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Abstract: The Internet of Things (IoT) generates a large volume of data whenever devices are
interconnected and exchange data across a network. Consequently, a variety of services with diverse
needs arises, including capacity requirements, data quality, and latency demands. These services
operate on fog computing devices, which are limited in power and bandwidth compared to the
cloud. The primary challenge lies in determining the optimal location for service implementation:
in the fog, in the cloud, or in a hybrid setup. This paper introduces an efficient allocation technique
that moves processing closer to the network’s fog side. It explores the optimal allocation of devices
and services while maintaining resource utilization within an IoT architecture. The paper also
examines the significance of allocating services to devices and optimizing resource utilization in
fog computing. In IoT scenarios, where a wide range of services and devices coexist, it becomes
crucial to effectively assign services to devices. We propose priority-based service allocation (PSA)
and sort-based service allocation (SSA) techniques, which are employed to determine the optimal
order for the utilizing devices to perform different services. Experimental results demonstrate that
our proposed technique reduces data communication over the network by 88%, which is achieved by
allocating most services locally in the fog. We increased the distribution of services to fog devices by
96%, while simultaneously minimizing the wastage of fog resources.

Keywords: IoT; IoMT; fog computing; service allocation; optimization; cloud computing

1. Introduction

IoT devices generate a large amount of data as they are interconnected [1]. Most
current proposals focus on centralized or cloud architecture [2]. The goal of a centralized
architecture is to process data in one place of decision. Consequently, a significant amount
of data must be uploaded to the cloud. Heavy data transmission over the network is one of
the challenges introduced by this architecture [3]. This suggests that an alternative design
is necessary to address this challenge. Since the IoT architecture connects several devices
with varied levels of computing, storage capacity, battery life, and Internet access, device
constraint awareness is a crucial part of its design.

Also, a variety of services will be available, each with different set of expectations, such
as those for capability, quality of data, and latency. These services operate on fog computing
devices, which are limited in terms of power when compared to cloud resources [4], and
they require bandwidth. This implies that fog devices and services are closely connected.
The main challenge is to allocate the services primarily to the fog whenever possible, and
then to the cloud when the fog is not capable of handling services while considering the
overall efficiency within a specific IoT architecture.

Sensors 2023, 23, 7327. https://doi.org/10.3390/s23177327 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23177327
https://doi.org/10.3390/s23177327
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-5849-8871
https://orcid.org/0000-0001-6913-1525
https://orcid.org/0000-0003-2931-8744
https://orcid.org/0000-0002-3163-575X
https://doi.org/10.3390/s23177327
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23177327?type=check_update&version=1


Sensors 2023, 23, 7327 2 of 25

Furthermore, resource management at the fog layer [5] is critical for evaluating the
advantages of fog computing. Developing an effective fog infrastructure presents several
issues. One instance where resolving the following issues becomes essential is with RAM.
The execution of services within a distributed architecture becomes more challenging as the
size and complexity of the IoT system increase, necessitating a method to allocate services
to the node(s), which results in discovering the ideal allocation strategy.

Processing all incoming raw data in the cloud has a detrimental impact on various
elements, including higher network congestion, latency, the time it takes to return actions
to a user, energy usage, and privacy [6]. As the Internet of Things expands, there is a need
to address these challenges. Fog devices are restricted devices because of their limited
computing power when compared to the cloud. As a result, huge workloads cannot
be processed on fog devices. In addition, determining the amount of computing load
that may be allocated to a fog device is challenging. Furthermore, distributing services
among fog devices is difficult since the large number of services in the IoT might demand
a lot of computing power [7]. Effectively allocating services to fog devices with limited
resources in an IoMT system presents a challenge. This necessitates the allocation of services
based on priority to both fog and cloud devices while considering resource constraints and
optimizing for efficient processing. As a result, we must understand the devices’ capabilities
and services’ demands. Next, we must optimize the process of service allocation to the
devices while maintaining optimal resource utilization.

This paper’s overarching goal is to provide an effective allocation technique for pro-
cessing data with reduced bandwidth utilization, faster response time, optimized resource
usage, and identifying an optimal approach for processing data on a large scale. One
of the objectives is to evaluate and test the proposed technique using a simulation. We
propose an efficient allocation strategy that brings processing closer to the fog side of the
network. Moreover, we investigate which devices and services may be best allocated while
preserving resource use in the IoT architecture. In addition, we offer a service allocation
technique for allocating services to devices depending on their capabilities. Our main
contributions include the following:

• Service allocation techniques are significant because providing services to devices in
the IoT is a difficult process due to the many types of devices and their capabilities.
As a result, we propose priority-based service allocation (PSA) and sort-based service
allocation (SSA) techniques, which utilize a list of every fog device connected to
the network. This method makes it possible to use fog devices in the best possible
sequence to conduct a wide range of services. As a starting point, we use packing
problems as a baseline to help solve allocation issues in the IoT environment.

• We examine the importance of allocating services to devices and optimizing resource
use in fog computing to enhance service quality while meeting the optimal resource
usage demands of IoMT. As there will be a large variety of services and devices in the
IoT settings, it is vital to allocate the services to the devices and effectively optimize
resource consumption.

• We evaluate the PSA and SSA techniques using a synthetic dataset that mimics the IoT
services and devices. We perform a tradeoff analysis to illustrate the effectiveness of
the service allocation approach. The results reveal that the data communication over
the network decreased by 96%, as most services are allocated in the fog. Additionally,
latency is reduced by approximately 88%.

The remainder of this paper is organized as follows: Section 2 presents related works
in the field of service allocation; Section 3 describes the research problem and provides
a motivational scenario; Section 4 provides the methodology, including the algorithm
and the architecture; Section 5 presents the experimental setup and reveals the details
of the experiments; Section 6 shows the results that were obtained from experiments
and provides a description of the results; followed by discussion and evaluation; finally,
Section 8 presents our conclusions and recommendations for future research.
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2. Related Works

Fog computing has become an increasingly popular topic of research in recent years,
as it offers a number of benefits for various industries [8]. One of the main challenges in fog
computing is data distribution and allocation. This literature review aims to explore the
current state of research on service allocation in fog computing and highlight key references
in the field.

Analyzing data closer to the fog leads to reduced latency, and increased efficiency, as
well as improved security and privacy [9]. Fog computing also enables the deployment of
computing resources closer to the data source, reducing the need for data transmission over
long distances. This can lead to improved performance and lower energy consumption.

Regarding service allocation, research has focused on the use of optimization tech-
niques to allocate resources efficiently in fog computing environments. Optimization
techniques such as game theory, packing, linear programming, and scheduling can also be
used to model and solve service allocation problems in fog computing environments.

In the context of resource allocation in edge and fog computing, we reviewed research
publications that focus on fog systems. The underlying infrastructure is assumed in these
studies to be cloud–fog [10–26]. These options fall under the system elements aspect and
have a significant impact on the researchers’ optimization goals. When considering cloud
and fog computing, many academics believe that the workload is initially stored in the
cloud, and the edge system must decide where to duplicate and how to distribute the
user load among them [11]. As a result, they offer a framework for pushing applications
that require lots of resources to the fog and reducing average data communication in the
edge network across access points by duplicating cloud services on some of the edge
servers. Workload distribution over systems that are heterogeneous has to consider the
availability of various resources [27]. When spreading the workload between fog and cloud,
the objective is to reduce energy consumption in order to meet service latency needs [28].
When a specific research project does not assume the use of a central cloud but instead
addresses multi-fog situations, the issue may arise from the combined optimization of
job distribution, virtual machine placement, and resource allocation [12]. The authors
in [14] attempt to reduce the load on users by determining user association, joint service
placement, and joint allocation.

