
Citation: Almudayni, Z.; Soh, B.; Li,

A. Enhancing Energy Efficiency and

Fast Decision Making for Medical

Sensors in Healthcare Systems: An

Overview and Novel Proposal.

Sensors 2023, 23, 7286. https://

doi.org/10.3390/s23167286

Academic Editor: Cristiano André

da Costa

Received: 1 August 2023

Revised: 14 August 2023

Accepted: 18 August 2023

Published: 20 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Enhancing Energy Efficiency and Fast Decision Making for
Medical Sensors in Healthcare Systems: An Overview and
Novel Proposal
Ziyad Almudayni 1, Ben Soh 1,* and Alice Li 2

1 Department of Computer Science and Information Technology, School of Computing, Engineering and
Mathematical Sciences, La Trobe University, Bundoora, VIC 3086, Australia; z.almudayni@latrobe.edu.au

2 La Trobe Business School, La Trobe University, Bundoora, VIC 3086, Australia; a.li@latrobe.edu.au
* Correspondence: b.soh@latrobe.edu.au

Abstract: In the realm of the Internet of Things (IoT), a network of sensors and actuators collaborates
to fulfill specific tasks. As the demand for IoT networks continues to rise, it becomes crucial to ensure
the stability of this technology and adapt it for further expansion. Through an analysis of related
works, including the feedback-based optimized fuzzy scheduling approach (FOFSA) algorithm, the
adaptive task allocation technique (ATAT), and the osmosis load balancing algorithm (OLB), we
identify their limitations in achieving optimal energy efficiency and fast decision making. To address
these limitations, this research introduces a novel approach to enhance the processing time and energy
efficiency of IoT networks. The proposed approach achieves this by efficiently allocating IoT data
resources in the Mist layer during the early stages. We apply the approach to our proposed system
known as the Mist-based fuzzy healthcare system (MFHS) that demonstrates promising potential to
overcome the existing challenges and pave the way for the efficient industrial Internet of healthcare
things (IIoHT) of the future.

Keywords: Internet of health things; edge computing; Fog and Cloud computing; Mist computing;
energy efficiency; fuzzy logic; computing capacity; load balancing

1. Introduction

The Internet of Things (IoT) facilitates seamless communication between sensors and
actors within a network, serving specific tasks across various work environments, including
healthcare systems. The fundamental objective of IoT networks is to streamline workflows
and enhance overall convenience.

The primary objective of IoT networks is to streamline workflows and enhance overall
convenience by facilitating real-time data sharing, analysis, and decision making. As a
result, the demand for IoT networks is anticipated to undergo a remarkable surge in the
upcoming years, with forecasts projecting an astonishing 55.7 billion connected devices
by the year 2025 [1]. This exponential growth underscores the importance of ensuring the
stability, security, and adaptability of IoT technology to effectively cater to the evolving
demands of modern industries.

Within the healthcare sector, the reliance on IoT network services is poised to become
even more pronounced. Such services hold the potential to revolutionize patient care by
empowering doctors, nurses, and medical practitioners to closely monitor and manage
patients’ health conditions in real time. Through the continuous collection and analysis of
patient data from various IoT-enabled devices, healthcare professionals can make informed
decisions promptly, leading to quicker responses to critical situations and more effective
treatment strategies. Moreover, IoT networks offer the capability to automate administrative
tasks, such as scheduling appointments and managing medical records, which not only
saves time but also reduces the risk of errors.

Sensors 2023, 23, 7286. https://doi.org/10.3390/s23167286 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23167286
https://doi.org/10.3390/s23167286
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-9519-886X
https://doi.org/10.3390/s23167286
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23167286?type=check_update&version=2

Sensors 2023, 23, 7286 2 of 24

To that end, this paper introduces a pioneering solution known as the Mist-based
fuzzy healthcare system (MFHS), which addresses the crucial aspects of processing time
and energy efficiency within IoT networks. MFHS leverages the concept of the Mist
layer, an intermediate layer that strategically manages the allocation of IoT data resources
in the initial stages of data processing. By efficiently distributing computational tasks
and data-processing activities, MFHS optimizes the utilization of resources, leading to
reduced processing times and enhanced energy efficiency. This innovative approach has
the potential to significantly improve the overall performance of IoT networks, ensuring
that healthcare systems and other industries can leverage the full benefits of IoT technology.

The paper comprises six sections, where the first section critically examines and
analyses recent studies relevant to MFHS. The second section provides a comprehensive
review of previous studies that leveraged fuzzy logic systems to address IoT network
challenges. Section 3 offers an overview of the motivation and contributions of MFHS,
while Section 4 presents the detailed methodology employed in MFHS. Section 5 showcases
the results obtained from the implementation of MFHS, including a comparative analysis
with existing approaches. Finally, the concluding section summarizes the key findings and
highlights the implications of MFHS in advancing IoT network efficiency within healthcare
systems.

2. Related Work

We undertake a thorough examination of the relevant literature, which forms the
foundational segment of our research. Through a discerning analysis of existing works,
we identify pertinent shortcomings and gaps, setting the stage for the subsequent phase
of our study. Building upon the insights gleaned from our critical review, the subsequent
segment of our research unfolds as we introduce an innovative solution in Sections 3 and 4.
Drawing from the identified issues, we present a novel framework that addresses these
concerns and offers a promising avenue for advancement.

The related work itself consists of two parts:

(A) The load balancing of IoT networks among the four layers (Edge, Mist, Fog, and
Cloud).

(B) The effective use of fuzzy logic systems in networking.

2.1. Load Balancing among the Four IoT Network Layers

This section provides an overview of recent studies conducted between 2019 and
2022 that focused on workload balancing and task management within IoT systems across
the Edge, Mist, Fog, and Cloud layers. The objective of these studies was to leverage the
capabilities of all four layers and optimize their utilization within the system. However, this
section also highlights the existing gaps in these studies and proposes potential solutions
to address them.

In their work, Barik et al. (2021) [2] introduced a new algorithm known as the RAO-1
ALGORITHM, which aimed to minimize energy consumption within the Mist computing
environment of IoT networks. The proposed approach consisted of two stages: reducing
the number of unutilized microcomputers and effectively allocating tasks to suitable par-
ticipating microcomputers. By implementing the algorithm using Python 3.7, the results
demonstrated reduced power consumption and superior performance compared to the
ECTC and MaxMaxUtil algorithms. However, from our perspective, simply reducing the
number of unused microcomputers within the Mist layer may not provide an effective
solution. It would be more beneficial for the authors to focus on effectively utilizing all
available microcomputers and achieving workload balance to alleviate the burden on the
Cloud and Fog computing environments. Furthermore, considering factors beyond just
task completion time, such as data size, can contribute to making better resource allocation
decisions.

In traditional IoT networks using the MQTT communication protocol, the MQTT
brokers are distributed in the network and concentrated to Cloud nodes. Thus, the tradi-

Sensors 2023, 23, 7286 3 of 24

tional MQTT protocol is inappropriate for time-sensitive applications because it does not
support real-time communication between IoT devices. Therefore, Hmissi et al., 2021 [3]
proposed a new approach called MQTT-MBD to meet task deadlines and improve network
efficiency by distributing MQTT brokers over Mist nodes. To ensure that MQTT-MBD
improves communication delay, the authors identify four steps: registration, selection,
assignment, and connection, to select an appropriate broker. The broker selection is based
on three criteria: enough energy, meeting the real-time constraint, and CPU utilization.
Finally, a task will be sent to the Mist broker only if the Cloud broker, the Fog broker, and
Edge broker cannot answer the deadline. The simulation results showed that MQTT-MBD
achieved better results than Extended-EMMA and DM-MQTT in energy efficiency and
delay. The only notable drawback that can be seen in this proposed approach is that the
process of selecting an MQTT Mist broker to control tasks for the systems comes at a very
late stage. This is because IoT tasks must travel to all layers in a decreasing order, starting
from the Cloud to the Mist layer, and ask each computing layer if it can meet the deadline
requirements for the task until it reaches the Mist layer. This process increases the execution
time and consumes power; however, these circumstances can be avoided if selecting the
Mist broker comes earlier.

Resource allocation and managing tasks among Cloud, Fog, and Mist computing in
the IoT networks is a challenge. Therefore, Refaat 2020 [4] proposed a new model called
multi-level IoT tasks scheduling (MLITS) to manage and allocate resources for IoT tasks
and distribute these tasks over the Cloud, Fog, and Mist computing environments. The
criteria to distribute tasks among these computing environments is based on the task’s
deadline and the urgency to execute it. Using CloudSim 3.0.2, the proposed approach
succeeded in achieving better results than the Min-Min, CBS, and EFDF algorithms in terms
of the time to complete a task, as well as having less waiting time and more significant
throughput. However, the MLITS has some drawbacks; the criteria to distribute tasks is
limited, especially when it is known that the Fog, Cloud, and Mist have different source
capabilities. The second drawback is that all IoT tasks are first sent to the Mist, then if the
Mist nodes are not capable of processing a task, it will be offloaded to the Fog nodes, and
so on, until it reaches the Cloud. It is more optimal for a task to directly find its resources,
as the offloading process incurs energy costs.

Due to the limited resources of Mist computing nodes, they are incapable of handling
all IoT tasks, necessitating the offloading of these tasks to the Fog or Cloud for further
processing. Hence, it is crucial to be aware of the node capabilities and the task requirements
in all layers. Thus, Drosdov et al., 2019 [5] proposed a new model to extend the offloading
process to Mist computing. The authors implemented two services to offload tasks from
one to another accurately. First, the node summarizer (NS) collects information about the
hardware capabilities. Second, the service summarizer (SS) gathers information about the
service requirements. These two services help in selecting the optimum Mist node when
offloading tasks. The proposed model was applied in three different experiments; the results
showed that it successfully added 20 ms processing time to the system. In this proposed
approach, the authors only focused on offloading tasks from one Mist node to another Mist
node in the system and ignored all other layers. Furthermore, the task offloading criteria
solely focus on analysing the Mist nodes, without taking into consideration any specific
concerns related to the tasks themselves.

Hensh et al., 2021 [6] studied and analysed the impact of extending the computing
process through the Cloud, Edge, and Mist layers to balance the workload among them and
engage all layers to be a part of the computing process. The authors divided the priority
of tasks into four types to select a resource. The classification is based on the time needed
to complete a task and the response time’s importance level. Using Visual Studio code,
the authors completed four different experiments to compute tasks: Edge only, Cloud
only, Fixed Edge–Cloud, collaborative Edge–Cloud and Mist–Edge–Cloud. The simulation
results proved that the experiment of Mist–Edge–Cloud achieved better delay time than the
other experiments. The authors did not introduce a new algorithm; instead, they conducted

Sensors 2023, 23, 7286 4 of 24

an experiment to highlight the significance of utilizing all four computing layers in data
computation.

