
Citation: Li, S.; Zhang, H.; Ma, H.;

Feng, J.; Jiang, M. SSA Net: Small

Scale-Aware Enhancement Network

for Human Pose Estimation. Sensors

2023, 23, 7299. https://doi.org/

10.3390/s23177299

Academic Editors: Zhaoyang Wang,

Minh P. Vo and Hieu Nguyen

Received: 6 July 2023

Revised: 15 August 2023

Accepted: 18 August 2023

Published: 22 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

SSA Net: Small Scale-Aware Enhancement Network for Human
Pose Estimation
Shaohua Li , Haixiang Zhang *, Hanjie Ma, Jie Feng and Mingfeng Jiang

School of Computer Science and Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China;
202120501008@mails.zstu.edu.cn (S.L.); mahanjie@zstu.edu.cn (H.M.); arlose@zstu.edu.cn (J.F.);
m.jiang@zstu.edu.cn (M.J.)
* Correspondence: zhhx@zstu.edu.cn

Abstract: In the field of human pose estimation, heatmap-based methods have emerged as the
dominant approach, and numerous studies have achieved remarkable performance based on this
technique. However, the inherent drawbacks of heatmaps lead to serious performance degradation
in methods based on heatmaps for smaller-scale persons. While some researchers have attempted
to tackle this issue by improving the performance of small-scale persons, their efforts have been
hampered by the continued reliance on heatmap-based methods. To address this issue, this paper
proposes the SSA Net, which aims to enhance the detection accuracy of small-scale persons as much
as possible while maintaining a balanced perception of persons at other scales. SSA Net utilizes
HRNetW48 as a feature extractor and leverages the TDAA module to enhance small-scale perception.
Furthermore, it abandons heatmap-based methods and instead adopts coordinate vector regression
to represent keypoints. Notably, SSA Net achieved an AP of 77.4% on the COCO Validation dataset,
which is superior to other heatmap-based methods. Additionally, it achieved highly competitive
results on the Tiny Validation and MPII datasets as well.

Keywords: pose estimation; scale-aware enhancement; keypoint detection

1. Introduction

Human pose estimation is a crucial task in the field of computer vision that has
garnered significant attention from researchers. Its specific approach involves localizing
the keypoints of the human body (such as knees and elbows) from an image. Human pose
estimation has a wide range of applications in daily life, such as action recognition [1–3],
motion tracking [4–6], and augmented reality [7–9].

Heatmap-based methods are widely employed in the field of human pose estimation
due to their high performance. However, these methods suffer from several issues,
particularly in scenarios with low resolution or small-scale persons, where significant
degradation of performance occurs. At such times, the keypoints exhibit blurriness and
density, and the heatmap representation cannot effectively solve these problems. In
recent years, researchers have been exploring new coordinate representation methods to
replace the heatmap-based approach. One such method is the 1D vector representation,
which has been validated in SimCC [10] and has shown superior localization accuracy
for small-scale persons when compared to heatmap-based methods. Building on this,
this article has optimized this method by significantly reducing the parameter count
without a significant loss of performance. This optimized approach is referred to as CVR
(coordinate vector regression).

Based on the above, to tackle the issue of predicting small-scale persons, this article
proposes the SSA Net. This network leverages the HRNetW48 architecture as the feature
extractor, with the TDAA module employed to reinforce small-scale perception, and the
CVR method to predict keypoints. In detail, this article first sifts through each person
based on the predicted bounding box. Following this, the single-person image is fed into
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the backbone for feature extraction, with the resultant feature map measuring 1/4 of the
original image size. Considering that high-resolution feature maps are more favorable
for predicting small-scale persons, the output feature map is resized to 1/2 of the original
image size using transpose convolution. This article then uses dilated convolution to
restrict the receptive field of the feature map within a relatively limited range. Subsequently,
this article introduces the coordinate attention [11] to generate position-sensitive feature
maps. Our TDAA module can effectively resolve issues associated with small person
features blurriness and keypoints concentration. Finally, this article introduces the residual
mechanism to fuse features and uses the CVR method to predict keypoints. Overall, the
entire network can be understood as a network designed to focus on features for small-scale
persons as much as possible. The main contributions of this paper are:

• This article proposes a new network structure SSA Net, the most important feature of
this network is that it focuses on the performance of small-scale persons and solves
the problem of unbalanced scale perception of mainstream models.

• This article proposes the TDAA module in SSA Net, which can effectively improve
the expression ability of small-scale person features and thus improve the prediction
accuracy of small-scale persons.

• This article proposes a coordinate vector regression method, which is better than
the heatmap method in terms of both prediction accuracy and speed for small-scale
persons.

• SSA Net achieves significant performance improvements over mainstream heatmap
methods on the COCO Validation and COCO test dev datasets, as well as competitive
results on the MPII Validation dataset.

