
Citation: Li, J.; Hao, J.; Wang, X.;

Wang, Y.; Wang, Y.; Wang, H.; Wang,

X. Fourier Ptychographic Microscopic

Reconstruction Method Based on

Residual Hybrid Attention Network.

Sensors 2023, 23, 7301.

https://doi.org/10.3390/

s23167301

Academic Editors: Stefano Berretti,

Jean-Baptiste Thomas, Baptiste

Magnier and Khizar Hayat

Received: 19 July 2023

Revised: 7 August 2023

Accepted: 15 August 2023

Published: 21 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Fourier Ptychographic Microscopic Reconstruction Method
Based on Residual Hybrid Attention Network
Jie Li, Jingzi Hao, Xiaoli Wang *, Yongshan Wang, Yan Wang, Hao Wang and Xinbo Wang

Electrical and Electronic Teaching Center, Electronics Information Engineering College, Changchun University,
Changchun 130022, China
* Correspondence: wangxl@ccu.edu.cn

Abstract: Fourier ptychographic microscopy (FPM) is a novel technique for computing microimaging
that allows imaging of samples such as pathology sections. However, due to the influence of
systematic errors and noise, the quality of reconstructed images using FPM is often poor, and the
reconstruction efficiency is low. In this paper, a hybrid attention network that combines spatial
attention mechanisms with channel attention mechanisms into FPM reconstruction is introduced.
Spatial attention can extract fine spatial features and reduce redundant features while, combined with
residual channel attention, it adaptively readjusts the hierarchical features to achieve the conversion
of low-resolution complex amplitude images to high-resolution ones. The high-resolution images
generated by this method can be applied to medical cell recognition, segmentation, classification, and
other related studies, providing a better foundation for relevant research.

Keywords: Fourier ptychographic microscopy; spatial attention; channel attention; high-resolution

1. Introduction

Traditional optical imaging systems are limited by the spatial bandwidth product (SBP)
and require the use of high numerical aperture (NA) objectives to achieve high-resolution
(HR) images [1]. However, this comes at the expense of a reduced field of view (FOV).
Conversely, the use of low-magnification objectives to maintain a large FOV results in
a lower image resolution. Therefore, achieving a balance between these two factors is
challenging. In 2013, Fourier ptychographic microscopy (FPM) was proposed as a solution.
By using an LED array to illuminate the sample from different angles, FPM captures a set
of low-resolution (LR) intensity images containing different frequency domain information.
The phase retrieval algorithm is then used to stitch the spectral values of the acquired
images together, thus reconstructing an image with both high resolution and a large FOV.
FPM can realize large field of view, high-resolution, and quantitative phase imaging [2–5]
at the same time, which has important research value and is widely used in the fields of
digital pathology [6–8], medical cell detection, and segmentation.

During the acquisition of FPM images, the system is affected by errors and noises,
leading to poor image quality for the reconstruction using phase retrieval algorithms.
Therefore, many scholars have made improvements to FPM. For example, Tian et al. [9],
Lin et al. [10], and Li et al. [11] reduced image acquisition time in the hardware, as well
as Jiang et al. [12], Wang et al. [13], Sun et al. [14], and Zhang et al. [15], who utilized
untrained neural networks to model the Fourier ptychography imaging process and up-
dated frequency spectrum parameters using backpropagation and gradient descent algo-
rithms for image reconstruction. However, reconstruction using the above methods takes
a long time.

