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Abstract: The acoustic waves of higher orders propagating in a layered structure consisting of a
silicon plate coated with piezoelectric ZnO and/or AlN films were used for the development of a
sensor with selective sensitivity to liquid viscosity η in the range of 1–1500 cP. In that range, this
sensor possessed low sensitivity to liquid conductivity σ and temperature T in the ranges of 0–2 S/m
and 0–55 ◦C, respectively. The amplitude responses insensitive to the temperature instead of the
phase were used to provide the necessary selectivity. The sensor was based on a weak piezoactive
acoustic wave of higher order. The volume of the probes sufficient for the measurements was about
100 µL. The characteristics of the sensors were optimized by varying the thicknesses of the structure
layers, number of layers, wavelength, wave propagation direction, and the order of the acoustic
waves. It was shown that in the case of the layered structure, it is possible to obtain practically the
same selective sensitivity toward viscosity as for acoustic waves in pure ST, X quartz. The most
appropriate waves for this purpose are quasi-longitudinal and Lamb waves of higher order with
in-plane polarization. It was found that for various ranges of viscosity η = 1–20 cP, 20–100 cP, and
100–1500 cP, the maximum sensitivity of the appropriate wave is equal to 0.26 dB/cP, 0.087 dB/cP, and
0.013 dB/cP, respectively. The sensitivity of the waves under study toward the electric conductivity of
the liquid is much less than the sensitivity to liquid viscosity. These two responses become comparable
only for very small η < 2 cP. The waves investigated have shown no temperature responses in contact
with air, but in the presence of liquid, they increase depending on liquid properties. The temperature
dependence of liquid viscosity is measurable by the same sensors. The results obtained have shown
the possibility of designing acoustic liquid viscosity sensors based on multilayered structures. The
set of possible acoustic waves in layered structures possesses modified propagation characteristics
(various polarization, phase velocities, electromechanical coupling coefficients, and attenuations). It
allows choosing an optimal acoustic wave to detect liquid viscosity only.

Keywords: acoustic plate mode; silicon plate; piezoelectric film; liquid viscosity

1. Introduction

The development of fast, precise, highly sensitive, and reliable liquid viscosity sensors
is very important for various medical applications, e.g., for the quick analysis of human
blood during and/or after a coronavirus infection [1]. These devices may also be used
for control of the coagulation properties of blood under the influence of drug therapy or
other external influences [2,3], the properties of food [4], fuels and lubricants [5], and other
liquids. The ultrasonic sensors based on various types of acoustic waves may be used
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for all these applications [6–10]. Such devices are based on the changes in the acoustic
characteristics (velocity, attenuation) due to a liquid sample deposition on an acoustic
propagation path [11].

Recently, the possibility of developing an acoustic sensor with high sensitivity to the
liquid viscosity and low sensitivity to the electric conductivity and temperature of the
liquid sample based on a single ST, X quartz plate has been shown [12]. In this case, it was
possible to optimize such sensors only by wave order, wave frequency, wavelength, and
plate thickness.

It is well known that layered structures composed of a plate with a thickness H of
acoustic wavelength λ (H ~ λ) and one or two piezoelectric films with a thickness h much
less than λ (h << λ) offer a large variety of acoustic properties [13–19]. Propagation of the
waves in the structures may be changed by proper selection of the mode number n, plate
thickness H, film thickness h, and material film combination [20]. Excitation of the waves
in the multilayered structures may be accomplished by the larger amount of transducer
configurations than in uncoated piezoelectric plates [15,16]. Therefore, the plates coated
with one or two films of the same or different materials as well as the same or different
thicknesses may turn out to be attractive for liquid sensors.

There are known theoretical works devoted to the investigation of liquid viscosity
on the properties of shear mode in a multilayered flexural bulk acoustic wave resonator
(FBAR) [21], Love-type waves in a composite structure [22], a shear-horizontal surface
acoustic wave (SH-SAW) in layered magnetoelectric structures [23], a surface acoustic wave
(SAW) in multilayered structure ZnO/SiO2/Si [24], Love acoustic waves [25], quasi-Lamb
modes in structure SiC/c-ZnO [26], etc. As it is well known, there have been attempts to
create liquid acoustic sensors based on SAW [27], FBAR [28], and slot acoustic waves [29].