2. Related Work
2.1. Regression Based Methods

Existing datasets of human keypoints are labeled in the form of coordinates, so re-
searchers are most likely to think of letting the network generate signals of the same
form for supervised learning, making the regression-based approach very popular in the
early days. In 2014, DeepPose [12] was the first to convert the human pose estimation
problem into a keypoint coordinate regression problem, which inspired many subsequent
works [13–17]. However, as research progressed, several issues were exposed. Firstly, hu-
man keypoint coordinates have a large numerical range and scattered distribution, which
impedes direct learning by the network. Secondly, rich constraint information exists among
human keypoints and between humans and the background, but coordinate regression
methods only output the x and y coordinates, thus losing constraint information. These
shortcomings significantly limit the performance of coordinate regression methods and
make them unable to surpass heatmap-based methods for a long time until the successful
introduction of RLE [18] in 2021, which propels regression-based models back to the SOTA
ranks. The core of RLE’s work is estimating the model’s output joint distribution probability
density through flow methods. Once a satisfactory prior distribution function is estimated,
the loss function can be dynamically optimized to promote the model’s regression training.

2.2. 2D Heatmap-Based Methods

The heatmap representation [19–26] has been a hot topic in the field of human pose
estimation and has gained popularity among many researchers due to its outstanding
performance. Even works like TransPose [27], which are based on Transformers, ultimately
rely on heatmaps. The principle of the heatmap representation is to encode the label as
a heatmap that conforms to a 2D Gaussian distribution. The heatmap size is generally
set to 1/4 of the input image size, and the confidence in the Gaussian kernel is continu-
ously adjusted during training. Finally, keypoint coordinates are decoded using methods
such as [28,29] by extracting the index of the maximum probability point for calculation.
The 2D heatmap representation has two prominent advantages. Firstly, it preserves the
spatial position information of the keypoints. Secondly, in many images, a single pixel
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cannot accurately mark a joint since the pixel around it also resembles the joint. The hasty
setting of surrounding pixels as negative labels would be unreasonable, but Gaussian
kernels can accurately simulate the keypoints’ position.

Tompson et al. [30] were among the earliest researchers to use the heatmap-based
approach, proposing the optimization of prediction results by utilizing the structural
relationships between human keypoints and incorporating the concept of Markov ran-
dom fields. Newell et al. [24] introduced the Hourglass network, which leverages
symmetric up-sampling and down-sampling to acquire high-resolution feature maps.
Bowen Cheng et al. [31] improved upon HRNet [25] with HigherHRNet, which employs a
high-resolution feature pyramid for feature fusion to enhance performance for medium
and small-scale persons, and thus improve overall accuracy. However, the authors found
that the most significant contribution came from medium-scale individuals, with the perfor-
mance of small-scale persons being not significantly enhanced. Zhengxiong Luo et al. [32]
proposed a scale-weighted adaptive heatmap representation method to address the scale
issue of Gaussian kernels. Surprisingly, the results were consistent with HigherHRNet,
with tests demonstrating that most contributions came from individuals of medium scale.

2.3. Heatmap Limits Small-Scale Persons

Based on the works of Bowen Cheng [31] and Zhengxiong Luo [32], it can be seen that
although the authors are aware of the problem of scale perception imbalance in mainstream
models and propose corresponding solutions, they have not realized that the heatmap
regression method is not suitable for small-scale persons and can even be fatal for predicting
small-scale persons. In the following, this paper will analyze from two perspectives why
the heatmap representation method limits the prediction of small-scale persons.

Firstly, when using the heatmap method for pose estimation, the label needs to be
converted into a heatmap that conforms to a 2D Gaussian distribution, and the conversion
method is as follows:

heatmapp(i, j) = e−
(i−x)2+(i−j)2

2σ2 (1)

where (x, y) represents the true coordinates, (i, j) represents the coordinates on the heatmap,
σ represents the standard deviation, and p represents the serial number of the heatmap.
heatmapp(i, j) represents the probability value corresponding to the point (i, j) on the
heatmap.

The specific approach is to assume that 17 keypoints are annotated on the human
body, which corresponds to the generation of 17 heatmaps. Assuming that the annotated
keypoint coordinates are (x, y), according to Formula (1), a Gaussian kernel with the center
at the point will be generated on the heatmap. The probability value of pixel points closer
to the center is higher. During the training process of the network, the probability values
on the heatmap will be updated step by step, and in the output stage, the best point will be
found in the 2D heatmap through methods such as [28,29] to calculate the loss.