To improve the efficiency of image reconstruction, deep learning has been applied
to FPM. Using residual learning networks [16–18] can accelerate the convergence speed
during training and reduce the reconstruction time. Meanwhile, to address the issue of
flat images, channel attention mechanisms [19–22] are used to model the interdependence
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between feature channels, adaptively rescale the features of each channel, and highlight
effective features in the final reconstructed image, improving the fidelity of the reconstruc-
tion images. For example, Thanh et al. [23] combined the conditional generative adversarial
network (cGAN) framework with a weighted Fourier loss function to effectively learn
high-resolution information encoded in the dark field data. Chen et al. [24] proposed a
deep learning-based neural network model for FPM, which enhanced the network model’s
expressive power and generalization ability while also addressing slow LR image acqui-
sition. However, the imaging process also accumulates various inevitable noises in the
measurements. To solve this problem, Zhang et al. proposed the DeUnet method [25]
and the FPNN method [26]. The DeUnet method adaptively filters out the noise during
the reconstruction process using cross-layer attention mechanisms. The FPNN method
uses a synthetic input approach to achieve high-frequency information fusion through the
traditional model method, significantly improving FPM’s time resolution. Sun et al. [27]
proposed the DFNN method, which splits the network data flow into two branches, allow-
ing simultaneously obtaining HR amplitude and phase information. This model algorithm
has good robustness to noise and wave vector bias. Zhang et al. [28] proposed the PbNN-
CA reconstruction model, which combines a physics-based network with channel attention
modules [19] to simultaneously correct pupil aberration and LED intensity errors while
improving noise robustness. Wang et al. [29] proposed the DMFTN method, which uses
three networks for multi-scale fusion, and the feature information is fully extracted, which
effectively improves image quality and reduces reconstruction time.

To further improve the image reconstruction quality of FPM, this paper integrates
the models used in deep learning image super-resolution methods into the FPM network.
Inspired by Kim et al. [30], residual networks are applied to enhance network stability,
and faster convergence can be achieved during training. The shallow feature output map
and the deep feature map can be fused using multiple residual learning in the network
to obtain more information-rich images. In addition, spatial attention mechanisms and
channel attention mechanisms are added to each residual block to better reconstruct the
details of the image.

2. Proposed Methods
2.1. Network Architecture

In this paper, a residual hybrid attention network (RHAN) Fourier ptychographic
microscopy reconstruction model is proposed to enhance the quality and speed of image
reconstruction. The RHAN consists of three parts, as shown in Figure 1. Shallow feature
extraction is composed of a 3 × 3 convolution, which extracts low-level features through
convolution operation, retains texture and local detail information, and reduces overfitting
risk. The information flow from shallow feature extraction enters deep feature extraction
as input. Deep feature extraction is composed of a hybrid attention group (HAG), which
provides higher-level semantic information. Each HAG includes multiple residual attention
modules composed of channel attention (CA) modules and spatial attention (SA). The high-
frequency information after deep feature extraction and the low-frequency information
after shallow feature extraction are connected through a residual method to make the image
contain richer semantic information. The reconstruction module is composed of sub-pixel
convolution and two 3 × 3 convolutions to reconstruct high-frequency information.

2.2. Hybrid Attention Group

As shown in Figure 1, the HAG is composed of residual attention modules in series,
and a 3 × 3 convolution is introduced afterwards to further extract useful features, thus
improving the performance of the model. The HAGs are also connected by residuals, which
bring the output information of the previous group into the next group to learn together,
effectively enhancing the semantic information and avoiding loss of information during
the learning process.
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Figure 1. RHAN network architecture diagram. 
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Inspired by RCAB [20], the channel attention module has been improved as shown 
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× 3 convolution and Leaky ReLU activation function to enhance the feature expression 

ability of the model. Then, SA is introduced into the CA to facilitate deep feature learning. 

Unlike RCAB, SA [31] is added to extract fine spatial features and, combined with the CA, 

to adaptively adjust hierarchical features, thereby enhancing the feature extraction and 

prediction capabilities of the network. 

Figure 1. RHAN network architecture diagram.

2.3. Residual Hybrid Attention Block

Inspired by RCAB [20], the channel attention module has been improved as shown
in Figure 2. First, the input information flows into a convolution module composed of a
3 × 3 convolution and Leaky ReLU activation function to enhance the feature expression
ability of the model. Then, SA is introduced into the CA to facilitate deep feature learning.
Unlike RCAB, SA [31] is added to extract fine spatial features and, combined with the CA,
to adaptively adjust hierarchical features, thereby enhancing the feature extraction and
prediction capabilities of the network.
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2.5. Channel Attention 

As shown in Figure 4, the CA mechanism first downsamples the features through 

global average pooling, reducing the size to 1 × 1 × C. Different from RCAB [20], it uses 

the Leaky Relu activation function instead of the Relu activation function and then obtains 

different weight coefficients through the upsampling operation and sigmoid activation 

function. The original residual connections are replaced with SA, where important infor-

mation extracted by the SA is given larger weight, highlighting the required important 

features to a greater extent. This significantly improves the accuracy of Fourier ptycho-

graphic microscopy reconstruction. 