Shahid et al., 2021 [7] implemented a new framework called IoTNetWar for military
organizations to achieve better time and resource scenarios when using IoT service monitor
troops. The authors take advantage of machine learning; specifically, they employed
the delay-based K-nearest neighbour algorithm to distribute IoT tasks among the Mist,
Fog, Cloud, and application layers. By employing this ML algorithm, a task embarks on a
journey from Mist computing to the Cloud, seeking an appropriate resource. EdgeCloudSim
was used to validate the proposed framework on three different scenarios: Fog computing
(Load-balanced), Mist computing (Load-balanced) and Mist computing delay-based K-
nearest neighbours (KNN). The results proved that the proposed framework of Mist
computing (KNN) achieved better results than Fog computing (LB) and Mist computing
(LB) in terms of service time, processing time, latency, and CPU utilization. It is noticeable
from the framework that there is no resource allocation in the IoTNetWar algorithm, as
tasks search for a suitable resource to fit task requirements starting from the first layer
(Mist layer) to the last layer (Cloud layer). The process of searching for resources for IoT
tasks among all layers is very time-consuming, and this can be avoided if the resources are
selected at an early stage without the need for searching.

Resource management and allocating resources for IoT tasks accurately is one of
the keys to achieving better latency, bandwidth, and energy efficiency for IoT networks.
Therefore, Hosen et al., 2022 [8] proposed a new algorithm called MSRM-IoT to allocate
resources for IoT tasks. All IoT tasks are first sent to the Edge broker (EB) in this algorithm.
Inside this EB, there is an application receiver and classifier (AC), and its function is to
distribute these tasks among Mist computing, Fog computing, and Cloud computing based
on the input size, the number of tasks, and the workload of a task in MIPS. In addition to
the AC, there is a Mist resource manager in the EB to assist tasks to select the best Mist node.
Moreover, there is a Fog broker (FB) in the Fog computing layer, and its function is similar
to EB. MATLAB19a was used to validate the proposed algorithm and compare it with three
evolutionary algorithms: router, FCFS, and short job first. The results showed that MSRM-
IoT outperforms the three algorithms across all measures [8]. The parameters mentioned in
MSRM-IoT are mainly based on the computing size only to determine a resource for the
IoT tasks, which is not efficient from our point of view. In allocating resources for IoT tasks,
it is essential to determine tasks’ importance and their timing requirements in real-time
processing.

Ejaz et al., 2020 [9] analysed the difference between computing IoT tasks in the tradi-
tional Cloud-IoT model, Edge-Cloud-IoT model, and local Edge-Cloud-IoT model. iFogSim
was used to evaluate the three different scenarios. The simulation results showed that
processing IoT tasks locally is the best with respect to connectivity and energy consumption
compared with the first and second models. However, it is important to know that different
IoT tasks might vary in different scenarios, and processing tasks locally is not always
practical, as local nodes have limited capabilities. Thus, Cloud and Fog assistance is always
required to serve in all scenarios.

Tripathy et al. (2022) [10] introduced the Secure-M2FBalancer model to enhance the
security and workload balancing of IoT networks through the integration of supervised
learning and a genetic algorithm. The proposed model was implemented within a health-
care management system and comprised four layers: the IoT layer, Mist layer, Fog layer,
and Cloud layer. In this model, the IoT layer forwards data to the Mist layer, which is
responsible for resource allocation. If the Mist layer cannot process the data, it is offloaded
to the Fog layer. Within the Fog layer, a technique is employed to determine the status of
servers, distinguishing between overloaded and underloaded servers to enable accurate re-
source allocation. Furthermore, encrypted data are offloaded to or received from the Cloud
layer for secure communication when additional processing or storage is required. The
proposed approach was validated using MATLAB, and the results demonstrated superior
makespan performance when compared to least association, round-robin, and weighted

Sensors 2023, 23, 7286 5 of 24

round-robin approaches. However, within the Secure-M2FBalancer model, the authors
solely considered response time as the primary factor for resource allocation at the Mist
layer. From our perspective, this single factor may not be sufficient for precise decision
making in server allocation. Therefore, we suggest the inclusion of additional factors to
enhance the accuracy of the decision-making process. Furthermore, the criteria used to
determine the state of Fog servers, whether overloaded or underloaded, are not explicitly
defined in the study.

Mist computing can play a vital role in improving the data collection for IoT devices
as the processing is in the Edge computing environment. Barik et al., 2017 [11] developed a
new platform called MistGiS for geospatial big data and applied it in two cases: tourism
information infrastructure management and a faculty information retrial system. The
Raspberry Pi microprocessor was utilized to build the framework. The study results found
that Mist computing can assist Cloud and Fog computing in providing better analysis for
geospatial big data. This platform serves as a means to only highlight the significance of
Mist computing in evaluating other layers, thus lacking novelty in its approach.

Stavrinides et al. (2021) introduced a scheduling heuristic that considers security and
cost for real-time IoT data processing, taking into account various security requirements.
The algorithm is divided into three stages:

1. In the task selection stage, tasks are prioritized based on their deadlines.
2. The VM filtering stage aims to select the appropriate security level.
3. The VM selection stage determines the suitable VM for task processing based on the

earliest estimated finish time.

To validate their approach, the researchers implemented a custom discrete-event
simulator in C++. The results of the study demonstrated that the proposed approach out-
performed the baseline policy of security-aware heuristics (SAH) in terms of deadline miss
ratio, total cost of Cloud resources, and average response time [12]. However, we believe
that additional factors, such as task size, should be considered when prioritizing tasks.

2.2. Fuzzy Logic and Load Balancing

In this section, we provide an overview of previous studies conducted between 2018
and 2021 that leveraged the fuzzy logic system to enhance decision making in their respec-
tive approaches. These studies have been compiled to showcase the efficacy of employing
fuzzy logic in making accurate decisions pertaining to task scheduling and load balancing
in IoT systems.

Ali H et al., 2021 [13] proposed a fuzzy logic algorithm called real-time task schedul-
ing (FLRTS) to enhance the execution of the tasks of IoT applications at the Fog layer.
The algorithm works as a filter to divide the tasks into two categories: Fog group and
Cloud group, to select the environment to execute data to either the Fog or the Cloud.
Furthermore, the algorithm works inside the Fog broker at the Fog layer for the purpose of
classification. The algorithm incorporates five inputs: CPU utilization, storage utilization,
bandwidth utilization, task deadline, and network latency, to determine the optimal exe-
cution environment for data, whether it should be processed in the Fog or the Cloud. To
evaluate the proposed algorithm, the IFogSim simulator, a Java-based simulation toolkit,
was employed. The simulation results showed that the proposed approach outperforms the
existing algorithms first in first out (FIFO) and short job first (SJF) scheduling algorithms
and real-time task processing (RTP) in terms of makespan, delay, success ratio, and average
turnaround time. To achieve improved response time and decision making, it is crucial
for the filtering process to be situated closer to IoT sensors rather than at the Fog layer.
Filtering should ideally take place at an early stage, and in our perspective, the Mist layer
is the most suitable for task filtering since it is the layer closest to the Edge layer (which
represents the sensors layer).

Das A et al., 2020 [14] proposed a user categorization using a fuzzy logic (UCFL)
algorithm to improve the overall performance of IoT networks. The framework consists
of three layers: the second layer (Fog devices) works as a chine to allow the first layer

Sensors 2023, 23, 7286 6 of 24

(users) to collect data from the third layer (sensor nodes). Due to the power constraints
in the IoT network, the sensor nodes are not involved in the authentication process to
save power. Instead, only nodes with higher capacity, specifically the Fog nodes in this
framework, are engaged in the authentication process. The algorithm takes into account
three inputs: user experience, user knowledge, and user recommendation, to generate
an output that classifies users into three categories: high-trusted, medium-trusted, and
low-trusted. This classification plays a crucial role in reducing the number of authenti-
cation phases required. High-trusted users do not require authentication phases as they
have high experience, knowledge and recommendation, while medium-trusted users only
require one phase of authentication. On the other hand, low-trusted users require two
phases of authentication as they have low experience, knowledge, and recommendation.
To evaluate the proposed algorithm, a Raspberry Pi was employed as a user, while a laptop
served as a Fog node to facilitate the communication process. The simulation results clearly
demonstrated that the proposed approach outperformed other algorithms such as CoAP-
Micro, CoAPBlip, and HTTP/UDP in key metrics including handshake duration, memory
consumption, average response time, and computation cost. In the UCFL framework, the
authors achieved performance improvements by reducing certain users’ authentication
processes and adjusting security levels. However, it is important to note that from our
perspective, enhancing network performance should not compromise the system’s security,
either directly or indirectly.

In their work, Reddy A et al. (2021) [15] proposed an algorithm called the feedback-
based optimized fuzzy scheduling approach (FOFSA) to enhance power efficiency, execu-
tion time, and makespan in IoT networks while meeting quality of service (QoS) require-
ments. The algorithm intelligently allocates appropriate resources from Cloud resources,
including virtual machines, applications, and data centres, to compute tasks. Resource
estimation for Cloud computation takes place at the Fog layer. The proposed algorithm
was evaluated using MATLAB 2017b, with a focus on applying it to a rainfall prediction
mechanism. The algorithm takes five inputs: clouds, tasks, expected completion time, user
set priority, and decision making, and generates rainfall predictions by estimating suitable
VMs. Simulation results demonstrated that the FOFSA approach effectively reduced power
consumption, execution time, and makespan compared to existing algorithms such as
the optimized fuzzy bee-based scheduling algorithm (OFBSA); dynamic duty scheduling
for green sensor Cloud applications (DDSA), an adaptive tasks distribution method for
green Cloud computing; and the osmosis load balancing algorithm (OLB). However, one
limitation of the FOFSA algorithm is the lack of criteria and measurements to determine
input values. For example, when considering the time to complete a task, there is no
standard measurement to classify it as low or high, which may impact the accuracy of the
algorithm. Additionally, the computing capacity of resources was not explicitly considered
in the algorithm.

Cuka M et al. [16] 2018 proposed two fuzzy logic algorithms to select IoT devices in
opportunistic networks for task computing. The challenges that opportunistic networks
face are considered to determine the inputs for the two fuzzy logic algorithms, namely FBS1
and FBS2. In FBS1, there are three inputs: the waiting time, the storage, and the remaining
energy to assist in generating an output for the IoT device to process in an opportunistic
network. In FBS2, one new parameter is added to the three inputs in the FBS1 to achieve
the same objective. The FBS1 is less complex than the FBS2; however, the simulation results
demonstrated that the FSB2 achieved better results than the FBS1 in selecting IoT devices.
One drawback of this approach is that the authors primarily focused on selecting a suitable
source for data computation without considering the characteristics of the data itself.

In their work, Haripriy A et al. (2019) [17] introduced a lightweight fuzzy logic
algorithm called Secure-MQTT to enhance the security of IoT applications, specifically in
healthcare monitoring, by utilizing the MQTT communication protocol. The algorithm
incorporates an efficient intrusion detection system to safeguard IoT applications against
denial of service (DoS) attacks. The Secure-MQTT algorithm takes two inputs, namely the

Sensors 2023, 23, 7286 7 of 24

connection message ratio (CMR) and connection acknowledgment message ratio (CAMR),
to detect anomalous behaviours and generate an output indicating whether the behaviour
is normal, abnormal, or indicative of an attack. To evaluate the proposed approach, the
Contiki simulator COOJA was employed. The simulation results demonstrated that Secure-
MQTT exhibited superior performance in detecting attacks compared to existing methods,
thereby enhancing the overall security of IoT applications.