From the above, it can be seen that the closer the distance to the annotated keypoint
coordinates, the higher the probability value corresponding to the point on the heatmap.
This advantage is particularly evident when the person scale is large and the annotated
keypoints are relatively scattered. However, when the target scale is small and the keypoints
are dense, the same standard deviation σ is used for keypoints on the same image of
different scales, and the Gaussian distribution cannot distinguish each keypoint very well.
From Figure 1a, it can be seen that when the person scale is large and the keypoints are
far apart, the Gaussian kernel can fit the position of the keypoints very well. As shown in
Figure 1b, when the target scale is small and the keypoints are close together, the soft label
at the nose has already significantly covered the right eye, and when decoding the heatmap
to coordinates using methods such as sampling-argmax [28], the surrounding pixels other
than the center of the Gaussian distribution will be utilized, and these pixels also have high
confidence in other keypoints, which can easily cause semantic confusion.
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Figure 1. Gaussian distribution of the nose (blue curve) and right eye (red curve), and (a) represents
persons with larger sizes, while the (b) represents persons with smaller sizes, where the horizontal
axis represents the coordinate information, while the vertical axis represents the confidence score
information.

As shown in Figure 2, it can be seen more intuitively that when the size of a person is
small, using a Gaussian kernel with the same standard deviation does not perform well.
As shown in Figure 2a, the Gaussian kernel can fit the nose very well when the size of the
human is relatively large. But in Figure 2b, for small human sizes, the Gaussian kernels for
different parts such as the left eye, right eye, nose, and mouth are highly overlapped. In
Figure 2c, for a larger human size in a close-up shot, the Gaussian kernel at the nose is just
right, but for a smaller human size in a distant view, the Gaussian kernel at the nose has
already covered the entire face, which is clearly unreasonable.

Figure 2. The effect of the scale of the Gaussian kernel on different size person, image from [32].Where
(a) Represent the performance of the Gaussian kernel when the person scale is large. (b) When the
person scale is small, the performance of the Gaussian kernel (c) represents the performance of the
Gaussian kernel when the image contains people of different sizes simultaneously

Although SWAHR [32] have discovered this issue and proposed a scale-weighted
adaptive heatmap representation method to dynamically optimize the standard deviation
σ, it has been found through testing that most contributions still come from medium-scale
persons, and the performance improvement for small persons is not significant.

Furthermore, it should be noted that the size of the generated heatmap is often
much smaller than the original image, usually about one-quarter of its size. For instance,
assuming the true coordinates of the nose are (427, 427), the corresponding coordinates on
the heatmap would be (106, 106) after downsampling. Even if the predicted coordinates
happen to match this value precisely, a quantization error of 3 pixels would still persist
due to the difference between the true and downsampled coordinates (427− 106× 4 = 3).
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During the training process, this quantization error will become increasingly prominent as
the target size gets smaller. While some recent works, such as Hourglass [24] and DEKR [33],
have attempted to mitigate this issue by adding an extra post-processing module to reduce
the quantization error. However, this type of error is determined by the characteristics of
the heatmap itself, and therefore can only be reduced, but not completely eliminated.

In view of this, we believe that to start with small-scale persons, the heatmap-based
approach may not be a good choice, due to the limitations of the heatmap itself.

2.4. 1D Vector Based Method

Yin et al. [34] introduced a co-attention mechanism for facial keypoint detection,
where two sets of 1D heatmaps were used to represent the marginal distribution of x and y
coordinates. Xiong et al. [35] proposed the Band Pooling module to transform the heatmap
into a 1D vector for each pair of true coordinates. In the field of human pose estimation,
Yanjie Li et al. [10] redefined the task as a classification problem of horizontal and vertical
coordinates, where 1D vectors are used to represent the x and y coordinates. Their proposed
method, SimCC, uniformly divides each pixel into multiple bins, achieving sub-pixel level
localization accuracy and low quantization error.

We believe that the sub-pixel level localization accuracy of SimCC in 1D vector re-
gression methods would be more friendly for predicting small individuals. Therefore, the
method is optimized by us. Compared to the SimCC baseline, the new vector regression
method significantly reduces the parameter count without sacrificing too much accuracy,
effectively improving the performance of SSA Net.

3. Proposed Method
3.1. Feature Extractor

The structure of SSN Net is shown in Figure 3. In this paper, we uses the popular
HRNetW48 network as the feature extractor, taking images of size H ×W × 3 as input.
After several layers of convolutional neural network for feature extraction, it outputs a
feature map with a size of 1/4 of the original image.

Figure 3. Structure of SSA Net, the network consists of three parts: the Feature Extractor module, the
TDAA module (highlighted in green), and the 1D Vector Generator (CVR) module, where the Oi

x and
Oi

y represent the coordinates of the predicted keypoints.

3.2. TDAA Module

Next, this paper feeds the output of the feature extractor into the TDAA module,
as illustrated in Figure 4. In this module, through the addition operation in the residual
mechanism, we merge the initial high-resolution feature map with the high-resolution
feature map that has been enhanced through small-scale perception. This is performed
to balance the perceptual capabilities of persons at different scales. Moreover, while
enhancing perception at the small scale, it does not excessively impact the perceptual
abilities of medium-to-large scale persons. The module comprises a transpose convolution
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operation (T), a dilated convolution operation (D), an attention mechanism (A), and a
residual mechanism (A).