In ultrasonic sensors based on delay lines, a liquid sample is deposited on a plate
between the input and output interdigital transducers (IDTs) and analyzed by an acous-
tic wave of various types (surface and plate waves with shear-horizontal polarization,
antisymmetric and symmetric Lamb waves). Such a wave, depending on the frequency,
penetrates into the liquid to a depth of 100–3000 nm [30,31]. The amplitude and phase of
the acoustic wave are dependent on all liquid parameters together: that is, on density ρ,
viscosity η, electrical conductivity σ, temperature T and permittivity ε [32–34]. Because
of that, in order to define a set of liquid properties, it is possible to use several waves,
multichannel sensor configurations, and special signal processing [35]. This peculiarity
brings up the question: are there acoustic waves possessing simultaneously (i) sufficient
electromechanical coupling coefficient to be excited, (ii) dominant sensitivity to liquid
viscosity to be selective, and (iii) is it possible to develop a single channel sensor that is
selectively sensitive to viscosity using an appropriate acoustic wave and relevant solid
state structure?

The goal of the present paper is to study these questions using non-piezoelectric Si
plates coated with piezoelectric (ZnO, AlN) films and changing wave properties through
changing the propagation direction, plate/film or film/plate/film material combination,
mode order n, plate thickness H, films thickness h, and acoustic wavelength λ.

2. Materials and Methods
2.1. Theoretical Methods

Acoustic waves propagate along the x1 direction of the piezoelectric structures con-
sisting of one or two piezoelectric films (ZnO or AlN) deposited on the surface of the
non-piezoelectric plate (Si). The geometries of the problems are shown in Figures 1 and 2.
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The non-piezoelectric plate is bounded by planes x3 = 0 and x3 = H. In a two-layered
structure, a piezoelectric film (ZnO or AlN) is bounded by planes x3 = 0 and x3 = −h1
(Figure 1). In the case of a three-layered structure, one piezoelectric film (ZnO) is bounded
by planes x3 = 0 and x3 = −h1, and the other one (ZnO or AlN) is bounded by planes x3 = H
and x3 = h2 (Figure 2).

The regions x3 <−h1 and x3 > H (Figure 1a), x3 <−h1 and x3 > h2 (Figure 2a) correspond
to a vacuum. The task considered is a 2D problem, so all field components are assumed
to be constant in the x2 direction [36]. The equation of motion, Laplace’s equation, and
constitutive equations were used for each layer to find the phase velocity and mechanical
displacements of the wave [37].

ρpz∂2Upz
i /∂t2 = ∂Tpz

ij /∂xj,∂Dpz
j /∂xj = 0, (1)

Tpz
ij = Cpz

ijkl∂Upz
l /∂xk + epz

kij∂Φpz/∂xk, (2)

Dpz
j = −ε

pz
jk ∂Φpz/∂xk + epz

jlk∂Upz
l /∂xk, (3)

ρnpz∂2Unpz
i /∂t2 = ∂Tnpz

ij /∂xj, (4)

∂Dnpz
j /∂xj = 0, (5)

Tnpz
ij = Cnpz

ijkl ∂Unpz
l /∂xk, (6)

Dnpz
j = −ε

npz
jk ∂Φnpz/∂xk, (7)

Here, Ui is the component of the mechanical displacement of particles, t is the time, Tij
is the component of the mechanical stress, xj is the coordinate, Dj is the component of the
electrical displacement, Φ is the electrical potential, ρ is the density, and Cijkl, eikl, and εjk
are the elastic, piezoelectric, and dielectric constants, respectively. The indexes pz and npz
denote that the corresponding variable refers to the piezoelectric film and non-piezoelectric
layer, respectively.
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In the regions of the vacuum, the electrical displacement is satisfied by Laplace’s
equation:

∂Dvac
j /∂xj = 0, (8)

where Dvac
j = −ε0∂Φvac/∂xj. Here, ε0 is the vacuum permittivity, and index vac means that

the variable refers to the vacuum.
Then, the relevant electric and mechanical conditions on each boundary for the two-

layered structure (Figure 1a) are written as [37]:

x3 = −h1 : Tpz
i3 = 0; Φpz = Φvac; Dpz

3 = Dvac
3 , (9)

x3 = 0 : Upz
i = Unpz

i ; Tpz
i3 = Tnpz

i3 ; Φpz = Φnpz; Dpz
3 = Dnpz

3 , (10)

x3 = H : Tnpz
i3 = 0; Φnpz = Φvac; Dnpz

3 = Dvac
3 . (11)

Here, i = 1–3, h1 and H are the thicknesses of a piezoelectric film and non-piezoelectric
plate, respectively.