However, most of the publications have the same optimization objective(s), namely,
service completion latency [12,15,16,20–23]. Numerous research endeavors have been
undertaken to address the trade-off between energy consumption and delay in data trans-
mission [27,28]. In addition to providing prompt service completion to users, researchers
aim to accommodate numerous users with the edge fog [19,22]. Cost minimization includes
several aspects, such as resource usage, quality of service, and its associated revenue. The
authors of [29] calculated the total cost of deployment by considering the wireless com-
munication cost and the function placement computation cost, and the authors of [13,24],
to maximize user allocation numbers in their cost, considered the usage of edge servers
to have quality of service. In addition, the data communication over the network is also
considered one of the aspects of the cost.

Optimization techniques play a crucial role in the efficient management of resources
in fog computing and IoT environments [30]. One popular optimization technique used
in these environments is bin packing. Bin packing is a combinatorial optimization prob-
lem [31,32] that involves packing a set of items into a fixed number of bins, with the goal of
minimizing the number of bins used or the overall cost of the solution. In fog computing
and IoT environments, bin packing can be used to optimize the placement of services and
devices, taking into account factors such as network conditions, service requirements, and
device characteristics to minimize the overall cost of the solution by reducing the number
of fog nodes used.

There are many variations of the bin packing problem, including the multi-dimensional
bin packing problem [33] and the multi-constraint bin packing problem [34]. These vari-
ations can be used to add extra constraints and requirements in fog computing and IoT
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environments. For example, the multi-dimensional bin packing problem can be used to
take into account the different resource requirements of services and devices, and the multi-
constraint bin packing problem can be used to take into account additional constraints such
as security and privacy.

In the literature, there are several works that have proposed the use of bin packing for
the optimization of service allocation and task scheduling. The authors of [35] attempted
to enhance task scheduling by transforming it into a bin packing problem. Three mod-
ified versions of bin packing algorithms based on the minimization of makespan were
presented for use in task scheduling (MBPTS). They used the Cloudsim [36] open-source
simulator. When compared to scheduling algorithms such as first come first serve (FCFS)
and particle swarm optimization (PSO), the results of the proposed MBPTS were ade-
quate to optimize balancing results, reducing the waiting time and improving resource
utilization. The authors of [13] presented the edge user allocation (EUA) problem as a bin
packing problem and presented a unique optimum solution based on the lexicographic
goal programming technique. They ran three sets of tests to compare the suggested strategy
to two sample baseline approaches. The experimental findings reveal that their strategy
performs substantially better than the other two alternatives. In [37], the authors presented
a methodology for minimizing resource waste through resource consolidation, which is
accomplished by allocating many requests to the same machine. Bin packing is offered
to perform semi-online workload consolidation. The suggested approach is built on bins,
with each job allocated a bin that is subsequently allocated to a machine. The suggested
approach addresses the issue of request reduction in real-time resource assignment. The
suggested technique obtains information in a brief time frame, allowing for more accurate
decisions. Their findings reveal that during periods of high demand, their optimal policy
can result in saving up to 40% more resources than the other policies and is resistant to
unpredictability in task lengths. Finally, they demonstrate that even slight increases in the
permitted time window result in considerable improvements, but that bigger time windows
do not always improve resource use for real-world datasets. In summary, bin packing
is a powerful optimization technique that can be used to efficiently manage resources in
fog computing and IoT environments. By taking into account factors such as network
conditions, device capabilities, and additional constraints, bin packing can be used to
minimize the number of resources used and reduce the overall cost of the solution.

The summary of existing works on resource allocation in fog computing is presented in
Table 1. The authors of [38] tackle the problems of allocating resources in cloud computing
by using two methods: the tasks to virtual machines distribution challenge as a linear
programming model and the task allocation algorithmic solution, additionally referred to
as the Hungarian algorithm-based binding policy (HABBP), to address the task distribution
issue in the context of cloud computing. A genetic algorithm-based virtual machine
placement (GABVMP) can also be used to address and optimize the VM deployment
problem in a cloud computing setting. The authors in [39] offer the novel concept of
fog-cloud clustering, aiming to address the challenge of determining the optimal number
of required clusters. Their research focuses on effectively scaling the network node count
within the fog environment. They present a new technique that uses mixed-integer linear
programming (MILP) to derive both lower and upper constraints on the required number of
clusters. The work given in [40] presents an efficient resource allocation technique known
as the effective prediction-based resource allocation method (EPRAM). This technique
employs both deep reinforcement learning (DRL) and probabilistic neural network (PNN)
methodologies. While the DRL component handles resource allocation decisions, the
PNN prediction algorithm is used to select target destinations. The proposed approach
not only efficiently minimizes the time span but also improves resource consumption. In
addition, another strategy used for resource allocation was adopted to enhance the RL.
The study in [41] provides two significant contributions: utilizing PSO for optimization
of RL hyperparameters and employing the improved RL for resource allocation in the
fog environment. In terms of optimization, the hyperparameters on the improved RL
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present an efficient approach. In [42], the authors describe a resource allocation technique
known as energy-aware multiple linear regression. The strategy focuses on balancing
energy consumption and execution time, with the goal of significantly reducing both delay
and response time. By considering multiple linear regressions, the proposed method
successfully handles energy efficiency optimization while ensuring fast and responsive
system performance. The authors in [43] conducted a thorough analysis of fog-related
resource allocation using the cross-layer design concept. Their new approach takes into
account the cloud center device, fog nodes, and user devices as essential aspects of the
cloud–fog user ecosystem. Their main objective is to maximize efficiency and outcome
by allocating resources in the most efficient way possible using a gradient-based method.
The authors in [44] present an approach for displaying resources in fog computing using
MEC (multi-access edge computing) APIs. These APIs make real-time information on the
CPU, memory, storage, and networking capabilities of fog devices available. This useful
information is used by the fog’s supervising entity to make informed decisions about
distributing tasks among the network’s nodes. Furthermore, the researchers developed a
Lyapunov-based optimization technique for resource allocation in fog nodes and defined
the challenge of latency minimization. The authors demonstrate through simulation that
their combined method, which involves both resource representation and optimization of
resource allocation, efficiently minimizes latency, and hence improves system performance.
Authors in [45], introduced a mathematical artifact called the Markov blanket. This artifact
likely plays a significant role in the management of distributed computing continuum
systems. The authors in [46] focused on addressing energy and delay constraints within a
computational context. The authors proposed a strategy called transmission scheduling
and computation offloading (TSCO), which aims to optimize energy consumption and
reduce delays by intelligently scheduling transmission and offloading computations.

Table 1. Existing works on resource allocation in fog computing.

Authors Year Research Focus Method

Akintoye et al. [38] 2019 Allocating cloud resources Hungarian algorithm-based binding policy (HABBP)
Genetic algorithm-based virtual machine placement (GABVMP)

Abouaomar et al. [44] 2019 Resource allocation Mobile edge computing application
programming interfaces (MEC APIs)

Asensio et al. [39] 2020 Optimal clustering of devices Fog–cloud clustering (FCC)

Talaat et al. [40] 2022 Resource allocation Deep-RL, PNN

Talaat et al. [41] 2022 Resource allocation Optimized RL using PSO

Naha et al. [42] 2022 Energy resource allocation Multiple linear regression

Dustdar et al. [45] 2022 Management of distributed computing continuum systems Mathematical artifact called Markov blanket

Li et al. [43] 2023 Resource allocation Gradient-based algorithms

Hazra et al. [46] 2023 Maintaining energy and delay constraints Transmission scheduling and computation offloading (TSCO)

Most of the literature has focused on allocation strategies in the cloud without paying
sufficient attention to service allocation in fog and IoT environments. These environments
consist of various capability devices, including both constrained and high-capability de-
vices. However, they are not as powerful as the devices in the cloud. This makes the process
of allocating services to devices more challenging. It requires a sound allocation strategy
while optimizing all aspects such as data communication, energy usage, resource wastage,
and response time. Moreover, the proposals in the literature have focused on network
conditions and device characteristics, but they have not paid attention to the technical
requirements of services and tasks during the allocation process. This is important, since
services and tasks have technical requirements similar to those of the devices’ capabilities.
In our proposal, we considered both device capabilities and the technical requirements of
services to achieve a comprehensive understanding of the allocation process and efficiently
allocate services to devices.
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3. Research Problem and Motivational Scenario

As the number of IoT devices linked to the Internet has grown, so has the number of
services, and businesses have begun to install additional services for various objectives.
Most IoT devices have limited resources such as RAM, CPU, and storage, along with limited
battery capacity. Furthermore, each deployed service has comparable constraints related
to similar resources. Additionally, it is crucial to take into account the data-processing
capacities of IoT devices while implementing and distributing services. As a result, before
providing information about services to IoT devices, we must understand their limitations.