Figure 4. Structure of TDAA module.

Specifically, considering that high-resolution feature maps are more friendly for small
persons, this paper uses transpose convolution to increase the size of the feature maps
to 1/2 of the original image. The feature maps output by the feature extractor can be
represented as (N, C, Hin, Win) and after transpose convolution, the feature maps can be
represented as (N, C, Hout, Wout), the calculated as follows:

Hout = (Hin − 1)× stride[0]− 2× paddings[0] + ks[0] (2)

Wout = (Win − 1)× stride[1]− 2× paddings[1] + ks[1] (3)

where H represents the length of the feature maps, W represents the width of the feature
maps, stride refers to the step size of the convolution kernel, ks refers to the size of the
convolution kernel, and padding is an important parameter used to calculate the padding of
the feature maps. Subsequently, dilated convolutions are employed to control the receptive
field. The approach uses a kernel size of 3, a padding of 2, and a dilation rate of 3 to
limit the receptive field of the feature map to a small range, enabling the model to better
perceive small-scale persons. The effectiveness of this module is validated through ablation
experiments.

After transpose convolution, the number of channels is doubled through a 1 × 1
convolution. Then, the feature map is fed into a coordinate attention block [11], as shown
in Figure 5.

To obtain attention on the image width and height and encode accurate position infor-
mation, the coordinate attention block divides the input feature map into two directions,
width and height, and performs global average pooling on each separately. The feature
maps in the width and height directions are obtained as shown in the following formulas:

Zh
c (h) =

1
W ∑

0≤i<w
xc(h, i) (4)

Zw
c (w) =

1
H ∑

0≤j<h
xc(j, w) (5)

where W is the width of the feature maps and H is their height.



Sensors 2023, 23, 7299 7 of 18

Figure 5. Structure of coordinate attention block.

Next, the feature maps obtained from the width and height directions are concatenated
and then fed into a shared 1 × 1 convolutional module. This reduces the dimensionality
of the feature maps to C/r, where r is a reduction ratio. Afterwards, the feature maps
F1, which have been processed by batch normalization, are passed through a sigmoid
activation function to obtain a feature map f with a size of 1× (W + H)× C/r, as shown
in the following formula:

f = δ(F1([zh, zw])) (6)

Then, the feature maps f are processed by a 1 × 1 convolutional kernel along their
height and width, resulting in two feature maps Fh and Fw with the same number of
channels as the original. After applying the sigmoid activation function, we obtain the
attention weights gh and gw for the height and width directions, respectively. The formulas
are as follows:

gh = σ(Fh( f h)) (7)

gw = σ(Fw( f w)) (8)

After the aforementioned computations, the attention weights gh and gw for the input
feature map’s height and width will be obtained. Finally, a multiplication weighting
calculation is performed on the original feature maps to obtain the feature maps with
attention weights in both height and width directions. The formula is as follows:

yc(i, j) = xc(i, j)× gh
c (i)× gw

c (j) (9)

In summary, coordinate attention can be viewed as a process of decomposing channel
attention into two 1D feature encoding processes that aggregate features along different
directions. This has the benefit of capturing long-range dependencies along one spatial
direction while maintaining accurate position information along the other spatial direc-
tion. Subsequently, the resulting feature maps are encoded separately to generate a set of
direction-sensitive and position-aware feature maps, which can be highly advantageous
for dense human pose estimation tasks that involve numerous keypoints.
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Finally, to make each module work better, this paper introduces a residual mechanism
to fuse the output of the transpose convolution with the output of the coordinate attention
mechanism.

3.3. CVR Module

The principle of the CVR (coordinate vector regression) method is shown in Figure 6.
In this method, the feature map output by the TDAA module is first flattened, with a 1D
vector length of H/2×W/2 and M vectors in total. Then, they are separately fed into the
X and Y vector generators to generate the corresponding X and Y vectors. Finally, the
coordinates are predicted by decoding the X and Y vectors. The X and Y vector generators
are improved from SimCC [10], in which the authors used two fully connected layers for
prediction. In the coordinate vector regression method, this paper uses one-dimensional
convolutional blocks to replace the expensive fully connected layers and achieve good
results. In the next section, this paper also validates the effectiveness of this method through
ablation experiments.

Figure 6. Overview of the coordinate vector regression module, where K is the scaling factor, H and
W are the height and width of the original image, and M is the number of keypoints marked for each
human instance.

Coordinate Encoding: In this method, the x and y coordinates of the keypoints are
represented by two independent 1D vectors. By using a scaling factor K where we follow
the setting of SimCC [10] and set K = 2, the length of the 1D vector obtained will also be
greater than or equal to the image edge length. For the pth keypoint, its encoded coordinates
will be represented as follows:

p
′
= (x

′
, y
′
) = (round(xp × k), round(yp × k)) (10)

The scaling factor k divides each pixel into k equally-sized bins. Its purpose is to
increase the localization accuracy to a level smaller than that of a single pixel.