In the case of the three-layered structure (Figure 2a), the boundary conditions (9), (10),
(12), and (13) were used:

x3 = H : Unpz
i = Upz

i ; Tnpz
i3 = Tpz

i3 ; Φnpz = Φpz; Dnpz
3 = Dpz

3 , (12)

x3 = h2 : Tpz
i3 = 0; Φpz = Φvac; Dpz

3 = Dvac
3 . (13)

In the case of the presence of semi-infinite non-viscous or viscous, non-conductive
liquid on the structure surface in the region x3 < −h1 (Figures 1b and 2b), it is necessary to
use the equation of motion (4), Laplace’s Equation (5), and governing equations for Tlq

ij (6)

and Dlq
j = −ε lq∂Φlq/∂xj for liquid. In these equations, index npz should be replaced by

lq one. The boundary conditions in the plane x3 = −h1 for this task should be written as
follows [38]:

x3 = −h1 : Ulq
3 = Upz

3 ; Tlq
33 = Tpz

33 ; Tpz
13 = Tpz

23 = 0; Φpz = Φlq; Dpz
3 = Dlq

3 . (14)

When in the region x3 < −h1 (Figures 1c and 2c) the liquid is non-conductive but viscous, it
is necessary to use the next boundary conditions [39]:

x3 = −h1 : Upz
i = Ulq

i ; Tpz
i3 = Tlq

i3 ; Φpz = Φlq; Dpz
3 = Dlq

3 . (15)

In this case, the nonzero components of symmetric complex elastic constants of viscous
liquid Clq∗

ij in matrix form will have the next form [39]:

Clq*
11 = Clq*

22 = Clq*
33 = Clq

11 + jωη
lq
11

Clq*
12 = Clq*

13 = Clq*
23 = Clq

11 + jωη
lq
12

Clq*
44 = Clq*

55 = Clq*
66 = jωη

lq
44

, (16)

where the viscosity of the liquid is accounted as an imaginary part jωη
lq
11 of elastic moduli,

j is an imaginary value, ω = 2πf is the circular frequency, η
lq
ij are viscosity coefficients in

Pa×s, and η
lq
12 = η

lq
11 − 2η

lq
44.

The values of wave phase velocity v and three partial components of mechanical
displacement (U1, U2, U3) in the plane x3 = −h1 were found by using the method described
in [38].
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The solution is represented as a set of inhomogeneous waves for a set of equations for
each medium (piezoelectric plate, non-piezoelectric plate, non-viscous or viscous liquid
and vacuum):

Yi(x1, x3, t) = Yi(x3)ejω(t−x1/v) (17)

Here, Yi represents normalized values of U1, U2, U3, T13, T23, T33, Φ, and D3 for each
considered media [38].

This solution is substituted in appropriate equations corresponding to each medium
of the considered structure. As a result, the systems of ordinary differential linear equations
for each medium of structure are obtained. Each part of this system is represented in the
matrix form as follows:

[A][dYi/dx3] = [B][Yi] (18)

Here, [dYi/dx3] and [Yi] represent the vectors for the corresponding medium. The
[A] and [B] are square matrices with dimensions of 8 × 8, 6 × 6, 4 × 4, 6 × 6, and 2 × 2
corresponding to a piezoelectric plate, a non-piezoelectric plate, non-viscous liquid, viscous
liquid, and vacuum, respectively.

Since det[A] 6= 0 for each contacting media, Equation (18) can be presented as follows:

[dYi/dx3] =
[

A−1
]
[B][Yi] = [C][Yi] (19)

Then, the eigenvalues c(i) and corresponding eigenvectors Y(i)
k of matrix [C] for each

medium were found. These values are determined the parameters of partial waves. The
general solution is a linear combination of all partial waves for each medium.

Yk =
N

∑
i=1

AiY
(i)
k e(c

(i)x3)eiω(t−x1/v) (20)

Here, N = 8, 6, 4, 6, and 2 for a piezoelectric plate, a non-piezoelectric plate, non-viscous
liquid, viscous liquid, and vacuum, respectively. Ai represents the quantities unknown yet.
The appropriate normalized electrical and boundary conditions (9)–(15) for each considered
structure are used to define the quantities Ai and wave phase velocity v. For semi-infinite
media like vacuum and liquid, the eigenvalues and eigenvectors corresponding to the
decreasing amplitude of variables with respect to the increasing distance from solids were
taken into account. The so obtained matrix of the boundary conditions is dependent on v.
Then, by using the descent method and iterative procedure with respect to the determinant
of the boundary conditions matrix, the value of v is determined with certain accuracy
(10−7). After that, the values of Ai are determined to find U1, U2, and U3 in accordance
with (20).

Material constants of AlN, ZnO, Si, distilled H2O, and glycerol are taken from [40–42]
and presented in Table 1.