In their study, Khalil A et al. (2019) [18] presented a fuzzy logic algorithm designed
to assess the trust level of nodes for data collection purposes. The algorithm’s evaluation
of node trust is based on three inputs: device physical security, device security level, and
device ownership trust. These inputs are processed by the fuzzy logic system to generate
an output, which represents the trust rating of a node on a scale from one to ten. A rating of
one indicates the lowest level of security, while a rating of ten indicates the highest level of
security. To assess the proposed approach, the researchers utilized FISpro 3.5 and conducted
evaluations on various scenarios involving different input values. The simulation results
revealed that IoT nodes experienced increased trust levels when the inputs had higher
parameter values, signifying better security attributes for the selected nodes.

Sankar S et al., 2018 [19] proposed a fuzzy logic-based energy-aware routing protocol
(FLEARPL) to prolong the network lifetime and reduce the power consumption of IoT
applications while using RPL. The algorithm assists in selecting the best route during
transmission via RPL. It uses three inputs: the routing metrics load, residual energy (RER),
and expected transmission count (ETX), to estimate the quality of routes for better selection.
The Cooja simulator was used to evaluate the proposed algorithm. In comparison with RPL,
MRHOF-RPL, and FL-RPL, the simulation results showed that the proposed algorithm
outperforms them in terms of the packet delivery ratio and network lifetime.

Ramkumar K [20] proposed fuzzy-based relay node selection and energy-efficient
routing (FRNSEER) to enhance QoS performance in WSNs. The FRNSEER selects the
best sink node among active relay nodes to collect data from sensor nodes; sensor hubs
were applied to link sensor nodes to the sink. Energy and utility were the parameters to
determine active nodes. After defining the active nodes, fuzzy logic rules were applied
to select the best node from the active nodes to work as a sink node. The selection of the
sink node was based on three inputs: virtual distance (VD), virtual energy (VE), and node
bandwidth. A network simulator (NS2) was employed to evaluate the proposed approach.
The simulation results demonstrated that the proposed approach achieved better results
than the fuzzy-based hyper round policy (FHRP) and neural network-based localization
scheme (NNBLS) in terms of energy efficiency and packet rate.

In their study, Radhika S et al. (2021) [21] introduced the fuzzy-based sleep scheduling
algorithm, which incorporates machine learning techniques to enhance the energy efficiency
of wide area networks (WANs). The primary objective of the algorithm is to minimize the
message transmission overhead, thereby reducing energy consumption and extending the
overall network lifetime. This is achieved through a simplified cluster restructuring process.
The algorithm employs machine learning techniques to reduce data transmission, along
with two fuzzy logic algorithms that estimate cluster updates and sleep cycles. Inputs such
as distance, residential energy, and data rate are utilized in the fuzzy logic algorithms to
make accurate estimations. When the node detects similar data, it switches to sleep mode
to conserve energy. The proposed approach was evaluated using MATLAB. Simulation
results demonstrated that the proposed approach surpasses existing methods such as data
density correlation degree (DDCD) and energy-efficient clustering with correlation and
random update (EECRU) in terms of network lifespan. The fuzzy-based sleep scheduling
algorithm, with its integration of machine learning and fuzzy logic techniques, offers
significant improvements in energy performance and network longevity.

3. Motivation and Aims: Proposed Model

Previous research in IoT systems, specifically in the areas of fog computing and cloud
computing, has focused on task distribution and load balancing among computing layers.

Sensors 2023, 23, 7286 8 of 24

The primary goal has been to reduce power consumption and processing time by offloading
tasks from one layer to another. However, the offloading process itself requires power,
time, storage, and computing capacity. Therefore, it is crucial to minimize the offloading
process in order to save energy, time, storage, and computing resources in the IoT system.
However, this reduction must be achieved without negatively impacting the system, such
as causing delays.

The proposed approach aims to reduce the offloading process by distributing tasks
among computing layers in the early stages and leveraging this reduction. By prioritizing
tasks and allocating resources to them at an early stage, we can achieve our objective, as
tasks will be sent directly to their designated resources unless exceptional cases arise, such
as when the resources are full. To achieve this, we allocate resources for tasks processed at
the Mist layer. The Mist layer, located close to the Edge layer (medical sensors), plays a
crucial role in assisting patients with critical conditions and facilitating real-time monitoring
for quick decision making.

When allocating resources, we consider two main factors that help us make better
decisions and minimize task offloading. The first factor relates to the health condition of the
patients, while the second factor pertains to the capacity of the resources. In this context,
we only consider the Mist nodes and the Fog nodes, and we do not take into account the
capacity of the Cloud since it is centralized. By leveraging fuzzy logic systems, which
are powerful tools for decision making and delivering accurate results, we can estimate
and predict the optimal resource allocation for healthcare tasks. To study and analyse the
proposed system, we will adopt healthcare systems as a model, focusing on the MFHS
(Mist-based fuzzy healthcare system).

3.1. Our Proposed MFHS Aims to Achieve the Following

• Decision making at the extreme edge of the network, facilitated by the Mist broker, to
enable fast decision making and reduce processing time.

• Estimating patients’ healthcare conditions and allocating resources based on their
conditions.

• Prioritizing data packets for patients with critical conditions, ensuring they are served
first.

• Minimizing transfer time by allocating resources at the Mist broker, located at the
extreme edge of the network.

• Reducing power consumption by eliminating the need for data offloading at all layers
except the Mist layer.

3.2. The Proposed Approach

The MFHS (Mist-based fuzzy healthcare system) operates across four layers: the
Edge layer, the Mist layer, the Fog layer, and the Cloud layer, each playing a crucial
role in processing data for healthcare systems. In the following section, we provide a
detailed description of these layers and outline their functionalities within our approach.
Additionally, Figure 1 provides a concise overview of the system design, illustrating all the
components utilized in our proposed approach.

(1) Edge layer: It collects medical data such as body temperature using sensor devices.
The Edge layer sends the sensed data to the Mist layer, which categorizes data based
on the patient’s condition. The Edge layer only sends the sensed data that a Mist
layer requires for categorization, which means some medical sensor devices can be
removed without affecting the system.

(2) Mist layer: The Mist layer receives the sensed data from the Edge layer. It categorizes
data based on the patient’s health condition and the computing capacity of Mist
using two fuzzy logic systems, namely MFHS1 and MFHS2. MFHS1 focuses on
data categorization, where the Mist broker employs fuzzy rules to classify the data
based on the patient’s health condition and its priority. On the other hand, MFHS2
is responsible for estimating the computing capacity of the Mist nodes, enabling the

Sensors 2023, 23, 7286 9 of 24

system to determine whether the data should be processed in the Fog, Cloud, or
within the Mist layer itself.

(3) Fog layer: The Fog layer via the Fog broker is responsible for exceptional cases, such
as when the Mist layer is unable to process data due to storage or capacity limitations.
The Fog broker takes charge of distributing these data among the Fog nodes based on
the clustering of these nodes.

(4) Cloud layer: The Cloud layer receives high-priority cases directly from the Mist layer
for processing. Additionally, it acts as a recipient of data when the computing capacity
of both the Mist and Fog nodes is insufficient to handle the workload.

Sensors 2023, 23, x FOR PEER REVIEW 9 of 25

on the patient’s condition. The Edge layer only sends the sensed data that a Mist layer
requires for categorization, which means some medical sensor devices can be re-
moved without affecting the system.

(2) Mist layer: The Mist layer receives the sensed data from the Edge layer. It categorizes
data based on the patient’s health condition and the computing capacity of Mist using
two fuzzy logic systems, namely MFHS1 and MFHS2. MFHS1 focuses on data cate-
gorization, where the Mist broker employs fuzzy rules to classify the data based on
the patient’s health condition and its priority. On the other hand, MFHS2 is respon-
sible for estimating the computing capacity of the Mist nodes, enabling the system to
determine whether the data should be processed in the Fog, Cloud, or within the Mist
layer itself.

(3) Fog layer: The Fog layer via the Fog broker is responsible for exceptional cases, such
as when the Mist layer is unable to process data due to storage or capacity limitations.
The Fog broker takes charge of distributing these data among the Fog nodes based
on the clustering of these nodes.

(4) Cloud layer: The Cloud layer receives high-priority cases directly from the Mist layer
for processing. Additionally, it acts as a recipient of data when the computing capac-
ity of both the Mist and Fog nodes is insufficient to handle the workload.

Figure 1. Proposal design.

4. Phases of the Proposed Approach
Before we go further into the design, it is essential to define the fuzzy logic system.

Fuzzy logic is a predicting system to make accurate decisions based on fuzzy rules. Figure
2 shows how a fuzzy system works. The fuzzy logic system consists of two main phases:
fuzzification and defuzzification.

Figure 1. Proposal design.

4. Phases of the Proposed Approach

Before we go further into the design, it is essential to define the fuzzy logic system.
Fuzzy logic is a predicting system to make accurate decisions based on fuzzy rules. Figure 2
shows how a fuzzy system works. The fuzzy logic system consists of two main phases:
fuzzification and defuzzification.

Fuzzification converts crisp values to fuzzy set values; in this stage, it is essential
to draw the membership function and fuzzy sets and use the established fuzzy rules to
generate fuzzy set outputs [22]. Many types of membership functions convert crisp data
to fuzzy sets; however, in this design, the triangular membership function is selected as it
provides accurate results and suits the design.

Sensors 2023, 23, 7286 10 of 24Sensors 2023, 23, x FOR PEER REVIEW 10 of 25

Figure 2. Fuzzy logic system structure.

Fuzzification converts crisp values to fuzzy set values; in this stage, it is essential to
draw the membership function and fuzzy sets and use the established fuzzy rules to gen-
erate fuzzy set outputs [22]. Many types of membership functions convert crisp data to
fuzzy sets; however, in this design, the triangular membership function is selected as it
provides accurate results and suits the design.

The triangular function is given below:

𝜇 𝑋 = ⎩⎪⎨
⎪⎧ 0 𝑥 𝑎𝑥 𝑎𝑚 𝑎 𝑎 𝑥 𝑚𝑏 𝑥𝑏 𝑚 𝑚 𝑥 𝑏0 𝑥 𝑏

 (1)

where X is the new input that requires decision making; and a, m, and b are the points to
determine the interval of each triangle in the membership function, with 𝜇 𝑋 as the
output of Equation (1).