Coordinate Decoding: For the output X and Y vectors of the model, this paper natu-
rally uses the argmax function to predict the final keypoints. The calculation method for
the predicted point coordinates is shown below:

o
′
x =

argmaxi(ox(i))
k

(11)
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o
′
y =

argmaxj(oy(j))
k

(12)

In other words, the location of the maximum value point on the 1D vector is divided
by the scaling factor to restore it to the image scale.

4. Experiments
4.1. Experimental Details

The objective of this study is to enhance the overall performance by improving the
detection of small-scale persons. In the domain of human pose estimation, the widely used
datasets include COCO, MPII, and Human3.6M. Through the authors’ investigation, it is
found that only the COCO Validation dataset contains small-scale persons when using
the bounding box area as a threshold to differentiate among large, medium, and small
persons. However, other datasets possess images that are too ideal. To validate the model’s
performance, this paper selects a subset of images containing small-scale persons from the
COCO Validation dataset, named the Tiny Validation dataset.

Additionally, this paper tests the COCO and MPII datasets to analyze the contribution
of small-scale persons to the overall accuracy. To enhance the model’s persuasiveness, this
paper conducts several ablation experiments. First, we verify the effectiveness of each
module in TDAA. Then, we demonstrate the superiority of the improved coordinate vector
regression method over the SimCC baseline. Finally, we verify the comparison between
the TDAA module used in the heatmap method and the comparison between the heatmap
method and the coordinate vector regression method.

4.1.1. COCO Dataset

The COCO dataset is a large and versatile dataset proposed by Microsoft for image
classification, object detection, semantic segmentation, and pose estimation tasks. It mainly
contains images from Google and Bing, with content mostly consisting of daily scenes.
The COCO dataset contains over 200 k images, with 250 k annotated instances of human
body keypoints. The COCO training set has 118 k images, and the test set includes two
subsets: COCO Validation, which contains 5 k images for simple testing and ablation
experiments, and COCO test-dev, which contains 20 k images for online testing and fair
comparison with mainstream models. The evaluation metrics used in the COCO dataset
are the average precision (AP) and average recall (AR), which are both calculated based on
the object keypoint similarity (OKS) between the ground truth and predicted keypoints.
The OKS formula is shown below:

OKS =
∑i exp

(−
d2

i
2s2k2

i
)
δ(vi > 0)

∑i δ(vi > 0)
(13)

where i represents the number of annotated keypoints, d2
i is the squared Euclidean distance

between the predicted and ground truth keypoint coordinates, s2 is the area of the person in
the image, k2

i is a normalization factor that represents the displacement standard deviation
of the true keypoints, and vi indicates whether the keypoint is visible or not.

4.1.2. Tiny Validation Dataset

The COCO Validation dataset contains 5 K images that cover most of the common
scenes in daily life. In our preliminary research, we found that when the square of the pixel
size is less than 80, both the quantity and quality of the images will significantly decrease,
rendering them devoid of research value. On the other hand, when the pixel size is larger
than 80 squared, the size of the persons in the images becomes excessively large. Therefore,
this paper defines images with a person area less than 802 pixels as photos containing
small-scale persons. After screening, we obtain 361 images that meet this criterion, and we
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name this dataset Tiny Validation dataset. This dataset is a subset of COCO Validation and
is used to evaluate the performance of mainstream models on small-scale persons.

4.1.3. MPII Dataset

The MPII dataset is a commonly used dataset for human pose estimation. It consists
of approximately 40 k annotations, with each person annotated with 16 keypoints. These
images are extracted from videos on YouTube. Generally, 28 k images are used for training
and 11 k for testing. Additionally, the validation dataset includes annotations for occluded
body parts, 3D torso, and head orientation. The evaluation metric used in the MPII dataset
is the percentage of correct keypoints (PCK). Specifically, a prediction is considered correct
if the distance between the predicted and ground-truth keypoint coordinates is within a
certain threshold range. The calculation formula is as follows:

PCKp
σ(d0) =

1
|τ|∑τ

δ(||x f
p − y f

p||2 < σ) (14)

where d0 represents a detector, σ is the threshold for whether the keypoint matches the
ground truth.

4.1.4. Experimental Environment

The hardware and software environment of the experiment are shown in Table 1.

Table 1. The software and hardware environment for all experiments in this article.