2.2. Experimental Methods

The measurements were carried out at room temperature (22.5 ◦C) and atmospheric
pressure (743 mmHg). Si wafers with Euler angles 0◦, 0◦, 0◦ ((001), <100>—cut) and 45◦,
54.7356◦, 0◦ ((111), <110>—cut) were used as non-piezoelectric plates. The normalized
thickness of the Si plates was in the range of H/λ = 0.625 to 2.6 (H = 250 and 380 µm,
λ = 146, 200, and 400 µm). It allowed for providing a variety of acoustic modes suitable
for the application. Piezoelectric ZnO and AlN films with the c-axis perpendicular to the
surfaces (Euler angles 0◦, 0◦, 0◦) are used as plate coatings allowing both wave generation
and modification. The normalized thicknesses of ZnO and AlN films were in the range of
h1,2/λ = 0.0005 to 0.084 (h1,2 = 0.2 ÷ 12.3 µm, λ = 146, 200, and 400 µm).
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Table 1. Density ρ (kg/m3), elastic constants Cij (GPa), piezoelectric coefficients eij (C/m2), viscosity
coefficients ηij (Pa × s) and dielectric permittivity εij/ε0 of AlN, ZnO, Si, distilled H2O and glycerol
used in calculations (T = 22.5 C).

AlN (ρ = 3260)

CE
11 CE

12 CE
13 CE

33 CE
44 CE

66 e15 e31 e33 ε11/ε0 ε33/ε0
345 125 120 395 118 110 −0.48 −0.58 1.55 8 9.5

ZnO (ρ = 5665)

CE
11 CE

12 CE
13 CE

33 CE
44 CE

66 e15 e31 e33 ε11/ε0 ε33/ε0
209 120.5 104.6 210.6 42.3 44.55 −0.48 −0.573 1.321 7.57 9.03

Si (ρ = 2330) H2O (ρ = 997.299) Glycerol (ρ = 1260)

CE
11 CE

12 CE
44 ε11/ε0 C11 ε/ε0 C11 η11 C44 η44 ε/ε0

166 63.9 79.6 10.62 2.25 80 2.81 118.6 1.2128 × 10−3 1.5 41.9

The technology of the film’s fabrication accounted for the difference in the expansion
coefficients of the AlN, Si, and ZnO materials. The c-oriented textured AlN was fabricated in
a magnetron sputtering system using 50% Ar + 50% N2 gas mixture, 0.1 Pa gas pressure, and
an Al target (99.999%) 140 mm in diameter. The distance between the target and substrate,
the discharge power, the sputtering rate of the AlN film, and the substrate temperature
were 70 mm, 800 W, 0.7–0.8 µm/h, and 150 ◦C, respectively [16].

The fabrication of the c-oriented ZnO films were performed in a triode sputtering
system with a dc current using the ZnO target, 80% Ar + 20% O2 gas mixture, and 0.07 Pa
pressure. The substrate temperature was 200 ◦C, and the rate of the sputtering was
1.2–3 µm/h [16].

ZnO or AlN films were deposited on a Si plate from one or from both sides (Figure 3a).
The input and output periodic interdigital transducers (IDTs) were deposited on the ZnO
film for each structure used. Each transducer comprised 20 finger electrodes patterned
from Cr(100 nm)/Al(1000 nm). The bandwidth of the transducers (5%) provides good
frequency resolution of the neighboring modes with close velocities v. A liquid cell (fused
quartz) was placed on the ZnO film surface between IDTs and glued to the surface by salol.
The size of the liquid cell was large enough to avoid the perturbation of an acoustic beam
by the cell walls. The photo of the produced delay line based on structure ZnO/Si/AlN as
an example is presented in Figure 3b.
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Figure 3. (a) Schematic view of a three-layered experimental structure; (b) Photo of the experimental
delay line.

The mode velocities were measured as vexp = λf, where λ is the period of IDTs (the
wavelength), and f is the central frequency of the modes of different types. The precision of
the measurements was about ±1%.
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The frequency dependencies of the insertion loss S12(f ) were measured with precision
±0.1 dB by means of a KEYSIGHT 5061B network analyzer (Keysight, Santa Rosa, CA,
USA) operating in an amplitude-frequency format. The amplitude-frequency format S12(f )
was converted to the amplitude-time format S12(τ) in order to avoid the influence of
electromagnetic leakage. For this purpose, the gate window was started just after the
appearance of such leakage and stopped after the appearance of the useful acoustic signal.
As the gate was on, the leakage was off and the time delay format S12(τ) converted back to
the frequency format S12(f ) without the electromagnetic leakage.

The procedure of the attenuation measurements was next. Initially, the frequency
dependence of the insertion loss Sair

12 (f ) was measured for the delay line without liquid
in a container. Then, the same frequency dependencies SH2O

12 ( f ), SH2O+Glycerol
12 ( f ), and

SGlycerol
12 ( f ) were measured in the presence of distilled H2O (η = 1.003 cP), H2O solutions

of glycerol (1.003 cP < η < 1.491 cP) and pure glycerol (η = 1.491 cP), respectively. It
allowed varying the viscosity of a test liquid in 3 orders of value, density of less than
26% and permittivity of less than 10.5% [38]. These liquids were placed into the cell one
by one. After each use, the cell was cleaned and dried. The electric conductivity for all
liquids used was equal to zero. After that, for each mode and test liquid, the attenuation
coefficient α was determined as α = (S Glycerol

12 − SH2O
12

)
/L = SGlycerol−H2O

12 /L, where L is the
propagation distance of the acoustic wave along the liquid/structure interface. Finally, for
each liquid sample, the modes with the largest α were determined and compared with
the largest values for other samples. Precisions of the measurements were ±0.01 dB and
±0.005 dB/mm for S12 and α, respectively.