Defuzzification converts the output values of the fuzzy set into crisp values by using
some linguistic rules of if-then and logical operators [23]; in this design, we will use the
AND operator. There are many equations to calculate defuzzification, and the centroid of
area (CoA) is used in this design. The defuzzification equation is as follows: 𝑥∗=∑ × ∑ (2)

Our proposed approach consists of two phases. Phase 1 assists in data categorization.
Phase 2 assists in allocating resources depending on the categorized data in phase 1 and
Mist node capacity.

4.1. Phase 1
The first phase of our proposed system occurs within the Mist broker, where data

categorization takes place using a fuzzy system (FS). This process aims to effectively han-
dle patient data across various health conditions and determine the appropriate server
resource from the Mist, Fog, and Cloud layers. The Edge layer focuses on three medical
sensors, namely the body temperature (BT) sensor, glucose level (GL) sensor, and heart
rate (HR) sensor, which record the patients’ health data. These recorded data are initially
transmitted to the Mist layer, specifically the Mist broker, where they undergo categori-
zation using the FS. The Mist broker classifies the patients’ health data into three priority

Figure 2. Fuzzy logic system structure.

The triangular function is given below:

µA(X) =

0 x ≤ a

x−a
m−a a < x ≤ m
b−x
b−m m < x < b
0 x ≥ b

(1)

where X is the new input that requires decision making; and a, m, and b are the points
to determine the interval of each triangle in the membership function, with µA(X) as the
output of Equation (1).

Defuzzification converts the output values of the fuzzy set into crisp values by using
some linguistic rules of if-then and logical operators [23]; in this design, we will use the
AND operator. There are many equations to calculate defuzzification, and the centroid of
area (CoA) is used in this design. The defuzzification equation is as follows:

x∗= ∑n
i=1 xi × µ(xi)

∑n
i=1 µ(xi)

(2)

Our proposed approach consists of two phases. Phase 1 assists in data categorization.
Phase 2 assists in allocating resources depending on the categorized data in phase 1 and
Mist node capacity.

4.1. Phase 1

The first phase of our proposed system occurs within the Mist broker, where data
categorization takes place using a fuzzy system (FS). This process aims to effectively handle
patient data across various health conditions and determine the appropriate server resource
from the Mist, Fog, and Cloud layers. The Edge layer focuses on three medical sensors,
namely the body temperature (BT) sensor, glucose level (GL) sensor, and heart rate (HR)
sensor, which record the patients’ health data. These recorded data are initially transmitted
to the Mist layer, specifically the Mist broker, where they undergo categorization using
the FS. The Mist broker classifies the patients’ health data into three priority levels: high
priority (critical cases), medium priority (susceptible to disease), and low priority (healthy),
based on the patients’ health conditions.

The FS can accomplish that by converting the actual data (crisp inputs) into linguistic
values (fuzzy input set) using the fuzzification method to determine and estimate patients’
health conditions based on fuzzy rules to generate fuzzy output sets. Then these outputs
are defuzzified to convert linguistic values to crisp values and count them as the results
of the FS. The results of this defuzzification could be of one of the three priorities: high

Sensors 2023, 23, 7286 11 of 24

priority, medium priority, and low priority. Table 1 represents how we estimate the health
condition of patients.

Table 1. The reading of the medical sensors.

BT (Body Temperature) HR (Heart Rate) GL (Glucose Level)

Low
35.5 ◦C to 36.5 ◦C

Slow
(<70 bpm)

Less
(<60 mg/dL)

Normal
36.1 ◦C to 37.2 ◦C

Average
60 bpm to 110 bpm

Normal
50 mg/dL to 140 mg/dL

High
37 ◦C to 38 ◦C

Fast
100 bpm to 140 bpm

High
130 mg/dL to 240 mg/dL

The membership function for inputs BT, HR, and GL is designed using the MATLAB
Fuzzy Toolbox in Figures 3–5, respectively.

In Phase 1, the number of rules in the fuzzy logic system depends on the number of
sensors in the experiment and how many readings each sensor can sense, as follows.

The number of rules = (number of readings BT) × (Number of readings HR) × (number
of readings GL).

Here, the number of rules = 3 × 3 × 3 = 27 rules by using “if-then” and “and”
linguistic rules as logical operators to take the minimum membership value. The rules
are represented in Table 2. In the health score calculation, each normal health condition is
counted as 30 points, with medium 10 points and low 5 points. Figure 6 shows the design
of the fuzzy logic system to generate the health score to assist in data categorization, and
Figure 7 shows the membership function of the health score.

Sensors 2023, 23, x FOR PEER REVIEW 11 of 25

levels: high priority (critical cases), medium priority (susceptible to disease), and low pri-
ority (healthy), based on the patients’ health conditions.

The FS can accomplish that by converting the actual data (crisp inputs) into linguistic
values (fuzzy input set) using the fuzzification method to determine and estimate patients’
health conditions based on fuzzy rules to generate fuzzy output sets. Then these outputs
are defuzzified to convert linguistic values to crisp values and count them as the results
of the FS. The results of this defuzzification could be of one of the three priorities: high
priority, medium priority, and low priority. Table 1 represents how we estimate the health
condition of patients.

Table 1. The reading of the medical sensors.

BT (Body Temperature) HR (Heart Rate) GL (Glucose Level)
Low

35.5 °C to 36.5 °C
Slow

(<70 bpm)
Less

(<60 mg/dL)
Normal

36.1 °C to 37.2 °C
Average

60 bpm to 110 bpm
Normal

50 mg/dL to 140 mg/dL
High

37 °C to 38 °C
Fast

100 bpm to 140 bpm
High

130 mg/dL to 240 mg/dL

The membership function for inputs BT, HR, and GL is designed using the MATLAB
Fuzzy Toolbox in Figures 3–5, respectively.

Figure 3. Membership function of BT.

Figure 4. Membership function of HR.

Figure 3. Membership function of BT.

Sensors 2023, 23, x FOR PEER REVIEW 11 of 25

levels: high priority (critical cases), medium priority (susceptible to disease), and low pri-
ority (healthy), based on the patients’ health conditions.

The FS can accomplish that by converting the actual data (crisp inputs) into linguistic
values (fuzzy input set) using the fuzzification method to determine and estimate patients’
health conditions based on fuzzy rules to generate fuzzy output sets. Then these outputs
are defuzzified to convert linguistic values to crisp values and count them as the results
of the FS. The results of this defuzzification could be of one of the three priorities: high
priority, medium priority, and low priority. Table 1 represents how we estimate the health
condition of patients.

Table 1. The reading of the medical sensors.

BT (Body Temperature) HR (Heart Rate) GL (Glucose Level)
Low

35.5 °C to 36.5 °C
Slow

(<70 bpm)
Less

(<60 mg/dL)
Normal

36.1 °C to 37.2 °C
Average

60 bpm to 110 bpm
Normal

50 mg/dL to 140 mg/dL
High

37 °C to 38 °C
Fast

100 bpm to 140 bpm
High

130 mg/dL to 240 mg/dL

The membership function for inputs BT, HR, and GL is designed using the MATLAB
Fuzzy Toolbox in Figures 3–5, respectively.

Figure 3. Membership function of BT.

Figure 4. Membership function of HR. Figure 4. Membership function of HR.

Sensors 2023, 23, 7286 12 of 24Sensors 2023, 23, x FOR PEER REVIEW 12 of 25

Figure 5. Membership function of GL.

In Phase 1, the number of rules in the fuzzy logic system depends on the number of
sensors in the experiment and how many readings each sensor can sense, as follows.

The number of rules = (number of readings BT) × (Number of readings HR) × (num-
ber of readings GL).

Here, the number of rules = 3 × 3 × 3 = 27 rules by using “if-then” and “and” linguistic
rules as logical operators to take the minimum membership value. The rules are repre-
sented in Table 2. In the health score calculation, each normal health condition is counted
as 30 points, with medium 10 points and low 5 points. Figure 6 shows the design of the
fuzzy logic system to generate the health score to assist in data categorization, and Figure
7 shows the membership function of the health score.

Figure 6. FLS for health score.

Figure 7. Membership function of health score.

Figure 5. Membership function of GL.

Table 2. The fuzzy rules for data categorization.

BT (Body
Temperature) HR (Heart Rate) GL (Glucose

Level) Health Score Patient Health
Condition Data Priority

Low Slow Less Poor Critical High

Low Slow Normal Medium Exposed to diseases Medium

Low Slow High Poor Critical High

Low Average Less Medium Exposed to diseases Medium

Low Average Normal Good Healthy Low

Low Average High Medium Exposed to diseases Medium

Low Fast Less Poor Critical High

Low Fast Normal Medium Exposed to diseases Medium

Low Fast High Poor Critical High

Normal Slow Less Medium Exposed to diseases Medium

Normal Slow Normal Good Healthy Low

Normal Slow High Medium Exposed to diseases Medium

Normal Average Less Good Healthy Low

Normal Average Normal Good Healthy Low

Normal Average High Good Healthy Low

Normal Fast Less Medium Exposed to diseases Medium

Normal Fast Normal Good Healthy Low

Normal Fast High Medium Exposed to diseases Medium

High Slow Less Poor Critical High

High Slow Normal Medium Exposed to diseases Medium

High Slow High Poor Critical High

High Average Less Medium Exposed to diseases Medium

High Average Normal Good Healthy Low

High Average High Medium Exposed to diseases Medium

High Fast Less Poor Critical High

High Fast Normal Medium Exposed to diseases Medium

High Fast High Poor Critical High

Sensors 2023, 23, 7286 13 of 24

Sensors 2023, 23, x FOR PEER REVIEW 12 of 25

Figure 5. Membership function of GL.

In Phase 1, the number of rules in the fuzzy logic system depends on the number of
sensors in the experiment and how many readings each sensor can sense, as follows.

The number of rules = (number of readings BT) × (Number of readings HR) × (num-
ber of readings GL).

Here, the number of rules = 3 × 3 × 3 = 27 rules by using “if-then” and “and” linguistic
rules as logical operators to take the minimum membership value. The rules are repre-
sented in Table 2. In the health score calculation, each normal health condition is counted
as 30 points, with medium 10 points and low 5 points. Figure 6 shows the design of the
fuzzy logic system to generate the health score to assist in data categorization, and Figure
7 shows the membership function of the health score.

Figure 6. FLS for health score.

Figure 7. Membership function of health score.

Figure 6. FLS for health score.

Sensors 2023, 23, x FOR PEER REVIEW 12 of 25

Figure 5. Membership function of GL.

In Phase 1, the number of rules in the fuzzy logic system depends on the number of
sensors in the experiment and how many readings each sensor can sense, as follows.

The number of rules = (number of readings BT) × (Number of readings HR) × (num-
ber of readings GL).

Here, the number of rules = 3 × 3 × 3 = 27 rules by using “if-then” and “and” linguistic
rules as logical operators to take the minimum membership value. The rules are repre-
sented in Table 2. In the health score calculation, each normal health condition is counted
as 30 points, with medium 10 points and low 5 points. Figure 6 shows the design of the
fuzzy logic system to generate the health score to assist in data categorization, and Figure
7 shows the membership function of the health score.

Figure 6. FLS for health score.

Figure 7. Membership function of health score.