Hardware CPU Intel(R) Xeon(R) E5-2678 @2.50 GHz × 48
GPU NVIDIA GeForce RTX 3090 24 G × 8

Software

OS Linux Ubuntu 20.04.5 LTS
Python Version Python 3.7.0
Pytorch Version Pytorch 1.13.1

Cuda Version Cuda11.6 + Cudnn8.3.2

4.2. Experimental Results
4.2.1. Results on Tiny Validation Dataset

This paper first conducted tests on the Tiny Validation dataset to verify SSA Net’s
accuracy in detecting small-scale individuals. As shown in Table 2, although mainstream
models perform well on the COCO Validation dataset, their performance on the Tiny
Validation dataset collectively declines. The AP of HigherHRNet drops from 66.5% to
46.8%, while SWAHR drops from 68.9% to 49.7%. This result also confirms the authors’
previous analysis that heatmap-based models are not suitable for predicting small-scale
persons due to their own shortcomings.

Table 2. Comparison with mainstream models on Tiny Validation dataset. Where ↓ represents how
much the accuracy of the model has changed compared to the COCO Validation dataset and the Tiny
Validation dataset.

Method Backbone Input Size AP (%)

DEKR [33] HRNetW48 512 51.8 (↓20.5)
HrHRNet [31] HRNetW32 512 46.8 (↓19.7)
SWAHR [32] HRNetW32 512 49.7 (↓18.2)
SWAHR [32] HRNetW48 640 56.7 (↓15.3)
SimCC [10] HRNetW48 256 62.1 (↓13.8)

SSA Net HRNetW48 256 69.8 (↓7.6)

SimCC has a higher AP on the Tiny Validation dataset than other models, but it cannot
solve the problem of dropped points well. This indicates that SimCC’s performance on
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small-scale persons is indeed better than that of heatmap-based models, but it has not
achieved scale-aware balance and lacks optimization for small-scale persons. In contrast,
our SSA Net is specifically optimized to address this issue, with a significant improvement
in dropped point performance and the AP reaches 69.8%, far better than the performance
of other models on the Tiny Validation dataset.

Therefore, it can be seen that the performance of small-scale persons may be an
important factor limiting the overall AP improvement, which was not well addressed by
previous mainstream models.

4.2.2. Results on COCO Validation Dataset

This paper conducted tests on the COCO Validation dataset to preliminarily validate
the contribution of SSA Net to overall accuracy after small-scale aware enhancement. As
shown in Table 3. In the COCO Validation dataset, SSA Net outperforms mainstream
heatmap-based models and keypoint regression models in major metrics, especially with a
significant improvement in APM.

Table 3. Comparison with mainstream models on COCO Validation dataset, bold is the best result in
each column.

Method Backbone Input Size #Params AP APM

SimpleBaseline [26] ResNet50 256 × 192 34.0 M 70.4 67.1
SimpleBaseline [26] ResNet101 256 × 192 53.0 M 71.4 68.1
SimpleBaseline [26] ResNet152 256 × 192 68.6 M 72.0 68.7

TFPose [36] ResNet50 384 × 288 - 72.4 -
PRTR [37] ResNet101 512 × 348 60.4 M 72.0 67.3
PRTR [37] HRNetW32 384 × 288 57.2 M 73.1 68.8
PRTR [37] HRNetW32 512 × 348 57.2 M 73.3 69.0

HRNet-W32 [25] HRNetW32 256 × 192 28.5 M 74.5 70.8
HRNet-W48 [25] HRNetW48 256 × 192 63.6 M 75.1 71.5

SimCC [10] HRNetW48 256 × 192 66.3 M 75.9 -
SSA Net HRNetW48 256 × 192 59.8 M 77.4 74.5

In particular, compared with PRTR-W32, SSA Net achieves a significant improvement
of 5.5% in APM and 4.1% in overall AP while having a slightly higher parameter count
of 2.6 M. Compared with SimCC, while reducing the parameter count by 6.5 M, SSA Net
increases AP by 1.5%, with most of the improvement contributed by small and medium-
scale persons. SSA Net outperforms other mainstream models on APM and shows a
significant improvement compared to the baseline network. Overall, SSA Net is highly
effective for small-scale persons and enhances small-scale persons perception compared to
other mainstream models.

4.2.3. Results on COCO Test Dev Dataset

This paper further conducted testing on the COCO test-dev dataset to compare our
method with the state-of-the-art mainstream models. According to Table 4, this paper tests
SSA Net on the COCO test dev dataset and finds that SSA Net achieves the best performance
in most indicators. Compared with TransPose, which is based on the heatmap method,
SSA Net improves AP by 0.8%, and APM improves by 2.2%, which is the most significant
improvement among all indicators. In terms of regression-based methods, compared with
PRTR-W48, SSA Net improves AP by 3.7%, while GFLOPs is only 38% of PRTR-W48,
indicating that SSA Net is superior to mainstream heatmap-based and regression-based
models in both speed and accuracy. Compared with the SimCC baseline, SSA Net improves
AP by 3.1% and APM by 4.3%, while GFLOPs decrease by 5.5. This shows that compared
to networks of the same type, SSA Net is also very competitive.
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Table 4. Comparison with mainstream models on COCO test dev dataset, bold is the best result in
each column.