Considering a hospital environment where the distribution of IoT devices and services
is crucial for bothIoT and healthcare. The hospital setting is composed of many IoT devices,
such as sensors, wearables, and medical devices, all of which are linked together by an
IoMT system. These devices continuously monitor and collect information about patient
health factors in real time. In this scenario, our focus is on service distribution within the
IoMT system to ensure efficient resource utilization and provide excellent patient care. Each
patient who visits the hospital is given a unique identification, and their health information
is collected and securely preserved. In addition, the physician allocates each individual a
priority rating according to the seriousness and necessity of their health condition.

Whenever a patient comes to the hospital, they are subjected to a range of tests and
examinations to determine the severity of their illness. These examinations can range from
simple blood tests and an electrocardiogram (ECG) to more complicated diagnostic scans
like magnetic resonance imaging (MRI) or X-rays. Each test generates various types of data
with varying levels of complexity and resource requirements. For example, MRI and X-rays
produce videos and images data in healthcare. Additionally, the physician determines
whether the patient is of high or low priority. The system then treats this process as a single
service, considering its priority. These services with priority levels will be allocated to the
fog devices (FD1, . . . , FDn) for processing. The fog devices will start by processing the
high-priority services, followed by the processing of lower-priority services. Finally, when
the fog devices are unable to process the services (either due to low or high priority), the
cloud devices (CD1, . . . , CDn) will receive the services for further analysis. For example,
if a patient is listed as a high priority, then the system will send the patient’s service to
the fog device for processing and obtaining a fast response. However, if the patient is in
low-priority condition and the fog devices are not capable, then the service will be allocated
to the cloud. In only one situation, when the fog devices are not capable of processing
high-priority services, they will be allocated to the cloud for further processing.

Figure 1 depicts various types of fog, IoT, and healthcare equipment within a hospital
environment. The hospital contains numerous patients (P1, . . . , Pn) who are undergoing
health check-ups. Moreover, the hospital offers a variety of services (S1, . . . , Sn) to patients.
Some patients are seeking treatment for dental problems, immunization, lung issues, kidney
and internal medicine problems, diabetes, eye problems, brain disorders, pregnancy, and
heart conditions. In our scenario, we regard these health issues that patients experience as
components of services (S). In other words, each user can have one or more services. When
a user has a service, the service (Si) will contain all the patient and test data.

Furthermore, analyzing image and video data may require more processing capacity
than numerical analyses like blood test results or ECG results. This is due to their volume
and the methods they employ, indicating that the capabilities of the fog layer must be
sufficiently robust to handle these services. As a result, because fog devices have limited
processing capability when compared to cloud devices, it is not viable to implement these
services on them. Due to resource-constrained devices in regard to hardware, service
allocation is a crucial part of fog architecture. Furthermore, certain fog devices remain
unused due to their limited power capabilities for service execution. This implies that
although these fog devices are required for data processing, they are overlooked due to
power limitations. This situation can worsen when billions of services are sent to numerous
devices and executed by them. This signifies that there is a waste of network devices,
which may cause the computation time to be delayed. The waste of devices occurs when
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devices are not used owing to restrictions and remain in the network unused, losing the
available resources. The main challenge is determining which service should be allocated
to which device in a fog architecture while maintaining overall efficiency. This is analogous
to optimization problems, which can be deemed highly suitable for allocation problems.

Figure 1. Scenario: a patient in a hospital.

3.1. Assumptions

We assume that the fog layer’s devices have limited RAM capabilities compared to
cloud devices. For our experiments, a synthetic dataset is generated. The dataset has
services’ technical requirements, fog devices’ capabilities, and the priorities of services. The
dataset has 800 services with varying technical requirements, and there are 50 fog devices
with varying capabilities. The technical needs of services and the devices’ capabilities are
known. The connection between devices in our experiments is outside the scope of our
study.

3.2. Process

The model starts by building synthetic data for both the requirements of services
and the capabilities of devices to prepare them for the allocation model. The fog devices’
capabilities are predefined, with fog devices being less capable when compared to cloud
devices. The allocation technique is used to distribute services based on service require-
ments, service priority, and device capabilities. Services will be allocated across fog or
cloud devices depending on the needs of the services, considering device capabilities and
service priority.

4. Methodology

We propose the PSA and SSA techniques, which are techniques for allocating resources
based on a list that includes all fog devices connected to the network. This method allows
us to determine the sequence in which different services are executed by various devices.
The actual capacities of devices, such as RAM, are used to arrange the list of devices. As
a result, for each physical aspect, all devices’ capabilities are maintained in a list. The
main purpose is to allocate services to devices in an effective and optimized manner. The
allocation technique is utilized to allocate all or a part of the services to a specific number of
fog devices or to various cloud devices with varied capabilities according to their capability.
Furthermore, the allocation approach aims to maximize fog device usage and minimize
data communication over the network. An overview of our proposed strategy is presented
below with equations.

The main goal G is to allocate the services si to fog devices DF as much as possible in
an effective manner. We can represent this as:

max
DF

N

∑
i=1

si · Ai,F

where Ai,F is a binary variable that represents whether or not service si is allocated to fog
device DF. If Ai,F = 1, then service si is allocated to fog device DF, and if Ai,F = 0, then
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service si is not allocated to fog device DF. The notation ∑N
i=1 si · Ai,F calculates the total

number of services allocated to fog device DF, where N is the total number of services. The
objective is to maximize this quantity over all possible allocations to fog devices.

The services will be allocated by the fog device to either fog devices DF or cloud
devices DC, dependent on the capabilities of the devices and the computing needs of the
services. We can represent this as:

si →
{

DF(si), if DF can handle si

DC(si), otherwise

The services will then be allocated according to their requirements to the fog devices
since this is the focus of our strategy. We can represent this as:

si → DF(si)

If the fog devices are unable to manage the load, the remaining services will be
allocated to the cloud-based devices. We can represent this as:

si → DC(si)

Therefore, to have efficient results, we used both fog devices and cloud devices for
service allocation. We can represent this by combining the previous two relations as follows:

DF(si), DC(si)→ G(si)

4.1. Objective Function

We have a multi-criteria optimization problem. The goal is to maximize the weighted
sum of two objective functions, f1(x) for decreasing delay and f2(x) for optimizing the
usage of resources. The weighting variables w1 and w2 are used to balance the significance
of the two objectives and manage the trade-off between conflicting goals. These can
be considered performance objectives for our strategy. The function that needs to be
maximized is described below:

Maximize fm(x) = −w1 · f1(x) + w2 · f2(x) (1)

where f1(x) is the objective function for minimizing latency (i.e., the time it takes for a
service to be allocated from fog to cloud), and f2(x) is the objective function for maximizing
fog resource utilization (i.e., using the fog devices as much as possible while minimizing
resource wastage). Here, x is a vector of variables, and w1 and w2 are weighting factors
used to balance the importance of the two objectives.

The minus sign in front of w1 · f1(x) indicates that we are maximizing the negative
of f1(x), which is equivalent to minimizing f1(x). Similarly, we maximize f2(x) by mul-
tiplying it with a positive weight w2. The aim of integrating two objectives into a single
objective function is to determine the optimal trade-off between them. By maximizing
fm(x), we intend to find x values that simultaneously minimize f1(x) and maximize f2(x),
with appropriate weightings. The range of values of w1 + w2 = 1.