Figure 7. Membership function of health score.

4.2. Phase 2

In the second phase, the Mist broker (MB) focuses on the Mist’s computational capacity
(see Equation (3) below) and data priority to allocate resources for healthcare services.
MB selects one of the three resources: Mist, Fog, and Cloud, to provide services for the
healthcare system as follows.

First, MB directly transfers high-priority data to the Cloud and allows healthcare
providers to access these critical data. In addition, MB helps patients with urgent conditions
in real-time processing to make quick decisions as the MB is very close to the sensing
devices.

Second, MB sends the medium-priority data to the Mist nodes of available capacity.
The data are transferred to the next available Mist node if a Mist node is overloaded. If all
Mist nodes have insufficient computing space for the medium-priority data, the data are
transferred to the Fog broker.

Third, MB sends the low-priority data to the Mist nodes of available capacity. The data
are transferred to the next available Mist node if a Mist node is overloaded. However, if
all Mist nodes lack adequate computing space (i.e., low and medium computing capacity)
for low-priority data, they are then directed to the Fog broker for further processing, as
indicated in Table 3.

Table 3. The fuzzy rules for server allocation.

Data Priority Computational Capacity of
Mist Node Source Allocation

High High Cloud
High Medium Cloud
High Low Cloud

Medium High Mist
Medium Medium Mist
Medium Low Fog

Low High Mist
Low Medium Fog
Low Low Fog

Moving to the subsequent layer, the Fog broker is equipped with a load balancer
responsible for distributing the medium- and low-priority data received from the Mist

Sensors 2023, 23, 7286 14 of 24

broker among the available Fog nodes. This distribution is based on two factors: the
remaining computing capacity of each Fog node and a clustering technique. The calculation
of the remaining capacity of a Mist node, as described by Equation (3), plays a crucial role
in determining whether the healthcare services should be computed within the Mist node
itself or whether the healthcare data should be redirected to another Mist node or the Fog
broker in the event of an overloaded Mist node:

Remaining capacity = C − ∑n
i=1Pi × Si

Remaining capacity percentage =
C−∑n

i=1 Pi×Si
C × 100

(3)

The equation consists of four factors to determine the computing capacity of a Mist
node:

• C is the capacity of a Mist node.
• Pi is the packet arrival rate for i as a data packet.
• Si is the size of the data packet i.
• n is the number of data packets.

In Phase 2, the number of rules in the fuzzy logic system depends on the number of
sensors in the experiment and how many readings each sensor can sense as follows:

The number of rules = (number of data priority levels) × (number of computational
capacities of Mist node)

Here, the number of rules = 3 × 3 = 9 rules by using linguistic rules of “if-then”
and “and” as logical operators to take the minimum membership value. The rules are
represented in Table 3.

Figures 8–11 in MATLAB depict the design of the fuzzy logic system responsible for
server allocation. This system takes two inputs, namely data priority and Mist capacity,
and generates an output that determines the server allocation.

Sensors 2023, 23, x FOR PEER REVIEW 15 of 25

Figures 8–11 in MATLAB depict the design of the fuzzy logic system responsible for
server allocation. This system takes two inputs, namely data priority and Mist capacity,
and generates an output that determines the server allocation.

Figure 8. Fuzzy logic system for server allocation.

Figure 9. Membership function for data priority.

Figure 10. Membership function for Mist capacity.

Figure 11. Membership function for server allocation.

4.3. Fog Broker

Figure 8. Fuzzy logic system for server allocation.

Sensors 2023, 23, x FOR PEER REVIEW 15 of 25

Figures 8–11 in MATLAB depict the design of the fuzzy logic system responsible for
server allocation. This system takes two inputs, namely data priority and Mist capacity,
and generates an output that determines the server allocation.

Figure 8. Fuzzy logic system for server allocation.

Figure 9. Membership function for data priority.

Figure 10. Membership function for Mist capacity.

Figure 11. Membership function for server allocation.

4.3. Fog Broker

Figure 9. Membership function for data priority.

Sensors 2023, 23, 7286 15 of 24

Sensors 2023, 23, x FOR PEER REVIEW 15 of 25

Figures 8–11 in MATLAB depict the design of the fuzzy logic system responsible for
server allocation. This system takes two inputs, namely data priority and Mist capacity,
and generates an output that determines the server allocation.

Figure 8. Fuzzy logic system for server allocation.

Figure 9. Membership function for data priority.

Figure 10. Membership function for Mist capacity.

Figure 11. Membership function for server allocation.

4.3. Fog Broker

Figure 10. Membership function for Mist capacity.

Sensors 2023, 23, x FOR PEER REVIEW 15 of 25

Figures 8–11 in MATLAB depict the design of the fuzzy logic system responsible for
server allocation. This system takes two inputs, namely data priority and Mist capacity,
and generates an output that determines the server allocation.

Figure 8. Fuzzy logic system for server allocation.

Figure 9. Membership function for data priority.

Figure 10. Membership function for Mist capacity.

Figure 11. Membership function for server allocation.

4.3. Fog Broker

Figure 11. Membership function for server allocation.

4.3. Fog Broker

The Fog broker receives only two types of data: low-priority and medium-priority,
which are passed on by the Mist broker. To address this distinction in data types, we have
designed a clustering scheme within the Fog layer. The Fog nodes are divided into two
clusters, with the Fog broker overseeing their operation. Figure 12 provides an overview
of the workflow within the Fog layer. Cluster1 is responsible for computing the medium-
priority data, while Cluster2 handles the low-priority data. This categorization aims to
minimize execution time and the offloading process by assigning appropriate resources to
each data type based on priority. To achieve this, the Fog nodes are divided into clusters
based on their remaining computing capacity. The first cluster comprises the Fog nodes
with higher remaining capacity, while the second cluster consists of nodes with lower
remaining capacity. The decision-making process for medium-priority data prioritizes
Fog nodes with higher remaining capacity, ensuring real-time processing without the
need for task offloading or delays. The choice of remaining computing capacity as the
main factor enables medium-priority data to make fast decisions for real-time processing.
On the other hand, low-priority data are assigned to Fog nodes with lower remaining
computing capacity since their real-time processing requirements are less critical compared
to medium-priority data.

When the remaining energy or computing capacity of a selected Fog node falls below
a threshold value of 25%, the data are rerouted from one Fog node to another or to the
Cloud. The computation of a Fog node’s remaining computing capacity is determined by
Equation (3).

Sensors 2023, 23, 7286 16 of 24

Sensors 2023, 23, x FOR PEER REVIEW 16 of 25

The Fog broker receives only two types of data: low-priority and medium-priority,
which are passed on by the Mist broker. To address this distinction in data types, we have
designed a clustering scheme within the Fog layer. The Fog nodes are divided into two
clusters, with the Fog broker overseeing their operation. Figure 12 provides an overview
of the workflow within the Fog layer. Cluster1 is responsible for computing the medium-
priority data, while Cluster2 handles the low-priority data. This categorization aims to
minimize execution time and the offloading process by assigning appropriate resources
to each data type based on priority. To achieve this, the Fog nodes are divided into clusters
based on their remaining computing capacity. The first cluster comprises the Fog nodes
with higher remaining capacity, while the second cluster consists of nodes with lower
remaining capacity. The decision-making process for medium-priority data prioritizes
Fog nodes with higher remaining capacity, ensuring real-time processing without the
need for task offloading or delays. The choice of remaining computing capacity as the
main factor enables medium-priority data to make fast decisions for real-time processing.
On the other hand, low-priority data are assigned to Fog nodes with lower remaining
computing capacity since their real-time processing requirements are less critical com-
pared to medium-priority data.

Figure 12. Fog node clusters.

When the remaining energy or computing capacity of a selected Fog node falls below
a threshold value of 25%, the data are rerouted from one Fog node to another or to the
Cloud. The computation of a Fog node’s remaining computing capacity is determined by
Equation (3).

5. Experimental Setup
Eclipse and MATLAB are used to validate MFHS.
MATLAB generates the fuzzy outputs to determine the data priority and the resource

allocation based on fuzzy rules.
Eclipse simulates the process environment (Edge, Mist, Fog, and Cloud) and calcu-

lates the power consumption, allocation time, and processing time.
In the experiment, six sensors are used at the Edge layer: two for the body tempera-

ture, two for the heart rate, and two for the glucose level. Two Mist nodes and one Mist
broker are used at the Mist layer. Six Fog nodes and one Fog broker are used at the Fog
layer, and three central Clouds are utilized at the Cloud layer. Table 4 summarizes the

Figure 12. Fog node clusters.

5. Experimental Setup

Eclipse and MATLAB are used to validate MFHS.
MATLAB generates the fuzzy outputs to determine the data priority and the resource

allocation based on fuzzy rules.
Eclipse simulates the process environment (Edge, Mist, Fog, and Cloud) and calculates

the power consumption, allocation time, and processing time.
In the experiment, six sensors are used at the Edge layer: two for the body temperature,

two for the heart rate, and two for the glucose level. Two Mist nodes and one Mist broker
are used at the Mist layer. Six Fog nodes and one Fog broker are used at the Fog layer, and
three central Clouds are utilized at the Cloud layer. Table 4 summarizes the tools employed
in the experiments and Figure 13 shows the process sequencing, with the node notation
specified in Table 5.

Sensors 2023, 23, x FOR PEER REVIEW 17 of 25

tools employed in the experiments and Figure 13 shows the process sequencing, with the
node notation specified in Table 5.

Table 4. System configuration.

Parameters Configuration

Processor
11th Gen Intel(R) Core(TM) i7-1165G7 @

2.80 GHz 1.69 GHz
Language Java

Integrated Development Environment (IDE) Eclipse
Development Kit Java Development Kit (JDK) 17

Fuzzy rules integration MATLAB

Figure 13. Work sequence.

Table 5. Nodes’ description.

Nodes Description
1, 2, 3, 4, 5, 6 BT, HR, GL nodes at the Edge layer

MB Mist broker
FB Fog broker

F1, F2,F3,F4,F5,F6 Nodes at the Fog layer
CL1 , CL2 , CL3 Nodes at the Cloud layer

C1 and C2 The two Fog clusters
M1 and M2 Mist nodes

CC Computational capacity

In Figure 13, six Fog nodes are formed into two clusters based on the computational
capacity (CC). Each cluster consists of several Fog nodes. Cluster one (C1) represents Fog
nodes with a higher CC, and cluster two (C2) represents Fog nodes with a lower CC.

For an illustration, let us assume in Table 6 that we have six Fog nodes, namely F1,
F2, F3, F4, F5, and F6, with their respective CC. Based on our clustering principle, C1 will
consist of F1, F4, and F6, while C2 will contain F2, F3, and F5. Accordingly, C1 is respon-
sible for receiving the medium-priority data from the Fog broker, and C2 is responsible
for receiving the low-priority data from the Fog broker.

Figure 13. Work sequence.

Sensors 2023, 23, 7286 17 of 24

Table 4. System configuration.

