study is the classification of the urban scene into three classes:
terrain, vegetation, and buildings, making the first scenario the direct objective. The analysis
of geometric features indicates that the selected features effectively distinguish the building
mask within the examined point cloud. Furthermore, the accurate separation of vegetation
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and terrain classes has been supported in the existing literature [8]. These two reasons
serve as the main motivations for developing the second scenario. The distinction between
the two methods lies in the labeling of the input data. In the first scenario, the point cloud is
labeled into four classes. In contrast, the second scenario involves a labeling process where
the model is initially assigned two classes: buildings are labeled as 2 and non-buildings
are labeled as 0. Subsequently, the non-building class is further labeled as vegetation
(1) and non-vegetation (0), and finally, the non-vegetation is labeled as ground (0) and
non-ground (3). Consequently, the point cloud is divided into four classes as a result of
this process.

The subsequent section will present the results of applying the two strategies to the
LiDAR point cloud and evaluate the classification accuracy in both cases.

5.3. DLPA Workflow

The suggested algorithm begins by performing downsampling on the point cloud,
which involves selecting a subset of samples to reduce the sampling rate. This process
helps reduce data size and density, making it suitable for ML algorithms that require fewer
training points. Downsampling also allows for the creation of smaller models, freeing up
device space for other necessary codes and processes.

The second step involves the manual labeling of the point cloud using software tools
such as CloudCompare. In this research, CloudCompare software is utilized to manually
classify the LiDAR data. The classification process starts by extracting buildings, vegetation,
and ground points separately. Any remaining points that do not belong to the considered
classes are categorized as noise. Each class is assigned a specific code: 0 for ground points,
1 for vegetation points, 2 for building points, and 3 for the noise class.

The third step involves calculating the selected features from the GF section for
each class. The features include omnivariance, eigenentropy, sphericity, surface variation,
verticality, and anisotropy. Histograms are then generated to analyze the values obtained
from each feature for the four classes. This analysis helps to identify the most accurate
features that can effectively differentiate between the classes. Subsequently, the calculated
features are combined with the labeled point cloud to create the input data for the DLPA.

The input point cloud is divided into three sets: 70% for the training set, 10% for the
validation set, and 20% for the test set. The DLPA is implemented using Python, NumPy,
and the MLP classifier algorithm from the Sklearn libraries [43]. Thereafter, the DLPA is
trained using the training dataset. The trained DLPA is then validated using the validation
dataset to assess its performance and effectiveness. Finally, the test dataset is utilized to
further validate the trained and validated DLPA by adjusting the hyperparameters. The
workflow of the DLPA is summarized in Figure 19.

The output of the DLPA is the prediction label for each point of the city point cloud,
e.g., 2 for building class points, 1 for the vegetation class, 0 for the terrain class, and 3 for
the noise class. The obtained classification results will be mentioned in the Results section.

To improve the obtained results, the one-vs-the-rest (OvR) multi-class strategy is
used [43], also known as one-vs-all. This strategy consists of fitting one classifier per class,
which takes the classifier as a parameter, which is in this case the DLPA. For each classifier,
the class is fitted against all the other classes. The hyperparameters that are used to obtain
the best accuracy results are 10 hidden layers, the Adam solver, and the logistic sigmoid
activation function.
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6. Results and Accuracy

The objective of the suggested approach is to extract the classes of buildings, vege-
tation, and terrain from an urban point cloud using the DLPA, as illustrated in Figure 19.
This algorithm is applied using two different strategies. The first strategy extracts the
three target classes simultaneously, while the second strategy performs the classifica-
tion in two consecutive steps: the classification of buildings/non-buildings and the clas-
sification of the non-buildings class into three classes: terrain, vegetation, and noise.
Figures 20a, 21a, 22a and 23a present the results obtained by applying the suggested ap-
proach using the first strategy, while Figures 20b, 21b, 22b and 23b depict the results
obtained using the second strategy. These figures clearly demonstrate the effective com-
pletion of building, vegetation, and terrain classification in both scenarios. In fact, the
developed approach achieves an accuracy score of 97.9% when using the first method and
98.8% when using the second. The accuracy is calculated by comparing the results to a
manually classified point cloud serving as the reference model.
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It is important to highlight that the first scenario not only offers a simpler approach
compared to the second scenario but it also requires applying the DLPA only once. As
a result, it demands less processing time compared to the second classification strategy.
However, it should be noted that the second scenario achieves a slightly higher accuracy
score of 98.8% compared to the 97.9% achieved in the first scenario. The results of the
second point cloud are presented in Figures 24–26.
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The third point cloud is the Vaihingen point cloud, the results are shown in Figures 27–29.
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The results can also be represented by categories, e.g., building, vegetation and terrain
as showed in Figures 33–36.
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The first scenario consists of applying the proposed algorithm to the point cloud
and extracting the three classes at the same time, aiming to classify the entire point cloud
into buildings, vegetation, and terrain without intermediate steps. This approach offers
a straightforward implementation by processing the entire point cloud in a single step,
eliminating the complexity of dividing the process into multiple stages. Additionally, class
coherence is enhanced as all four classes are classified together, allowing the algorithm
to consider relationships and interactions between classes for improved accuracy. While
processing the entire point cloud at once may pose computational challenges, efficient
algorithms and hardware can ensure acceptable performance. With a high accuracy score
of 96.9%, this strategy demonstrates its effectiveness in accurately identifying the different
classes within the point cloud.