4.1.1. Best Fit

The presented algorithm, called “Best Fit”, is used to allocate services to devices
depending on their capacity and technical requirements of services. We provide the best fit
code in Algorithm 1 to maximize device usage while delivering services to devices based
on their capabilities. We require the service requirements serReq and device capabilities
devCap as input. Then, for each service, we find the smallest possible device capability that
may accommodate the current service.

Servicepresent = find_min(devCap1, devCap2, . . . , devCapn) (2)
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If a device is found, it should be assigned to the current service. If a device cannot
be found, we disregard it and proceed with the other services. We do not break down the
services into smaller ones, but rather assign them to one of the devices, either a fog device
or a cloud device, according to their capabilities.

Algorithm 1 Best Fit

Input: devCap[], serReq[]
Output: allocID[]

for x ← 0 to length(serReq)− 1 do
bestFitID ← −1
for y← 0 to length(devCap)− 1 do

if devCap[y] ≥ serReq[x] then
if bestFitID = −1 then

bestFitID ← y
else if devCap[bestFitID] > devCap[y] then

bestFitID ← y
end if

end if
end for
if bestFitID 6= −1 then

allocID[x]← bestFitID
devCap[bestFitID]← devCap[bestFitID]− serReq[x]

end if
end for

In other words, services are assigned to available devices based on the best fit crite-
ria. The algorithm takes two parameters: devCap and serReq. Each device’s capacity is
represented by devCap, and the service request is represented by serReq. The algorithm
begins with two nested for-loops. The outer loop starts at 0 and iterates up to the length of
serReq, while the inner loop starts at 0 and goes up to the length of devCap. The outer loop
processes every service request one at a time, while the inner loop checks every device’s
capacity to see if it can handle the present service request.

The bestFitID is initially set to −1. If the capacity of the device at index y is greater
than or equal to the capacity of the service request at index x, the bestFitID is assigned
to y in the inner loop. If bestFitID remains −1, it signifies that no device is currently
allocated to the service. If bestFitID has been assigned a value, a comparison is made
between the present device’s capacity (devCap[y]) and the device assigned previously
(devCap[bestFitID]). If the current device’s capacity is smaller than that of the earlier
assigned device, the bestFitID is changed to the present device (y).

After the inner loop completes, if bestFitID is not−1, the current service is assigned to
the device with the best fit (bestFitID). The allocation is recorded by updating the allocID
list, and the capacity of the device is decreased by the service request. The algorithm will
keep running the outer loop until all the service requests are processed, and the devices are
allocated to the services. The method returns allocID, which represents the index of the
device allocated to the service. The result of the algorithm is the allocation of services to
the devices.

For instance, let us consider the following fog device capabilities: FDC1 = 16,384 MB,
FDC2 = 8192 MB, FDC3 = 4096 MB, and FDC4 = 2048 MB; along with the following service
requirements: 2048 MB, 2048 MB, 2048 MB, 2048 MB. Table 2 shows the results of best fit
example after running the code.
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Table 2. Result of best fit example.

Service Requirement allocID Allocated Device

2048 1 FDC4

2048 2 FDC3

2048 3 FDC3

2048 4 FDC2

Service request = 2048, allocation ID = 1, fog device = 2048. This indicates that the first
service requirement, which has a size of 2048 units, is assigned to a fog device with a RAM
of 2048.

Service request = 2048, allocation ID = 2, fog device = 4096. The second service request,
also of size 2048 units, is assigned to a different fog device with a RAM of 4096. Because
this device has a capacity of at least 2048, it can accommodate the service request.

Service request = 2048, allocation ID = 3, fog device = 4096. The third service request,
also with a size of 2048 units, is assigned to the same fog device as the second request. The
fog device’s capacity is still adequate to handle this request.

Service request = 2048, allocation ID = 4, fog device = 8192. The fourth service request,
also with a size of 2048 units, is assigned to a different fog device with an ID of 8192. This
device has enough capacity to accommodate the request.

In summary, the allocation process involves assigning each service request to a specific
fog device based on available capacity. The allocation IDs help track which request is
assigned to which fog device. The process ensures that fog devices with sufficient capacity
are selected to handle the requests. As the allocation progresses, the capacity of the fog
devices is adjusted accordingly.

4.1.2. Worst Fit

We provide the worst fit code in Algorithm 2 to optimize device usage while assigning
services to devices and considering device capabilities. We require service requirements
serReq and device capabilities devCap as input. Following that, we select each service and
identify the most capable device that can support the current service.

Servicepresent = find_max(devCap1, devCap2, . . . , devCapn) (3)

If a device is found, it should be assigned to the current service. If a device cannot be
found, ignore it and continue investigating the other services.

The method then iterates through each service request in the array serReq. It changes
the value of worstFitID to −1 for each service request, indicating that no device has been
allocated to the service yet. Next, the method iterates over the device capacities in the
array devCap. If a device has adequate capacity to satisfy the current service request, the
algorithm determines whether it is the first device discovered with sufficient capacity or
if its capacity is more than the current worstFitID. If the device’s capacity is greater, the
algorithm assigns worstFitID to the present device’s ID.

Following the completion of the inner loop, the algorithm checks if a device has been
allocated to the current service requirement. If a device is allocated, the algorithm updates
the allocID list by distributing the current service requirement the value of worstFitID.
The algorithm also decreases the allocated device’s capacity by the magnitude of the service
request. The aforementioned stages are repeated by the algorithm for all service requests.
After the outer loop has been completed, the algorithm returns the allocID list, which
contains the list of allocated services to devices.

The worst fit algorithm allocates the services to devices to ensure that each service is
allocated to the fog device with the most available capacity, maximizing resource consump-
tion in a multi-device scenario.
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Algorithm 2 Worst Fit

Input: devCap[], serReq[]
Output: allocID[]

for x ← 0 to length(serReq)− 1 do
worstFitID ← −1
for y← 0 to length(devCap)− 1 do

if devCap[y] ≥ serReq[x] then
if worstFitID = −1 then

worstFitID ← y
else if devCap[worstFitID] < devCap[y] then

worstFitID ← y
end if

end if
end for
if worstFitID 6= −1 then

allocID[x]← worstFitID
devCap[worstFitID]← devCap[worstFitID]− serReq[x]

end if
end for

4.1.3. First Fit

To maximize device utilization while allocating services to devices based on their
capabilities, we present the first fit code in Algorithm 3. We need service requirements
serReq and device capabilities devCap as input. After that, we select a service and determine
whether it is compatible with the current device. If the devCap is equal to the serReq, we
assign it and proceed to the next serReq. If not, we move on to investigate the next devCap.

Algorithm 3 First Fit

Input: devCap, serReq
Output: allocID[]

for x ← 0 to length(serReq)− 1 do
for y← 0 to length(devCap)− 1 do

if devCap[y] ≥ serReq[x] then
allocID[x]← y
devCap[y]← devCap[y]− serReq[x]
break

end if
end for

end for

In other words, the method has two inputs: devCap (device capabilities), serReq
(service needs); and one output: allocID (allocated IDs). The algorithm’s purpose is to
allocate services in serReq to devices in devCap and record the allocation in allocID.

The algorithm begins with two nested for-loops, where x is the length of serReq and y
is the length of devCap. The method examines whether devCap[j] is larger than or equal to
serReq[x] in every iteration of the inner loop. If the condition is met, the algorithm assigns
the present service (serReq[x]) to the current device (devCap[j]) by changing allocID[x] to
y and lowering the current device’s capacity by the service requirement (devCap[j]− =
serReq[x]). Finally, the algorithm exits the inner loop after locating a device capable of
allocating the current service and proceeds to the following service in the outer loop. This
operation is repeated by the algorithm until all services are assigned to devices.

4.1.4. Priority-Based Service Allocation

We present the code for the priority-based allocation in Algorithm 4 to select the
service allocation process and if the services should be handled in the fog or cloud. We
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need service requirements serReq and device capabilities devCap as input. The services are
then allocated to the fog devices using the f ogDevice(devCap, serReq) method. Following
that, one of the algorithms presented previously will be executed. Following that, we will
evaluate the capabilities of fog computing in order to allocate services. If no fog devices are
available to handle the service, we assign it to cloud devices by calling and forwarding the
remainder of the services to cloudDevice(remainingSer).