Parameters Configuration

Processor 11th Gen Intel(R) Core(TM) i7-1165G7 @ 2.80 GHz 1.69 GHz
Language Java

Integrated Development Environment (IDE) Eclipse
Development Kit Java Development Kit (JDK) 17

Fuzzy rules integration MATLAB

Table 5. Nodes’ description.

Nodes Description

1, 2, 3, 4, 5, 6 BT, HR, GL nodes at the Edge layer
MB Mist broker
FB Fog broker

F1, F2, F3, F4, F5, F6 Nodes at the Fog layer
CL1, CL2, CL3 Nodes at the Cloud layer

C1 and C2 The two Fog clusters
M1 and M2 Mist nodes

CC Computational capacity

In Figure 13, six Fog nodes are formed into two clusters based on the computational
capacity (CC). Each cluster consists of several Fog nodes. Cluster one (C1) represents Fog
nodes with a higher CC, and cluster two (C2) represents Fog nodes with a lower CC.

For an illustration, let us assume in Table 6 that we have six Fog nodes, namely F1, F2,
F3, F4, F5, and F6, with their respective CC. Based on our clustering principle, C1 will consist
of F1, F4, and F6, while C2 will contain F2, F3, and F5. Accordingly, C1 is responsible for
receiving the medium-priority data from the Fog broker, and C2 is responsible for receiving
the low-priority data from the Fog broker.

Table 6. Fog nodes’ computational capacity.

Node Name Computational Capacity

F1 360
F2 60
F3 120
F4 280
F5 40
F6 160

The Fog clusters continue to process data until the CC of any Fog node goes below a
threshold value of 25% of its capacity; when that happens, the data will be offloaded to the
Cloud to avoid damaging the node.

6. Evaluation

Our experimentation involves two metrics: the total energy consumption and the
processing time.

The total energy consumption (Etotal) consists of three different types of energy: the
transmission of the packets (Etr); the classification of the packets (Ec) into high, medium,
and low priority; and the resource allocation of the categorized packets (Ea) as follows:

Etotal = Etr + Ec + Ea (4)

Etr is calculated based on the size of the packets as in Equation (5):

Etr = ∑n
i=1 Sn × Eob (5)

Sensors 2023, 23, 7286 18 of 24

where Eob is the energy cost of transmitting one byte for a single hop, n is the total of
transmitted packets, and Sn is the size of the n packet. In this experiment, the energy cost
of transmitting one byte of packets for a single hop is assumed to be 0.5 mJ.

In a similar manner, the total processing time (Ttotal) is determined by considering
the same factors as the total energy cost. It can be calculated using the following equation:

Ttotal = Ttr + Tc + Ta (6)

where Ttr represents the packet transmission time, Tc denotes the packet classification time,
and Ta represents the packet allocation time.

7. Results

In our experimentation, we initially derive the total energy consumption and process-
ing time metrics for our proposed MFHS model. Subsequently, we conduct a comparative
analysis between the outcomes of MFHS and those of the feedback-based optimized fuzzy
scheduling approach (FOFSA) algorithm, along with the adaptive task allocation technique
(ATAT) and the osmosis load balancing (OLB) algorithm as documented in [15].

7.1. Energy Consumption

The energy consumption calculations are based on the addition of three parameters
defined in Section 6: Etr, Ec, and Ea.

7.1.1. Etr Calculations

As a hardware implementation is absent in this context, the energy consumption
calculations are derived through initialization with predefined values. This fixed value is
determined by considering the energy consumption for transferring one bit of data at the
data centre level, estimated to be approximately 0.2 mJ, as referenced in [24]. Consequently,
the energy consumption for transferring a single byte of data amounts to 0.2 × 8 mJ,
equalling 1.6 mJ.

The data transfer takes place across three tiers: Mist, Fog, and Cloud. Consequently,
the total energy consumption for transmitting a byte of data aggregates to 1.6 × 3 mJ,
which is equivalent to 4.8 mJ or approximately 0.0048 joule, and can be approximated
as 0.005 joule. With the data packet size fixed at 1500 bytes, a value that optimizes TCP
connection performance as outlined in [25], the energy consumption (Et) required to
transmit a 1500-byte packet amounts to 0.005 × 1500 joule, which translates to 7.5 joule.

Extending this computation to encompass multiple packet transfers, the energy
consumption for transmitting 20 packets (Et for 20 packet transfer) is determined as
20 × 7.5 joule, which equals 150 joule or approximately 0.15 KJ. Analogously, for 40, 60, 80,
and 100 packet transfers, the corresponding energy consumptions (ET) amount to 300 joule
(0.3 KJ), 450 joule (0.45 KJ), 600 joule (0.60 KJ), and 750 joule (0.75 KJ), respectively.

7.1.2. Ec and Ea Calculations

Upon executing the MATLAB code for health condition assessment, employed for
determining data priority through fuzzy-based classification, we noted an execution time of
0.35 s. Likewise, the execution of the code for fuzzy-based server allocation yielded an exe-
cution time of 0.34 s. Consequently, the cumulative processing time for both classification
and allocation processes tallies to 0.35 + 0.34 = 0.69 s.

The power consumption of the CPU hinges on the configuration of a laptop equipped
with an 11th Gen Intel(R) Core(TM) i7-1165G7 @ 2.80 GHz 1.69 GHz, with a power con-
sumption spectrum spanning 12 to 28 watts. Considering the peak power consumption
of 28 watts, equivalent to 100.8 KJ per hour, the energy consumption for running the code
within 0.69 s is computed as (100.8 × 0.69)/3600 KJ, amounting to 0.019 KJ. This signifies
the energy consumed for a single packet categorization, encompassing the determination
of priority and its allocation to a specified node.

Sensors 2023, 23, 7286 19 of 24

Extending this computation to accommodate multiple packets, the energy consump-
tion for 20 packets totals to 0.019 × 20 KJ, equivalent to 0.38 KJ. Similarly, for 40 packets, it
stands at 0.76 KJ, for 60 packets at 1.14 KJ, for 80 packets at 1.52 KJ, and for 100 packets at
1.9 KJ.

In summary, the overall energy consumption (Etotal) of the MFHS is tabulated as
follows: 0.53 KJ for 20 packets, 1.06 KJ for 40 packets, 1.59 KJ for 60 packets, 2.12 KJ for
80 packets, and 2.65 KJ for 100 packets, as presented in Table 7.

Table 7. Energy consumption of the MFHS for 20, 40, 60, 80, and 100 packets.

Number of Packets Etr Ec + Ea Etotal

20 0.15 KJ 0.38 KJ 0.53 KJ
40 0.3 KJ 0.76 KJ 1.06 KJ
60 0.45 KJ 1.14 KJ 1.59 KJ
80 0.60 KJ 1.52 KJ 2.12 KJ

100 0.75 KJ 1.9 KJ 2.65 KJ

Based on the results in [15], the energy consumption of FOFSA, ATAT, and OLB using
the same packets transfer 20, 40, 60, 80, and 100 are shown in Table 8—please refer to
Appendix A for detailed calculations.

Table 8. Total energy consumption (Etotal) of FOFSA, ATAT, and OLB.

Number of Packets OLB FOFSA ATAT

20 1.15 KJ 0.56 KJ 2.16 KJ
40 2.6 KJ 1.44 KJ 3.3 KJ
60 3.4 KJ 2.5 KJ 4.03 KJ
80 4.1 KJ 2.8 KJ 5 KJ

100 5 KJ 3.3 KJ 6 KJ

7.1.3. Energy Cost Comparison

Figure 14 presents a comparison of the energy costs between our proposed MFHS
approach and the FOFSA, OLB, and ATAT algorithms discussed in [15], with respect to the
number of packets. The chart clearly illustrates that our MFHS approach achieves superior
energy cost results compared to the existing methods, particularly as the number of packets
increases. This indicates that the MFHS algorithm outperforms its counterparts in handling
extensive data analysis, which is essential for IoT networks.

7.2. Processing Time

The processing time computations are based on the three parameters defined in
Section 6: Ttr, Tc, and Ta.

7.2.1. Ttr Calculations

In our experimentation with the proposed MFHS using MATLAB, the total energy
consumption for transferring one byte of data equates to 1.6 × 3 mJ, resulting in 4.8 mJ
or approximately 0.0048 joule, which can be approximated as 0.005 joule. In parallel,
considering a maximum CPU power consumption of 28 watts, translating to 100.8 KJ per
hour, and with a packet size of 1500 bytes, we deduce that the average energy required for
one byte packet transfer is approximately 0.0049 joule or 0.0049/1000 KJ.

Furthermore, it is evident that 100.8 KJ of energy is consumed within 1 h, correspond-
ing to 3600 s. Therefore, 1 KJ of energy is consumed in 3600/100.8 s. Consequently, the
energy consumption of 0.0049/1000 KJ amounts to (3600 × 0.0049)/(100.8 × 1000) seconds,
multiplied by the packet size of 1500 bytes, which results in approximately 0.2625 s.

Sensors 2023, 23, 7286 20 of 24

Sensors 2023, 23, x FOR PEER REVIEW 20 of 25

7.1.3. Top of Form
Figure 14 presents a comparison of the energy costs between our proposed MFHS

approach and the FOFSA, OLB, and ATAT algorithms discussed in [15], with respect to
the number of packets. The chart clearly illustrates that our MFHS approach achieves su-
perior energy cost results compared to the existing methods, particularly as the number
of packets increases. This indicates that the MFHS algorithm outperforms its counterparts
in handling extensive data analysis, which is essential for IoT networks.

Figure 14. A comparative analysis of energy consumption.

7.2. Processing Time
The processing time computations are based on the three parameters defined in Sec-

tion 6: Ttr, Tc, and Ta.

7.2.1. Ttr Calculations
In our experimentation with the proposed MFHS using MATLAB, the total energy

consumption for transferring one byte of data equates to 1.6 × 3 mJ, resulting in 4.8 mJ or
approximately 0.0048 joule, which can be approximated as 0.005 joule. In parallel, consid-
ering a maximum CPU power consumption of 28 watts, translating to 100.8 KJ per hour,
and with a packet size of 1500 bytes, we deduce that the average energy required for one
byte packet transfer is approximately 0.0049 joule or 0.0049/1000 KJ.

Furthermore, it is evident that 100.8 KJ of energy is consumed within 1 h, correspond-
ing to 3600 s. Therefore, 1 KJ of energy is consumed in 3600/100.8 s. Consequently, the
energy consumption of 0.0049/1000 KJ amounts to (3600 × 0.0049)/(100.8 × 1000) seconds,
multiplied by the packet size of 1500 bytes, which results in approximately 0.2625 s.

7.2.2. Tc and Ta Calculations
The classification process takes 0.35 s, while the allocation process consumes 0.34 s,

as elucidated in the above energy consumption calculation section.
In Figure 15, we present a comparison of the processing time between our proposed

MFHS algorithm and the FOFSA method, which has been demonstrated to outperform
both ATAT and OLB algorithms [15], with respect to the number of packets. The chart
clearly indicates that the processing time of the MFHS algorithm outperforms the existing
approach, particularly as the number of packets increases. This suggests that the MFHS
algorithm excels in handling big data analyses, which are crucial for IoT networks. This

Figure 14. A comparative analysis of energy consumption.