The typical frequency dependencies of insertion loss S12 of an acoustic wave family
propagating in a layered structure ZnO/(111)Si/AlN without liquid (black line), in the
presence of non-viscous, non-conductive water (red dashed line), and glycerol (blue line)
placed on the ZnO film, are presented in Figure 4.
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Figure 4. Typical frequency dependence of insertion loss S12 for acoustic waves of different types
propagating in a layered structure ZnO (h1 = 6.5 µm)/(111)Si (H = 390 µm)/AlN (h2 = 1.2 µm) without
liquid (black line), in the presence of non-viscous, non-conductive water (red dashed line), and
glycerol (blue line) placed on the ZnO film. The distance between IDTs L is equal to 16 mm and
λ = 200 µm. The numbers from 1 to 11 indicate the serial number of the corresponding acoustic
response through experiment.

The water solutions of NaCl with electrical conductivity σ varied in the range of
0–10 S/m (7.6 weight % NaCl in H2O) were used to estimate the cross-sensitivity of the
acoustic waves toward σ. A change in the conductivity within these limits left the viscosity
(<13%), density (<8%), and permittivity (<1%) of the liquid almost constant [36].
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Because the liquid properties have a strong dependence on temperature T, most of
the measurements were carried out at 20 ± 0.1 ◦C fixed by a thermal camera UC-20CE
(NOSELAB ATS, Nova Milanese, Italy). An experimental sample was mounted onto
the camera and connected with the network analyzer in order to measure the insertion
loss S12 at relevant temperature. The camera with the sample was heated in the range
of 0–55 ◦C with the step 5 ◦C and stopped for 5 min at each temperature to study the
temperature sensitivity of the sensor developed. Without liquid, the sensor responded to
temperature according to the properties of the wave whose amplitude is almost temperature
independent (S12 = const). In the presence of liquid, the amplitude response of the sensor
behaves according to the liquid properties and S12 = S12 (η, T). The acoustic response ∆S12
was preliminary calibrated toward viscosity using 9 samples of water solutions of glycerin
with the known values of the viscosities [41]. So, when a liquid with unknown viscosity was
used, the response ∆S12 for this liquid was measured properly, and the relevant viscosity
was determined directly from the aforementioned calibration curve. After such preliminary
calibration toward viscosity η at a fixed temperature and extracting the 1st data from the
2nd, a liquid viscosity at relevant temperature T is measured as the difference. The precision
of the measurement is ∆S12 =±0.2 dB. Changing the temperature T and following the same
procedure, the temperature dependence of liquid viscosity η(T) was determined.

The sensitivity of acoustic waves toward liquid viscosity η at a fixed temperature
is different in various η ranges [31]. Accordantly, precision of the measurements is also
varied with η: for ∆S12 measured at a fixed temperature with precision of ±0.1 dB, the
accuracy of the η measurements is estimated as ∆η/η ≈ 2.5% for η = 1–20 cP, ±5% for
η =20–100 cP, and ±10% for η =100–1500 cP. On the other hand, when viscosity η is deter-
mined versus temperature T, the difference ∆S12 is measured for two different temperatures
with precision ±0.1 dB for each and ±0.2 dB for two. As a result, the accuracy of the η(T)
measurements drops twice, becoming ±5% for η = 1–20 cP, ±10% for η =20–100 cP, and
±20% for η =100–1500 cP.

The mix of partial components in a forced vibrator for about 5 min is allowed to obtain
liquid solutions used in experiments. By using data from [41] and knowing the weights of
each component, the values of η and σ for liquid solutions at 20 ◦C were determined. An
error in the weight concentration of glycerol and NaCl in water was less than ±1%. The
volume of the test liquids used for the measurements was 100 µL.

The surface amplitudes of the longitudinal U1, shear-horizontal U2 and shear-vertical
U3 mode displacements calculated theoretically were used to study the correlation between
acoustic attenuation α on one hand and polarization of the waves on the other hand.