Algorithm 4 Priority-Based Allocation

Require: devCap: list of available devices, serReq: list of service requirements, allocID: list
of allocation IDs

Ensure: allocID
1: remainingSer ← empty list
2: for each service request x in serReq do
3: if priority of serReq[x] is high then
4: Allocate to fog devices with sufficient capacity
5: if allocID[x] 6= −1 then
6: Increment allocID[x] by 1
7: else
8: Append serReq[x] to remainingSer
9: end if

10: else if priority of serReq[x] is low then
11: Allocate to fog devices with sufficient capacity
12: if allocID[x] 6= −1 then
13: Increment allocID[x] by 1
14: else
15: if there is sufficient capacity in fog devices then
16: Allocate serReq[x] to a fog device
17: else
18: Append serReq[x] to remainingSer
19: end if
20: end if
21: end if
22: end for
23: if remainingSer is full then
24: Allocate remaining services to cloud devices
25: end if

Based on the importance of the service request, the algorithm decides whether to
distribute services to fog or cloud devices. The algorithm prioritizes service requests by
initially assigning them to the fog devices. The algorithm begins the process by determining
the level of priority of the service demand. If the service is high-priority, the algorithm
inputs the device capability and service requirement. If fog devices are capable of handling
the services, they will be allocated to fog devices. If fog devices are unable to handle the
low-priority service, the algorithm will allocate it to cloud devices instead.

The algorithm begins by allocating services to fog devices. To distribute services to
fog devices, the algorithm employs one of three allocation algorithms: best fit Algorithm 1,
worst fit method Algorithm 2, or first fit Algorithm 3. The method then iterates across the
length of the service request using a for loop. In every iteration, the algorithm determines
whether or not the service has already been assigned to a device by determining whether
or not the allocID is greater than −1. If the allocID is not equal to −1, it is increased by
one. By incrementing the allocID in such cases, the algorithm ensures that each service
request allocated to fog devices receives a unique identifier, preventing conflicts and
ambiguity in the allocation process. If the allocID is −1, the service request is saved in the
remainingSer list.



Sensors 2023, 23, 7327 13 of 25

The algorithm checks if the remainingSer list is empty at the end of the for-loop. If the
remainingSer list is empty, the algorithm has been completed and all services have been
allocated to the devices. If the remainingSer list is not empty, the method “cloudDevice”
with the remainingSer list as input is called. The “cloudDevice” function is in charge
of distributing the remainder of services to cloud devices. The priority-based allocation
mechanism routes service requests to either the fog or cloud layers based on their priority.
The method assigns services to fog devices utilizing one of three allocation techniques: best
fit, worst fit, or first fit, with the remaining services given to the cloud.

4.1.5. Sort-Based Service Allocation

We employed dual-pivot quicksort, an efficient sorting algorithm commonly used
in computer science and data-processing applications, especially for sorting primitive
data types such as int, double, and float. Dual-pivot quicksort, according to the authors’
findings [47], is typically quicker and more effective than alternative quicksort algorithms,
especially on big datasets. They point out that dual-pivot quicksort works effectively
with both randomly ordered and partly sorted data, and that it has a minimal amount of
comparisons and swaps.

Sorting may be a valuable technique in the context of fog computing for optimizing
service allocation and lowering the level of complexity of service distribution for fog
devices. Sorting the data prior to them reaching the fog devices makes it easier to deploy
resources and maximize the network’s overall performance. We classify the technical needs
of services in ascending order, from lowest to greatest, to assist service allocation techniques
for fog devices. We also sort the capabilities of fog devices. This allows for faster and more
efficient service allocation.

4.2. Architecture

Our architecture is organized into three major sections: a sensor layer, a fog Layer, and
a cloud layer. First, the sensor layer has IoMT sensors and IoMT devices that send data to
the fog layer. Second, the fog layer is responsible for distributing services to devices in an
effective and optimized manner by ensuring that all available resources are utilized and
serving users by offering accessible services. Last, the cloud layer can manage all of the
data and services, as well as provide essential services to the edge and fog layers.

The architecture shown in Figure 2 incorporates three devices, including IoMT, fog,
and cloud, as shown below:

• The IoMT sensors and devices are situated in the sensor layer of the network system
and are typically integrated into real-world objects. IoMT sensors are small and cost-
effective, making the installation process straightforward and cost-efficient. These
devices communicate with the fog devices using wireless communication. The IoT
ecosystem should be beneficial in a variety of ways, including energy savings, lower
costs, better resource use, and lower data transmission costs via the network. The
IoMT sensors and devices generate data for each patient, which are then integrated
into the service. This ensures that each service possesses data about the patient and
their medical diagnosis. Then, after fusing all the data into services, the services will be
sent to the fog layer. Additionally, this layer is responsible for sorting and prioritizing
services, aiding the fog layer in allocating services to devices.

• The fog devices reside adjacent to the sensor layer or within the communication
channel and gather services and use a service allocation strategy to allocate the services
to the fog devices as the priority is to process the services closer to the data source.
However, whenever the fog devices cannot handle the services due to the lack of
power of fog devices, then the services will be sent to the cloud using the proposed
allocation strategy. Additionally, the fog devices are responsible for allocating services
to either fog or cloud devices based on the priority of the service. Clearly, fog devices
have very little power and a narrower global data perspective than cloud devices;
thus, they can store less data and provide fewer services.
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• The cloud devices receive services from fog devices. The computational power and
data storage capacity of the cloud are significantly greater than those of fog devices
and IoMT devices. Cloud devices can be used for further analysis and storage when
required to have the full picture of the data.

Figure 2. Fog-based IoT architecture.

5. Experimental Setup
5.1. Dataset

In this study, we performed experiments to evaluate the effectiveness of fog computing
for service allocation. We utilized a customized dataset comprised of several fog devices
configurations and services settings to conduct our research. The dataset used in this study
was created in order to simulate an IoMT healthcare system.

5.1.1. Fog Devices’ Configurations

The fog device configurations utilized in the experiments are detailed in Table 3. The
table displays the experiment name, the number of fog devices, and the fog devices’ RAM
capacities (in Gigabytes). The experiment name is divided into three sections: (1) the
allocation approach (worst fit, best fit, or first fit), (2) the configuration types (low, medium,
or high), and (3) the device capabilities (FDC1 to FDC4). Each method includes three tests
of varying configurations (low, medium, and high).

FDC1, FDC2, FDC3, and FDC4 are the fog devices utilized in the experiment, each
with 2 GB, 4 GB, 8 GB, and 16 GB RAM. The low configuration had 50 fog devices totaling
100 GB; the medium configuration had 15 FDC1, 15 FDC2, 10 FDC3, and 10 FDC4 fog
devices totaling 330 GB; and the high configuration had 50 FDC4 fog devices totaling
800 GB.

Table 3. The configurations of fog devices in the experiment.

Fog Devices and Capabilities

FDC Setup FDC1
2 GB RAM

FDC2
4 GB RAM

FDC3
8 GB RAM

FDC4
16 GB RAM Total FDC (GB)

1 Low 50 fog Devices - - - 100 GB
2 Medium 15 Fog Devices 15 Fog Devices 10 Fog Devices 10 Fog Devices 330 GB
3 High - - - 50 Fog Devices 800 GB

5.1.2. Service Setups

The technical requirements of the services utilized in the experiment are provided
in Table 4. The services are labeled SR1, SR2, SR3, and SR4, with RAM requirements
ranging from 1 MB to 2 GB. We assumed that the size of the services matched the technical
requirements of the services in terms of GB size. We deployed these services in various
configurations to assess the performance of fog computing under various circumstances. A
total of 800 services with varied technical needs were generated, and the generated data
were used in all experiments. Half of the services (400) have high priority and the other
half (400) have low priority. To create the dataset, simulations were run with fog devices
configured as stated in Table 3 and services with varying technical requirements shown in
Table 4. The data were gathered and evaluated in the study. As the dataset was generated
at random, it was representative of real-world scenarios and provided various types of data
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for analysis. The dataset was used to assess the influence of various allocation techniques
on system performance and resource consumption in an IoT healthcare system.