7.2.2. Tc and Ta Calculations

The classification process takes 0.35 s, while the allocation process consumes 0.34 s, as
elucidated in the above energy consumption calculation section.

In Figure 15, we present a comparison of the processing time between our proposed
MFHS algorithm and the FOFSA method, which has been demonstrated to outperform
both ATAT and OLB algorithms [15], with respect to the number of packets. The chart
clearly indicates that the processing time of the MFHS algorithm outperforms the existing
approach, particularly as the number of packets increases. This suggests that the MFHS
algorithm excels in handling big data analyses, which are crucial for IoT networks. This
comparison is made without sacrificing generality, highlighting the superior performance
of MFHS in terms of processing time.

Sensors 2023, 23, x FOR PEER REVIEW 21 of 25

comparison is made without sacrificing generality, highlighting the superior performance
of MFHS in terms of processing time.

Figure 15. A comparative analysis of processing time.

8. Discussion
Central to the crux of this study is a novel approach meticulously crafted to address

the pivotal facets of offloading and load balancing, recognizing their cardinal significance
in fortifying the performance metrics of diverse computing networks. The paramount goal
of this innovative approach is to harness the latent potential of these key elements, thereby
ushering in an era of heightened operational efficiency and enhanced system perfor-
mance.

The strength of this approach lies in the adept utilization of fuzzy logic systems, act-
ing as a guide in the areas of data processing, offloading strategies, and the intricate bal-
ance of workload distribution within the IoT networks. By harnessing the nuanced capa-
bilities of fuzzy logic, the proposed framework brings forth a level of granularity and
adaptability in the IoT landscape.

The proposed MFHS (Mist-based fuzzy healthcare system) systems unfold their op-
erations at the very fabric of the Mist layer. This strategic initiation sets the tone for pro-
active decision making, injecting an element of timeliness and precision throughout the
entire network. Here, the focal aim is a dual-pronged enhancement: the augmentation of
energy efficiency and the amplification of processing expediency. By intervening at the
nascent stages, MFHS sets the stage for a cascading series of optimized decisions that cu-
mulatively foster an environment of superior performance.

The empirical validation of this paradigm-shifting approach is revealed through a
meticulous evaluation conducted on the robust platforms of Eclipse and MATLAB. The
results of this comprehensive assessment unequivocally showcase the tangible benefits
reaped from the implementation of MFHS. Key performance indicators, namely pro-
cessing time and power consumption, experience marked reductions, reinforcing the piv-
otal role played by this approach in fostering efficiency gains.

A noteworthy aspect is the empirical comparison against established benchmarks.
Notably, the MFHS approach emerges triumphant, demonstrating its prowess over con-
temporaneous algorithms such as the feedback-based optimized fuzzy scheduling ap-
proach (FOFSA), the adaptive task allocation technique (ATAT), and the osmosis load bal-
ancing algorithm (OLB). This superiority manifests resoundingly across the twin

Figure 15. A comparative analysis of processing time.

Sensors 2023, 23, 7286 21 of 24

8. Discussion

Central to the crux of this study is a novel approach meticulously crafted to address
the pivotal facets of offloading and load balancing, recognizing their cardinal significance
in fortifying the performance metrics of diverse computing networks. The paramount goal
of this innovative approach is to harness the latent potential of these key elements, thereby
ushering in an era of heightened operational efficiency and enhanced system performance.

The strength of this approach lies in the adept utilization of fuzzy logic systems, acting
as a guide in the areas of data processing, offloading strategies, and the intricate balance of
workload distribution within the IoT networks. By harnessing the nuanced capabilities of
fuzzy logic, the proposed framework brings forth a level of granularity and adaptability in
the IoT landscape.

The proposed MFHS (Mist-based fuzzy healthcare system) systems unfold their oper-
ations at the very fabric of the Mist layer. This strategic initiation sets the tone for proactive
decision making, injecting an element of timeliness and precision throughout the entire
network. Here, the focal aim is a dual-pronged enhancement: the augmentation of energy
efficiency and the amplification of processing expediency. By intervening at the nascent
stages, MFHS sets the stage for a cascading series of optimized decisions that cumulatively
foster an environment of superior performance.

The empirical validation of this paradigm-shifting approach is revealed through a
meticulous evaluation conducted on the robust platforms of Eclipse and MATLAB. The
results of this comprehensive assessment unequivocally showcase the tangible benefits
reaped from the implementation of MFHS. Key performance indicators, namely processing
time and power consumption, experience marked reductions, reinforcing the pivotal role
played by this approach in fostering efficiency gains.

A noteworthy aspect is the empirical comparison against established benchmarks.
Notably, the MFHS approach emerges triumphant, demonstrating its prowess over contem-
poraneous algorithms such as the feedback-based optimized fuzzy scheduling approach
(FOFSA), the adaptive task allocation technique (ATAT), and the osmosis load balancing
algorithm (OLB). This superiority manifests resoundingly across the twin dimensions of
energy efficiency and processing time, affirming the innovative approach’s strength and its
potential to revolutionize the IoT landscape.

9. Conclusions

The proposed approach in this study focuses on the key aspects of offloading and
load balancing, recognizing their potential to enhance the performance of any comput-
ing network. To achieve this, fuzzy logic systems were employed to aid in processing,
offloading, and workload balancing within IoT networks. The proposed MFHS systems
initiate operations at the Mist level, enabling early decision making and aiming to improve
both energy efficiency and processing time. The evaluation of MFHS involved the use of
Eclipse and MATLAB, and the results demonstrated successful reductions in processing
time and power consumption. Notably, the MFHS approach outperformed the feedback-
based optimized fuzzy scheduling approach (FOFSA) algorithm, as well as the adaptive
task allocation technique (ATAT) and osmosis load balancing algorithm (OLB), in terms of
energy efficiency and processing time.

In conclusion, the proliferation of the Internet of Things (IoT) has ushered in a new era
of connectivity and innovation, fostering seamless communication between devices and
systems across diverse sectors. In healthcare, IoT networks hold the promise to reshape
patient care, expedite critical interventions, and streamline administrative operations. As
the demand for IoT networks continues to surge, the introduction of novel solutions
like the Mist-based fuzzy healthcare system (MFHS) underscores the commitment to
enhancing the efficiency, stability, and adaptability of IoT technology. By strategically
allocating IoT data resources through the Mist layer, MFHS contributes to faster processing
times, increased energy efficiency, and overall improved performance within IoT networks,
thereby advancing the capabilities of healthcare systems and various other industries alike.

Sensors 2023, 23, 7286 22 of 24

Author Contributions: Conceptualization, Z.A. and B.S.; methodology, Z.A. and B.S.; software, Z.A.;
validation, Z.A.; formal analysis, Z.A.; investigation, Z.A., B.S. and A.L.; writing—original draft, Z.A.;
writing—review and editing, B.S. and A.L.; supervision, B.S. and A.L. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Appendix A.1. Energy Consumption Calculations for FOFSA, ATAT, and OLB

Appendix A.1.1. FOFSA

The energy consumption of FOFSA [15] translates to approximately 4 KWH for
50 VMs, 10 KWH for 100 VMs, 18 KWH for 150 VMs, 20 KWH for 200 VMs, 23 KWH for
250 VMs, and 28 KWH for 300 VMs.

Our analysis of the execution time graph for VMs handling different numbers of tasks,
as presented in [15], indicates that a single VM can execute a maximum of 10,000 tasks.
Therefore, a VM can handle up to 10,000 tasks.

Consequently, the total number of tasks allotted equates to 500,000 for 50 VMs,
1,000,000 for 100 VMs, 1,500,000 for 150 VMs, 2,000,000 for 200 VMs, and 2,500,000 for
250 VMs.

Based on this analysis, we deduce the following energy consumption figures: 4 KWH
for 500,000 tasks, 10 KWH for 1,000,000 tasks, 18 KWH for 1,500,000 tasks, 20 KWH for
2,000,000 tasks, and 23 KWH for 2,500,000 tasks.

Since the number of tasks has been considered equivalent to the number of packets,
the energy consumption for each task aligns with the corresponding packet count. Thus,
for 500,000 packets, the energy consumption amounts to 4 KWH, which translates to
(4 × 20)/500,000 KWH, or (4 × 3600 × 20)/500,000 KJ, equalling 0.56 KJ.

Similarly, for 1,000,000 packets, the energy consumption corresponds to 10 KWH,
translating to (10 × 40)/1,000,000 KWH, or (10 × 40 × 3600)/1,000,000 KJ, equalling
1.44 KJ.

Continuing this trend, for 1,500,000 packets, the energy consumption amounts to
18 KWH, which translates to (18 × 60)/1,500,000 KWH, or (18 × 60 × 3600)/1,500,000 KJ,
resulting in 2.592 KJ.

For 2,000,000 packets, the energy consumption corresponds to 20 KWH, translating to
(20 × 80)/2,000,000 KWH, or (20 × 80 × 3600)/2,000,000 KJ, resulting in 2.88 KJ.

Lastly, for 2,500,000 packets, the energy consumption amounts to 23 KWH, which
translates to (23 × 100)/2,500,000 KWH, or (23 × 100 × 3600)/2,500,000 KJ, resulting in
3.312 KJ.

Appendix A.1.2. ATAT

Since the number of tasks has been equated to the number of packets, the energy
consumption outcome for tasks in ATAT [15] will equivalently apply to the corresponding
number of packets. Thus, for 500,000 packets, the energy consumption corresponds to
15 KWH. For instance, for a mere 20 packets, the energy consumption is calculated as
(15 × 20)/500,000 KWH, which converts to (15 × 3600 × 20)/500,000 KJ, resulting in
2.16 KJ.

Similarly, with 1,000,000 packets, the energy consumption aligns with 23 KWH.
For 40 packets, the energy consumption computes as (23 × 40)/ 1,000,000 KWH or
(23 × 40 × 3600)/1,000,000 KJ, amounting to 3.3 KJ.

Sensors 2023, 23, 7286 23 of 24

Furthermore, for 1,500,000 packets, the energy consumption value corresponds to
28 KWH. Consequently, for 60 packets, the energy consumption is determined as
(28 × 60)/1,500,000 KWH or (28 × 60 × 3600)/1,500,000 KJ, resulting in 4.03 KJ.

Likewise, with 2,000,000 packets, the energy consumption value aligns with 35 KWH.
For 80 packets, the energy consumption computation stands at (35 × 80)/2,000,000 KWH
or (35 × 80 × 3600)/2,000,000 KJ, leading to 5.04 KJ.

Similarly, for 2,500,000 packets, the energy consumption corresponds to 42 KWH.
Correspondingly, for 100 packets, the energy consumption calculates as (42 × 100)/
2,500,000 KWH or (42 × 100 × 3600)/2,500,000 KJ, resulting in 6.04 KJ.