On the other hand, the second strategy adopts a two-step approach for classifying the
point cloud. The initial step focuses on distinguishing buildings from non-building objects,
while the second step classifies the non-building objects into three categories: vegetation,
terrain, and noise, achieving a score of 98%. This strategy’s advantage lies in its ability to
prioritize the accurate identification of buildings, which are often of utmost importance
in various applications. By separating the classification into two stages, the algorithm
can specifically adjust the feature-extraction and classification techniques for each step,
potentially improving accuracy. Additionally, the division of non-building objects into
three distinct classes allows for a more detailed and precise analysis. This strategy offers
flexibility for the customization and fine-tuning of algorithms for each class, allowing
for tailored approaches. However, there is a potential risk of information loss during the
intermediate classification stage, although this can be mitigated by careful feature and
algorithm selection.

Both strategies rely on the calculation of geometric features to achieve efficient results.
Geometric features provide valuable information about the shape, size, and spatial rela-
tionships of objects within the point cloud. By leveraging these features, both strategies
can effectively differentiate between different classes. The use of geometric features al-
lows the algorithms to capture important characteristics unique to each class and enable
accurate classification.

The performance of the model is tested using the Brisbane 3 dataset (Figure 37), where
the trained model of the Brisbane 1 dataset is applied to the Brisbane 3 dataset. The
obtained results are represented in Figures 38–42, with an accuracy score of 89%. Despite
the high similarity in typology and point-cloud characteristics between the trained and
tested data, the accuracy of the obtained result is still lower than in the case of using the
same dataset (98%). However, the obtained accuracy still represents a promising result.
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More investigation in future work will be conducted to improve the transportation accuracy
of the trained model parameters for other datasets. Figure 37 mentions the visualization of
the Brisbane 3 point cloud, whereas Figures 38–42 illustrate the classification results.
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At this stage, it is important to underline numerous authors who investigated the
extraction of objects from urban point clouds using LiDAR data and using rule-based
approaches. In one such study, Demir [48] uses the RANdom SAmple Consensus for
(RANSAC) paradigm [49] to recognize buildings in urban LiDAR point clouds. The
resulting accuracy of this algorithm ranges between 77% and 92%. In the same context,
Shao et al. [50] adopt a top-down rule-based algorithm to detect seed-point sets with
semantic information; then, a region-growing algorithm is applied to detect the building
class. The resulting accuracy of this algorithm ranges between 0.65% and 98.9%. It can
be noted that the building-extraction accuracy in both approaches varies according to the
employed accuracy factor (correctness, completeness, quality, and error types 1 and 2), but
in all cases, the obtained accuracy of the suggested DL algorithm is still promising (98%).
In the same context, Table 4 and Figure 43 show a comparison between the second-used
classification strategy and three rule-based approaches that participated in the project of
“ISPRS benchmark on urban object detection” [51–54]. All approaches in this comparison
use the Vaihingen dataset (Table 1 and Figure 4). The building detection accuracy in the
cities’ approaches was estimated using correctness, completeness, and quality as accuracy
factors. The mentioned results in this comparison confirm the validity of the geometric
features analysis in the context of DL LiDAR data classification.

Table 4. Accuracy comparison of second classification strategy with previous studies.

Approach Accuracy (%)

Wei et al. [52] 83.9 to 92.9

Rottensteiner et al. [53] 85.0 to 93.6

Dorninger et al. [54] 84.6 to 98.4

Strategy 2 98

Finally, it is useful to calculate the accuracy of various classes among first and second
classification strategies (Table 5). It can be noticed that the maximum difference between
obtained accuracy equals 3%, and the building class has the highest extraction accuracy
(99%) in the second scenario.
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Table 5. Extraction accuracy of various categories among first and second classification strategies.

Strategy Buildings Class
Accuracy (%)

Vegetation Class
Accuracy (%)

Terrain Class
Accuracy (%)

1 96.9 96.9 96.9

2 99 97 98
Strategy 1 is the classification of buildings, terrain, and vegetation; Strategy 2 is the classification of buildings and
non-buildings. Then, the non-buildings class is classified into vegetation and terrain.

7. Conclusions

This paper assessed a DL pipeline algorithm, based on the MLP Neural Network, for
the automatic classification of urban LiDAR point clouds. The algorithm utilized both
the point coordinates and the geometric features of the LiDAR points, which have been
analyzed to identify the most effective features for distinguishing between different objects
in the point cloud. The ML algorithm parameters have also been optimized to achieve
optimal performance.

Two classification strategies are employed in this study. The first strategy directly
classifies the urban point cloud into terrain, vegetation, and buildings. The second strat-
egy initially classifies the point cloud into buildings and non-buildings, followed by the
classification of the non-building class into vegetation and non-vegetation. Lastly, the
non-vegetation class is further classified into terrain and non-terrain.

Five LiDAR point clouds from various areas were used to evaluate the proposed
classification approach. The achieved high classification accuracy of 98% validates the
efficacy of the algorithm. It is important to note that the second strategy requires more
processing time compared to the first strategy, but it yields slightly more accurate results.
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In conclusion, the obtained accuracy results are highly promising. Further research is
needed to investigate the transferability of the trained model to similar data, which would
provide an advantage for supervised ML classification over unsupervised ML. Nonetheless,
unsupervised ML remains a valuable research option that can contribute significantly to
LiDAR data classification. Additionally, it is recommended to test the proposed approach
on datasets representing different urban typologies to further validate its effectiveness.
Finally, generalizing the solution and applying it to other point clouds with varying scales,
orientations, scanning resolution, and urban scenery is the next step in using the model
directly to any point cloud.
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