Figure 2. RHAB network architecture diagram.

2.4. Spatial Attention

In order to improve visual effects and increase receptive fields, dilated convolutional
layers with different dilation factors are used to extract multi-scale features instead of using
different sizes of convolutional kernels (3 × 3 and 5 × 5). Conducting multi-scale convolu-
tional operations to increase the receptive fields will also increase the network computation,
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as shown in Figure 3. By using dilated operations with different step sizes, the network can
increase the receptive fields without increasing complexity, thus enhancing visual effects.
Information fusion is performed after different dilated convolutional operations, which
increases the number of channels. Introducing 1 × 1 convolution can make the input and
output channel numbers the same.
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2.5. Channel Attention

As shown in Figure 4, the CA mechanism first downsamples the features through
global average pooling, reducing the size to 1 × 1 × C. Different from RCAB [20], it uses
the Leaky Relu activation function instead of the Relu activation function and then obtains
different weight coefficients through the upsampling operation and sigmoid activation func-
tion. The original residual connections are replaced with SA, where important information
extracted by the SA is given larger weight, highlighting the required important features
to a greater extent. This significantly improves the accuracy of Fourier ptychographic
microscopy reconstruction.
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3. Experimental Results
3.1. Data Setting

The experiment used a simulated dataset consisting of 25,600 sets of HR image data.
Each set contains two images representing the intensity and phase channels. First, the
HR intensity and phase images in each set are combined to generate complex amplitude
data. The Fourier ptychographic imaging model is then used to simulate the complex
amplitude data. During the simulation imaging process, Gaussian noise with a mean of 0
and a standard deviation of 3 × 10−4 is added to simulate the system error noise generated
during the actual imaging processes, which serves as the Fourier ptychographic LR data.



Sensors 2023, 23, 7301 5 of 12

The traditional Fourier ptychographic reconstruction algorithm, which only iterates once,
is used to synthesize the LR complex amplitudes. This results in 25,600 sets of LR input
intensity and phase data, with the 25,600 sets of HR image data serving as the ground truth
images. The simulation and preprocessing of the dataset are implemented in MATLAB.

The objective lens of the FPM imaging system with a numerical aperture (NA) of 0.13
is used to collect images in the experiment. The light intensity image is recorded by a
2560 × 2560 pixel (6.5 um pixel size) scientific CMOS camera. A planar array is used as a
13 × 13 programmable light source element LED, and the illumination wavelength is 505 nm
at 100 mm below the sample to provide illumination. The implementation of the method in
this paper was done in Python 3.8 using the PyTorch open-source framework. The evaluation
metrics used were peak signal-to-noise ratio (PSNR) and structural similarity (SSIM). To take
into account human visual perception, SSIM is used as the loss function. The network was
trained with a learning rate of 1 × 10−4 using input and ground truth data with a size of
192 × 192 pixels. The network was trained for 200 epochs, with a batch size of 64. The trained
model was saved and tested on the experimental platform.

3.2. Optimization Algorithm Comparison Experiment

To ensure better optimization results, the performance of Adagrad and AdamW opti-
mizers are compared with the same loss and iterations. The curve in Figure 5 shows the
loss comparison curve of the two different optimizers during network training. The red
curve represents the curve of training the network using the Adagrad optimizer, while the
green curve represents the curve of training the network using the AdamW optimizer. The
horizontal axis “Epochs” represents the number of training iterations, while “Loss” represents
the loss value of each training. PSNR and SSIM are image quality evaluation indexes.
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The comparison results are shown in Figure 5. The network trained with the AdamW
optimizer has a faster reduction of loss and better convergence and is always in a decreasing
trend, while the network trained with the Adagrad optimizer has a faster loss reduction
in the early stage and an unstable and flattening reduction in the later stage under the
influence of the dynamic adjustment of the learning rate. The reconstruction results are
shown in Figure 6. The network trained using the AdamW optimizer achieves good
results in both reconstructed intensity images compared to the Adagrad method, but
the reconstructed phase images are closer to the HR images. As shown in Table 1, the
image reconstructed using the AdamW optimizer has higher metrics, which, in summary,
demonstrates the effectiveness of the AdamW optimizer-trained network.
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Table 1. Reconstruction indexes of different optimizers.