This pattern continues, extending the computation for larger numbers of packets,
which demonstrates a consistent relationship between energy consumption and the number
of tasks, underscoring the scalability of the presented results.

Appendix A.1.3. OLB

Given the equivalence between the number of tasks and the number of packets, the
energy consumption results for tasks in OLB [15] naturally apply to their corresponding
number of packets. Thus, for 500,000 packets, the energy consumption is reflective of
8 KWH. For example, when considering a mere 20 packets, this energy consumption
translates to (8 × 20)/500,000 KWH, which further converts to (8 × 3600 × 20)/500,000 KJ,
resulting in 1.15 KJ.

Similarly, for 1,000,000 packets, the energy consumption aligns with 18 KWH. Thus,
for 40 packets, the energy consumption calculation stands at (18 × 40)/1,000,000 KWH or
(18 × 40 × 3600)/1,000,000 KJ, yielding 2.6 KJ.

In a similar vein, when dealing with 1,500,000 packets, the energy consumption
approximates 24 KWH. Consequently, for 60 packets, the energy consumption computes as
(24 × 60)/1,500,000 KWH, which equates to (24 × 60 × 3600)/1,500,000 KJ, culminating in
3.4 KJ.

Similarly, for 2,000,000 packets, the energy consumption aligns with 29 KWH. Cor-
respondingly, for 80 packets, the energy consumption computation stands at (29 × 80)/
2,000,000 KWH or (29 × 80 × 3600)/2,000,000 KJ, yielding 4.1 KJ.

Finally, for 2,500,000 packets, the energy consumption is in the vicinity of 35 KWH. Corre-
spondingly, for 100 packets, the energy consumption translates to (35 × 100)/2,500,000 KWH,
resulting in (35 × 100 × 3600)/2,500,000 KJ, amounting to 5.04 KJ.

This coherent pattern persists, demonstrating a consistent relationship between en-
ergy consumption and the number of tasks (or packets), highlighting the scalability and
predictability of the presented results.

References
1. Alghofaili, Y.; Rassam, M.A. A Dynamic Trust-Related Attack Detection Model for IoT Devices and Services Based on the Deep

Long Short-Term Memory Technique. Sensors 2023, 23, 3814. [CrossRef] [PubMed]
2. Barik, R.K.; Patra, S.S.; Kumari, P.; Mohanty, S.N.; Hamad, A.A. A new energy aware task consolidation scheme for geospatial

big data application in Mist computing environment. In Proceedings of the 8th International Conference on Computing for
Sustainable Global Development (INDIACom), New Delhi, India, 17–19 March 2021; pp. 48–52.

3. Hmissi, F.; Ouni, S. An MQTT Brokers Distribution Based on Mist Computing for Real-Time IoT Communications; Springer:
Berlin/Heidelberg, Germany, 2021.

4. Refaat, H.E. MLITS:Multi-Level tasks scheduling model for IoT Service Provisioning. Inf. Bull. Comput. Inf. 2020, 2, 1–9.
[CrossRef]

5. Rubio-Drosdov, E.; Sánchez, D.D.; Almenárez, F.; Marín, A. A framework for efficient and scalable service offloading in the Mist.
In Proceedings of the IEEE 5th World Forum on Internet of Things (WF-IoT), Limerick, Ireland, 15–18 April 2019; pp. 460–463.

6. Hensh, F.; Gupta, M.; Nene, M.J. Mist-Edge-Cloud (MEC) Computing: An Integrated Computing Architecture. In Proceedings of
the Second International Conference on Electronics and Sustainable Communication Systems (ICESC), Coimbatore, India, 4–6
August 2021; pp. 1035–1040.

7. Shahid, H.; Shah, M.A.; Almogren, A.; Khattak, H.A.; Din, I.U.; Kumar, N.; Maple, C. Machine Learning-based Mist Computing
Enabled Internet of Battlefield Things. ACM Trans. Internet Technol. 2021, 21, 1–26. [CrossRef]

8. Hosen, A.S.; Sharma, P.K.; Cho, G.H. MSRM-IoT: A reliable resource management for Cloud, Fog and Mist assisted IoT networks.
IEEE Internet Things J. 2021, 9, 2527–2537. [CrossRef]

https://doi.org/10.3390/s23083814
https://www.ncbi.nlm.nih.gov/pubmed/37112155
https://doi.org/10.21608/fcihib.2020.107525
https://doi.org/10.1145/3418204
https://doi.org/10.1109/JIOT.2021.3090779

Sensors 2023, 23, 7286 24 of 24

9. Ejaz, M.; Kumar, T.; Ylianttila, M.; Harjula, E. Performance and Efficiency Optimization of Multi-layer IoT Edge Architecture. In
Proceedings of the 2nd 6G Wireless Summit (6G SUMMIT), Levi, Finland, 17–20 March 2020; pp. 1–5. [CrossRef]

10. Tripathy, S.S.; Barik, R.K.; Roy, D.S. Secure-M2FBalancer: A Secure Mist to Fog Computing-Based Distributed Load Balancing
Framework for Smart City Application. In Advances in Communication, Devices and Networking; Springer: Berlin/Heidelberg,
Germany, 2021; pp. 277–285. [CrossRef]

11. Barik, R.K.; Misra, C.; Lenka, R.K.; Dubey, H.; Mankodiya, K. Hybrid mist-cloud systems for large scale geospatial big data
analytics and processing: Opportunities and challenges. Arab. J. Geosci. 2019, 12, 32. [CrossRef]

12. Stavrinides, G.L.; Karatza, H.D. Security and Cost Aware Scheduling of Real-Time IoT Workflows in a Mist Computing Envi-
ronment. In Proceedings of the 8th International Conference on Future Internet of Things and Cloud (FiCloud), Rome, Italy, 23–25
August 2021; pp. 34–41.

13. Ali, H.S.; Rout, R.R.; Parimi, P.; Das, S.K. Real-Time Task Scheduling in Fog-Cloud Computing Framework for IoT Applications:
A Fuzzy Logic based Approach. In Proceedings of the International Conference on COMmunication Systems & NETworkS
(COMSNETS), Bangalore, India, 5–9 January 2021; pp. 556–564.

14. Das, A.K.; Kalam, S.; Sahar, N.; Sinha, D. UCFL: User Categorization using fuzzy logic towards PUF based two-phase authentica-
tion of Foassisted IoT devices. Comput. Secur. 2020, 97, 101938. [CrossRef]

15. Reddy, D.A.; Krishna, P.V. Feedback-based fuzzy resource management in IoT using fog computing. Evol. Intell. 2020, 14, 669–681.
[CrossRef]

16. Cuka, M.; Elmazi, D.; Bylykbashi, K.; Spaho, E.; Ikeda, M.; Barolli, L. Implementation and performance evaluation of two
fuzzy-based systems for selection of IoT devices in opportunistic networks. J. Ambient. Intell. Humaniz. Comput. 2018, 10, 519–529.
[CrossRef]

17. Haripriya, A.; Kulothungan, K. Secure-MQTT: An efficient fuzzy logic-based approach to detect DoS attack in MQTT protocol for
Internet of Things. EURASIP J. Wirel. Commun. Netw. 2019, 2019, 1–15.

18. Khalil, A.; Mbarek, N.; Togni, O. Fuzzy Logic based security trust evaluation for IoT environments. In Proceedings of the
IEEE/ACS 16th International Conference on Computer Systems and Applications (AICCSA), Abu Dhabi, United Arab Emirates,
3–7 November 2019; pp. 1–18.

19. Sankar, S.; Srinivasan, P. Fuzzy Logic Based Energy Aware Routing Protocol for Internet of Things. Int. J. Intell. Syst. Appl. 2018,
10, 11–19. [CrossRef]

20. Ramkumar, K.; Ananthi, N.; Brabin, D.R.D.; Goswami, P.; Baskar, M.; Bhatia, K.K.; Kumar, H. Efficient routing mechanism for
neighbour selection using fuzzy logic in wireless sensor network. Comput. Electr. Eng. 2021, 94, 107365. [CrossRef]

21. Radhika, S.; Rangarajan, P. Fuzzy Based Sleep Scheduling Algorithm with Machine Learning Techniques to Enhance Energy
Efficiency in Wireless Sensor Networks. Wirel. Pers. Commun. 2021, 118, 3025–3044. [CrossRef]

22. Deabes, W.; Bouazza, K.E.; Algthami, W. Smart Fuzzy Petri Net-Based Temperature Control Framework for Reducing Building
Energy Consumption. Sensors 2023, 23, 5985. [CrossRef] [PubMed]

23. Hu, Y.; Meng, J.; Li, G.; Zhao, D.; Feng, G.; Zuo, G.; Liu, Y.; Zhang, J.; Shi, C. Fuzzy Adaptive Passive Control Strategy Design for
Upper-Limb End-Effector Rehabilitation Robot. Sensors 2023, 23, 4042. [CrossRef] [PubMed]

24. Shehabi, A.; Smith, S.; Sartor, D.; Brown, R.; Herrlin, M.; Koomey, J.; MasaneT, E.; Lintner, W.; Horner, N.; Azevedo, I. United
States Data Center Energy Usage Report; LBNL-1005775; Lawrence Berkeley National Laboratory: Berkeley, CA, USA, 2016.

25. Bennouri, H.; Berqia, A. U-NewReno transmission control protocol to improve TCP performance in Underwater Wireless Sensors
Networks. J. King Saud Univ.-Comput. Inf. Sci. 2022, 34, 5746–5758. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/6gsummit49458.2020.9083896
https://doi.org/10.1007/978-981-16-2911-2_30
https://doi.org/10.1007/s12517-018-4104-3
https://doi.org/10.1016/j.cose.2020.101938
https://doi.org/10.1007/s12065-020-00377-w
https://doi.org/10.1007/s12652-017-0676-0
https://doi.org/10.5815/ijisa.2018.10.02
https://doi.org/10.1016/j.compeleceng.2021.107365
https://doi.org/10.1007/s11277-021-08167-y
https://doi.org/10.3390/s23135985
https://www.ncbi.nlm.nih.gov/pubmed/37447834
https://doi.org/10.3390/s23084042
https://www.ncbi.nlm.nih.gov/pubmed/37112385
https://doi.org/10.1016/j.jksuci.2021.08.006

	Introduction
	Related Work
	Load Balancing among the Four IoT Network Layers
	Fuzzy Logic and Load Balancing

	Motivation and Aims: Proposed Model
	Our Proposed MFHS Aims to Achieve the Following
	The Proposed Approach

	Phases of the Proposed Approach
	Phase 1
	Phase 2
	Fog Broker

	Experimental Setup
	Evaluation
	Results
	Energy Consumption
	Etr Calculations
	Ec and Ea Calculations
	Energy Cost Comparison

	Processing Time
	Ttr Calculations
	Tc and Ta Calculations

	Discussion
	Conclusions
	Appendix A
	Energy Consumption Calculations for FOFSA, ATAT, and OLB
	FOFSA
	ATAT
	OLB

	References