Method Backbone GFLOPs Input Size AP AP50 AP75 APM APL

Heatmap Based Method

Mask-RCNN [38] ResNet-50-FRN - - 63.1 87.3 68.7 57.8 71.4
CMU-Pose [39] VGG-19 - - 64.2 86.2 70.1 61.0 68.8

G-RMI [40] ResNet-101 - 352 × 257 64.9 85.5 71.3 62.3 70.0
AE [41] Hourglass - 512 × 512 65.5 86.8 72.3 60.6 72.6

MultiPoseNet [42] - - 480 × 480 69.6 86.3 76.6 65.0 76.3
RMPE [43] PyraNet 26.7 320 × 256 72.3 89.2 79.1 68.0 78.6
CPN [44] ResNet-Inception 29.2 384 × 288 72.1 91.4 80.0 68.7 77.2
CPF [45] - - - 72.6 86.1 69.7 78.3 64.1

SimpleBaline [26] ResNet-152 35.6 384 × 288 73.7 91.9 81.1 70.3 80.0
HRNet-W32 [25] HRNet-W32 16.0 384 × 288 74.9 92.5 82.8 71.3 80.9
SimpleBaline [26] ResNet-50 20.0 384 × 288 71.5 91.1 78.7 67.8 78.0
HRNet-W48 [25] HRNet-W48 14.6 256 × 192 74.2 92.4 82.4 70.9 79.7
HRNet-W48 [25] HRNet-W48 32.9 384 × 288 75.5 92.5 83.3 71.9 81.5
TransPose-H [27] HRNet-W48 + Trans 21.8 256 × 192 75.0 92.3 82.3 71.3 81.1

Regression Based Method

SPM [17] Hourglass - - 66.9 88.5 72.9 62.6 73.1
DeepPose [12] ResNet-101 7.7 256 × 192 57.4 86.5 64.2 55.0 62.8
DeepPose [12] ResNet-152 11.3 256 × 192 59.3 87.6 66.7 56.8 64.9
CenterNet [46] Hourglass - - 63.0 86.8 69.6 58.9 70.4
DirectPose [14] ResNet-50 - - 62.2 86.4 68.2 56.7 69.8

PointSetNet [47] HRNet-W48 - - 68.7 89.9 76.3 64.8 75.3
Integral Pose [15] ResNet-101 11.0 256 × 256 67.8 88.2 74.8 63.9 74.0

TFPose [36] ResNet-50 + Trans 20.4 384 × 288 72.2 90.9 80.1 69.1 78.8
PRTR [37] HRNet-W48 + Trans - - 64.9 87.0 71.7 60.2 72.5
PRTR [37] HRNet-W48 + Trans 21.6 384 × 288 71.7 90.6 79.6 67.6 78.4
PRTR [37] HRNet-W48 + Trans 37.8 512 × 384 72.1 90.4 79.6 68.1 79.0

SimCC baseline [10] - 20.2 384 × 288 72.7 91.2 80.1 69.2 78.0
SSA Net HRNet-W48 14.7 256 × 192 75.8 92.1 83.6 73.5 82.1

4.2.4. Results on MPII Dataset

This paper also conducted testing on the mainstream MPII dataset to more compre-
hensively evaluate the model’s performance. The testing results are shown in Table 5.
It is evident that SSA Net outperforms HRNetW48 in all body parts, except for Elb and
Kne, among heatmap-based methods. Moreover, in regression-based methods, SSA Net
surpasses PRTR and other networks. This indicates that SSA Net also can achieve relatively
good performance on datasets with ideal human image quality, such as MPII.

Table 5. Comparison with mainstream models on MPII dataset, bold is the best result in each column.

Method Hea Sho Elb Wri Hip Kne Ank Mean

Hmp.Based
SimpleBaseline-R50 [26] 96.4 95.3 89.0 83.2 88.4 84.0 79.6 88.5

SimpleBaseline-R101 [26] 96.9 95.9 89.5 84.4 88.4 84.5 80.7 89.1
SimpleBaseline-R152 [26] 97.0 95.9 90.0 85.0 89.2 85.3 81.3 89.6

CPM [48] 96.2 95.0 87.5 82.2 87.6 82.7 78.4 87.7
HRNetW48 [25] 96.9 95.9 90.6 85.8 88.7 86.6 82.6 90.1

Reg.Based
Integral [15] - - - - - - - 87.3

PRTR-R101 [37] 96.3 95.0 88.3 82.4 88.1 83.6 77.4 87.9
PRTR-R152 [37] 96.4 94.9 88.4 82.6 88.6 84.1 78.4 88.2

SSA Net 97.0 96.0 90.5 86.1 89.6 86.3 83.2 90.3
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4.2.5. Qualitative Experimental Results