RHAN Adagrad
PSNR (dB)/SSIM

AdamW
PSNR (dB)/SSIM

Intensity 35.68/0.9371 36.87/0.9471
Phase 20.97/0.9265 25.18/0.9682

3.3. Ablation Experiment

Through conducting ablation experiments, the effectiveness of combining spatial and
channel attention in Fourier ptychographic reconstruction is validated. In this experiment,
RCN represents residual channel attention network, RSN represents residual spatial atten-
tion network, and RHAN represents residual hybrid attention network. Under the same
conditions of using the same loss, learning rate, noise, etc., the three models were used to
train the network separately.

As shown in Figure 7, all three networks can achieve convergence. Additionally, using
the hybrid attention network compared to the other two networks, the loss drops faster and
stays in a downward trend. As shown in Figure 8, the intensity images reconstructed using
the RHAN model did not change significantly compared to the other two methods, but the
phase images were clearer and free of clutter. As shown in Table 2, the image reconstructed
using the RHAN model has higher metrics, which, in summary, proves the effectiveness of
the RHAN model.
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Table 2. Reconstruction indexes of different modules.

RCN
PSNR (dB)/SSIM

RSN
PSNR (dB)/SSIM

RHAN
PSNR (dB)/SSIM

Intensity 36.07/0.9416 36.16/0.9398 36.87/0.9471
Phase 17.14/0.9285 23.97/0.9429 25.18/0.9682

3.4. Comparison of Reconstruction Performance under Noise Conditions

During image acquisition in FPM, Gaussian noise can be introduced due to different
brightness of light sources. Therefore, the potential noise effect in the actual data acquisition
process is simulated and uses a noise magnitude of 3 × 10−4 as the main interference
condition for the experiment to verify the robustness and anti-interference ability of the
RHAN method. The approach with several other reconstruction methods, including the
traditional phase recovery AS method [32], the adaptive step-size reconstruction method
GS method [32], the neural network modeling approach proposed by Jiang et al. [12],
the INNM reconstruction method based on deep convolutional neural networks [33], the
DMFTN method based on multi-scale fusion [29], as well as the RHAN method. The
dataset with added Gaussian noise is reconstructed and randomly selected three sets of
images from the test set. The reconstruction results of different algorithms under the same
noise magnitude (3 × 10−4) are shown in Figure 9, and Table 3 shows the corresponding
evaluation metrics under different methods.

During the actual reconstruction process, noise of different levels of magnitude was
encountered. In order to verify the universality and robustness to noise of the reconstruction
methods, the reconstruction of the same images under different noise conditions were
simulated and the reconstruction results and metrics were compared. The levels of noise
used in the simulations were 1 × 10−4 and 3 × 10−4. Figure 10 shows the reconstruction
results of the same amplitude and phase image under different noise conditions, and Table 4
shows the corresponding evaluation metrics under different noise conditions.
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Table 3. The reconstruction metrics of different methods.

AS
PSNR (dB)

/SSIM

GS
PSNR (dB)

/SSIM

Jiang
PSNR (dB)

/SSIM

INNM
PSNR (dB)

/SSIM

DMFTN
PSNR (dB)

/SSIM

RHAN
PSNR (dB)

/SSIM

One
Intensity 24.77

/0.5192
25.19

/0.5235
16.36

/0.5881
15.30

/0.6200
21.36

/0.8641
36.87

/0.9471

Phase 18.27
/0.4579

18.46
/0.4415

23.62
/0.7381

24.67
/0.7165

28.07
/0.9578

25.18
/0.9682

Two
Intensity 20.46

/0.6267
17.85

/0.6291
20.19

/0.8460
11.67

/0.5354
29.75

/0.9467
39.80

/0.9689

Phase 11.36
/0.4993

13.29
/0.5363

23.62
/0.8744

23.91
/0.8684

22.87
/0.9522

28.92
/0.9316

Three
Intensity 21.23

/0.8298
22.40

/0.8418
19.99

/0.8735
18.28

/0.7993
31.31

/0.9316
35.04

/0.9592

Phase 13.84
/0.6251

13.84
/0.6358

14.09
/0.8076

15.01
/0.8237

24.49
/0.8984

27.35
/0.9441
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Table 4. Comparison of reconstruction metrics of different methods under different noise levels.