This arrangement was created to emulate real-world circumstances in which fog
devices of diverse capacities may be required to host a variety of services with varying
resource requirements. The research intended to evaluate and compare several methods
for service allocation in fog computing environments by varying the number and capacity
of fog devices as well as the resource requirements of the services. Overall, the dataset
utilized in the experiments offers a wide range of fog device and service configurations for
evaluating fog computing performance.

Table 4. The setups of technical requirements of services in the experiments.

Services and Technical Requirements

SR1
1 MB–255 MB RAM

SR2
256 MB–511 MB RAM

SR3
512 MB–1 GB RAM

SR4
1 GB–2 GB RAM Total SR (GB)

No. of services 300 services 300 services 100 services 100 services 383 GB

5.2. Experiments

We categorized the experiments into three categories: those without priority and sort
(standard), those with priority, and those with sort. Experiments with no priority or sort
are used to allocate services without consideration for characteristics like priority or sort.
The experiments with priority concentrate on the priority considerations when distributing
services to fog devices; this indicates that services with a high priority will be delivered to
fog devices first, followed by those with low priority. When the fog is lacking, the services
will be assigned to cloud devices. The experiments with sort initially sort the services in
the sensor layer from small to big depending on their requirements in order to make the
allocation process for fog computing easier and to support the algorithms in distributing
the services efficiently. The three categories of experiments are employed to evaluate our
allocation strategy. When a setup does not necessitate specific factors, the first strategy is
chosen. If a setup requires prioritization, experiments with a priority focus are selected, as
we aim to deploy services to fog devices whenever possible.

We performed a total of three main experiments in each category of experiments. In
every category (standard, priority, and sort), we used three algorithms with three different
configurations, namely low, medium, and high, as mentioned earlier. In total, we conducted
nine experiments for each category to discover the ideal configuration for fog devices in
order to distribute services as effectively as feasible across fog devices. The configuration of
fog devices may differ based on the experiment, as illustrated in Table 3. The first column
lists the titles of the experiments, while the second column lists the capabilities of the fog
devices. We deployed 800 services using a variety of capabilities (FDC1, FDC2, FDC3,
and FDC4) to each of the 50 fog devices in experiments 1 through 9. The broad range of
capabilities includes both highly specialized and relatively common equipment (running
all capacities).

6. Results

In this section, we explore the outcomes of several techniques for allocating services
to fog or cloud depending on priority, size, and algorithms employed. The outcomes of
the allocation approach are shown here. As previously stated, the technique would first
allocate services to fog nodes based on their capabilities and then assign services that could
not be managed in the fog to cloud devices. We will examine and provide the findings
of the three methods, namely worst fit, best fit, and first fit. According to Statista [48],
the average upload speed for transmitting services from fog to the cloud using mobile is
8.5 Mbps. However, the average upload speed using fixed broadband to transfer services
from fog to the cloud is 28.5 Mbps.

To begin, we give two charts in Figures 3 and 4 that illustrates the distribution of
high and low-priority services to fog or cloud using various methodologies. Standard,
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priority, and sort are the strategies used in our experiments. The allocation is provided
separately for high- and low-priority services. Second, in Figure 5a,b, we provide a bar
chart that indicates the number of unused fog devices in GB after assigning services to
fog. Furthermore, the values in the table represent the amount of unused RAM in GB
for each algorithm and each level of fog device configuration: low and medium. In the
charts, we did not show the results of high level configuration of fog devices as all the
services were handled in the fog. Then, in Figure 6a,b, we show a chart and a table that
provide information about allocating services to fog or cloud using three different strategies:
standard, priority, and sort. The services are categorized as high- or low-priority, and their
sizes are indicated in gigabytes (GB). Finally, we talk about the time it takes for services to
travel from fog devices to the cloud, considering a variety of techniques.

The findings are reported in terms of the time required to assign services via mobile
and broadband networks, and the time is determined based on the upload speed supplied
by Statista [48].

Figure 3. The number of allocated services to fog and cloud (low).

Figure 4. The number of allocated services to fog and cloud (medium).

Figures 3 and 4 display the quantity of high- and low-priority services assigned to fog
or cloud using various techniques, including standard, priority, and sort. The allocation
is displayed separately for high-priority and low-priority services. “Standard” refers to
a situation in which there is no differentiation between high- and low-priority services.
Priority denotes a situation in which high-priority services take precedence over low-
priority services. Sort denotes a scenario in which services are first sorted and then assigned
using the best fit, worst fit, or first fit algorithm. According to the findings, the allocation
approach has a substantial influence on the number of services provided to fog and cloud
environments. In general, the priority method results in more high-priority services being
assigned to the fog environment and more low-priority services being assigned to the



Sensors 2023, 23, 7327 17 of 25

cloud environment. When it comes to sorting services, the allocation approach has less
of an influence on the number of services distributed to the fog and cloud environments.
However, the allocation algorithm utilized does make a difference. For example, the worst
fit algorithm allocates more services to the fog environment, but the first fit algorithm
allocates more services to the cloud environment.

For each combination of distribution strategy and service priority, the chart illustrates
the number of distributed high and low-priority services. The charts show that the number
of high-priority services allocated to the fog is lower than that in the cloud for the standard
strategy, while the converse is true for low-priority services. We did not include the results
of high-capacity fog devices in the table since their exceptional capabilities allowed them
to manage all services in the fog as mentioned earlier. It is clear from the charts that all
algorithms are doing well in terms of allocating services to fog and cloud, but as our
intention was to push the processing near the data source, a priority strategy can be a good
choice. Among the three algorithms, we can realize that the best fit can be selected as the
best in most cases.

Overall, our findings imply that a careful evaluation of allocation methods and al-
gorithms could be useful in optimizing service allocation in fog and cloud situations. A
priority approach, in particular, that prioritizes high-priority services, can help guarantee
that important services are allocated to the fog environment, where they can be handled
quickly and efficiently. Whereas the standard and sort strategies appear inefficient since
they allocate services without regard for priority.

The number of distributed services (NDS) is calculated using the following equation:
it is a metric for determining the proportion of services delivered or allocated to fog devices
within a given configuration.

NDS =

(
Number of services using strategy

Total number of services in configuration

)
× 100

The resultant number represents the proportion of services that are effectively dis-
tributed or allocated to fog devices within the given configuration based on the specified
strategy. A higher score indicates that more services have been successfully allocated. The
results are presented in Tables 5 and 6.

Table 5. No of distributed services low configuration.

Standard Priority Sort
To Fog To Fog To Fog

Worst Fit Low 41% 30.25% 41.125%
Best Fit Low 34.25% 34.625% 60%
First Fit Low 29.75% 30.875% 60%

Table 6. No of distributed services medium configuration.

Standard Priority Sort
To Fog To Fog To Fog

Worst Fit Medium 93.125% 92.375% 93.875%
Best Fit Medium 90.875% 89.25% 96.25%
First Fit Medium 88.875% 86.75% 96.25%

The bar charts in Figure 5a,b illustrate the number of unused fog devices in GB after
assigning services to fog. The values in the table indicate the quantity of unused RAM in
GB for each algorithm and fog device configuration: low, medium, and high. Worst fit
low: This allocation approach directs resources to the fog gadget that produces the most
waste. According to the chart, this technique wastes 2 GB for devices with low capacity
within the standard strategy. When priority is set, the wasted space is reduced to 1.5 GB.
Worst fit medium: This allocation approach produces the largest waste among medium-
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and low-configuration devices. According to the charts, this technique wastes 7 GB for
devices in standard and 6 GB with priority.

(a) Low configuration (b) Medium configuration

Figure 5. Wastage of fog devices.