To provide a more intuitive illustration of the effectiveness of SSA Net, this paper
visualizes the model’s testing results on COCO Validation in Figure 7. The results demon-
strate that SSA Net is capable of accurately predicting the keypoints in various challenging
scenarios, such as when the person is small or in a crowded environment. As shown in
Figure 8 the left image represents the original image, the middle image represents the result
of the heatmap-based method, where we take the experimental results of HigherHRNet-
W48 as a representative example, and the right image represents the experimental results
of SSA Net. From the first image, it can be seen that the heatmap-based method is not very
accurate in predicting the keypoints of the legs, while SSA Net can predict them accurately.
From the second to last image, it can be seen that when a person is small and occluded
in the background, SSA Net predicts the upper body more accurately and the occluded
parts of the lower body more reasonably. Other images also show that the heatmap-based
method has missed detections in some distant scenes with small-scale persons, while SSA
Net can solve this problem very well.

Figure 7. Illustration of human pose estimation results of SSA Net in different scenes on COCO
Validation dataset.
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Figure 8. Comparison results between SSA Net and other mainstream models on COCO Validation
dataset.
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4.3. Ablation Experiments
4.3.1. Ablation Experiment of TDAA Module

The TDAA module is a crucial component of SSA Net, enhancing the network’s ability
to perceive small-scale persons. To verify the effectiveness of each part of the TDAA
module, this paper conducts ablation experiments.

It is worth noting that this paper uses the coordinate vector regression method pro-
posed in this paper to predict the keypoints for all five methods. The results, shown in
Table 6, indicate that the coordinate attention mechanism contributes the most to SSA Net’s
average precision (AP), with an improvement of 1.1%. The transposed convolution module
follows closely with a contribution of 0.7% to the overall performance. The dilation convo-
lution contributes 0.3%, and the residual mechanism contributes 0.2%. It can be seen that
the various modules work together and contribute to overall performance improvement.
Through this ablation experiment, it is also verified that the TDAA module is specifically
designed to enhance the perception of small-scale persons.

Table 6. Ablation experiment of TDAA module, where A1 is attention module, A2 is residual
mechanism. Where ↓ represents how much the accuracy of the model has changed compared to the
baseline.

Method T D A1 A2 AP

method 1 75.8
method 2 X 76.5 (↓0.7%)
method 3 X 76.1 (↓0.3%)
method 4 X 76.9 (↓1.1%)
method 5 X X X 77.2 (↓1.4%)
SSA Net X X X X 77.4 (↓1.6%)

4.3.2. Ablation Experiment of TDAA and CVR Module

As the effectiveness of the TDAA module has been proven in Table 7, this paper
attempts to combine it with heatmap methods. As shown in method 1 and method 3,
the TDAA module contributes a significant 2.1% improvement to AP, demonstrating its
capability to enhance performance when used in conjunction with heatmap methods.

Furthermore, to evaluate the performance of our proposed coordinate vector regression
method compared to heatmap methods, method 3 and method 4 are utilized. The results
indicate that the coordinate vector regression method improves AP by 2.2% compared to
heatmap methods. When the TDAA module is not used, method 1 and method 2 show that
the coordinate vector regression method improves AP by 2.7%, indicating an even more
significant improvement. These findings verify the superior performance of the coordinate
vector regression method compared to heatmap methods and indirectly demonstrate the
role of the TDAA module, which contributes a 0.5% AP gain to the heatmap methods.

Table 7. Ablation experiment of TDAA and CVR modules.

Method TDAA Heatmap CVR AP

method 1 X 73.1
method 2 X 75.8
method 3 X X 75.2
method 4 X X 77.4

4.3.3. Ablation Experiment of CVR Module

Through the above analysis, we fully verify the effectiveness of the coordinate vector
regression method in Table 8, which is an improvement over the method proposed in
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SimCC. This paper replaces the expensive fully connected layers in SimCC with a 1D
convolution block, which reduces dimensionality through sparse connections achieved by
convolution. As shown in method 1 and method 2, with almost no loss in performance, the
number of parameters decreases by 6.5 M, which is a worthwhile trade-off considering the
significant reduction in parameters with a sacrifice of only 0.1% in AP.

Table 8. Ablation experiment of CVR module.

Method Backbone #Params SimCC CVR AP

method 1 HRNetW48 66.3 M X 75.9
method 2 HRNetW48 59.8 M X 75.8

5. Conclusions

SSA Net addresses the deficiencies of previous models and makes specific optimiza-
tions for small-scale persons pose estimation. It uses a more accurate top-down structure
and replaces the heatmap representation method with the coordinate vector regression
method to more accurately locate the keypoints of small persons. Additionally, SSA Net
proposes the TDAA module and verifies its effectiveness through ablation experiments.

While SSA Net has achieved impressive results, it still faces some challenges. Despite
the improvement in perceiving small-scale persons compared to other models, there is still
a 7.6% accuracy loss observed in the Tiny Validation dataset. This is an issue that requires
further in-depth research in our future work.
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