AS
PSNR (dB)

/SSIM

GS
PSNR (dB)

/SSIM

Jiang
PSNR (dB)

/SSIM

INNM
PSNR (dB)

/SSIM

DMFTN
PSNR (dB)

/SSIM

RHAN
PSNR (dB)

/SSIM

1 × 10−4 Intensity 25.91
/0.6816

28.98
/0.6952

23.10
/0.7464

17.18
/0.7190

24.56
/0.9047

39.66
/0.9694

Phase 21.72
/0.5360

20.35
/0.5346

23.49
/0.7797

26.17
/0.7667

27.35
/0.9692

23.97
/0.9709

3 × 10−4 Intensity 24.77
/0.5192

25.19
/0.5235

16.36
/0.5881

15.30
/0.6200

21.36
/0.8641

36.87
/0.9471

Phase 18.27
/0.4579

18.46
/0.4415

23.62
/0.7381

24.67
/0.7165

28.07
/0.9578

25.18
/0.9682

From the above experimental results, it can be seen that the Fourier ptychographic
microscopy reconstruction method using the RHAN has a good reconstruction effect and
reconstruction metric values. The amplitude and phase reconstruction images obtained
using the DMFTN and RHAN methods are clearer and have smaller errors compared to
those obtained using the GS, AS, and INNM methods and are closer to high-resolution
images. In Table 3, the bolded results are the optimal ones, and the closer the SSIM
metric results are to 1, the better the image reconstruction effect. The RHAN method
exhibited good reconstruction performance on different images and noises, indicating
strong robustness and generalization capabilities of the network.

3.5. Reconstruction Time Comparison on the Real Data Experiment

To further validate the effectiveness of the network, the real collected images were
added to the simulated dataset for training the network, and it was tested using low-
resolution images acquired from the real dataset. The proposed RHAN method is com-
pared with AS, GS, Jiang, INNM, and DMFTN, and the reconstruction results are shown
in Figure 11.
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Since the LR images acquired from the system are real, it is not possible to obtain
corresponding HR images for evaluation. In addition to comparing the reconstruction
results, the reconstruction speed is also an important evaluation metric. In the experiment
with real data, the reconstruction time as the evaluation metric is used. Table 5 shows the
number of iterations and reconstruction time for each compared method.

Table 5. Reconstruction indicators of different methods.

Reconstruction Methods Number of Iterations Reconstruction Time

AS 50 4.655 s
GS 50 4.132 s

Jiang 50 50 s
INNM 50 500 s

DMFTN 0 0.092 s
RHAN 0 0.075 s

From Figure 11, it can be seen that other compared methods are able to reconstruct
the rough contours of the image, but the RHAN method can reconstruct the details of the
amplitude and phase images better, resulting in clearer texture details compared to other
results. According to Table 5, the AS, GS, Jiang, and INNM methods require iterations for
reconstruction and have longer reconstruction times. In contrast, the DMFTN and RHAN
methods do not need to iterate and have the shortest reconstruction times, achieving the
fastest reconstruction speed.

4. Conclusions

This paper proposes a Fourier ptychographic reconstruction method based on a resid-
ual hybrid attention network, aiming to address the limitations of traditional phase recovery
and reconstruction algorithms. The proposed method combines channel attention and spa-
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tial attention based on residual learning to allocate channel weights and extract fine spatial
features. By continuously training the network, the method achieves the goal of recon-
structing HR images. The simulation results show that by simulating noise in the network
training, a model with robustness can be obtained. This solves the problem of high com-
putational cost and poor reconstruction performance of traditional Fourier ptychographic
reconstruction algorithms and can be applied to various medical cell reconstructions with
strong generalization ability.
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