However, when medium-configuration devices are sorted, the strategy wastes 42 GB.
Best fit: This allocation strategy allocates resources to the fog device with the least wastage.
The table shows that this strategy results in 0 GB of wastage for devices in all strategies.
First fit low: This allocation strategy allocates resources to the first available fog device.
The table shows that this strategy results in 1.5 GB of wastage for devices with low capacity
within the standard and 6 GB within the sort strategy, but 1 GB within the priority strategy.
First fit medium: This allocation strategy allocates resources to the first available fog device
among devices with medium capacity. The table shows that this strategy results in 2 GB
of wastage for devices within the standard and 1.5 GB of wastage when priority is given;
however, the wastage increases to 6 GB when the sort strategy is used.

Overall, we did not reveal the high-config devices since there was no waste because the
fog devices had high capabilities, which allocated all services to the fog devices. Finally, the
table shows that the Worst Fit strategy results in the most waste for both low- and medium-
capacity devices, especially when the sort is provided. In all circumstances, the best fit
technique results in the least amount of waste. The first fit approach stands somewhere
between the other two.

(a) Low configuration (b) Medium configuration

Figure 6. RAM of allocated services.

The charts in Figure 6a,b show the RAM size of services allocated to fog or cloud
based on three alternative strategies: standard, priority, and sort. The services are classified
as high- or low-priority, and their volumes are measured in gigabytes (GB). The low-
configuration devices have a total of 100 GB and the medium-configuration devices have
a total of 330 GB, as mentioned earlier. This indicates that in each configuration of low,
medium, and high experiments, there is a maximum size of RAM to handle services. For
example, the worst fit low experiment allocated 98 GB of services to fog devices of that
size out of 100 GB; the remaining 2 GB is the wastage discussed earlier. It is clear that
the strategy used most of the fog devices’ RAM, but most of the services traveled to the
cloud because of the limited capabilities of the fog devices. It is clear that the best fit low
and medium strategies are the best among others in terms of the usage of fog devices and
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allocating all services that can fit the fog devices without wastage. In the low configuration,
the sort strategy stands better than the standard strategy in worst fit and best fit, but worse
in sort. In the medium configuration, the sort strategy has better results than the standard
in all algorithms. Overall, the table provides valuable information about the allocation
of services to the fog or cloud and highlights the importance of considering service size,
algorithm, and strategy when making these allocation decisions.

Table 7 illustrates how long it takes for services to travel from fog devices to the cloud
using various techniques. The algorithms employed were standard, priority, and sort.
The findings are reported in terms of the amount of time required to distribute services
using mobile and broadband networks. The data clearly show that the time required
to distribute services to the cloud is often longer for the mobile network than for the
broadband network. This is most likely due to the fact that the mobile network has more
constraints and requirements for service distribution than the broadband network. In terms
of the various algorithms utilized, we can observe that the best fit algorithm outperformed
the others for both mobile and broadband networks. For the mobile network, the worst
fit algorithm performed the worst, but it was comparable with the other methods for the
broadband network. The first fit method performed effectively in the broadband network
but not so well on the mobile network. It is clear that the high-configuration setup of fog
devices had no cost over the network as all the services were handled locally. Overall, the
table findings indicate that the best fit algorithm may be the most effective method for
distributing services from the fog to the cloud. However, the particular method used may
be determined by the network’s specific requirements and constraints.

Table 7. Time of service allocation (fog to the cloud).

Standard Priority Sort

Mobile Broadband Mobile Broadband Mobile Broadband

Worst Fit Low 3 d 7 h 45 m 23 h 45 m 3 d 7 h 23 h 30 m 3 d 7 h 23 h 30 m
Worst Fit Medium 15 h 4 h 30 m 15 h 4 h 30 m 1 day 7 h 20 m

Worst Fit High 0 0 0 0 0 0
Best Fit Low 3 d 6 h 23 h 25 m 3 d 6 h 23 h 15 m 3 d 7 h 23 h 30 m

Best Fit Medium 12 h 3 h 45 m 12 h 3 h 45 m 15 h 43 m 4 h 40 m
Best Fit High 0 0 0 0 0 0
First Fit Low 3 d 7 h 23 h 30 m 3 d 7 h 23 h 30 m 3 d 8 h 1 d

First Fit Medium 13 h 4 h 13 h 4 h 16 h 4 h 45 m
First Fit High 0 0 0 0 0 0

The following equation illustrates the data communication reduction (DCR) in hours.
Time_of_services_using_strategy is obtained from the Figure 6a,b. The results of enhance-
ment are presented in Table 8. In addition, time of total services without strategy is obtained
from Table 9 and the data are used in the equation.

Table 8. Data communication reduction.

Standard Priority Sort
Mobile Broadband Mobile Broadband Mobile Broadband

Worst Fit Low 25% 26% 26% 27% 26% 27%
Worst Fit Medium 86% 86% 86% 86% 78% 77%
Worst Fit High 100% 100% 100% 100% 100% 100%
Best Fit Low 27% 27% 27% 27% 26% 27%
Best Fit Medium 89% 88% 89% 88% 85% 85%
Best Fit High 100% 100% 100% 100% 100% 100%
First Fit Low 26% 27% 26% 27% 25% 25%
First Fit Medium 88% 88% 88% 88% 85% 85%
First Fit High 100% 100% 100% 100% 100% 100%
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DCR = 100−
(

Time_of_services_using_strategy
Time_of_total_services_without_strategy

)
× 100

For example, the time it takes for services to travel between the fog and the cloud in
worst fit low using mobile in standard strategy is 3 days, 7 h, and 45 min. This should be
converted to hours, and when it is converted to hours, it will be 79.75 h out of 107 h in total.
Then, this number will be used in the equation.

Table 9. Total services allocation.

Total Services in GB To Fog To Cloud Total

No of Services 0 800 800
Percentage 0 100% 100%
Allocated Services in GB 0 383 GB 383 GB
Time of Allocating Services (Mobile) 0 4 d 11 h 4 d 11 h
Time of Allocating Services (Broadband) 0 1 d 8 h 1 d 8 h

6.1. Total Services Allocated to the Cloud

In this experiment, we allocated all services to the cloud in order to compare our
techniques against allocation without a strategy and to investigate architecture-based
allocation. Table 9 clearly shows that “No of Services” indicates 0 services out of a total
of 800 services assigned to fog devices and 800 services out of 800 services assigned to
cloud computing. In other words, the fog devices receive 0% of the allocated services,
while the cloud devices receive 100% of the services. The column “Allocated Services in
GB” in the table indicates that 0 services of 0 GB in size are allocated to the fog and 383
GB are allocated to the cloud devices. The time of service allocation is then represented as
“Time of service allocation (mobile)”, which indicates that the amount of time it takes for a
mobile network to allocate the services to fog is 0 due to no costs associated with local data
communication. but it takes 4 days, 11 h, and 0 min to allocate the 383 GB of services from
fog to cloud using the mobile network. However, “Time of service allocation (broadband)”
means that the period of time it takes to allocate services from fog to the cloud using the
fixed broadband network is 1 day, 1 h, and 40 min.

Table 10 shows the execution time of each algorithm in three strategies, namely stan-
dard, priority, and sort. The most effective strategy is the sort strategy; when compared
to the standard and priority methods, the sort strategy consistently has shorter execution
times. The sort strategy involves a sorting technique, which optimizes resource allocation
and results in faster algorithm execution times. As a result, the sort strategy is the opti-
mal method for reducing execution times and optimizing resource allocation efficiency.
However, without any priority or sorting factors, the standard method often has longer
execution durations than the other techniques. In terms of optimizing resource allocation
efficiency, it lacks the benefits of priority levels and sorting approaches. As a result, the
standard approach is the least effective in terms of execution times and resource allocation
efficiency.