3. Results and Discussion

Nine experimental delay lines based on various structures were considered during
investigations. Most of the examined waves are not useful for application due to large
attenuation in the presence of liquid. The reasons for such attenuation are compressional
wave radiation into liquid due to the presence of the surface-normal wave component u3
and visco-elastic coupling of the modes and liquid due to in-plane components u1 and u2.
However, some waves with allowable attenuation αn were found even though the insertion
loss of the sensor loaded with glycerol approaches 94 dB (Table 2). Glycerol responses
of the best waves referred to that of water αGlycerol−H2O were as large as 0.8–1.6 dB/mm.
These values are marked as a bold in Table 2. It has been found that using an additional
piezoelectric layer over the second side of the Si plate leads to a change in acoustical
response αGlycerol−H2O (Table 2, lines 4 and 5). So, it is possible to control the acoustic wave
properties by a piezoelectric film placed on the surface of a non-piezoelectric plate free
of IDTs.
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Table 2. Acoustic plate waves with the largest sensitivity toward glycerol measured in different
samples at 20 ◦C. The thicknesses of the plate and films are presented in brackets. vexp is the wave
velocity in the structure without liquid loading.

No. Layers (Thickness)
(µm)/(µm), Frequency H/λ λ,

µm
L,

mm vexp, m/s SGlycerol
12 ,

dB
SGlycerol−H2O

12 ,
dB

∆αGlycerol−H2O,
dB/mm

1 IDT/AlN(1.8)/(111)Si (250)
f = 67.94 MHz 0.625 400 45 27,200 94 ± 0.1 8 ± 0.1 0.18 ± 0.002

2
IDT/ZnO(0.4)/(100)Si

(380)/ZnO(10)
f = 34.6 MHz

1.9 200 16 13,900 58 ± 0.1 7 ± 0.1 0.44 ± 0.006

3 IDT/ZnO(10)/(100) Si(380)
f = 43.46 MHz 1.9 200 16 8700 67 ± 0.1 12.7 ± 0.1 0.8 ± 0.006

4 IDT/ZnO(6.3)/(111) Si(380)
f = 49.5 MHz 1.9 200 37 9900 75 ± 0.1 29.3 ± 0.1 0.8 ± 0.003

5 IDT/ZnO(6.5)/(111)Si(380)/AlN(1.2)
f = 49.5 MHz 1.9 200 16 9900 53 ± 0.1 8 ± 0.1 0.5 ± 0.006

6 IDT/ZnO(10)/(100)Si(380)/AlN(0.2)
f = 48.8 MHz 1.9 200 16 9800 66 ± 0.1 8 ± 0.1 0.5 ± 0.006

7 IDT/ZnO(10.5)/(100)Si(380)
f = 72.75 MHz 1.9 200 16 14,600 68 ± 0.1 17.5 ± 0.1 1.1 ± 0.006

8 IDT/ZnO(10.5)/(100)Si(380)
f = 74.76 MHz 1.9 200 16 15,000 77 ± 0.1 22.2 ± 0.1 1.4 ± 0.006

9 IDT/ZnO(8.8)/(100)Si(380)/ZnO(5.6)
f = 57.5 MHz 2.6 146 16 8400 61 ± 0.1 25 ± 0.1 1.6 ± 0.006

10 IDT/ZnO(8.8)/(100)Si(380)/ZnO(5.6)
f = 51.24 MHz 2.6 146 16 7500 56 ± 0.1 18 ± 0.1 1.13 ± 0.006

11 IDT/ZnO(12.3)/(111)Si (380)
f = 32.1 MHz 1.9 200 37 6400 57 ± 0.1 18.3 ± 0.1 0.5 ± 0.003

Theoretical analysis of the acoustic waves of higher orders propagating in such exper-
imental structures was performed using Equations (1)–(16). As the results of numerical
calculations, the dispersion curves for all considered structures were plotted. In Figure 5,
the typical dependencies of the phase velocity of acoustic waves of various types vs. the
thickness of corresponding piezoelectric film/films are presented.

Table 3. The theoretically obtained phase velocities vth, normalized displacements U1, U2, and U3 at
x3 = −h1, and attenuation coefficients α of the higher-order acoustic waves in two- and three-layered
structures in the air, in the presence of non-viscous, non-conductive H2O or glycerol placed on the
ZnO film (x3 < −h1).

No. Layers (Thickness)
(µm)/(µm), Frequency H/λ λ,

µm
L,

mm

Free Structure
vth, m/s

(U1; U2; U3)
α, dB/mm

Structure + H2O
vth, m/s

(U1; U2; U3)
α, dB/mm

Structure +
Glycerol
vth, m/s

(U1; U2; U3)
α, dB/mm

1
AlN(1.8)/(111)Si (250)

f = 67.94 MHz 0.625 400 45
25,515 25,514 25,485

(1; 0.45; 0.42) (1; 0.4; 0.3) (1; 0.45; 0.6)
0 0 0.1

2
ZnO(0.4)/(100)Si (380)/ZnO(10)

f = 34.6 MHz 1.9 200 16
13,937 13,936 13,917

(1; 0; 0.73) (1; 0; 0.3) (1; 0; 0.8)
0 0.1 0.1
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Table 3. Cont.

No. Layers (Thickness)
(µm)/(µm), Frequency H/λ λ,

µm
L,

mm

Free Structure
vth, m/s

(U1; U2; U3)
α, dB/mm

Structure + H2O
vth, m/s

(U1; U2; U3)
α, dB/mm

Structure +
Glycerol
vth, m/s

(U1; U2; U3)
α, dB/mm

3
ZnO(10)/(100) Si(380)

f = 43.46 MHz 1.9 200 16
8438 8437 8415

(1; 0; 2.86) (1; 0; 2) (1; 0; 2.2)
0 0 0.1

4
ZnO(6.3)/(111) Si(380)

f = 49.5 MHz 1.9 200 37
9781 9780 9767

(1; 1.1; 0.1) (1; 0.9; 0) (1; 1.1; 0.1)
0 0 0.5

5
ZnO(6.5)/(111)Si(380)/AlN(1.2)

f = 49.5 MHz 1.9 200 16
9894 9893 9876

(1; 0.82; 0.22) (1; 0.6; 0.1) (1; 0.8; 0.2)
0 0 0.1

6
ZnO(10)/(100)Si(380)/AlN(0.2)

f = 48.8 MHz 1.9 200 16
9342 9341 9312

(1; 0; 0.09) (1; 0; 0.01) (1; 0; 0.1)
0 0 0.1

7
ZnO(10.5)/(100)Si(380)

f = 72.75 MHz 1.9 200 16
14,278 14,277 14,253

(1; 6140; 1.1) (1; 120; 0.05) (1; 130; 0.4)
0 0 0.55

8
ZnO(10.5)/(100)Si(380)

f = 74.76 MHz 1.9 200 16
15,629 15,628 15,589

(1; 14120; 1.8) (1; 1500; 1.) (1; 134; 1.2)
0 0 0.6

9
ZnO(8.8)/(100)Si(380)/ZnO(5.6)

f = 57.5 MHz 2.6 146 16
8365 8364 8341

(1; 0; 0.012) (1; 0; 0.002) (1; 0; 0.015)
0 0 0.55

10
ZnO(8.8)/(100)Si(380)/ZnO(5.6)

f = 51.24 MHz 2.6 146 16
7382 7381 7364

(1; 0; 0.7) (1; 0; 0.5) (1; 0; 0.75)
0 0.2 0.45

11
ZnO(12.3)/(111)Si (380)

f = 32.1 MHz 1.9 200 37
6425 6424 6395

(1; 2; 0.48) (1; 1.7; 0.2) (1; 2.2; 0.3)
0 0 0.1
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Figure 5. Typical dependence of phase velocity of acoustic waves of different types propagating in
layered structures vs. thickness of piezoelectric film: (a) ZnO (h1 = 0.38÷ 19 µm)/(100)Si (H = 380 µm),
(b) ZnO (h1 = 10.5 µm)/(100)Si (H = 380 µm)/ZnO (h2 = 0.38÷ 19 µm), (c) ZnO (h1 = 10.5 µm)/(100)Si
(H = 380 µm)/AlN (h2 = 0.38 ÷ 19 µm) without liquid. Bold black line corresponds to wave #7 from
Table 3. Lines of various colors are corresponded to acoustic waves of different types and order
number (symmetric, antisymmetric and shear-horizontal).
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It has been found that the increase in piezoelectric film thickness leads to a decrease
in the phase velocities of acoustic waves of various types in Si plate. The ZnO film placed
on the other side of the Si plate (Figure 5b) leads to a greater change of phase velocity of
acoustic waves than AlN film (Figure 5c).

The results of the calculation of the phase velocities, attenuation, and mechanical
displacements in the plane x3 = −h1 are presented in Table 3. The comparison of the
theoretical and experimental results has shown good agreement. It has been theoretically
confirmed that using two piezoelectric films placed on both sides of the Si plate allowed
controlling the properties of an acoustic wave.

Examples of the frequency dependencies of insertion loss S12 for the wave with
dominant longitudinal displacement (U1 >> U2, U3; f = 57.5 MHz) and wave with elliptic
in-plane polarization (U1 ≈ U2, U3 ≈ 0; f = 49.5 MHz) are presented in Figures 6 and 7,
respectively. These waves have a negligible surface-normal component U3. This feature
is eliminated radiation of compressional wave into adjacent liquid. It is possible to see
that the measured S12 for both waves are almost the same with water loading and in
the air (SH2O