The priority strategy may outperform the standard strategy in terms of resource allo-
cation efficiency. In terms of reducing execution times and optimizing resource allocation
efficiency, the Sort method outperforms both the priority and sort strategies. In summary,
the sort strategy is the optimal strategy in terms of execution time, since it reduces ex-
ecution times. The standard method is considered the least favorable since it lacks the
advantages of priority and sort, while the priority approach can occasionally give better
resource allocation efficiency than the standard strategy.
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Table 10. Execution time.

Standard Priority Sort

Worst Fit Low 155 166 154

Worst Fit Medium 42 53 45

Worst Fit High 37 38 37

Best Fit Low 162 173 99

Best Fit Medium 46 49 41

Best Fit High 37 38 38

First Fit Low 160 166 134

First Fit Medium 47 48 44

First Fit High 37 37 37

We conducted three experiments using three methods, namely best fit, first fit, and
worst fit. Based on the results, the worst fit results were lower than the best fit and first fit;
it is clear that the data communication over the network is reduced with all strategies when
compared to total service allocation to the cloud, and most of the services are allocated
to the fog devices. Since reducing data transfer across the network was our primary goal,
it fits with our proposed technique. Furthermore, the second aim was to use the priority
aspect to allocate the services as much as possible to the fog devices, and based on the
results, this aim was achieved, as 90% or more of the services were allocated to the fog
devices.

We conducted a total of twenty-seven experiments using the best fit, first fit, and worst
fit methodologies. According to the results, the worst fit and first fit results were lower than
the best fit, indicating that data traffic via the network decreased with all methods when
compared to the entire service allocation to the cloud, with the fog devices receiving the
majority of the services. It fits with our proposed technique because reducing data transfer
across the network was our primary goal. Furthermore, the second goal was to use the
priority aspect to allocate as many high-priority services as possible to fog devices, and
based on the results, this goal was achieved because 90% or more of the priority services
were allocated.

We compared the performance of the algorithms, namely best fit, worst fit, and first
fit, while allocating services to fog devices based on the variable capability of fog devices
and variable service requirements. The focus was on the number of services allocated to
fog, resource usage, and data communication over the network. The first fit algorithm
allocates services to the first fog device that can handle them. It may, however, produce
some wastage, lowering fog device usage. The use of fog devices was approximately 90%.
The best fit algorithm allocates services to the smallest fog device that can handle them.
This algorithm tries to reduce waste and maximize fog device use. The wastage was found
to be the lowest. The use of fog devices in the priority strategy was 100%, and in other
strategies, it was more than 90%. The worst fit algorithm allocates services to the largest
available fog device that can handle them. However, this algorithm leads to increased
wastage. The wastage was found to be the highest. Additionally, the fog device usage was
better than the first fit, and better than the best fit in some of the experiments, but generally
worse than the best fit. In terms of waste, the best fit algorithm outperformed the first fit
and worst fit, attaining the lowest wastage. The worst fit algorithm generated the most
wastage. As a result, the best fit algorithm is regarded as the most advantageous of the
three for the variable capability of fog devices and variable services requirements scheme,
since it reduces waste and maximizes fog device use. Based on our knowledge, the worst
fit can lead to high wastage (fragmentation) and the best fit can be best in terms of wastage.
However, in some cases, the worst fit can increase the usage of resources [49].
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7. Discussion and Evaluation

We used two commonly used evaluation measures to assess the effectiveness of our
model: the allocation success rate (ASR) and the average resource usage (ARU). The ASR
calculates the number of services successfully assigned to fog devices/cloud devices. The
ARU calculates the percentage of RAM used by all fog devices/cloud servers. To illustrate
the robustness of our model, we conducted sensitivity analysis by adjusting various fac-
tors such as dataset size, technological requirement distribution, and the number of fog
devices/cloud servers. The findings indicate that our model is not overfitting a specific
dataset or set of parameters. We compared our strategies, including standard, priority, and
sort performance, while considering commonly used algorithms in the literature: the best
fit, first fit, and worst fit algorithms. Our model performs well in terms of ASR and ARU,
according to the results. We used various data groups randomly generated with different
distributions and sizes to demonstrate the validity of our model. The findings reveal that
our proposal performs well with the given setups and distributions. Our methodology
proposes a realistic and efficient solution to the service allocation problem in fog computing
applications.

Based on the results, we made the following observations:

7.1. The Number of Services Allocated to Fog Devices

As previously said, our primary aim in fog computing is to allocate services as close to
the data as possible while simultaneously maximizing resource consumption, network data
transfer, and balancing service allocation. The number of services allocated is influenced by
a variety of factors, including strategy, capabilities, and service requirements. According
to the findings, the allocation method and algorithm have a considerable influence on the
number of services assigned to the fog and cloud environments. The priority approach
allocates more high-priority services to the fog environment and more low-priority services
to the cloud environment. The allocation algorithm utilized also influences service alloca-
tion, with the worst fit algorithm allocating more services to the fog environment and the
first fit algorithm allocating fewer services to the fog environment, but the worst fit can
result in more wastage. The results also demonstrate that allocating services without regard
for priority or employing a sorting technique without considering priority is inefficient.
According to the study, a thorough evaluation of the allocation method and algorithm is
required to maximize service allocation in fog and cloud situations.

7.2. Resources Usage

The results shown in Figure 5 indicate that the strategy used for distributing services
to fog devices can have a considerable influence on the amount of unused RAM in the
fog. The best fit method produces the least waste in all circumstances, whereas the worst
fit strategy produces the most waste, especially when priority is provided. In terms of
waste, the first fit technique lies in between the other two. The chart also demonstrates
that high-config devices did not waste any resources because they could handle all of
the services assigned to them. These findings imply that a careful study of the allocation
approach and algorithm can aid in optimizing the use of fog resources and minimizing
waste.

7.3. Data Communication Over the Network

The results clearly indicate that most of our experiments resulted in low data com-
munication over the network compared to total services allocated to the cloud without
strategies Section 6.1 which is the traditional way of allocating services without considering
the power of fog and strategies. The variations in fog device capabilities used in our
research can help us choose a combination that depends on a number of factors, such as
the technical requirements of services as well as the RAM requirements of fog nodes. To
decide which allocation technique is optimal for allocating services to fog or cloud devices,
we need to consider the service requirements and device capabilities. The results show
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the amount of time taken to allocate mobile and broadband services to different devices
using three different algorithms: worst fit, best fit, and first Fit. The values in the table
represent the time taken in hours and minutes for each algorithm and device configuration:
low, medium, and high capability. The findings imply that best fit is the most efficient
algorithm, as it takes the least amount of time to allocate services for all device types. The
worst fit algorithm results in the longest allocation time for low- and medium-capacity
devices, while the first fit algorithm falls somewhere in between the other two algorithms.
Additionally, the high-capacity devices did not have any allocation time as all services
were allocated to them. It is clear that the data communication over the network is reduced
with all strategies, and most of the services are allocated to fog devices. Since reducing
data transfer across the network was our primary goal, it fits with our proposed strategy.
Furthermore, the second aim was to use the priority aspect to allocate the high-priority
services as much as possible near the fog devices, and based on the results, this aim was
achieved as 90% or more of the services were allocated to the fog devices and the data
communication was reduced by 82% compared to Section 6.1.

8. Conclusions and Future Work

In conclusion, this paper develops an efficient service allocation strategy priority-based
service allocation (PSA) and sort-based service allocation (SSA) with lower bandwidth
consumption, faster response times, improved resource usage, and the identification of the
best method for processing data at a large scale. Our proposed service allocation strategy
was significant because providing services to devices in the IoT is a difficult process due to
the many types of devices and their capabilities. Our results showed that by distributing
most services locally in fog, we reduced data transmission over the network by 88%, and
we maximized the number of distributed services to fog devices by 96%, while minimizing
the wastage of fog resources. Our future work includes the following open challenges:
Privacy is a concern, as fog nodes acquire a considerable quantity of personal information
from fog applications such as smart healthcare. Security is a serious concern, because fog
devices lack resources and are positioned in risky environments, which leaves them open
to attacks. As a result, designing a lightweight, fast, and reliable security algorithm remains
a challenging task.
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