12 = SAir
12 ). On the other hand, these waves have large in-plane components

U1 for f = 57.5 MHz and U1, U2 for f = 49.5 MHz. So, they are strongly coupled with
adjacent liquid and possess high sensitivity to liquid viscosity, and they are suited for
viscosity measurements. It is necessary to note that other waves of the same structure at f
= 54.48 MHz (Figure 6) have remarkable normal components (U3 = 0.51U1) and, thereby,
are characterized by big radiation loss into the liquid sample (>25 dB). Due to this, such a
wave is damped by any liquid and is not suited for viscosity measurement application.
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The liquid viscosity sensor prototypes were realized for all appropriate waves. For
example, in Figure 8, the dependencies of the change in the insertion loss ∆S12 versus
viscosity, conductivity, and temperature of liquid measured through the sensor based on
wave #4 (Table 2) are presented. The concentration curve for liquid viscosity (Figure 8a)
is almost linear for η in the range of 0–20 cP when the liquid is Newtonian. At η, about
1500 cP the liquid starts to behave as a solid and ∆S12 approaches saturation [7]. As a result,
the sensitivity of the sensor toward viscosity is varied from 0.26 dB/cP for η = 1–20 cP to
0.087 dB/cP for η = 20–100 cP and 0.013 dB/cP for η = 100–1500 cP.
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Figure 8. Calibration curves of the sensor based on mode #4, Table 2 toward (a) viscosity of water
solution of glycerol, (b) electric conductivity of water solution of NaCl, and (c) temperature. The
frequency of the mode is 49.5 MHz.

The dependence of change in insertion loss ∆S12 versus liquid conductivity has a
typical view [38] (Figure 8b). It increases for small σ < 0.4 S/m, approaches maximum at σ
= 0.4 S/m, and falls to zero for large σ > 1 S/m. These measurements were performed to
estimate the cross-sensitivity of the acoustic waves under study toward liquid conductivity.
It is possible to see that in the case of using waves in multilayered structures instead
of quartz plates [12], the sensitivity toward liquid conductivity is less for these waves
(0.08 dB < 0.2 dB). It could be explained by the smaller value of the electromechanical
coupling coefficient of the waves in multilayered structures than in quartz plates. As a
result, it is possible to see that the electric responses of the acoustic wave (Figure 8b) are
much less than those for viscosity (Figure 8a). Only for very small η < 2 cP do these two
responses become comparable.

The temperature sensitivity of the sensor based on two-layered and three-layered
structures without liquid loading and loading with non-viscous, non-conductive H2O is
negligible (Figure 8c).

However, in the presence of a viscous liquid, the sensor responds to the temperature
accordingly. It is possible to extract the data for unloaded structures from the data for
structures loaded by viscous liquid at various temperatures. As a result, we obtained
the temperature dependence of viscosity η(T) (red rings) for glycerol (Figure 9). The
comparison of the obtained results with the tabulated (black squares [41]) ones has shown
good agreement.
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Figure 9. The temperature dependence of glycerol viscosity measured in this paper (red rings)
by using mode #4 from Table 2 with f = 49.5 MHz and the same dependence taken from [41]
(black squares).

4. Conclusions

Acoustic waves with increased sensitivity to liquid viscosity and decreased sensitivity
to liquid conductivity are found in layered structures composed of the non-piezoelectric Si
plates and piezoelectric ZnO (AlN) films. The waves belong to quasi-longitudinal and Lamb
wave families with polarization parallel to plate faces. Small surface-normal displacement
avoids the wave radiation into adjacent liquid. Large in-plane components enhance the
viscous coupling the waves and liquids deposited on the plate.

The sensors based on these waves and selectively sensitive to liquid viscosity are devel-
oped. The sensors have an amplitude output with sensitivities 0.26 dB/cP for η = 1–20 cP,
0.087 dB/cP for η = 20–100 cP, and 0.013 dB/cP for η = 100–1500 cP. Responses of the
sensor toward liquid conductivity (0 to 2 S/m) are two orders of value smaller, becoming
comparable with those for viscosity only at η < 2 cP. The temperature responses of the
sensors are almost zero in air, but when coated with liquid, they increase depending on the
liquid properties. The dependence of liquid viscosity versus temperature is measurable by
the same sensor.

As compared with the reference structure based on an uncoated quartz plate [12], the
coated prototypes developed in this paper have the same sensitivity toward viscosity and
temperature, but they have less sensitivity toward liquid conductivity (0.12 dB vs. 0.2 dB
for σ = 0 – 1.4 S/m). Also, the glycerin response ∆S12 of the best mode in the coated sensor
is higher than that in the uncoated prototype (29.3 dB vs. 27 dB).

The results obtained have shown the possibility of designing acoustic liquid viscosity
sensors based on multilayered structures. The set of possible waves with various polariza-
tion, phase velocities, electromechanical coupling coefficients, and attenuations expands the
possibilities of developing acoustic sensors with selective response only to liquid viscosity.
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